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ABSTRACT  

Navigation and positioning is inherently dependent on the 
context, which comprises both the operating environment 
and the behaviour of the host vehicle or user. No single 
technique is capable of providing reliable and accurate 
positioning in all contexts. In order to operate reliably 
across different contexts, a multi-sensor navigation system 
is required to detect its operating context and reconfigure 
the techniques accordingly. This paper aims to determine 
the behavioural and environmental contexts together, 
building the foundation of a context-adaptive navigation 
system. 

Both behavioural and environmental context detection 
results are presented. A hierarchical behavioural 
recognition scheme is proposed, within which the broad 
classes of human activities and vehicle motions are 
detected using measurements from accelerometers, 
gyroscopes, magnetometers and the barometer on a 
smartphone by decision trees (DT) and Relevance Vector 
Machines (RVM). The detection results are further 
improved by behavioural connectivity. Environmental 
contexts (e.g., indoor and outdoor) are detected from 
GNSS measurements using a hidden Markov model. 

The paper also investigates context association in order to 
further improve the reliability of context determination. 
Practical test results demonstrate improvements of 
environment detection in context determination. 

 

1. INTRODUCTION 

Navigation and positioning systems are inherently 
dependent on the context, which comprises both the 
operating environment and the behaviour of the host 
vehicle or user [1]. Environments and behaviours reveal 
different aspects of context implicitly. Environmental 
context is concerned with the spatial information (e.g., 
indoor or outdoor) of the navigation system while 
behavioural context is more related to the mobility 
information (e.g., stationary, walking or running). For 
many applications, the context can change, particularly for 
smartphones, which move between indoor and outdoor 
environments and can be stationary, on a pedestrian, or in 
a vehicle. To meet the growing demand for greater 
accuracy and reliability in a wider range of challenging 
contexts, many navigation and positioning techniques have 
been developed or improved, such as Wi-Fi positioning 
[2][3], multiple-constellation global navigation satellite 
system (GNSS) [4], GNSS shadow matching [5][6] and 
pedestrian dead reckoning (PDR) using step detection 
[4][7]. However, no single current technique is capable of 
providing reliable and accurate positioning in all contexts. 
Therefore, in order to operate reliably across different 
contexts, a multi-sensor navigation system is required to be 
able to detect its operating context and reconfigure the 
technique it uses accordingly, which is referred to as 
context-adaptive navigation [1][8]. 

Figure 1 illustrates a possible architecture for a multi-
sensor context adaptive navigation or positioning system. 
In an autonomous context adaptive navigation system, 
behavioural and environmental context categories are 
identified independently and associated using available 
sensors in the mobile device. Based on the contexts 
detected, different sensors may be selected and their 
measurements may be processed in different ways within 
each subsystem. Consequently, the integration module can 
adapt itself and export positioning results by selecting 
proper subsystems and varying the tuning of the algorithms. 
Then the positioning results can be used for location based 
services and improvement of context detection. 
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Figure 1: An example of a context adaptive navigation 
system 

 
Environmental context is the central component of a 
contextual navigation or positioning system because it 
determines the types of signals available. For example, 
GNSS reception is good in open environments, but poor 
indoors and in deep urban areas. Wi-Fi signals are not 
available in rural area, in the air or at sea. In an underwater 
environment, most radio signals are not available at all. In 
addition, processing techniques also depend on the 
environments. Terrain referenced navigation typically 
determines terrain height using radar or laser scanning in 
the air, sonar or echo sounding at sea and a barometer on 
land [1]. In an open environment, non-line-of-sight (NLOS) 
reception of GNSS signals or multipath interference may 
be detected using consistency checking techniques based 
on sequential elimination [9]. In dense urban areas, more 
sophisticated algorithms are required for NLOS/multipath 
detection. 

Behavioural context is also important because it can 
contribute additional information to the navigation solution. 
It will help mobile devices to understand what the user is 
doing under particular circumstances [10]. A stationary 
pedestrian or a land vehicle indicates a fixed location and 
will not need to update its velocity and position. Land 
vehicles normally remain on the ground, effectively 
removing one dimension from the position solution. 
Similarly, boats, ships and underwater vehicles can all be 
on land, but only exhibit some specific types of behaviours. 
Within a GNSS receiver, the behaviour can be used to set 
the bandwidths of the tracking loop and coherent 
integration intervals, and to predict the temporal 
characteristics of multipath [11]. 

Previous work on contextual navigation and positioning 
has focused on individual positioning techniques. For 
instance, there has been substantial research into 
determining the motion types for indoor positioning 
applications [12][13]. Researchers have also investigated 
context-adaptive GNSS to adjust the processing strategies 
and parameters of GNSS receivers [11]. Moreover, despite 
contextual awareness having been applied for different 
tasks within a mobile device [14][15][16], most of the 

related services are provided for non-navigation purpose. 
Context frameworks designed in general may not be 
suitable for context adaptive navigation. A context 
framework for navigation and positioning must be 
designed especially in order to be fit for navigation purpose; 
otherwise, it serves no purpose. 

Recently, a number of researchers have investigated 
different approaches towards a context adaptive navigation 
system. The initial attempt was made in [17], in which a 
Location-Motion-Context (LoMoCo) solution was 
proposed using Bayes reasoning, to determine the users’ 
context information from the locations and motion states. 
In 2013, the concept and framework of ‘context adaptive 
navigation’ was first introduced systematically in [1] by 
UCL, with the preliminary behavioural and environmental 
context detection results following. Following the initial 
proof of concept, an adaptive activity and environment 
recognition algorithm for context model parameters was 
proposed in [16]. In [18], it was shown that a hidden 
Markov model (HMM) can be used to integrate the 
location based motion states for inferring the mobility 
context of pedestrians. In [19], a framework for inferring 
typical on-campus contexts was developed, which took 
locations, timespans and the user’s mobility contexts into 
consideration and achieved an 88.8% success rate using a 
Naïve Bayes classifier. 

Existing research have demonstrated the relevant context 
detection techniques and built the foundations of a context 
adaptive navigation system. To further carry on the 
research, many new lines of research are required to be 
pursued, including: 
 Definition of a set of context categories for navigation 

and positioning purposes; 
 Development of behavioural and environmental 

context detection algorithms using a wide range of 
sensors; 

 Development of a robust context determination 
algorithm; 

 The practical demonstration of a basic multi-sensor 
context adaptive integrated navigation system. 

This paper aims to determine behavioural and 
environmental context as whole with multiple sensors on 
the smartphone. Section 2 presents a study of behaviour 
recognition. The recognition framework and the 
performance of supervised machine learning classification 
algorithms are described, along with the temporal 
connectivity of behaviours. Section 3 proposes a new 
method for indoor-outdoor environmental context 
detection using GNSS measurements under a hidden 
Markov model. Section 4 considers behavioural and 
environmental context as whole and investigates context 
association to improve the reliability of context 
determination. Conclusions are presented in Section 5. 
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2. BEHAVIOUR RECOGNITION 

2.1. Framework 

The behavioural context may be divided into several broad 
classes: human activity, land vehicle, water vehicle, 
aircraft and spacecraft [1]. Each class contains detailed 
subdivisions. To provide robust and accurate classification 
of behaviours, a hierarchical detection frame is proposed to 
proceed from a coarse-grained recognition towards fine-
grained subtasks. The top level of classifier is designed to 
distinguish between the broad classes while the bottom 
level of classifiers is responsible for recognising the 
subclasses within each broad class. Compared with a single 
classifier dealing with all behavioural scenarios, this 
hierarchical framework has two benefits. Different features 
and machine learning algorithms can be used in different 
classifiers for better recognition performance. Moreover, a 
flexible scheme is offered as new classes (e.g. water 
vehicle, aircraft) or subclasses can be added within the 
framework, as illustrated in Figure 2. The classifiers and 
classes in solid boxes indicate those are already 
implemented within the current context determination 
framework, while those in dash boxes indicate potential 
future extensions. 

 

Figure 2: Extensive framework of behaviour detection 
 
To illustrate the effectiveness of the framework in the 
initial stage of the study, human activity and land vehicle 
classes are included within the scope of the research. The 
current detection system consists of three classifiers: a 
human-vehicle classifier, a human activity classifier and a 
vehicle motion classifier, which are organized into a 
hierarchy as in Figure 3. A human-vehicle classifier is 
designed at the start of the system to distinguish between 
motorised vehicle motions and non-motorised activities. 
When motorised transport is recognised, the detection 
system proceeds to the vehicle motion classifier for 
classification of different vehicle motions. Otherwise, it 
proceeds to the human activity classifier. A set of detailed 
categories currently included within each classifier are 
introduced in Table 1. Note that distinct from human 
activities, motorised land vehicles, propelled by internal 
combustion engines or electric motors, sometimes 
combinations of the two, can be identified by the vibrations 
from the frequency spectrum of the accelerometers. Engine 
vibration applies mainly to internal combustion engines, 

whereas road-induced vibration applies to all land vehicles. 
The vehicles covered in this study by now include diesel 
trains, diesel buses and underground trains. All 
underground trains are electric for safety reasons. The 
hybrid vehicles were not included in the current study. The 
mode of stationary vehicles with the engine on is included 
within the category because it can play a significant role in 
context association to minimise impossible behavioural 
context transitions, such as from a moving vehicle to 
another moving vehicle directly, or one human activities 
connected to a moving vehicle without intermediate 
categories. 

 

Figure 3: Overview of behaviour recognition system 
 

Human activity types Vehicle motion types 
Stationary; 
Walking; 
Running; 
Ascending stairs; 
Descending stairs. 

Stationary vehicles with the 
engine on; 
Moving diesel trains; 
Moving diesel buses; 
Moving underground trains. 

Table 1: Detailed types of behaviours 

2.2. Methodology 

Behavioural context recognition systems consist of four 
main phases: sensing, preprocessing, feature extraction and 
either training or classification. They are described as 
follows: 
1) Sensing: In this step, sensors collect the raw data at 

specific sampling rates. 
2) Preprocessing: Subsequently, the raw data can be 

processed in various ways, such as cleansing and 
filtering. Then, a windowing scheme is applied to 
segment the data into successive pieces for further 
calculation. 

3) Feature extraction: Various features, representing the 
main characteristics of behaviours, are extracted from 
the segmented data as the inputs of classifiers. 

4) Training and Classification: In the training stage, the 
recognition classifiers for classification are constructed 
and the parameters of the model are learned from 
training sets. In the classification stage, the trained 
classifiers are used to recognise different behaviours. A 
detailed description of the machine learning algorithms 
used in this study is presented in Section 2.2.4. 

2.2.1. Sensing 

As previous research [20][21] has already proved, among 
the sensors in a smartphone, measurements from the 
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inertial sensors are capable of taking the leading roles in 
motion recognition. The accelerometer and gyroscope 
signals are able to track kinematic motions indirectly by 
measuring the specific force and angular rate. Motion can 
also be inferred from some sensors that measure magnetic 
features. Magnetometers sense the Earth's magnetic field, 
enabling changes in heading to be detected. A barometer, 
also called a barometric altimeter, measures the ambient air 
pressure, from which the heights can be estimated and the 
changes in height can be derived [4]. Therefore, in this 
study, accelerometers, gyroscopes, magnetometers and a 
barometer, found in most smartphones, are used for 
behavioural recognition. 

2.2.2. Pre-processing 

Prior to feature extraction, the raw sensor data are divided 
into small segments using sliding windows. The selection 
of an appropriate window length is important, and different 
durations can be set for it. At a sampling frequency of 100 
Hz, a 500 sample window is suitable based on previous 
studies [22][23]. It was shown that a window length of four 
seconds was an effective and sufficient value for behaviour 
recognition, neither too short to capture enough features, 
nor too long to avoid mixing multiple contexts in a single 
window. A 4s sliding window with a 50% overlap is used 
for training and testing to avoid missing information 
between successive windows. Note that to get quicker 
responses, a 75% overlap is adopted in Section 2.4 and 4.2, 
thus context can be determined every second. 

For accelerometers, gyroscopes and magnetometers, they 
are made in three dimensions, referred to as the x-axis, y-
axis and z-axis. However, the recognition performance 
may be affected by orientation changes if the model is 
trained only for a specific orientation [20][24]. In order to 
minimise such effects, the magnitudes of the sensors are 
calculated from the outputs of three axes, x, y and z, thus 

 
2 2 2

magnitude x y z    . (1) 

However, the existence of a sequence with a non-zero 
mean can hide important information in the frequency 
domain, so the means of the magnitudes are removed from 
each segment prior to computing the frequency-domain 
features. 

2.2.3. Feature Extraction 

Once the data pre-processing is completed, features need 
to be extracted from the segmented data to be used for 
training and classification. A good set of feature 
measurements can often provide accurate and 
comprehensive descriptions of patterns from which the 
differences between context categories are easily discerned. 
In this study, both time-domain and frequency-domain 
features are extracted for behavioural recognition. 

Time-domain features describe temporal variations of 
motions during the epoch. The time-domain features 

selected include range, variance, skewness and kurtosis 
extracted from all sensors. The effectivenesses of these 
features for behaviour classification have been shown in 
different studies [20][25][26]. Zero-crossing rate (ZCR) is 
also extracted from the preprocessed accelerometer signals, 
which is used to differentiate different periods of human 
activity changing with the time. They are expressed as 
follows and summarized in Table 2: 
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where N is the length of the sample window, μ is the mean, 
xn represents the n-th epoch of data in the window and the 
indicator function 𝕀(. ) is 1 if its argument is true and 0 
otherwise. 
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Vehicle 
√ √ √ √  16 

Human 

Classifier 
√ √ √ √ √ 17 

Vehicle 

Classifier 
√ √ √ √  16 

Table 2: Time-domain features for each classifier. Range, 
variance, skewness and kurtosis are extracted from 
accelerometers, gyroscopes, magnetometers and the 

barometer respectively while ZCR is only extracted from 
the accelerometer signals. 

 
Frequency-domain features describe the periodic 
characteristics of motion during the sample window. In 
frequency-domain analysis, peaks are centered on different 
frequency values for different behaviours after a fast 
Fourier transform (FFT). For this reason, features in the 
frequency spectrum can reveal significant information on 
motion periods and vibrations. In the human-vehicle 
classifier and human activity classifier, the frequency of 
the largest peak and related spectrum peak magnitude of 
accelerometers and gyroscopes, are extracted to capture the 
differences between human and vehicles, and the main 
temporal periodicity of different human activities. 
Specifically, according to [1][8], the vehicles always 
exhibit one or more peaks between 20 Hz and 40 Hz due to 
vibration and little peaks below 10 Hz when the vehicle is 
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not moving. Thus all frequency domain features of vehicle 
classifier are estimated in the following sub-bands instead 
of the whole spectrum: 0-10 Hz, 10-20 Hz, 20-30 Hz, 30-
40 Hz and 40-50 Hz. 

The Power Spectral Density (PSD) of signals shows the 
strength of the energy distributed in the frequency 
spectrum, thus the PSD of accelerometers is adopted in the 
vehicle motion classifier to distinguish different vehicle 
motions with diverse vibrations. For finite time series xn 
sampled at discrete time ∆𝑡 for a total measurement period 
T = N∆𝑡, the PSD is defined by 
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A summary of the frequency domain features for each 
classifier is presented in Table 3. 
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Human-

Vehicle 
2 2  4 

Human 

Classifier 
2 2  4 

Vehicle 

Classifier 
10  5 15 

Table 3: Number of frequency-domain features for each 
classifier. In the human-vehicle and human activity 

classifier, the features are the frequencies of the largest 
peak and related spectrum peak magnitudes, extracted 

from accelerometers and gyroscopes, respectively. In the 
vehicle classifier, the largest peak magnitudes and the 

PSDs of the accelerometers and gyroscopes are estimated 
in the sub-bands. 

2.2.4. Supervised Machine Learning 

Supervised classification methods learn a model of 
relationships between the target vectors and the 
corresponding input vectors consisting of training samples 
and then utilize this model to predict target values for the 
test data [28]. Note that in the algorithms described in this 
section, assume that there are L possible behavioural 
categories C={Ck | k=1,2,· · · , L}. Given a training dataset 
X={Xi,j | i=1,2, · · · , N; j=1,2, · · · , M}, each sample Xi={Xi,1, 

Xi,2, · · · , Xi,M} is assigned to a target value yi∈C. M is the 
number of features and N is the number of the samples in 
the dataset. 

Due to the limited space, only the algorithms used in the 
framework, decision tree and relevance vector machine, 
are introduced in detail. The reason why they are selected 
will be explained in Section 2.3.2. 

 

 Decision Tree (DT) 

A decision tree is a method that performs a recursive binary 
partitioning of the feature space to reach a decision. Given 
training samples and the corresponding class labels, the 
dataset is split into branch-like segments such that samples 
with the same labels are grouped together. The root is the 
starting point of the tree while the nodes without outgoing 
lines are the terminals. The samples are classified while 
navigating from the root down to the terminals. Along the 
path, the internal nodes split the data into two or more 
segments according to decision criteria based on features 
until all samples at a node belong to the same class.  

Let the training dataset at node m be represented by Q. For 
each split at the node, one feature value Xi,j and a threshold 
θ are required to partition the data into two subsets: 
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The impurity at node m, a measure of the homogeneity of 
the labels, is computed using an impurity function H(.), 
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where Nm is the number of the samples at node m, and nleft 
and nright indicate the number of samples splitted into the 
left and right branch, respectively. To choose the 
thresholds that best splits the samples at each step, the 
parameters that minimise the impurity are selected. 

 
* ( , )argminG Q


    (10) 

This is repeated for subsets 𝑄𝑙𝑒𝑓𝑡(𝜃∗) and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃∗) until 

the maximum size of tree is reached, or Nm=1. Note that the 
choice of an impurity function depends on the task being 
solved. In this study, information entropy [27] is used for 
its computational simplicity: 

 2( )
mk mk

k

H Q p log p    (11) 

where pmk is the proportion of samples Q belonging to 
category Ck at node m. 

Amongst the supervised machine learning methods, the 
decision tree has various advantages. The model is simple 
and clearly explained by Boolean logic. Also, a large 
amount of data can be trained and tested within a 
reasonable time. However, the training process of decision 
tree methods cannot guarantee to return the globally 
optimal tree. Moreover, the method can create a biased tree 
if some classes dominate the training data. 

 Relevance Vector Machine (RVM) 

Fundamentally, RVM is a binary classifier (y∈{0,1}) under 
a Bayesian probabilistic framework [28]. The relationship 
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of the input vector and their real-valued predictions t(Xi) 
are modelled by a linearly weighted function 
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where w denotes the weights of samples and ( )i X  is a 

nonlinear basis function. The input data samples Xi are 
classified according to the sign of t(Xi). To infer the 
function t(Xi), we need to define the basis function and to 
estimate the weights as well. In here, the radial basis kernel 
function is used, so that: 
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A Bayesian probabilistic framework infers a distribution 
over the weights. According to Bayes rule, the posterior 
probability of w is 
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where 𝐲 = (𝑦1, ⋯ , 𝑦𝑁)T, αi represents the precision of the 
corresponding parameter wi, and 𝜶 = (𝛼1, 𝛼2,⋯ , 𝛼𝑀)T . 
p(y|w,α) is the likelihood of the target values given the 
training dataset. The conditional prior probability 
distribution p(w|α) in Equation (14) is modelled by a 
Gaussian function where the parameters wi are weighted by 
parameters αi. 
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Because y∈ {0,1} is a binary variable, the likelihood 

function can be described by a Bernoulli distribution: 
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where σ(y)=1/(1+e-y) is the logistic sigmoid link function. 
Equation (14) with the probability densities given by (15) 
and (16) cannot be solved analytically. Therefore, a 
numerical method, the Laplacian approximation, is 
proposed to find the maximum a posterior (MAP) weights 
w* based on the training dataset, 
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where 𝐀 = 𝑑𝑖𝑎𝑔(𝛼𝑖). By computing the maximum value 
of (17) with respect to α and y, the mean w* and covariance 
Δ of the Laplacian approximation are obtained: 

 
1( )

T

T







 

w ΒΔΦ y
Δ Φ ΒΦ A

 (18) 

where 𝐁 = 𝑑𝑖𝑎𝑔(𝛽1, 𝛽2, … , 𝛽𝑁) is a diagonal matrix with 𝛽𝑖 = 𝜎(𝑦𝑖)[1 − 𝜎(𝑦𝑖)]. After obtaining w*, the parameters 
α are iteratively updated using  
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where μi is the i-th posterior mean weight wi
* and Δii is the 

i-th diagonal element of the covariance. The procedure is 
repeated until it converges to a fixed value or the maximum 
number of iterations is reached. 

In order to tackle multiclass situations using the RVM 
method, two possible strategies could be used [28]. The 
first one is the ‘one-against-all’ strategy. L binary 
classifiers will be created for an L-class classification and 
each classifier is trained to separate one class from the 
others. The second strategy is ‘one-versus-one’. There are 
L(L-1)/2 binary classifiers created to separate every two 
classes. In this study, the first method is adopted as it is 
more computational efficient. 

2.3. Testing 

2.3.1. Datasets 

Behavioural data was collected from several individuals 
and different vehicles using a Samsung Galaxy S4 
smartphone. This comprised both human and land vehicle 
behaviours. About 30 minutes of data was collected for 
each behaviour. The behavioural motions were recorded 
using the 3-axis accelerometers, 3-axis gyroscopes, 3-axis 
magnetometers and barometer of the smartphone. In the 
data collection, a higher sampling rate provides more 
samples in each window but more processing is needed. By 
balancing the amount of data required per window and the 
power consumption, the accelerometers, gyroscopes and 
magnetometers were sampled at 100 Hz while the 
barometer was set at its maximum sampling rate, 6.25 Hz. 

For the human activity dataset, eight participants, including 
both females and males of age range 23 to 35, were 
enrolled to collect daily human activities, comprising 
stationary (including standing, sitting still and placed on a 
table), walking, running, climbing stairs and descending 
stairs. During each data collection, the smartphone was 
placed in the front pockets of the trousers and no 
instructions were given about its orientation. All 
participants were asked to perform each activity as flexibly 
as usual without any restrictions.  

For the vehicle motion datasets, data were collected 
separately on buses, underground trains and diesel trains. 
Data were collected in both dynamic and stationary (with 
the engine on) scenarios. During the collection, the 
smartphone was put on a seat within the vehicle, where 
noise conditions were typical. 
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2.3.2. Results 

 Comparisons with Different Algorithms 

To determine the most suitable algorithm for each classifier, 
a wide range of common supervised machine learning 
algorithms were compared. In addition to the DT and RVM 
described in Section 2.2.4, an artificial neural network 
(ANN), Bayesian network (BN), Naïve Bayes (NB) 
algorithm and support vector machine (SVM) were 
assessed. The ANN, BN, NB and SVM algorithms are 
described in [28] and their capabilities for sensing 
behavioural contexts are discussed in [29]. 

To carry out the evaluations for the comparison, a 6-fold 
cross-validation strategy was applied to train and test each 
of the three classifiers in the framework individually. 
Using this method, the database is randomly divided it into 
6 equally sized folders. Each time, 5 folders are used as 
training sets while the remaining one is used as a test set. 
This procedure is repeated 6 times to ensure that all the 
samples are used equally in testing, while maintaining 
independence of training and testing data for model 
learning. 

After each folder is tested, the algorithms are evaluated 
based on statistical metrics. Two commonly used measures 
are precision and recall: precision P is the number of results 
correctly attributed to the class divided by the total number 
attributed to that class, recall R is the number of results 
correctly attributed to the class divided by the number that 
truly belong to that class. In this research, the overall 
accuracy of the classification results is evaluated using F1 
score, the harmonic mean of precision and recall, defined 
in Equation (22). 
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In the equations, Tp indicates the number of true positives 
or correctly classified results, FN is the number of false 
negatives and Fp is the number of false positives. 

Algorithm 
Human-

Vehicle 

Human 

Activities 

Vehicle 

Motions 

ANN 97.4 96.4 88.2 

BN 90.2 94.4 85.6 

DT 98.9 91.4 87.6 

NB 89.4 91.7 80.3 

RVM 96.4 97.6 91.0 

SVM 97.9 98.3 92.0 

Table 4: F1 score of different supervised machine 
learning algorithms for each classifier (%) 

 

The performance of the different supervised machine 
learning techniques in three classification tasks is 
presented in Table 4. Note that each result listed in the table 
is the best one achieved using that algorithm by tuning the 
parameters. For the human-vehicle classifier, the decision 
tree shows better performances than the others, achieving 
an F1 score of nearly 99%. As the decision tree is also 
simple structured and computational efficient for both 
training and testing, it is therefore selected for the human-
vehicle classifier. The classification results of the human 
and vehicle classifiers suggest that RVM and SVM are 
both excellent candidates, with SVM performing slightly 
better than RVM. However, the outputs of RVM are 
probabilities, while those of the SVM are Boolean, so the 
RVM provides an indication of the uncertainty of the 
classification decision, which is useful for context-adaptive 
navigation. Therefore, the RVM is chosen for both the 
human activity and vehicle motion classifiers. 

 Performance of Behavioural Classifier 

To evaluate the performance of the overall recognition 
system with three classifiers working together, the whole 
dataset was divided into two parts: 200 samples of each 
category in the dataset were randomly selected as test 
samples; the others (about 700 samples for each category) 
were used as training samples. The behaviour recognition 
results of our approach are shown in the confusion matrix, 
presented in Table 5. A confusion matrix is a classification 
result table with each row representing the true class and 
each column representing the class output by the 
classification algorithms. 

The results show that the system achieves an overall F1 
score of 95.1%, demonstrating that this approach can 
distinguish most of the behaviours. It can be observed from 
Table 5 that the misclassification rate between human 
activities and vehicle motions is less than 1% due to the 
hierarchical classification scheme. However, some 
categories are more difficult to detect. For example, many 
moving bus samples are misclassified as other vehicle 
motions due to the presence of similar road-induced and 
engine vibrations. 

Actual Predicted 

S W R A D V U T B 

S 192 0 0 0 0 8 0 0 0 
W 0 194 0 3 3 0 0 0 0 
R 0 0 200 0 0 0 0 0 0 
A 0 3 0 194 3 0 0 0 0 
D 0 3 0 5 192 0 0 0 0 
V 7 0 0 0 0 186 4 2 1 
U 0 0 0 0 0 5 183 7 5 
T 0 0 0 0 0 5 2 190 3 
B 0 0 0 0 0 10 2 8 180 

Table 5: Confusion matrix 
Note: S=stationary, W=walking, R=running, A=ascending 
stairs, D=descending stairs, V=stationary vehicles with the 
engine on, U=moving underground trains, T=moving trains, 
B=moving buses. 
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2.4. Behavioural Connectivity 

One way of reducing incorrect behaviour determination is 
to consider the likelihood of behaviour connectivity. 
Connectivity describes the temporal relationship between 
the current behaviour category and the previous ones. If a 
direct transition between two categories can occur, they are 
connected; otherwise, they are not [1]. For example, 
stationary vehicle and pedestrian behaviour can be 
connected directly, whereas moving vehicle behaviour is 
not because a vehicle must normally stop to enable a person 
to get in or out.  

Behavioural connectivity is represented in a probabilistic 
way. Comparing with Boolean results, there are two 
advantages. First, a Boolean implementation may 
occasionally result in the decisions being stuck on incorrect 
context categories following a faulty selection. This can 
occur when the correct context category is not directly 
connected to the incorrectly selected category and the other 
categories are poor matches to the measurement data. But 
probabilities are more flexible to increase the directly 
connected category and minimise the unlikely one. Second, 
a probabilistic scheme permits the transitions between 
context categories that are rare, but not impossible. 

To illustrate the temporal relationships, the likelihoods of 
connections between behaviours are listed in Table 6, 
where the permitted direct connections are set to 0.9 and 
the unlikely connections are set to 0.1. 

      Prev 
 Now       H V U T B 

H 0.9 0.9 0.1 0.1 0.1 

V 0.9 0.9 0.9 0.9 0.9 

U 0.1 0.9 0.9 0.1 0.1 

T 0.1 0.9 0.1 0.9 0.1 

B 0.1 0.9 0.1 0.1 0.9 

Table 6: Behavioural connection matrix (C) 
Note: H = human activities, including stationary, walking, 
running, ascending and descending stairs; V=stationary vehicles 
with the engine on; U=moving underground trains; T=moving 
diesel trains; B=moving buses. 

As the behaviours between two concessive epochs are not 
independent, a straight smoothing method is first applied. 
As in Equation (23), the smoothed estimates are obtained 
by combining the normalised outputs from the 
classification algorithms at epoch k and the estimates at 
epoch k-1 using filter gain α. 

 1
ˆ ˆ(1 )k k k 

    x z x   (23) 

where �̂�𝑘−  and �̂�𝑘−1  are, respectively, the estimates of 
behaviours at epoch k before connectivity updating and 
estimates at epoch k-1 and 𝐳𝑘 is the detected probability of 
behaviours at epoch k across the detection algorithms. 
α=0.5 is used here, which indicates the measurements at 
epoch k and the estimates at epoch k-1 are weighted equally. 
Then the relationships between estimates are constructed 

based on a linear assumption by a transfer matrix Ωk, as 
shown in Equation (24). 
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ˆ ˆ
k kk
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The transfer matrix is a quantitative representation to 
describe the response of estimate at epoch k to the previous 
one. However, connectivity implies that some transitions 
are more likely than others, thus the transfer matrix should 
be re-estimated using the connectivity constraints, as 
shown in Equation (25). 
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 x Ω C x   (25) 

In Equation (25), notation º denotes matrix element-wise 
multiplication, satisfying (𝛀 ∘ 𝑪)𝑖,𝑗 = 𝛀𝑖,𝑗𝐂𝑖,𝑗. Note that in 

most practical cases, the dimensions of vector �̂�𝑘− and �̂�𝑘−1  
are larger than one, thus Equation (24) becomes an 
underdetermined equation. To obtain the transfer matrix, 
the minimum (Euclidean) norm of the transfer matrix 
constraint is imposed as it is able to control the propagation 
to the perturbations in the estimates [30][31]. To calculate 
the matrix, a Moore-Penrose pseudoinverse [32] of vector �̂�𝑘−1 is applied: 

 †
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 Ω x x   (26) 

In Equation (26), superscript † is the operator of 
pseudoinverse (right inverse in this case), which satisfies 
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The final step is to re-scale the likelihood of each category 
to obtain a probability using 
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where �̂�𝑘,𝑖 is the probability of behaviour i at epoch k. 

To test the performance of the proposed connectivity 
method, a piece of continuous underground train data was 
collected on a London underground train (District line) for 
about 5 minutes, with the vehicle moving and stopping at 
the stations. It was processed and classified using the same 
method described in Section 2.2. 

A comparison of context recognition results with and 
without connectivity is shown in Figure 4. Note that most 
of the misclassified samples are corrected to the right ones, 
showing that the connectivity constraint is able to reduce 
the number of incorrect context selections and improve the 
performance of behavioural detection. Comparing with the 
reference line, it can also be seen that there were one to 
two-second response delays after the behaviour changed. 
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Figure 4: Results of behaviour connectivity 

3. ENVIRONMENT DETECTION 

Generally, the environmental context may be divided into 
several different broad classes: on land, on water, 
underwater, air and space [1]. A good environment 
categorisation for navigation can provide an indication of 
the positioning techniques applicable for a context adaptive 
navigation system. As the smartphone is used as the 
context detection device in this study, it is not applicable to 
be used for positioning purposes underwater, in the air or 
in space. In this paper, the range of environmental contexts 
is limited to scenarios on land because a common mobile 
user spends most of their time in daily life on land. 

As the related research on environment detection is still in 
its infancy, locating whether the user is indoor or outdoor 
is considered as a prerequisite task of a navigation system 
because indoor and outdoor positioning depend on 
inherently different techniques. An effective indoor and 
outdoor detection algorithm can provide essential 
information for context adaptive navigation applications. 
For instance, if a stationary car with the engine on is 
detected outdoors, this may imply it is waiting at traffic 
lights while an indoor context may reveal it is located in a 
car park. 

Different smartphone sensors whose outputs vary with the 
environment can be potentially used as detectors and each 
sensor used for environment detection has its advantages 
and drawbacks respectively. A cellular module detects 
cellular signal strengths from a cellular network, but at the 
same time the signals strongly depend on the proximity of 
cellular base stations in the network. A Wi-Fi module can 
receive signals broadcast from access points. However, 
tests [1][8] show that it is not sufficient for indoor and 
outdoor detection based on the numbers of access points 
and the strengths of signals. A GNSS module (including 
GPS and GLONASS) is chosen as the main detector for 
this research, because the availability and accuracy of 
satellite signals tend to be less affected by factors other 
than the environment type. More importantly, the globally 
distributed properties of GPS and GLONASS ensure that 
we can infer environments from the availability and 
strength of GNSS signals anywhere on Earth. The main 
drawback of GNSS is its high power consumption 
compared to other smartphone sensors. As the research 

advances, other sensors can be added into the context 
determination framework to improve the detection of 
indoor and outdoor environments with GNSS signals. 

 

Figure 5: The portico of UCL’s Wilkins building, an 
example of the intermediate category 

In reality, the boundaries between indoor and outdoor 
environment can be ambiguous, rendering some scenarios 
hard to classify as either one. The portico of UCL’s Wilkins 
building in Figure 5 is a typical example. This is covered 
by the roof of the building, but there is only one wall and 
the other three sides of this area are open. For a practical 
detection system, an uncertain decision is better than a 
wrong classification. Because an uncertain environment 
decision can be used in other ways (e.g. environment 
connectivity, environment and behaviour association) to 
improve the classification, but a wrong classification 
cannot. Similarly, it is better to inform a context-adaptive 
navigation system that the environment is uncertain than to 
provide it with an incorrect context. Therefore, to have a 
smooth transition between indoor and outdoor categories 
and reduce the likelihood of wrong classification, a new 
environment category of “intermediate” is introduced to 
serve as a bridge between the indoor and outdoor 
categories. 

3.1. Overview of GNSS Signals 

GNSS measurements were collected at 1 Hz from both 
GPS and GLONASS signals received by the smartphone. 
The data was collected at different locations of various 
indoor and outdoor environments, such as deep indoor, 
urban, outer indoor and open sky. About 200s of static data 
was collected at each site. Figure 6 presents histograms 
showing the normalised distributions of signal-to-noise 
ratio (SNR) measurements from four types of environment. 

A number of trends may be identified from the histograms. 
A signal with a higher SNR is more likely to be LOS (Line-
of-Sight) than NLOS (Non-Line-of-Sight). As expected, 
the average received SNR is lower in indoor environments 
than in deep urban and open sky environments, which is 
useful for environmental context detection. By comparing 
the GNSS SNR distributions, it can also be seen that the 
proportions of signals weaker than 25 dB-Hz vary between 
different environment types. Almost all the signals 
received in deep indoor environments are weaker than 25 
dB-Hz while increasing proportions of signals stronger 
than 25 dB-Hz are observed for outer indoor, deep urban 
and open sky. 
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Figure 6: SNR measurement distributions under different 
environments 

 

3.2. GNSS Based Features 

The number of satellites received and the total measured 
SNR, summed across all the satellites received at each 
epoch, were also considered as features for the 
environmental classification algorithm. As normally the 
average number of satellites received indoor is no more 
than those received outdoor, the summed SNR is 
considered instead of the average value. These features are 
shown in Figure 7, based on the same set of data shown in 
Figure 6. Note that it takes time for a GNSS receiver to 
acquire satellite signals at the start of a test period, so there 
is an increase in satellite numbers during the first few 
seconds. It can be observed that open sky and deep indoor 
environments can be clearly distinguished from the others.  

However, it is hard to distinguish “outer indoor by the 
window” and “deep urban” from each other based on these 
observations. Approximately the same number of satellites 
was received and there were only slight differences in the 
total SNR measurements. Therefore, neither feature is a 
reliable metric for indoor and outdoor classification. 

 

 

Figure 7: Features derived from satellite signals 
 
As a larger percentage of weak signals (less than 25 dB-
Hz) are received indoors than outdoors, to enlarge the 
differences in the classification features between 
environments, these signals are deducted from the 
observations. Thus, two new features, numSNR25 and 
sumSNR25, are proposed, which are defined by 
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where SNRi indicates the SNR value of the i-th satellite 
received at the current epoch and the function H(.) is 
defined as: 
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Comparing the features plotted in Figure 8 with the ones in 
Figure 7, more satellites with signals above 25 dB-Hz are 
received in the deep urban environment than indoor by the 
window, leading to larger differences in the summed SNR 
features. Meanwhile, the deep indoor and open sky 
environments can still be clearly distinguished based on the 
observations. To verify the effectiveness of the features, 
they will be further tested using a dataset collected at 
different indoor and outdoor sites in Section 3.4. It is worth 
noting that sumSNR25 is typically less than 100 dB-Hz 
indoors and greater than 200 dB-Hz outdoors. For the 
observations between 100 and 200 dB-Hz, their 
environment types need to be distinguished using more 
information, such as measurements from other sensors or 
the temporal relationship. 
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Figure 8: Features based on signals above 25 dB-Hz 
 

3.3. Hidden Markov Model (HMM) 

The features numSNR25 and sumSNR25 can be computed 
sequentially from the outputs of a GNSS receiver module. 
A hidden Markov model is used in this study to determine 
the environmental context by integrating the observations 
over time. The HMM assumes a Markov process with the 
states that cannot be visible directly [28] (indoor, 
intermediate or outdoor environment in this study), so that 
it is capable of modelling the inherent dynamic temporal 
relationships of environments. In general, a HMM includes 
five elements as follows: 

1) The state space S that consists of N hidden states 
S={S1, S2,…, SN}. In this research, there are only three 
hidden states: indoor, intermediate and outdoor, which are 
denoted as S1, S2 and S3 respectively. At each epoch k, 
hidden states satisfy the condition 
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k i

i

P X S


    (32) 

where Xk refers to the environmental context at that epoch. 
2) The set of observations at each epoch k, Zk= {z1,k, 

z2,k,…, zℓ,k,…, zm,k}, where zℓ,k is the ℓ-th observation at 
epoch k and m is the number of observations. In this study, 
z1,k refers to numSNR25 while z2,k is sumSNR25. 

3) The matrix of state transition probabilities 
A={Aij}. Each element of the state transition probabilities 
matrix, Aij, defines the probability that the state transits 
from a value Si at the immediately prior epoch to another 
value Sj at the current epoch. 

4) The vector of emission probabilities B={Bi(k)} 
that defines the conditional distributions P(Zk|Si) of the 
observations from a specific state. 

5) An initial state probability distribution Π={Πi} 
that defines the probability of being state Si at the first 
epoch. 
 

  

Figure 9: Structure of a first-order HMM 

 
In this paper, we use the first-order HMM, which assumes 
the current environmental context is only affected by the 
immediate previous context. Figure 9: Structure of a first-
order HMM is an illustration of a first-order hidden 
Markov model. Given the sequence of the observations, the 
most likely sequence of hidden states can be inferred using 
the Viterbi algorithm [28][33]. The probabilities of the 
model are determined as follows. 

Transition probability. When a user was previously 
indoor, the current state is highly likely to be indoor and 
might be intermediate, but is not likely to be outdoor. 
Because the user rarely moves directly from indoor to fully 
outdoor. It is similar when a user is at door. However, when 
the user is at the intermediate state, he/she can move 
directly to either of the other states. Based on the above 
assumptions and tuning the parameters, the transition 
probabilities are listed in Table 7. 

                  k 

 k+1 
Indoor Intermediate Outdoor 

Indoor 2/3 1/3 0 

Intermediate 1/3 1/3 1/3 

Outdoor 0 1/3 2/3 

Table 7: Transition probabilities of HMM 
 
Initial probability. As there is no prior information about 
the initial state, we have to make a judgement based on the 
available initial observations. On one hand, if the 
observations may enable either an indoor or outdoor 
environment to be determined with high confidence, the 
algorithm shall allow the initial state to follow the 
determination based on the initial observations. Thus, the 
initial probability of either indoor or outdoor shall not be 
set to zero. On the other hand, if the observations at the 
initial epoch cannot disclose the state confidently, the 
initial state is preferred to be uncertain. In this case, the 
initial state is presumed to be most likely the intermediate 
state, so that it offers an equal probability of transiting to 
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the indoor or outdoor states at the next epoch. Therefore, 
the initial probabilities are set as follows: 

 
   
 

1 1 1 3

1 2

0.25

0.5

P X S P X S

P X S

   

 
  (33) 

Emission probability. The emission probability describes 
the measurement likelihood of making an observation in 
different states. Our observations are modelled by 
Gaussian process, whose means and variances are fitted to 
the dataset collected at different indoor and outdoor sites, 
which covers different kinds of environment scenarios. 
Note that the Normal distribution in Equation (34) and (35) 
is denoted by N(μ, σ2) with mean μ and variance σ2. 
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3.4. Test Results 

Four different kinds of environment types were chosen to 
test the detection ability of the proposed detection method 
under different GNSS reception conditions. The data for 
open sky (outdoor), deep urban (outdoor), outer indoor and 
deep indoor environments are as depicted in Figure 6. 
Figure 10 presents the detection results of the static 
experiments in different environments. In the case of open 
sky and deep indoor, the detection results are very accurate 
as all samples of these scenarios are successfully detected 
with almost 100% probability. Deep urban is a little 
challenging for the detector as more signals are blocked or 
reflected by the tall buildings around. It can be observed 
from the figure that most samples are classified to outdoor 
correctly but with some intermediate states occasionally 
appearing among them. A similar thing happens for the 
outer indoor environment by a window. As some direct 
signals can still be received by the window, the 
measurements between 20s and 30s are erroneously 
classified as an outdoor environment. 

 

 

Figure 10: Static experiment results of the environment 
detection algorithm 

 

4. ASSOCIATION OF ENVIRONMENTAL AND 

BEHAVIOURAL CONTEXT 

Although behavioural and environmental context are 
treated separately in the proposed context detection 
framework, they are not completely independent in reality. 
Certain activities are associated with certain environments 
[1]. For example, land vehicles normally remain on the 
road instead of in the sky; boats or ships can be on land, 
but only exhibit some specific types of behaviours. As 
more contexts are included in the framework, this 
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information can be used to eliminate combinations of 
environment and behaviour that are not associated in 
practice, which reduce the chances of the context 
determination system selecting an incorrect context. 

4.1. Mathematical Model 

The update process of context association is expressed 
mathematically as follows. The likelihoods of the 
environmental and behavioural context categories are 
reweighted to take into consideration of association 
information. It is assumed that only associated 
combinations of vehicle motions and human activities are 
considered. The reweighted likelihoods of environment i 
and behaviour j, Λ𝑖,𝑒 and Λ𝑗,𝑏, respectively, are given by 
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where 𝑝𝑜𝑙𝑑,𝑖,𝑒 and 𝑝𝑜𝑙𝑑,𝑗,𝑏  are the probability of 

environment i and behaviour j before association. 𝑎𝑖,𝑗 is the 

association likelihood of environment category i and 
behaviour category j, given in Table 8. Note that the 
parameters in the table are based on daily experience and 
their reliability may be further enhanced by location-
dependent association. 

              Behav. 
 Envir.       H V U T B 

Indoor 1.0 1.0 0.9 0.6 0.9 

Intermediate 1.0 0.8 0.6 0.4 0.6 

Outdoor 1.0 1.0 0.8 1.0 1.0 

Table 8: Association factors (ɑ) 
Note: H=human activities, V=stationary vehicles with the 
engine on, U=moving underground trains, T=moving diesel 
trains, B=moving buses. 

Finally, the probabilities of environments and behaviours 
are updated, respectively, using 
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4.2. Experimental Results 

To assess feasibility of the proposed method, a practical 
test was conducted on a bus. The bus was driven along 
South Colonnade Street in the Canary Wharf district of 
London and stopped at the bus station under the bridge for 
about 10 seconds, as shown in Figure 11. This route was 
designed to incorporate both indoor and outdoor 

environments, as well as moving and stationary vehicle 
motions. 

 
Figure 11: An aerial view of the experiment route 

(satellite image from Google Earth) 

The results of behaviour detection are presented in Figure 
12. Significant improvements can be observed that most 
misclassified samples are corrected by connectivity. As 
there is no degradation or further improvement of 
performances after association, only the results with 
connectivity and association are plotted in red in the figure. 
The corresponding environment detection probabilities 
before and after association are illustrated in Figure 13. 
Using association, some slight improvements of the results 
can be observed when the detected probabilities of the 
correct environment are not high. This shows that the 
association mechanism, to some extent, helps enhance the 
robustness of context determination.  

 

Figure 12: Performance of behavioural context detection 
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Figure 13: Comparisons of performances of environment 

detection before and after context association 
 
 

5. CONCLUSION 

This paper demonstrates the determination of both the 
operating environment and the behaviour of a host vehicle 
or human user using multiple sensors on a smartphone, 
building the foundation of a context-adaptive navigation 
system. 

Detection of behavioural context using accelerometers, 
gyroscopes, magnetometers and the barometer has been 
presented. A hierarchical recognition scheme has been 
demonstrated, within which the behaviours are classified 
from broad classes to detailed types by decision trees and 
relevance vector machines respectively. The results have 
shown that the system achieves an overall F1 score of 
95.1%, with some vehicle motions easier to distinguish 
than others. It has also been shown that the performance 
can be further improved by considering behavioural 
connectivity. 

Environmental context detection has focused on indoor and 
outdoor classification. The properties of GNSS signals 
under indoor and outdoor environments have been 
analysed and two features are extracted for classification. 
Then a detection scheme under a hidden Markov model has 
been applied to indoor and outdoor classification. It has 
been shown that this method can be used to distinguish 
indoor and outdoor environments under different GNSS 
reception conditions. 

In addition, context association provides a way of linking 
environments to behaviours. Results of practical results 
have demonstrated that this can slightly improve the 
environment detection within the context determination 
process. 

ACKNOWLEDGEMENT  

This work is funded by the UCL Engineering Faculty 
Scholarship Scheme and the Chinese Scholarship Council. 
The authors would like to thank Dr. Mark Herbster and Dr. 

Simon Julier of UCL’s Department of Computer Science 
for their useful comments and suggestions. 

 

REFERENCES   

[1] Groves, Paul D., et al. "Context detection, 
categorization and connectivity for advanced 
adaptive integrated navigation." ION GNSS+ 2013, 
(2013): 1039-1056. 

[2] Ching, William, et al. "Uniwide WiFi based 
positioning system." IEEE international symposium 

on technology and Society (ISTAS). 2010. 

[3] Bell, Scott, Wook Rak Jung, and Vishwa 
Krishnakumar. "WiFi-based enhanced positioning 
systems: accuracy through mapping, calibration, and 
classification." Proceedings of the 2nd ACM 

SIGSPATIAL International Workshop on Indoor 

Spatial Awareness. ACM, 2010. 

[4] Groves, Paul D. Principles of GNSS, inertial, and 

multisensor integrated navigation systems. Second 
Edition, Artech house, 2013. 

[5] Groves, Paul D. "Shadow matching: A new GNSS 
positioning technique for urban canyons." Journal of 

Navigation 64.03 (2011): 417-430. 

[6] Wang, Lei, Paul D. Groves, and Marek K. Ziebart. 
"Smartphone shadow matching for better cross-street 
GNSS positioning in urban environments." Journal of 

Navigation 68.03 (2015): 411-433. 

[7] Pratama, Azkario Rizky, and Risanuri Hidayat. 
"Smartphone-based pedestrian dead reckoning as an 
indoor positioning system." System Engineering and 

Technology (ICSET), 2012 International Conference 

on. IEEE, 2012. 

[8] Groves, Paul D., et al. "The four key challenges of 
advanced multisensor navigation and 
positioning." Position, Location and Navigation 

Symposium-PLANS 2014, 2014 IEEE/ION. IEEE, 
2014. 

[9] Groves, Paul D., and Ziyi Jiang. "Height aiding, C/N 
0 weighting and consistency checking for GNSS 
NLOS and multipath mitigation in urban 
areas." Journal of Navigation 66.05 (2013): 653-669. 

[10] Chen, Ruizhi, et al. "Inferring Human Activity in 
Mobile Devices by Computing Multiple 
Contexts." Sensors 15.9 (2015): 21219-21238. 

[11] Lin, Tao, Cillian O’Driscoll, and Gérard Lachapelle. 
"Development of a context-aware vector-based high-
sensitivity GNSS software receiver." Proc. ION 

ITM (2011): 1043-1055. 

[12] Pei, Ling, et al. "Using LS-SVM based motion 
recognition for smartphone indoor wireless 
positioning." Sensors 12.5 (2012): 6155-6175. 

755



[13] Elhoushi, Mostafa, et al. "Motion Mode Recognition 
for Indoor Pedestrian Navigation Using Portable 
Devices." Instrumentation and Measurement, IEEE 

Transactions on 65.1 (2016): 208-221. 

[14] Bricon-Souf, Nathalie, and Conrad R. Newman. 
"Context awareness in health care: A 
review." International journal of medical 

informatics 76.1 (2007): 2-12. 

[15] Schwinger, W., et al. "Context-awareness in mobile 
tourism guides–A comprehensive survey." Rapport 

Technique. Johannes Kepler University Linz(2005). 

[16] Parviainen, Jussi, et al. "Adaptive activity and 
environment recognition for mobile 
phones." Sensors 14.11 (2014): 20753-20778. 

[17] Pei, Ling, et al. "Human behavior cognition using 
smartphone sensors." Sensors 13.2 (2013): 1402-
1424. 

[18] Liu, Jingbin, et al. "Reciprocal Estimation of 
Pedestrian Location and Motion State toward a 
Smartphone Geo-Context Computing Solution." 
Micromachines 6.6 (2015): 699-717. 

[19] Chen, Ruizhi, et al. "Inferring Human Activity in 
Mobile Devices by Computing Multiple 
Contexts." Sensors 15.9 (2015): 21219-21238. 

[20] Shoaib, Muhammad, et al. "Fusion of smartphone 
motion sensors for physical activity 
recognition." Sensors 14.6 (2014): 10146-10176. 

[21] del Rosario, Michael B., Stephen J. Redmond, and 
Nigel H. Lovell. "Tracking the evolution of 
smartphone sensing for monitoring human 
movement." Sensors 15.8 (2015): 18901-18933. 

[22] Bao, Ling, and Stephen S. Intille. "Activity 
recognition from user-annotated acceleration 
data." Pervasive computing. Springer Berlin 
Heidelberg, 2004. 1-17. 

[23] Yang, Jhun-Ying, Jeen-Shing Wang, and Yen-Ping 
Chen. "Using acceleration measurements for activity 
recognition: An effective learning algorithm for 
constructing neural classifiers." Pattern recognition 

letters 29.16 (2008): 2213-2220. 

[24] Sun, Lin, et al. "Activity recognition on an 
accelerometer embedded mobile phone with varying 
positions and orientations." Ubiquitous intelligence 

and computing. Springer Berlin Heidelberg, 2010. 
548-562. 

[25] Saeedi, Sara, Adel Moussa, and Naser El-Sheimy. 
"Context-aware personal navigation using embedded 
sensor fusion in smartphones." Sensors 14.4 (2014): 
5742-5767. 

[26] He, Weihua, et al. "Recognition of human activities 
with wearable sensors." EURASIP Journal on 

Advances in Signal Processing 2012.1 (2012): 1-13. 

[27] Duda, Richard O., Peter E. Hart, and David G. 
Stork. Pattern classification. John Wiley & Sons, 
2012. 

[28] Bishop, Christopher M., Pattern recognition and 

machine learning. Company New York, 2006. 

[29] Guinness, Robert E. "Beyond where to how: A 
machine learning approach for sensing mobility 
contexts using smartphone sensors." Sensors 15.5 
(2015): 9962-9985. 

[30] Hansen, Per Christian. "Regularization tools: A 
Matlab package for analysis and solution of discrete 
ill-posed problems." Numerical algorithms 6.1 
(1994): 1-35. 

[31] Rump, Siegfried M. "Verified bounds for least 
squares problems and underdetermined linear 
systems." SIAM Journal on Matrix Analysis and 

Applications 33.1 (2012): 130-148. 

[32] Ben-Israel, Adi, and Thomas NE 
Greville. Generalized inverses: theory and 

applications. Vol. 15. Springer Science & Business 
Media, 2003. 

[33] Viterbi, Andrew J. "Error bounds for convolutional 
codes and an asymptotically optimum decoding 
algorithm." Information Theory, IEEE Transactions 

on 13.2 (1967): 260-269. 

 

756


