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CONTEXT DISTRIBUTION ESTIMATION 
FOR CONTEXTUAL CLASSIFICATION 
OF MULTISPECTRAL IMAGE DATA 

JAMES C. TILTON~ PHILIP H. SWAIN~ 

AND STEPHEN B. VARDEMAN 
Purdue University 

ABSTRACT 

A classification algorithm incorpora
ting contextual information in a general, 
statistical manner is presented. Methods 
are investigated for obtaining adequate es
timates of the context distribution (a sta
tistical characterization of context) upon 
which the classification algorithm depends. 
Finally, a method of estimating optimal al
gorithm parameters prior to performing pre
liminary classifications is explored. 

I. INTRODUCTION 

The most widely used method for clas
sifying remotely sensed data from such 
sources as multispectral scanners on air
craft or satellite platforms is a point-by
point classification technique in which da
ta from each pixel in the scene are classi
fied individually by a maximum likelihood 
classifier [1]. The information normally 
used by this classifier is only spectral 
or, in some cases, spectral and temporal. 
There generally is no provision for using 
contextual information. 

In contrast, when scanner data are 
displayed in image form, a human analyst 
routinely uses context to help decide what 
is in the imagery. Using context, he may 
be able to ea~ily pick out roads, delineate 
boundaries of agricultural fields, and dif
ferentiate between grass in an urban set
ting (lawns) and grass in an agricultural 
setting (pasture or forage crops) where a 
maximum likelihood point classifier would 
have much difficulty in doing so. 

Recently we have developed a classifi
cation algorithm Which incorporates contex
tual information in a general, statistical 
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manner [2]. This algorithm exploits the 
tendency alluded to above of certain grou
nd-cover classes to be more likely to oc
cur in some contexts than in others. 

An estimate of the "context distribu
tion" (a statistical characterization of 
the context in the scene to be classified) 
must be made before this classification al
gorithm can be used. Methods are investi
gated here for obtaining sufficiently ac
curate estimates of the context distribu
tion. The process of estimating the con
text distribution can involve a large num
ber of preliminary classifications using 
the statistical context classifier. with 
the goal of limiting the number of prelimi
nary classifications needed, a method of 
predicting the optimal algorithm parameters 
without performing classifications is ex
plored. 

II. THE CLASSIFICATION MODEL 

Remote sensing imaging systems gene
rally provide data in the form of a two
dimensional array of N=N 1XN 2 pixels of 

fixed but unknown classification. Let the 
observation at image coordinates (i,j) be 
Xij and the true but unknown classification 

at that image point be 8 .. £ {Wl ,w2 ' ••• ,w } 
~J m 

where m is the number of cover classes re
presented in the scene, and w

k 
is the kth 

cover class. Associated with each X .. and 
~J 

8ij is a class-conditional density p(xijl 

eij ). The maximum likelihood point classi

fier estimates each 8 .. in the following 
~J 

way: Decide e. ,=w
k 

if and only if gk(X") 
> . ~J~J 

= gR.(Xij ) for all R.=1,2, •.•• ,m where gk(Xij ' 

is the discriminant function 

(1) 

and p(w
k

) is the prior probability of class 
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Wk occurring in the scene. Usually a good 

estimate for p(wk ) is not known (or even 

sought), and the approximation p(wk ) = 11m 
is used (uniform priors). 

Contextual information can be incor
porated into a decision rule of the same 
general type by modifying the discriminant 
function. Let the context at image point 
Xij consist of observations spatially near, 
but not necessarily adjacent to, Xij • Gr

oup these observations along with Xij into 

a vector of observations X .. =(Xl 'X2 ' ••. , 
-~J 

X )T with X =X., and the number of observa-
p p ~J 

tions taken as context being p-l (the or
dering is fixed but arbitrary). Call the 
arrangement of pixels in Xij the p-context 

array. Let the possible classes associated 

with X .. be sP = (Sl,S2' .•• 'S )T where 
-~J - P 

Si E {wl,w2' •• ~'Wm} and the ordering of the 
elements in ~p coincides with that in ~ij. 
Assuming that the observations are class
conditionally independent gives a discrimi
nant function incorporating context as 

gk(~iJ')= f··· f ~ fr p(X Is ~ G(~Pj (2) ~ =1 ~ = n=l n nj 
1 p-l 

where Sp is fixed as wk [2]. The context 
distribution, G(SP), is the relative fre
quency of occurrence in the scene of the 
class configuration in the p-context array 
given by Sp. The similarity of this dis
criminant-function to the function used by 
the maximum likelihood point classifier be
comes clearer by rewriting gk(X") as 

-~J 

m m ~(P-l ) ~ L ... t IT p(X Is ) G(~p) 
~ =1 ~ =1 n=l n n 1 p-1 

where Sp is again fixed as Wk. The summa
tion term carries the contextual informa
tion and can be thought of as an expanded 
context-carrying version of p(wk ) from the 
point classifier case. This discriminant 
function is identical to the no-context 
discriminant function when p=l since 

G (~ 1 
) == p (wk ) • 

III. ESTIMATING CONTEXT DISTRIBUTION--G(~P) 

To evaluate gk(~ij) we must know va
lues for the p(X Is ) and G(SP). Methods n n -
for estimating p(xnISn) are well estab1ish-

ed from considerable experience in using 
the no-context maximum likelihood decision 
rule (as in Eq. 1) for classification (see 
[1]). Optimal methods for estimating G (SP) 
are not yet established. Preliminary work 
on finding practical methods for estimating 
G(~p) is presented in [2]. 

The most successful method developed 
to date for estimating G(SP) goes as fol-
lows: -

1. Perform a no-context uniform
priors classification on the training set, 
restricting the classifier's decision rule 
to choosing among spectral classes in the 
correct information class. 

2. Estimate the context distribution, 
G(SP), from the resulting 100 percent ac
curate classification of the training set 
by counting the number of occurrences* of 
all possible class configurations given by 
!tP . 

This method was used on a 50-pixel 
square area from the northeast corner of 
the Large Area Crop Inventory Experiment 
(LACIE) Segment No. 1860 in Hodgman Coun
ty, Kansas. The class-conditional densi
ties were estimated for the 16 spectral 
classes from randomly located training 
fields scattered throughout the entire 117-
by-194 pixel Landsat data frame. The co
ordinates of the training set fields were 
chosen by selecting pixel coordinates from 
a random number table and surrounding the 
selected pixel by the largest homogeneous 
rectangle (up to field size 20 by 20). 
The classifications were tested for accura
cy over five information classes (pasture, 
idle, wheat, corn and alfalfa) from "wa11-
to-wall" pixel-by-pixe1 ground truth. 

The restricted no-context classifica
tion was performed over the first 25 lines 
of the 50-pixe1-square area and the context" 
distribution was estimated over those 25 
lines. The classification results were 
evaluated over the last 25 lines. The re-
sults show (Table 1) that this method pro
duced an estimate of the context distribu-
tion, G(~p)! which in turn produced con-

* The estimate of the context distribution, 
G(sP), does not need to be normalized so as 
to~e an actual probability estimate. The 
normalization factor does not affect the 
classification decisions based on the dis
criminant function in Eq. 2. 

1980 Machilw ProceSSing of Remotely Sensed Data Symposium 
172 



Table 1 

CLASSIFICATION CLASS RESULTS ON LACIE DATA 

** Accuracy, % 

Lines 25-50 

Average-
Classification Overall by-Class 

Uniform-priors no-context 
--unrestricted 78.0 75.6 

* 4 nearest neighbors 85.5 81. 6 

* 8 nearest neighbors 87.1 81.9 

* G(SP) estimated from restricted uniform
prIors no-context classification over 
lines 1-25. 

** Classification performance can be tabu
lated in two ways. Overall accuracy is 
simply the overall number of correct 
classifications divided by the total 
number attempted. Average-by-class ac
curacy is obtained by first computing 
the accuracy for each class and taking 
the arithmetic average of the class ac~ 
curacies. The latter is significant 
when the classification results exhi
bit a tendency to discriminate in fa
vor of or against a subset of the 
classes. 

textual classifications with 3ignificant 
improvement in classification accuracy over 
the conventional uniform-priors no-context 
classification on thi~ data set. 

While this method can produce good es
timates of the context distribution, it 
sllffers the limitation that a sufficient 
number of blocks of ground truth of suffi
cient size are needed to make an accurate 
estimate of the context distribution. This 
method cannot be used at all when blocks of 
ground truth data are not available, while 
the conditional probabilities can be esti
mated from ground truth at random pixel lo
cations. 

Another possible method of estimating 
the context distribution would be to base 
the estimate on a uniform-priors no-context 
classification. Such an estimate might 
then be re.fined by basing a new estimate on 
the context classification made using the 
first context distribution estimate. The 
estimates might even be iterated until the 
estimate producing the most accurate clas-

sification over the training set is found. 
(The final result should then be evaluated 
on a test set disjoint from the training 
set. ) 

Results from a straightforward imple
mentation of this iterative "bootstrap" me
thod were reported earlier in [2]. Esti
mates of the context distribution were made 
from counting the number of occurrences of 
all possible class configurations in the 
appropriate classification. While this me
thod produced excellent results when simu
lated data were used, results using real 
Landsat data were disappointing. 

It is thought that the no-context uni
form-priors classifications of real Land
sat data simply did not produce an accurate 
enough classification for the "bootstrap" 
method to work. The classifiction of the 
simulated data was accurate enough because 
the class-conditional probabilities p(xlsn ) 
were modeled exactly, whereas the class
conditional probabilities were not modeled 
exactly on the real data classifications. 
This resulted in estimates of the context 
distribution, G(eP ), in the real data cases 
that contained more spurious class configu
ration counts than in the simulated case, 
which in turn gave poorer context classifi
cation results in the real data case. 

There are several ways in which the 
context distribution estimates from real 
data no-context classifications could be 
"cleaned up." One could employ a threshold 
procedure which deletes all class configu
rations with counts below a certain number. 
Another approach would be to divide each 
class configuration count by a fixed num
ber and take the integer part of the re
sult as the new count, deleting all class 
configurations with counts that become 
zero. 

Yet another method for reducing the 
effect of spurious class configuration cou
nts is to raise each count to a power and 
use the result as the context distribution 
estimate. For powers greater than one, the 
class configurations with larger counts are 
favored even more heavily versus those with 
relatively small counts in the discrimi
nant function in Eq. 2. Conversely, for 

.powers less than one, the class configura-
tions with large counts are less heavily 
favored. Going to the extreme of a power 
of zero results in all class configurations 
being equally favored as in a uniform
priors no-context configuration. 

This power method was first tried on a 
simulated data set to investigate the me
thod's characteristics undisturbed by un
known effects from inaccurate modeling in 
the real data sets. This simulated data 
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set [2] was generated from a very accurate 
no-context classification of Landsat-l data 
trom an urban area (Grand Rapids, Michigan). 
A 50-pixel-square segment was used in the 
tests. See Figure 1 for a summary of the 
results. The results seem to indicate 
that when the model is exact, as the power 
used is increased (to a certain point), the 
classification results tend towards the re
sults obtained when the context distribu
tion is estimated from ground truth. Also, 
as expected, as the power used is decreased 
below one, the results tend toward a uni
form-priors no-context classification. 

The power method was also used on a 
50-pixel-square segment of Landsat data 
containing approximately equal amounts of 
urban and agricultural area located to the 
southeast of Bloomington, Indiana. Statis
tics for the spectral classes were estima
ted using the 100-pixel-square area center
ed on the 50-pixel-square segment. A very 
careful uniform-priors no-context classifi
cation using 14 spectral classes was per
formed to delineate agricultural, urban and 
forested areas. As there were too few fo
rested pixels to delineate forest test a
reas reliably, the classification was test
ed only for accuracy in classifying the ag
ricultural and urban classes. Out of the 
2500 pixels in the segment, a total of 867 
pixels were manually interpreted as agri
culture and 450 pixels as urban. The iden
tification was made by interpretation of 
color infrared photography taken by air
craft on the same day as the Landsat pass. 

As mentioned earlier, a straightfor
ward implementation of the iterative boot
strap method of estimating the context dis
tribution for this data set produced disap
pointing results. Whereas the no-context 
uniform-priors classification had an over
all accuracy of 83.1 percent and average
by-class accuracy of 82.7 percent, the 
best the bootstrap method could do in three 
iterations was 85.3 percent overall accura
cy and 84.8 percent average-by-class accu
racy. The fourth iteration produced no 
improvement. 

Figure 2 summarizes the results using 
the power method on two-nearest-neighbors 
context (neighbors to the north and east) 
based on an estimate of G(SP) from the no
context uniform-priors classification. 
Trading off overall accuracy against aver
age-by-class accuracy, the best classifica
tion was produced using a power of 5, for 
which an overall accuracy of 87.0 percent 
and average-by-class accuracy of 86.1 per
cent was achieved. This nearly doubled 
the accuracy improvement over the no-con
text classification produced by the strai
ght bootstrap-method. Note also that the 

results in Figure 2 follow the general tre
nd of the simulated data results in Figure 
1. 

A second iteration of estimating the 
context distribution, G(SP), was then made 
based on the classificatIons listed in Fi
gure 2. The second estimate of G(SP) based 
on the classification using the first esti
mate raised to a power of 10 produced the 
best classification results with an overall 
accuracy of 88.5 percent and an average-by
class accuracy of 87.5 percent (using G(SP) 
raised to a power of 5). See Table 2 and 
Figure 3 for a summary of results. This 
second estimate of G(SP) gave a total 5.4 
percent improvement in overall accuracy and 
4.8 percent improvement in average-by-class 
accuracy over the no-context classificatio~ 
Even though these improvements are not as 
large as in the results using simulated da
ta, or using the more restrictive method on 
real data, these results are certainly en
couraging. 

Table 2 

SECOND ITERATION POWER METHOD RESULTS 

Best four nearest-neighbor classifications 

with G(~p) based on the classification in 

Figure 2. 

Power Used 
Accuracy, % 

Power Used in This Average-
in Fig. 2 Classification Overall by-Class 

2 5 86.5 85.6 

3 5 86.3 85.7 

5 5 87.3 86.7 

7 5 88.1 87.2 

10 5 88.5 87.5 

15 3 87.7 87.2 

Prior to.making the second iteration 
estimate of G(SP) above, it was assumed 
that the more accurate aclassification was, 
the more accurate the estimate of G(SP) 
from it would be. The results quotea here 
show clearly that this is not always the 
case. Further study is required before it 
can be determined whether this type of be
havior is typical, and before this behavior 
can be exploited optimally. 
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FIGURE 1. Power method results using as 
context one-nearest-neighbor (south) on 

• the simulated data set. Context distribu
tion, G(SP), estimated from uniform-priors 
no-context, except where noted otherwise. 

°86.1 '850 

The runber at each dot 
70.0 +77.!.:;.~5 _-+-__ +-___ -_--__ - is the average - by - class 
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° 85.6 

The runber at each dot 
is the average - by - class 
accuracy (% COlTect ) . 

5 7 
Power of Context DistrIbution Estinate 

5 

°82.1 

10 

5 7 10 15 
Power of Context Distribution Estimate 

FIGURE 2. Power method results using two
nearest-neighbors (north and east) context 
on Bloomington, IN data set. Context dis
tribution, G(SP), estimated from uniform
priors no-context distribution. 

FIGURE 3. Power method results using four
nearest-neighbors context on Bloomington, 
IN data set. Context distribution, G(SP), 

... estimated from two-nearest neighbor (north 
and east) context classification with con
text distribution raised to power 10. 
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IV. PRACTICAL CONSIDERATIONS 

The general approach to estimating the 
context distribution, as suggested by the 
results reported in the previous section, 
can involve a large number of context clas
sifications before the best estimate is 
found. In addition to determining the best 
power of the context distribution to use at 
each iteration, the best p-context array 
(how many and which neighbor(s) to use) 
needs to be determined at each iteration. 

The size and shape of the p-context 
array directly affect computation cost and 
classifiction accuracy. Generally, the 
larger the p-context array, the higher the 
computation cost. When the classification 
from which the context configuration is 
estimated is sufficiently accurate, larger 
p-context arrays yield higher classifica
tion accuracies. Less accurate template 
olassifications can result in cases where 
a large p-context array will produce a 
classification that is less accurate than 
the no-context classification. Also, p
context arrays of given size may produce 
differing classification accuracies, de-

,pending on the shapes of the arrays. It 
would be desirable to be able to predict 
the optimal size and shape of the p-con
text array and the best power of the con
text distribution to use at each iteration 
before any actual classifications are 
performed. 

V. ESTIMATION OF OPTIMAL P-CONTEXT 

ARRAY AND POWER 

A theoretical measure of context has 
been developed from the perspective of ap
plying this measure to predicting the op
timal p-context array. This same measure 
may also be useful in estimating the best 
power to use of the context distribution. 

Suppose that th~ relative frequency 
function G(eP) is such that it can be writ
ten in factored form, i.e., 

(3) 

1 2 3 

4 5 6 

7 8 9 

Fig. 4. Pixel locations used in testing h.GP 
q 

where eq and eP- q are, respectively, q and 
-1 -2 

p-q vectors of classes. The last element 

of eP- q is the same as the last element of 
-2 

ePa If this factorization can indeed be 

realized, Eq. 2 can be rewritten as 

where ip=k and the last element of ~~-q is 

Wk' Since the term in the first set of 
brackets is independent of k, it is just a 
constant term that can be ignored when 
classifying point (i,j). When such a fac
torization as in Eq. 3 can be made, we can 
reduce the size of the p-context array, re
ducing computation cost with no loss in 
classification accuracy. 

If G(eP ) can be factored as in Eq. 3, 
it is clear that the distribution G(eP) is 
one of independence for eq and eP2-~ -This 

-1 -
suggests that a measure of nonredundant 
contextual information from the pixel posi-

tions in ~i as compared to that from the 

pixel positions in ~~-q would be a measure 

of departure from independence for ~i and 
~~-q in the distribution G(~p). A possible 

measure of this departure would be 

where G(~i) and G(~~-q) are now the margi
nals of G(iP). Other distributions of in

dependence wi th marginal G ~~-q) and other 

measures of departure from G(~p) could be 
used. This particular form for h.GP is at-

q 
tractive because it is particularly easy 
to calculate. 

The "context measure" h.GP can be used 
to estimate the optimal p-con~ext array in 
the following way: Establish ~~-q as a 
fixed core (p-q)-context array. Calculate 
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the values of 6GP for various q-context 
q 

arrays as aq , distinct from the core array. 

The best p=~ontext array for ~p would be 

~~-q combined with the ~i that produced the 

largest value for 6G~. This, of course, 

assumes that the contextual information 

contributed by ~i is not so erroneous that 

it would actually decrease classification 
accuracy. This may not be a reasonable 
assumption in a!l cases. 

The first test of 6G~ was made on the 

sLmulated data with p=2 and q=l and the 
context distributions estimated from the 

ground truth. The context arrays ~i and ~~ 
were defined with respect to the pixel lo

cations defined in Figure 4. al was first 

fixed as pixel position 5 and -2 al was va-
':-1 

Table 3 

6 G~ TESTED ON SIMULATED DATA WITH CONTEXT 

DISTRIBUTIONS ESTIMATED FROM GROUND TRUTH 

a1 a1 Accuracy, % 
-1 2 

Pixel Pixel 6G~X104 AVerage-
Location Location Overall by-class 

8 5 5.09 92.7 74.0 

2 5 4.99 91.6 73.5 

4 5 4.90 91. 7 7L8 

6 5 4.90 91. 7 73.9 

7 5 3.42 90.8 71.2 

3 5 3.31 90.4 69.8 

9 5 3.26 90.6 70.6 

1 5 3.19 90.6 70.1 

7 1 2.5.8 90.3 68.6 

3 1 2.27 90.2 70.3 

8 1 1.98 89.4 67.9 

6 1 1.87 90.4 70.2 

9 1.53 89.9 69.5 

Table 4 

6G~ TESTED ON SIMULATED DATA WITH CONTEXT 

DISTRIBUTIONS ESTIMATED FROM UNIFORM-PRIORS 

NO-CONTEXT CLASSIFICATION 

61 al 
Accuracy, % 

-1 -2 2 5 Pixel Pixel 6G1 x10 Average-
Location Location Overall by-Class 

8 5 7.56 79.8 81. 7 

2 5 7.30 79.1 81. 9 

4 5 6.13 78.8 80.6 

6 5 6.11 79.0 81.4 

7 5 4.71 78.8 80.9 

3 5 4.53 78.6 80.6 

9 5 4.28 78.4 80.6 

1 5 4.22 78.3 79.7 

7 1 3.77 78.5 80.9 

8 1 2.73 78.0 80.0 

3 1 2.65 78.0 80.9 

6 1 2.31 78.0 80.8 

9 1 2.17 78.0 80.1 

ried over the remaining positions. ~~ was 

also late,!' >~ixed as pixel position 1 with 

.ll.i varied OVer the pixel posi.tions. relative 
to position 1 not covered previously (i.e., 
positions 3, 6, 7, 8 and 9). 

As can be seen in Table 3, 6G~ clearly 

predicted that the best neighbor to use for 
context would be any of the four nearest 
neighbors (pixel positions 2, 4, 6 or 8 re
lative to position 5). tiGP did not so 

clearly predict which near~st neighbor was 
best. ---

6G~WaS again tested on the simulated 

data, but this time with the context dis
tributions estimated from the uniform
priors no-context classification. As shown 
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in Table 4, in this case ~G~ again tended 

to predict the best p-context array. This 

time ~G~ predicted pixel position 8 to be 

the best neithboring pixel to use as con
text while pixel position 2 came in as a 
close second. These predictions held up 
quite well when compared to the classifica
tion accuracies. These distinctions among 
the reamining pixels, however, weren't pre
dicted as clearly. 

A test of ~GP was also made using the 
q 

Bloomington, Indiana Landsat data with the 
context distributions estimated from the 
uniform-priors no-context classification 

(~ee Table 5). Here ~~~ did not pr~dict 
the best p-context array as well as in the 

simulated data case. ~G~ does correlate 

positively with the accuracy results, but 
the correlation is fairly weak. It seems 
that the context here is too erroneous for 
the predictor to function properly. 

It was then checked to see if ~ GP cou-
. q 

ld be used to pred~ct the power of the con-
text distribution ~o use for a particular 

Table 5 

~GP TESTED ON BLOOMINGTON, IND. LANDSAT DATA 
q 

SET. CONTEXT DISTRIBUTIONS ESTIMATED FROM 

UNIFORM-PRIORS NO-CONTEXT CLASSIFICATION 

61 
-1 

Pixel 
Location 

4 

6 

2 

8 

3 

7 

1 

9 

2 5 
Pixel bGlxlO 

Location 

5 7.69 

5 7.68 

5 5.40 

5 5.31 

5 3.79 

5 3.61 

5 3.04 

5 2.96 

Accuracy, % 

Average
Overall by-Class 

84.2 

84.6 

85.2 

83.8 

84.2 

84.0 

84.4 

83.7 

83.8 

84.1 

84.8 

83.4 

83.8 

83.5 

84.1 

83.2 

Table 6 

~GP EVALUATED AS A PREDICTOR OF 
q 

BEST TEST DISTRIBUTION POWER ON 

BLOOMINGTON, INDIANA, DATA TEXT 

~~ pixel locations 26 

61 
-2 

pixel location 5 

Context distributions estimated from 

uniform-priors no-context distribution 

Accuracy, % 

~G3 Average-
Power 2 Overall by-Class 

.5 2.87xlO 
-7 84.4 84.0 

.8 8.23xlO -7 84.9 84.4 

1.0 2.05xlO -6 85.0 84.5 

1.2 4.8lxlO -6 85.0 84.5 

1.4 9.27xlO 
-6 85.1 84.5 

1.6 1. 37xlO 
-5 85.2 84.5 

2.0 1. 34xlO 
-5 85.4 84.8 

3.0 1. 20xlO-6 86.3 85.9 

5.0 4.04xlO- 9 87.0 86.1 

7.0 1. 98xlO-ll 87.2 85.0 

10.0 underflow 86.4 82.5 

p-context array. ~~ was set as position 5 
2 

and ~l was set as positions 2 and 6. The 

power used was varied as previously (see 

Figure 2). [NOTE: G(6P ),,: was normalized 
for each value of a: so-as to remain a pro
bability estimate.] 

In Table 6, ~G3 shows a distinct pat
tern of behavior as 2the power of the con
text distribution is var~ed. As the power 
is increased from one, ~G2 increases at 
first and then decrea~es. In this case, 
the power at which ~G falls to approxima
tely its value in the~ower of one case 
corresponds closely to the power that 
yields the highest classification accura
cies. As the power is increased further, 
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I 

l 

AGi decreases sharply. When the power is 
increased to the value that produces the 
classification that in turn produces the 
best context distributio~ estimate (in this 
case, a power of 10), AG

l 
is so small that 

it can't be calculated in the precision 
used. 

Further investigation with this and 
other data sets is needed to determine whe
ther this is a universal pattern that can 
be exploited in estimating the power of the 
context distribution that yields the best 
classification results. These results 
make "it seem unlikely, however, that AG~ 
could be used to predict the power whicn 
produces the best context distribution 
estimate. 

CONCLUDING REMARKS 

The multispectral maximum likelihood 
classifier has been extended to include 
contextual information from arbitrary poi
nts near, but not necessarily adjacent to, 
the point being classified. The successful 
application of this statistical context 
classifier depends, however, upon the suc
cessful estimation of the a priori context 

distribution, G(eP). A method has been de
veloped which can provide good estimates of 
the context distributions assuming that 
blocks of representative ground truth are 
available. 

Attempts at developing a more general 
"bootstrap" method of estimating the con
text distribution have not yet been totally 
successful. Encouraging results have been 
obtained by using the power method describ-

ed in this paper. Practical application of 
these bootstrap methods is clouded by the 
need to run several classifications to de
termine the best p-context array and the 
power of the context distribution to use at 
each iteration. 

A theoretical basis for an estimator 
of the best p-context array has been deve
loped. However, this estimator requires 
that the contextual information be reason
ably accurate, an assumption that does not 
hold uniformly. Nevertheless, this same 
estimator may yet hold pro~ise with respect 
to predicting the power of the context dis
tribution which produces the most accurate 
classification r,esults. 

It is quite possible that no reliable 
estimation procedure simpler than actually 
performing a contextual classification can 
be found. If this is the case, the most ef
fective way to "estimate" the best p-con
text array and context distribution power 
would be to perform contextual classifica
tions on representative portions of the 
scene before the total scene is classified 
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