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Abstract

This paper presents a scalable scene parsing algorithm

based on image retrieval and superpixel matching. We fo-

cus on rare object classes, which play an important role in

achieving richer semantic understanding of visual scenes,

compared to common background classes. Towards this

end, we make two novel contributions: rare class expan-

sion and semantic context description. First, considering

the long-tailed nature of the label distribution, we expand

the retrieval set by rare class exemplars and thus achieve

more balanced superpixel classification results. Second, we

incorporate both global and local semantic context infor-

mation through a feedback based mechanism to refine image

retrieval and superpixel matching. Results on the SIFTflow

and LMSun datasets show the superior performance of our

algorithm, especially on the rare classes, without sacrific-

ing overall labeling accuracy.

1. Introduction

The goal of scene parsing is to associate a semantic la-

bel such as sky, trees, cars, etc. with every pixel in a still

image. Such an image description has broad applications,

e.g. image editing, image search and autonomous vehi-

cles. Considering potentially hundreds or thousands of se-

mantic labels in common outdoor environments and indoor

scenes, it is of great interest to endow the scene parsing sys-

tem with the ability to operate in a large scale. Large scale

scene parsing faces two main challenges. First, the distri-

bution of objects in natural images tends to be heavy-tailed,

with many pixels in the images coming from common back-

ground classes (the sky, water, and sand in Figure 1) and

far fewer pixels coming from any given one of the thou-

sands of possible object types. The large number of rare

object classes and their relatively small sizes in many im-

ages make it difficult for algorithms to accurately segment

important objects (the persons and boat in Figure 1). In

fact, when evaluating error on a per-pixel basis, the perfor-

mance of algorithms can often be improved by eliminating

the rare classes altogether if their sizes in the images are

(a) Query image 

(c) Tighe et al .[22] (d) Ours 

(b) Human annotation 

Figure 1. Given a query image (a), our method (d) recognizes small

objects of rare classes (people, boat) while state-of-the-art systems

(c) tend to miss them. Note that our method also recognizes the

sand while the human annotator leaves it unlabeled (b).

usually small, despite the rare classes being very important

to human observers. Secondly, it is expensive to optimize

image labeling problems with hundreds or thousands of la-

bels. For example, given efficient optimization algorithms

such as graph-cut [1], it still takes minutes to solve a pair-

wise Markov Random Field (MRF) on a 600 × 800 image

with 100 labels. These two challenges make learning based

algorithms [19, 11, 5] less applicable.

An alternative is to use nonparametric approaches [15,

4, 20, 22, 21]. To parse an input image, these algorithms

first retrieve a small set of similar images and their associ-

ated semantic labels from the database, and compute clas-

sification confidence maps by matching the query with re-

trieved images in pixels or superpxiels. The final seman-

tic labeling is obtained by solving a pairwise MRF model.

The core of these nonparametric algorithms is motivated

by two important observations. On one hand, a single im-

age usually contains very few labels that are constrained
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by the scene category of the image, compared to the hun-

dreds in total. For example, a photo taken at the beach

usually contains sand, sea, boat and person (Figure 1(a)).

Image retrieval constrains the potentially large number of

candidate labels to the ones present in the similar scenes,

which greatly reduce the labeling efforts. On the other hand,

segments usually capture different partial appearances of

objects and are difficult to fit into unified category mod-

els. Matching-based algorithms break the category barrier

and recognition can be realized by transferring labels from

matched segments to query segments. These nonparametric

approaches [15, 4, 20, 22, 21] achieve good performance

on overall per-pixel labeling accuracy. However, by tak-

ing a closer look at their semantic labeling results, we find

that the overall performance is in fact dominated by sev-

eral common background classes, e.g. mountain, building,

water, road and wall, while the performance on interesting

object classes is still lagging, e.g. people, animals and man-

made objects.

In this paper, we propose a novel context-driven scene

parsing system. Different from previous approaches, we fo-

cus more on rare object classes aiming at generating richer

and more structured semantic labelings. Beyond the three

basic components of nonparametric algorithms, i.e. image

retrieval, superpixel matching and MRF labeling, we make

two novel contributions:

1. We propose to regularize the retrieval set by a dictio-

nary of rare class superpixels, since the semantic labels

of retrieval images usually follow a long-tailed distri-

bution. Therefore, we obtain more balanced classifica-

tion results.

2. Visual context plays an important role in scene pars-

ing [17]. Beyond the traditional co-occurrence statis-

tics, we bring local and global spatial context into su-

perpixel scoring process to refine image retrieval and

superpixel classification, which gives us more contex-

tually sensible parsing results.

We demonstrate our system on the SIFTflow dataset (2688

images, 33 labels) and the LMSun dataset [22] (45576 im-

ages, 232 labels). The results show that the proposed algo-

rithm achieves superior labeling performance than the pre-

vious state-of-the-art algorithms in terms of per-class accu-

racy and per-pixel accuracy on the rare classes, while still

achieving similar or superior results on all classes.

2. Related Work

With the same concern on interesting object classes,

Tighe and Lazebnik [21] propose to augment their previous

superpixel based parsing system [22] with pre-trained ex-

emplar SVMs [16]. Although per-exemplar detectors makes

it possible to transfer object shape masks, their training in-

deed requires considerable amounts of computational re-

sources and their output also needs to be calibrated with su-

perpixel parsing output in a complicated post-classification

step. This hybrid system shows state-of-the-art labeling per-

formance in general, but is still constrained by the quality

of per-exemplar detectors and the over-smoothing property

of post-processing. In Figure 1(c), for example, it misses

two interesting object classes (boat and person), although it

achieves good overall per-pixel labeling accuracy. Instead

of using expensive object detectors, we pay more attention

to the context in different levels.

Context has been investigated in various semantic seg-

mentation algorithms from co-occurrence statistics to scene

categories [12, 4, 20, 7]. In terms of using semantic con-

text information for nonparametic scene parsing, our paper

is closely related to [4, 20]. Similar to ours, both of them

learn context information through the feedback mechanism

in the parsing process. The key idea is to first label the in-

put image only using appearance information, and then ex-

tract context information from initial semantic labels. Eigen

and Fergus [4] investigate context information in superpixel

neighborhoods. By observing that the initial labeling usu-

ally produces reliable results on background classes, they

build a context index for each superpixel using background

labels in its four-directional neighborhood. Therefore, in

additional to image retrieval, their method is able to find

more relevant superpixels for matching. However, in large

scale, even similar background (indoor) can encapsulate

many object categories, which will result in the uncontrol-

lable size of retrieved superpixels. Singh and Kosecka [20]

instead focus on global semantic context. They construct

a semantic label descriptor for each image in a three-layer

spatial pyramid to refine image retrieval. Compared to ap-

pearance image descriptors, semantic label descriptors are

much lower dimensional and allow fast image matching,

but also more vulnerable when the initial labeling fails. The

major difference of our method from [4, 20] lies in that we

incorporate richer context information and show its effec-

tiveness in large scale. Instead of using semantic labels

for context description, we build our global and local con-

text descriptors based on classification likelihood maps, in a

way similar to the Object Bank representation [9]. Our con-

text representations are more tolerant to labeling mistakes.

Furthermore, we use our context descriptors together with

appearance features for superpixel classification. This com-

bined feature representation has been shown to be effective

for semantic segmentation at the patch level [23].

3. The Baseline System

Our base system consists of three components: image

retrieval, superpixel matching and MRF labeling.
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3.1. Image Retrieval

Image retrieval is a critical step for our system. It deter-

mines the labels we use to parse the input image. If the al-

gorithm fails to retrieve relevant images and true labels, we

are not able to recover them in later steps. In this paper, we

use the method in [18] to compute the spatially constrained

image similarity m(Iq, Id) between the query image Iq
and database images Id, and retrieve top-K most similar

images {I1d , I
2
d , ..., I

K
d },where m(Iq, I

k
d ) > m(Iq, I

k+1
d ).

Based on the Bag-of-Words image matching algorithm, this

method incorporates spatial voting of local features (SIFT

and RGB color) into image scoring. Therefore, the retrieved

images usually have similar scene layout to the query, which

is desirable for our parsing system. We use a SIFT vocabu-

lary of 10,000 words and a RGB color vocabulary of 1,000

words for local feature quantization. The retrieval top-K
images also determine a subset of candidate labels L′ ⊂ L
for the query image, where L is the overall label set. This

method shares a similar spirit with commonly used spatial

pyramid matching [13], but favors scene retrieval more than

scene classification in terms of implementation.

3.2. Superpixel Matching

We intend to assign semantic labels to every pixel of

the query image, based on retrieval images and their cor-

responding ground truth semantic labels (annotated by hu-

man). As a single pixel alone does not contain sufficient

information for recognition, we thus choose to recognize

pixels in their proper neighboring regions, i.e. superpixels.

We use the fast graph-based segmentation algorithm in [6]

for producing superpixels for both query and retrieved im-

ages. Different from traditional methods, we harvest su-

perpixels of retrieved images from multiple scales. This

increases the chance to find good matches for the query

superpixel at a controllable computational cost. In exper-

iments, we segment the retrieved images in four scales by

varying the k value k = 50, 100, 200, 400 in [6]. The

smaller k means fine-scale segmentation while the larger k

means coarse-scale segmentation. Note that many superpix-

els from multi-scale segmentation may include labels from

different classes, and cannot be assigned a single category

label. We thus screen the superpixels by checking their la-

bel purity, which is defined as the percent of label majority.

We assign a semantic label yi to a superpixel si if its label

purity is greater than 95%; otherwise, we remove it from re-

trieval set. For the query image, we segment it in the finest

scale by setting k = 50 to control their purity.

We represent each superpixel by four kinds of features,

SIFT histogram, RGB histogram, location histogram and

PHOG histogram. We extract SIFT descriptors of four

scales per 4 pixels by using VLFeat package [24] and en-

code them by 5 words from a vocabulary of size 1024 us-

ing the LLC algorithm [25]. For each superpixel, we com-

pute a 128-dimensional color histogram by quantizing the

RGB features from a vocabulary of 128 color words, and a

36-dimensional location histogram by quantizing the (x,y)-

locations into a 6×6 grid. In addition, the 168-dimensional

PHOG histogram is extracted from the bounding box of

each superpixel in a 1× 1, 2× 2, 4× 4 pyramid. To in-

corporate the contextual features into the superpixel repre-

sentation, we also dilate the superpixel masks by 10 pixels

and extract the same four kinds of features in the dilated

superpixel regions. We thus obtain a 2712-dimensional

((1024+128+36+168)×2) feature vector xi for each su-

perpixel si.
We compute the classification cost of each input super-

pixel si ∈ Q by its k-nearest neighbors Nk(i) in retrieval

set R = {sj , xj , yj},

U(yi = c|si) = 1−

∑

j∈Nk(i),yj=c K(xi, xj)
∑

j∈Nk(i) K(xi, xj)
, (1)

where K(xi, xj) denotes the intersection kernel between

two histogram feature vectors xi and xj .

To reduce the computational complexity, we further map

feature vectors into a high-dimensional space φ(xi) where

the inner product approximates the intersection kernel [24],

K(xi, xj) ≈< φ(xi), φ(xj) > (2)

3.3. MRF Labeling

We build a four-connected pairwise MRF for semantic

labeling. The energy function is given by

E(Y ) =
∑

p

U(yp=c) + λ
∑

pq

V (yp=c, yq=c′), (3)

where p, q are pixel indices, c, c′ are candidate labels that

belong to retrieval label subset C′ and λ is the weight of

pairwise energy. The unary energy of one pixel is given by

its superpixel,

U(yp = c) = U(yi = c|si), p ∈ si. (4)

The pairwise energy on edges is given by spatially variant

label cost,

V (c, c′) = d(p, q) · µ(c, c′), (5)

where d(p, q) = exp(−‖I(p) − I(q)‖2/2σ2) is the color

dissimilarity between two adjacent pixels and µ(c, c′) is the

penalty of assigning label c and c′ to two adjacent pix-

els. We define µ(c, c′) by the log-likelihood of label co-

occurrence statistics,

µ(c, c′) = − log[(P (c|c′) + P (c′|c))/2]× δ[c′ 6=c] (6)

which we estimate from the training images by calculat-

ing conditional probabilities P (c|c′) of adjacent superpix-

els. We obtain the semantic labeling by performing MAP

inference on E(Y ) by alpha-beta swap algorithm [1].
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Figure 2. Rare class expansion. The orange bars denotes the rare classes while the blue bars denote the common classes. In this example,

we enrich 9 rare classes.

4. Rare Class Expansion

In scene images, the salient regions usually capture the

attention of human observers [8], as they provide more in-

formation than generic background for scene understand-

ing. It is thus crucial to recognize these objects of inter-

est for generating rich semantic description of images. The

saliency property of interesting objects also result in their

insufficient representations in the retrieval set. For exam-

ple, in the “Before expansion” portion of the plot in Fig-

ure 2, the superpixels of retrieved images are dominated by

sky, sea and sand while boat and people classes are in the

very tail of the distribution. This fact brings challenges to

recognizing those objects of rare classes.

In this paper, we propose to enrich the retrieved set of

superpixels with exemplars of rare classes from the entire

database. The label distribution of the retrieval set could be

noisy due to the possibly irrelevant images. It is thus dif-

ficult to tell if a class in the tail part are interesting objects

(boat and people) or simply outliers (building). We instead

define “rare” classes by examining the superpixel label dis-

tribution of the entire training set. We partition this distribu-

tion into head and tail parts based on the 80%-20% Pareto

rule, and define the classes in the tail as “rare” Lr while the

other classes in the head as “common” Lc. In Figure 3, we

present the superpixel distribution of the SIFT flow train-

ing set [15], and our definition of rare and common classes.

Given this definition, we can partition the label subset of re-

trieval superpixels into two parts L′ = L′
r

⋃

L′
c and pop-

ulate the superpixels in the classes of L′
r with exemplars.

Note that the reduced label set remains the same after ex-

pansion. In Figure 2, we expand 9 classes (road, field, plant,

grass, river, rock, sand, person, boat) and obtain a more bal-

anced, noise resistant superpixel distribution as shown in

the “After expansion” portion of the plot.

4.1. Building a Dictionary of Exemplar Superpixels

We build a dictionary Dc of exemplar superpixels for

each class c ∈ L. We project superpixel feature vectors xi

into a low-dimensional space by PCA and cluster them into

1000 centers by using k-means. We select those superpixels

Figure 3. The long tailed superpixel label distribution on the SIFT-

flow training set. The orange bar denotes the rare classes while the

red bars denote the common classes.

which are closest to the centers as exemplars of particular

class. Note that we use this method to build dictionaries

for its simplicity, although a more sophisticated algorithm

such as in [14] could help to mine more discriminative and

diverse exemplars.

4.2. Superpixel Classification

We classify the superpixels of query image si ∈ Q
by using both the retrieval set R and auxiliary set of rare

class exemplars Dc, c ∈ L′
r. Similar to our base system

in Section 3.2, we compute the classification cost of one

query superpixel si by its κ-nearest neighbors N ′
k(i) ∈

{R
⋃

Dc, c ∈ L′
r},

U1(yi = c|si) = 1−

∑

j∈N ′
k(i),yj=c K(xi, xj)

∑

j∈N ′k(i) K(xi, xj)
. (7)

We set κ = 37 through all the experiments. To increase the

classification accuracy of κ-NN, systems in [4, 20] learn

weights for superpixels feature vectors. In this work, we

choose to hybridize the κ-NN classifier with an SVM clas-

sifier [3]. We train the SVM classifier only using the ex-

emplars in our dictionary. Given this small and balanced

set of training samples, we can train linear SVM classifiers
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{wc, bc}, c ∈ L in a very efficient way [2]. The SVM clas-

sification cost for the query superpixel si ∈ Q is given by

U2(yi = c|si) =−<wc, φ(xi)>−bc. The total superpixel

classification cost is thus computed by combining the κ-NN

cost and the SVM cost,

U(yi=c|si) = αU1(yi=c|si)+(1−α)U2(yi=c|si), (8)

where α is the combination coefficient.

5. Semantic Context

Context is an important source of information for scene

labeling. Although there are many ways to explore this in-

formation, we choose to a simply, yet effective feedback

mechanism based approach, inspired by [4, 20, 23]. In the

base system with rare class expansion, we transfer semantic

labeling information from the database to the input image

through image retrieval and superpixel classification. In this

feedforward process, we obtain the initial semantic knowl-

edge of the input image that are represented by the pixel-

wise classification likelihood maps.

ℓ(p, c) =
1

1 + exp(U(yp = c))
, c ∈ L′, (9)

where U(yp = c) is the cost of assigning label c to pixel

p in (4) and L′ ⊂ L is the candidate label subset. These

classification maps in the reduced label set grant us natu-

rally sparse representation of semantic information without

an extra sparse coding step [9]. The question is how we

can use this initial result as a feedback to reinforce the la-

beling process, in particular the two key components, im-

age retrieval and superpixel classification. First, the likeli-

hood maps in (9) can serve as global context, which has the

potential to improve the appearance based image retrieval

with semantic scene description. Second, we can generate

local semantic descriptors from the likelihood maps for su-

perpixels. Together with local appearance descriptors, we

can achieve more contextually consistent classification re-

sults. We introduce the algorithms to construct both global

and local context descriptors from the likelihood maps in (9)

below. Note that to compare semantic context between the

query and the database images, we compute the classifica-

tion likelihood maps for all the training images in a leave-

one-out fashion.

5.1. Global Context Descriptor

We define the global context of an image as the spa-

tial layout of semantic content in multi-scale. To this

end, we partition an image into a three-layer spatial pyra-

mid {I =
⋃

i Ω
l
i, l = 1, 2, 3, i = 1, ..., 2l−1}, and for

each cell Ωl
i, we compute its |L| × 1 sparse context vec-

tor z
l
i = [zlic]c=1,2,...,|L| by max pooling of classification

Figure 4. Computing global and local context descriptors from

the likelihood maps. The bottom-right figure shows the method

of constructing global context descriptor using a three-layer spa-

tial pyramid. In the bottom-left figure, the local context de-

scriptor of one superpixel s (shown in orange) is computed from

four-directional neighborhoods: top (blue), bottom (purple), left

(green) and right (yellow).

likelihood maps,

zlic =

{

maxp∈Ωl
i
ℓ(p, c) if c ∈ L′;

0, otherwise.
(10)

The global context descriptor is thus formed by con-

catenating the sparse vectors from all the cells z =
[zli]l=0,1,2,i=1,...,2l−1 . Figure 4 demonstrates the process of

computing the global context descriptor of one query im-

age. We use global context descriptor z to update the image

similarity between the query image and database images,

m′(Iq, Id) = m(Iq, Id)+ < zq, zd > and obtain a new set

of retrieved images.

5.2. Local Context Descriptor

We describe superpixels by their local context for

robust matching. For each superpixel si, we divide

its neighborhood into left, right, top, bottom four cells

{∆0
i ,∆

1
i ,∆

2
i ,∆

3
i } as illustrated in Figure 4, and for each

cell ∆j
i , we compute its |L| × 1 sparse context vector

h
j
i = [hj

ic], c = 1, 2, ..., |L| by the same operation as for

global context descriptors,

hj
ic =

{

max
p∈∆j

i
ℓ(p, c) if c ∈ L′;

0, otherwise.
(11)

We represent the superpixel si by concatenating the vi-

sual feature vector xi and spatial context descriptor hi =
[h0

i ;h
1
i ;h

2
i ;h

3
i ]. Therefore, we can classify superpixels of

the query image using the same procedure described in Sec-

tion 4, but with new feature vectors φ([xi;hi]).
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Figure 5. Some representative scene parsing results on the SIFTflow dataset

6. Experimental Results

6.1. SIFTflow

The SIFTflow dataset consists of 2488 training images

and 200 test images. All the images are 256 × 256 pixels

from 33 semantic labels. We retrieve K = 40 images for

each query. By applying the 80%-20% rule to all the super-

pixels of training dataset, we identify 5 classes as common

while 28 classes as rare (Fig. 3). We set α = 0.7 to com-

bine the κ-NN and SVM classifiers in (8), and set λ = 6 for

the pairwise term of MRF energy function in (3). We com-

pare our results with recent work in Table 1. Compared to

nonparametric methods, our method (79.8%) outperforms

the state-of-the-art per-pixel rate (79.2%) in [20], and per-

class rate (39.2%) in [21] by a large margin (8.5%). The

state-of-the-art learning based method in [5] can achieve

close per-class rate (46.0%) to our system at a cost of more

than 4% performance drop on per-pixel rate (74.2%). In

contrast, we achieve overall performance improvement us-

Table 1. Comparing accuracy (%) on the SIFTflow dataset. Note

that in our results, Full=baseline+RCE+LCD+GCD.

SIFTflow Per-pixel Per-class

Liu et al. [15] 76.7 N/A

Farabet et al. [5] 78.5 29.5

Farabet et al. [5] balanced 74.2 46.0

Eigen et al. [4] 77.1 32.5

Singh and Kosecka [20] 79.2 33.8

Tighe and Lazebnik [22] 77.0 30.1

Tighe and Lazebnik [21] 78.6 39.2

Full 79.8 48.7

baseline + RCE + LCD 79.4 46.9

baseline + RCE 78.4 45.4

baseline 78.0 27.5

ing the proposed rare class expansion and semantic context

descriptors. We present some qualitative results in Fig. 5.

In the bottom of Table 1, we evaluate the contributions of

important components to our system: rare class expansion
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(RCE), local context descriptors (LCD) and global context

descriptors (GCD). The results show that rare class expan-

sion plays a central role on per-class rates while semantic

context boosts the system performance in general. To fur-

ther investigate the influence of the rare classes, we compare

the performance of our full system with [21] only on the 28

rare classes. Table 2 shows that our system outperforms the

state-of-the-art by more than 10% for both per-pixel and

per-class rates on those rare classes.

Table 2. Accuracy (%) on the 28 rare classes of SIFTflow dataset.

Rare classes Per-pixel Per-class

Tighe and Lazebnik [21] 48.8 29.9

Our full system 59.4 41.9

Runtime. For this dataset, it takes<1 sec. to retrieve rele-

vant images,∼5 sec. for feature loading,∼5 sec for super-

pixel classification, and<1 sec. to solve the MRF. The use

of context descriptors doubles the classification time.

6.2. LMSun

The LMSun dataset consists of 45176 training images

and 500 test images. The size of images ranges from

256×256 pixels to 800×600 pixels. There are 232 seman-

tic labels in total. By using the same 80%-20% rule on all

the superpixels in the training set, we identify 47 common

classes and 185 rare classes. Since this is more complex

dataset, we retrieve K = 120 images to cover large ap-

pearance variations. We set α = 0.9 to trade-off the KNN

and SVM classifiers, and set λ = 6 for the pairwise term

in MRF energy function. We compare our results with re-

cent work in Table 3. As we focus on the rare classes, our

method indeed produces the superior per-class result 18.0%

to the previous one 15.2%, while remaining competitive on

the per-pixel rate 60.6% vs. 61.4% in [21]. By looking

at the accuracy on outdoor (65.4 per-pixel, 17.7 per-class)

and indoor (41.8 per-pixel, 16.1 per-class) separately, we

observe our system loses the per-pixel performance mainly

on indoor images (4.5% lower than [21] vs. 0.1% lower

than [21] for outdoor). In Table 4, we present the results

Table 3. Comparing accuracy (%) on the LMSun dataset.Note that

in our results, Full=baseline+RCE+LCD+GCD.

Per-pixel Per-class

Tighe and Lazebnik [22] 54.9 7.1

Tighe and Lazebnik [21] 61.4 15.2

Full 60.6 18.0

baseline + RCE + LCD 59.4 17.8

baseline + RCE 57.1 14.5

baseline 58.5 9.0

on the 185 rare classes. It turns out that our system outper-

forms the state-of-the-art for both per-pixel and per-class

rates, which further demonstrates our contributions to rare

class boosting. We present some qualitative results in Fig-

Table 4. Accuracy (%) on the 185 rare classes of LMSun dataset.

Rare classes Per-pixel Per-class

Tighe and Lazebnik [21] 19.0 12.9

Our full system 26.4 14.4

ure 6.

Runtime. Scene parsing is more expensive on the LMSun

dataset than the SIFTflow dataset. It takes< 20 sec to re-

trieve relevant images, ∼ 60 seconds for feature loading,

∼60 sec for superpixel classification, and∼60 sec to solve

MRF for an 600×800 image with 50-100 labels. Using con-

text descriptors doubles the superpixel classification time.

6.3. Discussion

Image retrieval has significant influence on our system.

Superpixel matching and MRF inference becomes much

easier to solve within a compact set of relevant images to

the query; on the contrary, we notice most of the failure

cases are caused by incorrect retrieval. We plan to investi-

gate more effective image retrieval techniques, such as con-

volutional neural networks [10].

Our system faces challenges in indoor scenes. Indoor

scenes are usually composed of many man-made 3D objects

(bed, cabinet, table, chairs) and thus have more line struc-

tures than textures. Our SIFT based superpixel represen-

tation becomes less applicable in this scenario, compared

to the HOG feature used in object detectors [21]. We plan

to develop better indoor object representations by exploring

their 3D geometric structures.

The runtime efficiency is one of the most important fac-

tors in large scale problems. On one hand, we plan to incor-

porate hashing algorithms to accelerate superpixel feature

loading and matching; on the other hand, we plan to inves-

tigate faster MRF inference algorithms.

7. Conclusions

We have presented a novel scene parsing algorithm,

which can operate in large scale. By investigating the roles

of rare classes in the database, we have proposed two novel

techniques: rare class expansion and local/global seman-

tic context descriptors, which are able to significantly boost

the per-class performance of our system. Based on that, we

have achieved the state-of-the-art results on the SIFTflow

and the large scale LMSun datasets.
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Figure 6. Some representative scene parsing results on the LMSun dataset
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