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ABSTRACT 
This article argues for the growing importance of quality 
metadata and the equation of that quality with precision and 
semantic grounding.  Such semantic grounding requires 
metadata that derives from intentional human intervention as 
well as mechanistic measurement of content media.  In both 
cases, one chief problem in the automatic generation of semantic 
metadata is ambiguity leading to the overgeneration of 
inaccurate annotations.  We look at a particular richly annotated 
image collection to show how context dramatically reduces the 
problem of ambiguity over this particular corpus.  In particular, 
we consider both the abstract measurement of “contextual 
ambiguity” over the collection and the application of a particular 
disambiguation algorithm to synthesized keyword searches 
across the selection. 

Categories and Subject Descriptors 
H.2.1 Logical Design, H.2.3 Data Description languages, H.2.4 
Multimedia databases, H.2.7 Database Administration: Data 
dictionary/directory, H.3.3 Information Search and Retrieval, 
H.3.7 Digital Libraries, I.2.7 Natural Language Processing, K.1 
The Computer Industry 

General Terms 
Management, Measurement, Performance, Economics, 
Algorithms. 

Keywords 
Metadata, information retrieval, context, disambiguation, 
multimedia databases. 

 

1. The Value of Metadata 
Detailed and precise metadata will be the key to the next 
generation of applications that will realize the potential of the 
new digital media.  Especially with largely opaque media 
(image, video, audio), metadata provides the handles by which 
programs can search, arrange, and repurpose the digital media 
that are quickly becoming ubiquitous.  However, the generation 
of that metadata and the economics of that production and 
application remain problematic. 

 

 

 

We believe that the economics of metadata are subject to a 
principle analogous to Metcalfe’s law for the economics of 
network technologies [5][12], in particular that 

“the value of metadata rises as the product of the log of the 
corpus size and the log of the size of the user community” 

For example, good metadata would not be a crucial issue for 
small databases (100s or 1000s of items) or a handful of users, 
since a simple organizational scheme (based on time, place, 
keywords, etc.) could be combined with personal knowledge to 
allow fast, relatively reliable, retrieval and identification of 
relevant images.  However, as the total number of images grows 
or the community size increases, the value of metadata increases 
substantially. 

Applying this principle to the growing pool of digital media and 
clear market trends (omnipresent cameras, huge disks, 
ubiquitous broadband), suggests an oncoming transition in the 
traditional economics of data and metadata. 

2. The Metadata Twist 
While the economic significance of metadata increases with the 
size of the available content, the average economic value of the 
content must, at the same time, decrease with the amount of 
available content.  This pair of trends leads to a projection that 
we call the “Metadata Twist”, illustrated in Figure 1. 

As media technologies improve and spread, there will be a 
gradual transformation where metadata will become more 
valuable (on average) than the content it describes.  This 
counterintuitive twist arises as the human resource of time and 
attention remains fixed while the pool of accessible media 
increases at least exponentially. 

The potential in this transformation is enormous and motivates 
the investment in technologies and capabilities for dealing with 
the metadata that will become increasingly valuable.  
Considered carefully, it also focuses attention on the importance 
of high-quality precise metadata. 

3. Quality, Precision, and Semantic 
Metadata 
Not all metadata are created equal.  One useful definition of 
metadata is “any data which conveys knowledge about an item 
without requiring examination of the item itself.”  Because 
metadata derives its value from saving human time and 
attention, it must be effective at distinguishing relevant and 
irrelevant or redundant content.  For automatic storytelling, 
quality metadata is even more important, since a given 
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presentation may rely on complex sequences of discriminations 
regarding features and connections which can serve narrative 
goals. 

One of the chief characteristics of metadata quality is precision: 
metadata needs to be precise enough to effectively distinguish 
between different items so that it can select the right one without 
requiring that a person examine the items (absorbing their 
precious time and attention).  Precision is equally important to 
determine what items should be excluded as included, whether 
for reasons of irrelevance, inappropriateness, or redundancy.  In 
either case, the more precise the metadata, the more valuable (in 
the terms described above) it is. 

There are two significant problems with precise metadata.  First, 
in conventional databases and metadata models, increasing 
precision of description reduces the overall recall performance.  
If you describe an image as a “German Shepard,” a person 
searching for pictures of “Pets” will not find it.  Second, precise 
metadata may require some human attention to produce it, the 
same attention we’re trying desperately to save by using it in the 
first place.  

The problem of diminished recall (“German Shepards” vs. 
“Pets”) can be addressed in large part by using “semantic 
metadata” which links related terms to one another, so that 
“German Shepard” is connected to “Pets” in some manner.  
Semantic metadata differs from traditional taxonomies or 
structured thesauri in two important ways: 

• it provides articulated patterns of reference, describing 
(even if only in natural language) how terms map to 
content; and 

• it provides operational rules of inference explaining how 
and when terms can be expanded to other terms. 

 
These criteria are interdependent.  For instance, to insure that we 
can expand a term like “Fish” appropriately, we need to 
distinguish “Fish, the food” from “Fish, the animal”.  
Conversely, because we may distinguish “German Shepard” 
from “Labrador Retriever,” we need to be able to infer that they 
are both kinds of pets (or at least domesticated animals). 

While we have focused here on terminological precision, other 
sorts of precision are equally important. Davis [2] makes a 

similar argument for stream-based, rather than clip-based, video 
representations (in which all annotations have time indices), for 
the same reasons of more exact retrieval and better automatic 
manipulability. 

In conclusion, precise description of large collections requires 
semantic metadata and the application of semantic metadata has 
its own requirements.  We consider these in the next section, 
especially the need for multiple schematizations or taxonomies 
and the need (into the foreseeable future) for human annotation 
of content. 

The second issue, the effort required for precise annotation, is 
potentially more serious.  The argument for precise annotation is 
that we are strategically shifting time and attention from the 
search process to the initial annotation process.  If the number of 
searchers is large and their time is valuable, this can be a strong 
argument.  On the other hand, when the number of documents is 
very large, the cost of precisely annotating each one (even ones 
which searchers will never see) may outweigh this advantage.  
However, it is important to not take naïve assumptions about the 
cost of precise annotation for granted.  As we will discuss 
below, new techniques --- such as the use of context --- can 
dramatically reduce the cost of annotation. 

4. Metadata and Purposes 
Metadata, and especially semantic metadata, is necessarily a 
representation of whatever content it describes.  Like any 
representation, it selects and summarizes, reducing the content 
of the media itself to a more compact and easily manipulable 
form.  This manipulability is the raison d’etre for the metadata in 
the first place.   

One important property of representations is that they are 
artifacts and especially purposive artifacts.  This means that 
every representation has a set of associated purposes and the 
representation’s criteria of selection and summarization reflect 
those purposes.  For instance, the metadata associated with 
photographs in a news organization might be very different from 
the metadata associated with photographs by a fashion company 
or by an advertising agency. 

The multiplicity of purposes leads directly to a need for multiple 
descriptions or, technically, multiple schematizations or 

 
Figure 1: The Metadata Twist 
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taxonomies.  Because there is no organizational scheme that will 
satisfy all purposes, we need to allow a diversity of schemes 
while providing ways to heuristically connect among them.  
Diehard positivists might argue that every organizational 
scheme might bottom out in some kind of basic language, but 
even if this is so (and there are strong reasons to believe 
otherwise), there is still a pragmatic reason to have a plurality of 
schemes which can compactly represent complex deeply nested 
expressions in the putative “universal primitive language”. 

It is important to distinguish broad-coverage representations 
(which are common) from general-purpose representations 
(which we are arguing against).  Metadata standards such as the 
Dublin Core are broad-coverage but special purpose 
representations.  Because they are designed to serve very 
general, typically bibliographic purposes, they can apply 
generally to a broad range of media items.  Likewise, broad-
coverage annotation schemes like Media Streams [2] focus on 
visual description for particular purposes such as reusing content 
for particular kinds of storytelling. 

In addition to requiring a multiplicity of descriptive schemes, 
precise semantic metadata eventually requires some level of 
human annotation and involvement.  The reason is that purposes 
are essentially socio-technological constructs that reflect what 
people do, what people need, and what technology enables them 
to do.  This complexity is what Hofstadter calls “AI-complete”: 
it cannot be solved without solving the problem of creating 
intelligent machines, which does not constitute a near-term 
solution.  While most activity in annotation has dwelt on 
automatic categorization (by, for instance, image processing), 
progress has been relatively slow even at the lowest level of 
reliably recognizing settings or individuals. 

As we indicated above, using people as a source of precise 
metadata is a strategic shift of time and attention from actual and 
potential users to the people producing the metadata.  The 
details of this shift will depend on the nature and needs of those 
users, the economic model for the entire system, and the skills 
and tools of the metadata producers.  However, if we are 
requiring precise metadata (which we’ve argued will become 
more and more important), we need human sources of metadata 
and it is useful to think about how to generate this metadata as 
effectively and inexpensively as possible.  In order to understand 
how to do this, we need to look at the processes that generate 
both automatic and manual metadata. 

5. Sources of Metadata 
The process of generating accurate and useful metadata can be 
visualized as a flow that generates features from sources in the 
external world.  Crucially, these features are not independent, 
leading to the importance of context: some features consistently 
co-occur with each other and this provides an important 
potential constraint on the processes that generate metadata.  
Figure 2 shows this process, which we call the metadata 
pipeline. We begin by distinguishing two original sources of 
metadata: measurement and intervention. 

Measurement involves the mechanical extraction of features 
from media content or context.  It can include analysis of pixels 
or motion in an image, the time or location of a capture event 
(say with GPS coordinates), or sophisticated extraction of 
higher-level features of the raw signal. 

Intervention requires action of a human being with respect to 
the content that does not change the content itself.  It can include 
the assignment of a keyword, the classification into a folder, or 
the juxtaposition of content items together in a presentation. 

The distinction is helpful because metadata arising from 
intervention, when interpreted correctly, tends to more reliably 
reflect the human purposes upon which representations are 
naturally based.  For example, the Google search engine focuses 
on features such as patterns of web linking and URL text (i.e., 
domain names, file paths and names, etc.), in judging the 
similarity of documents to queries.  These features all involve 
choices made by people in creating links, registering domain 
names, choosing file names, and organizing directory structures. 

Starting from raw measurements or interventions, the metadata 
process attempts to derive useful metadata: representations that 
capture actual or potential human purposes.  Often, the raw 
datum of measurement or intervention is not refined enough to 
use as metadata to drive searching or reusing media.  For 
example, an assigned keyword may be ambiguous with respect 
to potential users’ “information needs” or a media item may be 
in audio but users will be searching using text.  In each of these 
cases, processing goes from the raw material of measurements 
and interventions to more refined purpose-linked features. 

The distinction between measurement and intervention in origin 
can be coupled to a distinction between identification and 
interpretation in processing.  Identification extracts features 
from measurements; interpretation extracts features from 
interventions.  Both of these processes are necessarily imprecise 
and heuristic since they are making guesses from partial 
information.  Interpretation is making guesses about the past: 
“They meant fish as animals” or “they didn’t like this clip”.  
Conversely, for media reuse in particular, metadata 
identification is making guesses about the future: “people will 
see George W. Bush in this cartoon” or “this setting is 
recognizably the same as this other one”. 

This imprecision is the source of the “semantic gap” [3][16] 
since measurements, at least in isolation, underspecify the 
semantic description of contents or purposes.  In order to close 
this gap, both identification and interpretation can draw on 
outside knowledge of various sorts, whether feature templates 
for object recognition, mappings of ambiguous keywords to 
unambiguous concepts, or geographic databases that identify 
places from measured coordinates. 

These processes can fail in two different ways: they can fail to 
identify or interpret an actual feature or they can identify or 
interpret features that do not actually apply.  For the rest of this 
paper, we will focus on this second case: the misattribution of 
features that do not actually apply. 

Before we move on to this focus, it may be helpful to briefly 
unpack the messy bundle tied up in the words “actually apply” 
above.  The acid test for the “accuracy” of metadata is whether it 
works in the processes of selection or generation in which it is 
enlisted.  In search, if relevant items are found and irrelevant or 
redundant items discarded, then we can say that the metadata 
was correct.  In repurposing or automatic story generation, if the 
generated presentation fulfilled its purpose (whether education, 
entertainment, seduction, or convincement), the applied 
metadata was correct. 
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This definition is unapologetically pragmatic but it also 
challenges a common practice in evaluating metadata.  Human 
beings, in the aggregate, are often taken as a “gold standard” for 
metadata, permitting the discounting of distinctions that humans 
do not reliably make.  However, the use of metadata is typically 
individual and aggregate generalization may be a poor guide for 
such applications.  Just because the average individual may not 
be able to distinguish (at least by name) oaks from dogwoods, 
doesn’t mean that metadata need not.  Or more personally, if 
someone is looking for old family pictures of their mother, 
photographs of her twin sister just won’t do.   

This particular case of the “twin aunt” highlights the ambiguity 
inherent in metadata generation regardless of the sophistication 
of its signal processing.  In turn, this ambiguity leads to the 
problems of misattribution of metadata.  One way to minimize 
this misattribution is to expand our scope from individual 
features to the constellation of features that define the “context” 
in which the individual features are identified or interpreted. 

6. Overgeneration and Ambiguity 
The metadata production process produces possible features by 
either interpretation of human interventions or measurements of 
content characteristics.  One of the ways in which this process 
fails is when it generates features that do not actually apply to 
the content.  This overgeneration is a form of ambiguity: a 
measurement or intervention has several possible identifications 
or interpretations and all of them are produced. 

One of the ways to resolve ambiguity is to combine what we 
know reliably about an item with external knowledge that tells 
which features are likely or unlikely and to discard the ones that 
are unlikely.  We refer to the “known facts” as the context in 
which the disambiguation of a given possible feature is 
performed.  This context, combined with background 
knowledge, can help in disambiguation. 

For example, if we know that we are at a wedding, we can guess 
that the keyword “groom” is unlikely to refer to a stableboy and 
that the keyword “cake” is likely to refer to the food and not the 
soap.  This external knowledge approach is taken, for instance, 
in Aria [10] to identify relevant concepts and then expand 
searches as in an inference network [17]. 

This kind of external knowledge can come from a variety of 
sources.  One source is common sense knowledge bases, such as 
CYC [9] or ConceptNet [11].  Another, more direct source, 
would be direct access annotated corpora.  We will use a 
variation on this latter source of knowledge to determine the 

possible role that context could play in disambiguation of 
keywords to disambiguated concepts.  We will then evaluate a 
simple algorithm to use the corpus itself as a source of 
background knowledge for disambiguating synthesized 
ambiguous annotations. 

7. Ambiguity in Context 
To look at the role that context may be able to play in some sorts 
of disambiguation, we will be considering the characteristics of 
image collections annotated with concepts.  In particular, we 
will be comparing the absolute ambiguity of terms (the 
meanings they may have) and their relative ambiguity (how 
many meanings they have when known to be associated with 
other concepts).  What we are attempting to measure here is, 
essentially, how much the interdependence of terms (which 
makes context significant) can reduce the semantic gap.  

In order to formalize this definition, we consider a set of media 
items I  annotated with concepts drawn from a vocabulary C , 
each of which may be ambiguously referred to by natural 
language terms T .  Given these domains, we introduce several 
functions: 

FindContent(concept) maps concepts into media items; 

GetConcepts(item) maps media items into concepts; 

FindConcepts(term) maps terms into concepts; 

GetTerms(concept) maps concepts into terms. 

The absolute ambiguity of a term t is thus: 

FindConcepts(t)  

The relative ambiguity of a term t  with respect to a 
subcollection J ⊆ I would then be: 

(FindConcepts(t))∩( GetConcepts( j))
j ∈J
U  

Given these definitions, we define the contextual ambiguity of a 
term t  given a concept X  as the relative ambiguity of t  
with respect to the corpus of items annotated with both a 
meaning of t  and the concept X , e.g. 

 
Figure 2. The Metadata Pipeline 
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AmbigX(t)= (FindConcepts(t))∩( GetConcepts( j))
j∈FindContent(X)

U  

This indicates the ambiguity of t  applied to a media item if we 
already know that the concept X  applies to it.  We can use this 
to define the mean ambiguity of t  that is the average ambiguity 
over all concepts that co-occur with possible meanings of t .  
Note that the mean ambiguity is a pessimistic metric: it is the 
expected value of the ambiguity given a single random 
contextual element.  In practice, we are likely to have multiple 
contextual elements which will not be random. 

We will consider these metrics applied to a relatively large 
(75,000 image) image database annotated with disambiguated 
concepts from the BRICO [6] knowledge base.  The image 
database has been provided by Digital Vision Online (DVO), an 

international royalty-free provider of stock photographs.  The 
BRICO database was generated from the amalgamation of 
multiple sources, most significantly the WordNet online lexical 
thesaurus [4][13][14].   A sample concept from BRICO is shown 
in Figure 3. 

BRICO extends WordNet with more concepts, additional 
linkages, limited inference capabilities, and links into other 
languages.  Concepts in BRICO represent disambiguated word 
meanings and are linked to other concepts through a variety of 
relationships.   

The DVO collection was used in previous work [7][8] to explore 
the possibility of non-expert conceptual annotation. A sample 
image from the collection, together with its annotations, is show 
in Figure 4.  For this study, we used expert keywords assigned 
by DVO and hand audited and automatic mapping from those 
keywords to concepts in BRICO.  The DVO keywords are 
substantially monosemous by design, meaning that each 

 
Figure 3. The description of a BRICO concept 

 
Figure 4. An image and its annotations 
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keyword can be mapped to one concept in BRICO or, 
occasionally, collections of related concepts (such as the noun 
“investment” and the verb “invest”).   

The resulting database is heavily annotated, averaging 12 
concepts per image.  The annotated corpus uses 3,759 concepts 
overall which encompass 6,199 English words (BRICO also 
includes foreign language words for concepts).  6,016 of those 
6,199 words map unambiguously into single concepts.  The 
remaining 183 words map into multiple meanings (between 2 
and 4) averaging 2.1 meanings per word.  

8. Contextual Ambiguity 
The contextual ambiguity for each of the 183 ambiguous terms 
ranges from 1 to 2.4, averaging 1.2 meanings for each term.  
This measures the degree, over the entire corpus, to which a 
given bit of context will disambiguate the meaning of the term.  

The average of 1.2 meanings above reflects the fact that some 
concepts may not provide any help in disambiguating a term.  A 
more revealing metric is to look at how many of the possible 
contextual cues perfectly disambiguate the term.  For example, 
the term “bag” has 4 possible meanings over the corpus and 
these meanings co-occur with 213 other concepts. 142 of these 
concepts (67%) perfectly disambiguate the term “bag” to its 
correct meaning.  Over all the ambiguous terms, the percentage 
of perfect disambiguators ranged from 0-100%, averaging 78%. 

9. A Simple Algorithm 
The metrics above suggest that context can provide a strong 
constraint on keyword disambiguation.  In order to examine this 
further, we can implement a simple algorithm to automatically 
perform such disambiguation. 

The algorithm starts with a set of keywords K ⊂ T  and scores 
each item j ∈ I  based on the potential applicability of the 
terms k ∈ K  to the item.  This applicability is ambiguous: a 
term k  applies to j  if any of the meanings of k  are associated 
with the item j .  Thus, the score of an item j  would be the size 
of the overlap: 

  
(GetConcepts( j))I( FindConcepts(k))

k∈K
U  

Then, for each keyword k , the algorithm finds the highest 
scored item(s) to which k  applies and picks the meaning(s) of 
k  associated with those items. 

We can assess this algorithm by picking random items from the 
database and generating putative keyword sets based on the 
concepts describing them.  We then execute the algorithm (being 
sure to remove the item itself from consideration) and compare 
the resulting disambiguations to the actual concepts. 

Resulting from this comparison, extra concepts indicate 
retained ambiguity while missing concepts indicate 
misinterpretation or failure of the algorithm to find the correct 
meaning (miscuing from the context). 

Note that this task is simpler than free text disambiguation [15] 
because the context of each corpus item is already 
disambiguated and the domain itself is mostly limited to 
physical description.  The relative role of these two factors will 
determine how effectively this simple algorithm would scale to 
both more general (non-physical) descriptions and corpora that 
are unevenly annotated. 

To evaluate this simple algorithm, we applied it to 10,000 
queries synthesized from the DVO corpus and computed mean 
retained ambiguity and failure both per query and per keyword. 

Per query, the average retained ambiguity was 0.12, meaning 
that roughly 10% of the queries could not be disambiguated 
completely, though the error was generally limited to only one 
of the keyword terms.  The average misinterpretation rate was 
0.05, indicating that the algorithm misinterpreted keywords in 
5% of the queries.  But again, this error was typically limited to 
a single keyword. 

Per keyword, the average retained ambiguity was 0.01, 
indicating that only 1% of the keywords were not uniquely 
disambiguated.  The average misinterpretation rate was 0.004, 
indicating that the algorithm misinterpreted only 0.4% of the 
keywords. 

 
Figure 5. Disambiguating a Query 
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These results show that, in a richly annotated corpus, context 
can practically serve as a very strong constraint on 
disambiguation of keywords.  The results are substantially better 
than the theoretical “mean contextual ambiguity” calculated in 
Section 9 (the 1.2 meanings per term) because the algorithm 
implicitly considers combinations of disambiguating concepts 
rather than single concepts.  This was not surprising as we noted 
above that the mean contextual ambiguity was a pessimistic 
metric. 

The application of the algorithm in practice can be seen in 
Figure 5, where it is used in the BabelVision interface to the 
DVO collection of 75.000 images.  The keyword text of the 
query is in the box at the top of the screen.  At the bottom of the 
screen, we see that the algorithm has selected the “drinking 
glass” meaning of the query term “glasses” rather than the more 
common (in this corpus) concept of “eyeglasses”. 

As we mentioned above, the scalability of this simple algorithm 
still needs to be determined for domains with less concrete 
descriptions and with corpora that are less reliably or 
comprehensively annotated.  These are both areas for future 
work. 

As mentioned above, the results are also favorable compared to 
free text meaning disambiguation because terms in each context 
are disambiguated and the domain is relatively limited (image 
description). 

10. Leveraging Measurement 
In the economics of metadata, there is a logical focus on 
measurement over intervention, even though intervention 
generally leads to more reliable and precise features.  The reason 
is that the economic expense of measurement and identification 
is typically both lower and more easily capitalized financially.  
Furthermore, the technologies of measurement and identification 
(sensing, communication, and computation) have all been 
growing exponentially less expensive, enhancing this advantage. 

While the purposive character of metadata ensures that 
intervention must remain an important source of semantic 
metadata, it is interesting to consider how the use of measured 
context might constrain interpretation.  We can get a rough 
sense of this by repeating the analysis we did above, but limiting 
possible contextual cues to cues that might be easily measured.  
In particular, we will restrict the context considered to locational 
context.  This includes both geographic information (this photo 
is in New York City) and locofunctional information (this photo 
is in a restaurant).  Location-based technologies are becoming 
more pervasive and less expensive and the growth of location-
based services means that this sort of information may soon 
readily be available at the point of capture. 

We can experimentally separate out locational from non-
locational concepts by using the semantic class that most 
BRICO concepts inherited from WordNet.  The semantic class 
noun.location is used to identify both geographical and 
locofunctional concepts. When we repeat the analysis above, but 
reduce the space of “co-concepts” to these concepts, the 
contextual ambiguity drops to 1.15 meanings (ranging from 1 to 
2.26 meanings per term).  This is an improvement on the 1.26 
meanings per term (ranging from 1 to 3.29 meanings per term) 
in the general case. 

For example, consider the term “board” which has multiple 
meanings, including circuit boards, wooden boards, and the act 
of entering some for of transport.  However, locational concepts, 
such as “house” (for wooden boards), “airport” (for entering 
transport), or “laboratory” (for circuit boards) decisively remove 
this ambiguity, making the term “board” contextually 
monosemous. 

Significantly, the overall percentage of unique disambiguators is 
also higher when considering only locational concepts: 86% as 
opposed to 77%.  These unique disambiguators, like the 
locational concepts listed above, make the term contextually 
unambiguous.  The significance here is that locational categories 
are much more reliably identified (given infrastructure such as 
cellular or GPS networks) than signal-based categories but can 
provide a powerful constraint on disambiguating other features. 

11. Future Work 
More empirical study of the simple algorithm above is merited 
and will be ongoing over the coming year.  In particular, we will 
look at the correlation between disambiguation performance and 
the size of the keyword set provided to the algorithm. 

As specified, the algorithm does not take advantage of the 
inference possibilities in the annotation language.  One obvious 
extension to be studied is the use of those inference relations 
(for instance, between general and specific concepts) to improve 
the performance of the algorithm, especially as smaller sets of 
keywords are likely to decrease the overall performance. 

Another promising direction is to look at the use of monosemous 
references (terms with a single meaning) to bootstrap the 
creation of an annotated corpus and then to use that annotated 
corpus to disambiguate the polysemous terms. 

Finally, it is important to look more closely at the interaction 
between identified (measurement-based) and interpreted 
(intervention-based) features.  The cursory analysis above used 
locational concepts as a proxy for actual locational information.  
It will be interesting to work with collections which have both 
sources of information and see the degree to which these 
different sorts of features can constrain one another.  Of special 
interest would whether this contextual approach can effectively 
make some unreliable identification algorithms (such as people 
spotting) more reliable. 

12. Conclusions 
We have argued that quality metadata will become increasingly 
important and significant as collection sizes and user 
communities grow.  Further to this increasing importance, we 
have proposed that quality metadata must necessarily be precise 
and semantic (disambiguated and supportive of automatic 
inference).  Looking at the problem of generating such metadata, 
we showed that human generated annotations of various sorts 
would remain extremely important in practice. 

We discussed the issues in generating semantic metadata and 
particularly considered the problem of constraining 
overgeneration of semantic metadata and linked this 
overgeneration, in particular cases, to the problem of ambiguity.  
Looking at a particular richly-annotated collection of images, we 
found that contextual information could reduce this ambiguity 
dramatically. 

210



13. References 
[1] Brooks, K., Metalinear Cinematic Narrative: Theory, 

Process, and Tool, MIT PhD disseration, April 1999. 
[2] Marc Davis. "Media Streams: An Iconic Visual Language 

for Video Representation." In: Readings in Human-
Computer Interaction: Toward the Year 2000, eds. Ronald 
M. Baecker, Jonathan Grudin, William A. S. Buxton, and 
Saul Greenberg. 854-866. 2nd ed., San Francisco: Morgan 
Kaufmann Publishers, Inc., 1995.  

[3] Dorai, C. and Venkatesh, S. Computational Media 
Aesthetics: Finding Meaning Beautiful. IEEE Multimedia, 
8 (4). pp. 10-12. 

[4] Fellbaum, C. ed., WordNet, An Electronic Lexical 
Database, MIT Press, Cambridge, MA (1998). 

[5] Gilder, G., "Metcalfe's Law and Legacy," Forbes ASAP, 13 
September 1993.  

[6] Haase, K. Interlingual BRICO. IBM Systems Journal 39, 
3/4 (2000). 

[7] Haase, K., Guaraldi, B., and Tamés, D. SBIR Phase I 
Report: Non-Expert Conceptual Annotation. Report 
submitted to the National Science Foundation, Project 
Number 0232731, July 28, 2003. Available at 
www.beingmeta.com/pub/nonexpertannotation.pdf 

[8] Haase, K. and Tames, D., Babelvision: Better Image 
Searching Through Shared Annotation, in ACM 
Interactions, 11(2), March/April 2004.  

[9] Lenat, D.B. and Guha, R.V., Building Large Knowledge-
Based Systems: Representation and Inference in the 
CYCProject,” Addison-Wesley Publishing Company, 
Reading, MA (1990).  

[10] Lieberman, H., Rosenzweig, E. & Singh, P., Aria: An 
Agent For Annotating And Retrieving Images, IEEE 
Computer, July 2001, pp. 57-61. 

[11] Liu, H. & Singh, P., ConceptNet: A Practical 
Commonsense Reasoning Toolkit. BT Technology Journal, 
upcoming. Kluwer 2004.  

[12] Metcalfe, R., "There Oughta Be a Law," New York Times, 
15 July 1996. 

[13] Miller, G.A., “WordNet: A1 Lexical Database for English,” 
Communications of the ACM 38, No. 11, 39–41 (1995). 

[14] Miller, G.A., “WordNet: An On-Line Lexical Database,” 
International Journal of Lexicography 3, No. 4, 235–312 
(1990).  

[15] Resnik, P., "Word Sense Disambiguation in NLP 
applications", in Word Sense Disambiguation: Algorithms 
and Applications, Eneko Agirre and Philip Edmonds (eds.), 
Kluwer, forthcoming. Kluwer, forthcoming. 

[16] Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., 
and Jain, R. Content-Based Image Retrieval at the End of 
the Early Years, IEEE Transactions on Pattern Analysis 
and Machine Intelligence, vol. 22, 2000; pp. 1349-1380. 

[17] Turtle, H. & Croft, W.B., Inference networks for document 
retrieval, Proceedings SIGIR 1990, ACM Press.

 

211


