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Abstract. An operation of concatenation is defined for graphs. This 

allows strings to be viewed as expressions denoting graphs, and string 

languages to be interpreted as graph languages. For a class J{ of string 

languages, IntC K) is the class of all graph languages that are interpre

tations of languages from J(. For the classes REG and LIN of regular 

and linear context-free languages, respectively, Int(REG) = Int(LIN). 

Int(REG) is the smallest class of graph languages containing all sin

gletons and closed under union, concatenation and star (of graph lan

guages). Int(REG) equals the class of graph languages generated by lin

ear HR (= Hyperedge Replacement) grammars, and Int(J() is generated 

by the corresponding J( -controlled grammars. Two characterizations are 

given of the largest class J(' such that Int(J(I) = Int(J(). For the class CF 

of context-free languages, Int(CF) lies properly inbetween Int(REG) and 

the class of graph languages generated by HR grammars. The concate

nation operation on graphs combines nicely with the sum operation on 

graphs. The class of context-free (or equational) graph languages, with 

respect to these two operations, is the class of graph languages generated 

by HR grammars. 

1 Introduction 

Context-free graph languages are generated by context-free graph grammars, 
which are usually graph replacement systems. One of the most popular types of 

context-free graph grammar is the Hyperedge Replacement System, or HR gram
mar (see, e.g., [Hab, HabKre, HabKV]). A completely different way of generating 

graphs is to select a number of graph operations, to generate a set of expressions 
(built from these operations), and to interpret the expressions as graphs. The set 
of expressions is generated by a classical context-free grammar generating strings 

(or more precisely, by a regular tree grammar). This way of generating graphs 
was introduced, for arbitrary objects rather than graphs, in [MezWri], where 

the generated sets of objects are called equational. For graphs in particular, this 

• The first author was supported by ESPRIT BRWG No.7183 COMPUGRAPH II. 

n The present address of the second author is Faculty of Mathematics and Computing 

Science, Eindhoven University of Technology, P.O.Box 513, NL-5600 MB Eindhoven, 

The Netherlands, e-mail: janjorislDacm.org 
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generation method was first investigated in [BauCou). It is shown in [BauCou) 
that, for a particular collection of graph operations, this new graph generating 

method is equivalent with the HR grammar. Other work on the generation of 
graphs through graph expressions is in, e.g., [CouZ, CouER, Dre, Eng). 

In this framework we investigate another, natural operation on graphs that 

was introduced (for "planar nets") in [HoU) (and which is a simple variation of 
the graph operations in [BauCou)). Due to its similarity to the concatenation of 

strings, we call it concatenation of 9mphs. Together with the sum operation of 
graphs (introduced for planar nets in [Hot1) and defined for graphs in [BauCou)) 
and all constant graphs, a collection of graph operations is obtained that is 

simpler than the one in [BauCou), but also has the power of the HR grammar 
(which is our first main result, proved in Section 4). Concatenation and sum 
satisfy some nice basic properties, discussed in Section 3; in particular, all graphs 

can be built from a small number of elementary graphs with the operations of 
concatenation and sum. Thus, it suffices to use these elementary graphs in the 

context-free grammars that generate graph expressions. 

The basic laws that are satisfied by concatenation and sum of planar nets, 

form the basis of the theory of x-categories developed in [HoU) (also called 
strict monoidal categories, see, e.g., [EhrKKK, Ben)). Free x-categories model 

the sets of derivation graphs of Chomsky type 0 grammars (see [HotZ, Ben)). 
Finite automata on such graphs are considered, e.g., in [BosDW). The idea of 
using concatenation and sum in graph grammars is from [HotKM}, where "logic 

topological nets" are generated by graph grammars (with parallel rewriting). Our 

first main result (mentioned above) confirms the naturalness of these operations. 

Our main interest in this paper is in the generation of graphs through graph 

expressions that use concatenation only. Since graph concatenation is associative, 

an expression that is built from constant graphs by concatenation, is essentially 
the same as a string. This shows that we can use arbitrary context-free gram
mars as graph grammars, by just interpreting the generated strings as graphs. 

More generally, every class K of string languages determines a class Int(K) of 
graph languages: Int(K) is the set of all graph languages h(L) where h is an 

"interpretation" and L is a string language from K. An interpretation of an al

phabet A is a mapping h that associates a graph h(a) with every symbol a; it is 
extended to strings over A by h(a, ... an) = h(a,) e··· e h(an), where e denotes 
concatenation of graphs. Thus, symbols are interpreted as graphs, strings are 

interpreted as graphs (by interpreting string concatenation as graph concate
nation), and string languages are interpreted as graph languages. Note that an 

interpretation looks like a semi-group homomorphism; however, it is not exactly 

one, because concatenation on graphs is, in fact, a partial operation. More pre
cisely, graphs are typed, and concatenation is defined only if the types "fit". In 

fact, as in [Hab), our graphs are equipped with a designated sequence of "begin 
nodes" and a designated sequence of "end nodes" (generalizing the idea that 

strings have a beginning and an end). A graph 9' can be concatenated with a 
graph 92 only if the sequence of end nodes of 9' has the same length as the se
quence of begin nodes of g2. Their concatenation g, eg2 is obtained by identifying 
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each end node of 91 with the corresponding begin node of 92 (just as strings are 
concatenated by identifying the end of the first string with the beginning of the 
second). 

We investigate Int( K) for specific K (such as the class REG of regular 

languages, the class CF of context-free languages, and the class LIN of linear 
context-free languages), but also for arbitrary K (satisfying some mild closure 
properties). In Section 5, after defining the notion of interpretation, we show 

that the graph languages in Int(REG) are exactly those that can be denoted 
by regular expressions, built from singleton graph languages with the opera

tions of union, concatenation, and star (on graph languages). We also show that 

Int(REG) = Int(LIN) and that it equals the class LIN-HR of graph languages 
generated by linear HR grammars. This suggests that regularity and linearity are 
the same for graph languages. The class Int(CF) contains, as expected, exactly 

those graph languages that can be generated by expression generating context
free grammars that do not use the sum operation. Thus, by our first main result, 

it is included in the class of graph languages generated by HR grammars. The 
inclusion is proper, due to the close connection between graph concatenation and 

the pathwidth of graphs: every graph language in Int(K) is of bounded path

width (and graph languages of unbounded pathwidth, such as the set of trees, 
can be generated by HR grammars). 

Generalizing the result that Int(REG) = LIN-HR, we show in Section 6 that 

(under the rather weak assumption that K is closed under sequential machine 
mappings) Int(K) is equal to LIN-HR(K), the class of graph languages that are 
generated by linear HR grammars with a control language from K (with the 

usual notion of control). 

As observed above, Int(REG) = Int(LIN). In Section 7 we investigate the 

question, for given K and K', whether or not Int(K') = Int(K) (where we assume 
that K and K' are closed under sequentjal machine mappings). Trivially, for 
every K there is a largest class K such that Int(K) = Int(K). We call this class 

the extension of K, denoted Ext(I<). Clearly, the question Int(K') = Int(K) 
is now reduced to the question Ext(K') = Ext(K), which concerns classes of 
string languages rather than graph languages. The main result of this section is 
that Ext(K) consists exactly of all string languages that are in Int(K), coding 

strings as graphs in the obvious way (viz., as edge-labeled chain graphs). Using 
the characterization in Section 6, and generalizing a result concerning the string 

generating power of linear HR grammars from [EngHey], we show that Ext(K) = 

2DGSM(K), the class of all languages that are images of languages from K under 

2-way deterministic gsm mappings. Thus, Int(K') = Int(K) iff 2DGSM(K') = 
2DGSM(K), a purely formal language-theoretic question. By the well-known 
result that 2DGSM(REG) is properly included in 2DGSM(CF), we conclude 
that Int(REG) is properly included in Int(CF). 

A preliminary version of this paper was presented at the 5th International 
Workshop on Graph Grammars and their Application to Computer Science 
[EngVer). The work is based on the Master's Thesis of the second author [VerI. 
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2 Preliminaries 

2.1 Strings 

We assume the reader to be familiar with formal language theory (see, e.g., 
[Ber, HopUll, Sal]). Here we just recall some of the concepts to be used. 

N = {O, 1, 2, ... J denotes the set of natural numbers. For a set V, V' de
notes the set of all finite sequences (or strings) of elements of V. A sequence 

(Vl,V2) ... ,Vn) E V*, with Vi E V, is also written as VIV2" 'Vn (as A if n = 0). 

The length of a string w E V' is denoted Iwl, and, for 1 :s i :s Iwl, its ith 
element is denoted w(i). Thus, if w = Vj ... V n , then Iwl = nand w(i) = Vi. 

Concatenation of strings is defined in the usual way. 

A context-free grammar is a tuple G = (N,T, P, S) where N is the nonter

minal alphabet, T is the terminal alphabet (disjoint with N), P is the set of 

productions (of the form X -> ", with" E (N U T)'), and S is the initial non
terminal. The language L( G) ~ T' generated by G is defined in the usual way. 

A context-free grammar is linear ~f there is at most one nonterminal occurrence 

in each right-hand side of a prod~ction, and it is right-linear if each production 
is of the form X -> aY or X -> a, with X, YEN and a E T. The class of lan

guages generated by all (all linear) context-free grammars is denoted CF (LIN, 
respectively). By REG we denote the class of regular languages. Note that the 
right-linear context-free grammars generate the class of A-free regular languages 
(i.e., those regular languages that do not contain A). 

2.2 Graphs and graph replacement 

We consider the multi-pointed, directed, edge-labeled hypergraphs of [HabJ. Such 
a hyper graph consists of a set of nodes and a set of (hyper ledges, just as an 
ordinary graph, except that an edge may have any number of sources and any 
number of targets, rather than just one source and one target. Each edge is 

labeled with a symbol from a "doubly-ranked" alphabet, in such a way that 
the first (second) rank of its label equals the number of its sources (targets, 
respectively). Finally, every hypergraph is multi-pointed in the sense that it 
has a designated sequence of "begin nodes", and a designated sequence of "end 

nodes"; these can be used conveniently for gluing hypergraphs to each other. 

Formally, a typed (or doubly ranked) alphabet is an alphabet E together with 
a mapping type: E -> N x N. A multi-pointed hypergraph over E is a tuple 

9 = (V, E, 8, t, /, begin, end), where V is the finite set of nodes, E is the finite set 
of (hyper)edges, 8 : E -> V' is the source function, t : E -> V' is the target 

function, / : E -> E is the labeling function such that type(l(e)) = (18(e)l, It(e)l) 
for every e E E, begin E V* is the sequence of begin nodes, and end E V* is the 

sequence of end nodes. 
For a given multi-pointed hypergraph g, its components will also be denoted 

by Vg , Eg , 8 g , tg, /g, begin(g), and end(g). If Ibegin(g)1 = m and lend(g)1 = n, 

then 9 is said to be of type (m,n) and we write type(g) = (m,n). Similarly, 
for an edge e of g, we write type(e) to denote type(l(e)); thus, by the above 
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requirement, iftype(e) = (m,n), then e has m sources and n targets. If a multi
pointed hypergraph is of type (0,0) and all its edges are of type (1,1), then it is 
an ordinary directed graph (with labeled edges). 

For a typed symbol 17, with type(l7) = (m,n), we denote by atom(l7) the 
multi-pointed hypergraph 9 of type (m, n) such that Vg = {Xl, ... , Xm , YI , ... , Yn}, 

Eg = {e} with I(e) = 17, and begin(g) = s(e) = (XI, ... ,Xm ), and end(g) = 
tIe) = (YI, ... ,Yn). A multi-pointed hypergraph of the form atom(l7) will be 
called an atom (it is called a handle in [Hab]). 

Two multi-pointed hypergraphs 9 and h are disjoint if Vg n Vh = 0 and 

Eg nEh =0. 

From now on we will just say graph instead of multi-pointed hypergraph. As 

usual we consider both concrete and abstract graphs, where an abstract graph is 
an equivalence class of isomorphic concrete graphs. The isomorphisms between 

graphs g and h are the usual ones, which, additionally, should map begin(g) to 
begin(h), and end (g) to end(h). In particular, isomorphic graphs have the same 
type. We are only interested in abstract graphs; concrete graphs are just used 

as representatives of abstract graphs. The set of abstract graphs over a typed 
alphabet E will be denoted GR(E), and GR denotes the union of all GR(E) 
(where E is taken from some fixed, infinite set of symbols). A (typed) graph 

language is a subset L of GR(E), for some E, such that all graphs in L have the 
same type (m, n), also called the type of L, and denoted by type(L) = (m, n). 

A basic operation on graphs is the substitution of a graph for an edge (see 
[Hab, BauCou]). To define it formally, it is convenient to use an operation of 

node identification (or "gluing"), as follows. 

Let 9 be a graph, and let R <; Vg x Vg. Intuitively, we wish to identify nodes 

X and Y, for every pair (x, y) E R. For x E Vg, let [XJR denote the equivalence 
class of x with respect to the smallest equivalence relation on Vg containing R. 

For V <; Vg, let VIR = {[XJR] x E V}. For a sequence x = (Xl, ... ,Xn ) E V; 

with Xi E Vg , let IxlR = (lx.]R, ... , IXnIR)' Then we define the graph g/ R by 
g/ R = (Vg/ R, Eg, s, t, Ig, [beginJR' [endJR) such that s(e) = [Sg(e)JR and tIe) = 

[tg(e)IR for every e E Eg. 

Substitution of a graph for an edge is now defined as follows. Let 9 be a graph, 
let e be an edge of g, and let h be a graph such that type(h) = type(e) = (m, n). 

We assume that 9 and h are disjoint (otherwise an isomorphic copy of h should 
be taken). Let g' be the graph that is obtained from 9 by removing e and adding 

h (disjointly), i.e., g' = (Vg U Vh, (Eg - {e}) U Eh, S, t, I, begin(g), end(g)), where 
8(e) = 8g(e) for e E Eg - {e} and s(e) = shIel for e E Eh, and similarly for t and 
I. Note that g' has the begin and end nodes of g. Then the substitution of h for e in 

g, denoted by g[e/h], is the graph g'/R where R = {(sg(e)(i), begin(h)(i)) ]1 ::; 
i::; m} U {(tg(e)(i),end(h)(i)) ]1 ::; i::; n}. Thus, intuitively, after removing e 
and adding h, the ith source of e is identified with the ith begin node of h, and the 
ith target of e is identified with the ith end node of h. The notion of substitution 

defined here is not precisely the one in [HabJ, but it is (the appropriate extension 
to the doubly ranked case of) the one in [BauCouJ; however, they are equivalent 
from the point of view of graph generation'by hyperedge replacement grammars. 
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In a substitution g[e/h]' h can be taken as an abstract graph (in the sense that 
if hand h' are isomorphic, then so are g[e/h] and g[e/h']); but 9 is necessarily 

concrete, because its concrete edge e is involved. To turn substitution into an 

operation on abstract graphs, we substitute graphs for all edges of 9 and let the 
graph h to be substituted for edge e be determined by the label of e. This leads 

us to a notion of substitution that generalizes the notion of homomorphism of 
strings (in formal language theory), and that we will call "replacement" (of edges 

by graphs). 

Let E be a typed alphabet. A replacement is a mapping </> : E ---> GR such 
that type(</>(er)) = type(er) for every er E E; it is extended to a mapping from 

GR(E) to GR by defining, for 9 E GR(E), </>(g) = g[eI/</>(I(e.))] ... [ek/4>(I(ek))]' 
where Eg = {eJ, ... , ed. Thus, every edge e of 9 with label l( e) = er is replaced 

by the graph </>( er). It is well known that this definition does not depend on the 
order el,' .. ,ek in which the edges are replaced (because substitution is conflu

ent, cf. [Caul]). It should also be clear that every replacement is an operation 
on abstract graphs: if 9 and g' are isomorphic, then so are </>(g) and </>(g'). 

We denote the class of all replacements by Repl, and, for a class K of graph 
languages, we let Repl(K) = {</>(L) I </> E Repl, L E K}. 

Another basic property of substitution is its associativity (see [Caul]). In our 

present formulation it means that the composition of two replacements is again 
a replacement (as one would expect from a generalization of string homomor
phism). 

Proposition 1. Repl is closed under composition. 

Proof. It can be shown, based on the associativity of substitution, that, for a re

placement </>, </>(g[eI/h1 ] .. • [ek/h.]) = g[el/4>(h.)] .. · [ek/</>(hk)], where Eg = 

{el,'" ,ed· Now let El and E, be two typed alphabets. Let </>1 : El ---> 

GR(E,) and </>, : E, ---> GR be two replacements. Define the replacement 

</> : El ---> GR by: </>(er) = </>'(</>I(er)) for every er EEl. Then, for a graph 

9 with Eg = {el, ... ,ed, </>'(</>I(g)) = </>,(g[eI/</>I(I(el))] .. ·[e./4>I(l(ek))]) = 

g[el/4>'(</>I(lhlll]'" [ek/4>2(</>I(l(ek)))] = g[eI/</>(l(eIl)]'" [ek/4>(l(ek))] = </>(g). 
This shows that </> = </>, 0 </>1, 0 

A useful elementary property of replacements is that, for every replacement 
</> : E ---> GR and every er E E, </>(atom(er)) = </>(er). Also, if </>(er) = atom(er) for 
everyer E E, then </>(g) = 9 for every 9 E GR(E). 

Besides replacement operations, there are two other, simpler operations on 
(abstract) graphs that will be useful. They only change the begin and end 

nodes of a graph. Let 9 be a graph. The fold of g, denoted fold(g), is the 
same as g, except that begin(fold(g)) = A and end(fold(g)) = begin(g)· end(g), 

where· denotes concatenation or'strings, as usual. The back/old of g, denoted 
backfold(g), is the same as g, except that begin(backfold(g)) = begin(g)· end(g) 
and end(backfold(g)) = A. 
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2.3 Hyperedge replacement grammars 

Hyperedge replacement grammars (or HR grammars) are context-free graph 
grammars that substitute graphs for edges. An HR grammar is a tuple G = 
(N, T, P, S) where N is a typed alphabet of nonterminals, T is a typed alphabet 
of terminals (disjoint with N), P is a finite set of productions, and SEN is the 

initial nonterminal. Every production in P is of the form X --+ h with X E N, 

hE GR(N U T), and type(X) = type(h); moreover, we assume (without loss of 
generality) that no two edges of h are labeled by the same nonterminal. 

Application of a production p = X --+ h to a graph is defined as follows. Let 

9 E GR(N U T), and let e E Eg. Then p is applicable to e if Ig(e) = X, and the 

result of the application is the graph g[elh]. We write 9 *p g', or just 9 * g', if 
g' is the result of applying p to e of g, i.e., if g' is (isomorphic to) g[el h]. As usual, 

*' denotes the transitive reflexive closure of *. The graph language generated 

by G is L(G) = {g E GR(T) I atom(S) *' g}. Note that type(L(G)) = type(S). 

We denote by HR the class of graph languages generated by HR grammars. 
An HR grammar is linear if there is at most one nonterminal edge in each right
hand side of a production. We denote by LIN-HR the class of graph languages 
generated by linear HR grammars. 

A fundamental property of HR grammars is formulated in the following 
"context-freeness lemma" (cf. Section 11.2 of [Hab]). As shown in Lemma 2.14 

of [Coul], it is based on the associativity of substitution. Due to the above as
sumption that a nonterminal occurs at most once in the right-hand side of a 

production, it can be stated in terms of replacements, as follows. 

Proposition 2. Let G = (N, T, P, S) be an HR grammar. Let X --+ h be in 

P, and let 9 E GR(T). Let lab(h) = {lh(e) leE E h}. Then h *' 9 if and 

only if there exists a replacement ¢ : lab(h) --+ GR(T) such that ¢(h) = 9 and 

atom(O") *' ¢(O") for every 0" E lab(h). Moreover, the length of the derivation 

h =>' g equals the sum of the lengths of all derivations atom(O") =>' </>(<7). 

3 Concatenation and Sum 

In this section we define the graph operation of concatenation, and investigate 
some of its basic properties. In particular we show that it combines well with 

the sum operation on graphs. These operations work on abstract graphs. Intu
itively, concatenation is sequential composition of graphs, and sum is parallel 

composition of graphs. 

If 9 and h are graphs with type(g) = (k, m) and type(h) = (m, n), then their 
concatenation 9 0 h is the graph obtained by first taking the disjoint union of 9 

and h, and then identifying the ith end nod~ of 9 with the ith begin node of h, for 
every i E {I, ... , m}; moreover, begin(g 0 h) = begin(g) and end(g 0 h) = end(h), 
and so type(g 0 h) = (k,n). Note that th~ concatenation of 9 and h is defined 

only when lend(g)1 = Ibegin(h)l. Formally, the definition is as follows (where we 
use node identification as defined in Section 2.2). 
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Definition 3. Let 9 and h be graphs such that lend(g)1 = Ibegin(h)l. We as· 
sume that 9 and h are disjoint (otherwise an isomorphic copy of 9 or h should 
be taken). The concatenation go h of 9 and h is the graph (g&h)/ R where 
g&h = (Vg U Vh, Eg U Eh,8g U 8h, tg U th, Ig U Ih , begin(g),end(h)) and R = 

{(end(g)(i), begin(h)(i)) 11 SiS lend(g)I}. D 

The sum 9 Ell h of arbitrary graphs 9 and h is their disjoint union, with their 
sequences of begin nodes concatenated, and similarly for their end nodes. More 

formally, assuming that 9 and h are disjoint, 9 Ell h = (Vg U Vh, Eg U E h, 8g U 
8h, tg U th, Ig U Ih , begin(g) . begin(h), end (g) . end(h)). 

The sum operation is taken from [BauCou] (where only graphs without end 

nodes are considered). All other operations in [BauCou] (viz. source redefinitions 
and source fusions) are unary operations) each of which is left-concatenation with 

a specific fixed graph. 

g= h= 

" 
bl 

, 
f3 el , 
" 

e, 

blob, c9" , 
, el 

b3 . 0: 

f3 

goh = gEllh= 

bl~'1 " 
'Y f3 f3 'Y 

ex ')' el 

f3 " b, 

f3 e, 

Fig. 1. Two graphs, their concatenation, and their sum. 

Figure 1 shows two (ordinary) abstract graphs, 9 of type (2,3) and h of type 
(3,1), with their concatenation go h of type (2,1) and their sum 9 Ell h of type 
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(5,4). The graphs are drawn in the usual way; the ith begin node is indicated 
by bi , and the ith end node by ei. 

These two graph operations have a number of simple properties. We stress 
again that the following lemmas are all about abstract graphs; in particular, 

the equality sign refers to the equality of abstract graphs (which is isomorphism 
of concrete graphs). First of all we show the basic fact that replacements are 

homomorphisms with respect to concatenation (just as string homomorphisms) 

of which they are a generalization) and with respect to sum. 

Lemma4. Let q,: E -+ GR be a replacement, and let g,h E GR(E). 

(1) if lend(g)1 = Ibegin(h)l, then q,(g 0 h) = q,(g) 0 q,(h), and 

(2) q,(g Ell h) = q,(g) Ell q,(h). 

Proof. (1) It is easy to verify this equality in the case that both 9 and hare 
atoms (for the definition of an atom, see Section 2.2). The general case is then 
proved as follows. Let r7 and r be two symbols with the same type as 9 and h, 

respectively. Let 'I/J : {r7,r} -+ GR(E) be the replacement with 'I/J(r7) = 9 and 
'I/J(r) = h. Then, by the above special case, 'I/J(atom(r7)oatom(r)) = 'I/J(atom(r7))0 

'I/J(atom(r)) = 'I/J(r7) 0 'I/J(r) = 9 0 h. Hence q,(g 0 h) = q,('I/J(atom{r7) 0 atom(r))). 
By Proposition 1, q,o'I/J is a replacement. Hence, again by the above special case, 
q,(g 0 h) = q,('I/J(atom(r7)) 0 q,('I/J(atom(r)) = q,('I/J(r7)) 0 q,('I/J(r)) = q,(g) 0 q,(h). 

The proof of (2) is analogous. 0 

This lemma allows us to prove laws about 0 and Ell by proving them for atoms 

only (as, in fact, we already did in the proof of Lemma 4). The next lemma 
summarizes the main basic properties of 0 and Ell. 

Definition 5. For every n E N the identity idn of type (n, n) is the discrete 

graph with nodes Xl, ..• , Xn and begin(idn) = end(idn) = Xl ... xn. Thus, idn 
is the (abstract) graph ({XI"", xn}, 0,0,0,0, (Xl, ... ,Xn), (XI, . .. , Xn}). In par-
ticular, ida is the empty graph. 0 

Lemma 6. 

(1) Concatenation is associative, i.e., if lel1d(gdl = Ibegin(g,)1 and lend(g,)1 = 
Ibegin(g3)1, then (gl 0 g,) 0 g3 = gl 0 (g, 0 g3). 

(2) The id n are identities with respect to concatenation, i.e., go idn = 9 and 

idn 0 h = h for every 9 with lend(g)1 = nand h with Ibegin(h)1 = n. 

(3) Sum is associative with unity ida, i.e., (gl Ell g,) Ell g3 = gl Ell (g, Ell g3) and 

9 Ell ida = ida Ell 9 = g. 

(4) For every m, n E N, id=+n = id= Ell idn. 
(5) Concatenation and sum satisfy the law of strict monoidality: 

if lend(g)1 = Ibegin(g')1 and lend(h)1 = Ibegin(h'}10 then 

(g Ell h) 0 (g' Ell h') = (g 0 g') Ell (h 0 h'). 

Proof. (1) It is easy to verify that concatenation is associative for atoms. Now 
let r7 i be a symbol with the same type as gi, and let q, be the replacement 
with q,h) = gi· Then q,((atom{r7IJ 0 atom(r7,)} 0 atom(r73)) = q,(atom(r7I) 0 
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(atom(0"2) oatom(0"3)), and, by Lemma 4, 1>((atom(O",) 0 atom(0"2)) 0 atom(0"3)) = 

(1)(atomh)) 0 1>(atom(0"2))) 0 1>(atom(0"3)) = (gl 0 g2) 0 g3 and 1>(atom(O",) 0 

(atom(0"2) 0 atom(0"3)) = 1>(atom(O",)) 0 (1)(atom(0"2)) 0 1>(atom(0"3))) = g, 0 (g2 0 

g3). 

Properties (2), (3), and (5) can be shown in exactly the same way: by veri

fying them for atoms, and applying Lemma 4. Note that 1>(idn ) = idn for every 

replacement 1>. Property (4) is obvious. D 

Lemma 6 means that GR is a strict monoidal category (or x-category), see, e.g., 

[EhrKKK, Hot!, Benl. The objects of this category are the natural numbers in 

N, and each (abstract) graph of type (m, n) is a morphism from m to n in this 

category. Concatenation is the composition of morphisms (but is usually written 

hog rather than goh), and the idn are the identity morphisms. The set of objects 

and the set of morphisms form a monoid with respect to + and Ell, respectively 

(where + is ordinary addition for natural numbers, with monoid identity 0). 
We now show that all graphs can be built from a small number of elementary 

graphs with the operations of concatenation and sum. 

For m, n E N, let Im,n be the graph of type (m, n) with one node x, no edges, 

begin(Im,n) = xm = (x, . .. ,x) (m times), and end(Im,n) = xn = (x, . .. , x) (n 

times). Note that 1,,1 = id l . Let 7r12 be the graph oftype (2,2) with two nodes x 

and y, no edges, begin(7r12) = xy, and end(7r12) = yx. For every typed alphabet 

E we define the set of elementary graphs over E by 

EL(E) = {atom(O")] 0" E E} U {IO,I,!I,O,!,,2,!2,1,7I'12,ido}. 

Theorem 7. For every typed alphabet E, GR(E) is the smallest class of graphs 

containing EL(E) and closed under 0 and Ell. 

Proo]. We have to show that every graph in GR(E) can be written as an ex

pression with the operators 0 and Ell, and constants from EL(E). We do this by 

reducing the problem to smaller and smaller sets of graphs. First we reduce it 
to the class of discrete graphs, i.e., graphs without edges. 

Let 9 E GR(E), and let e be an edge of 9 with 19(e) = 0". We will re
move e from g, and express g in terms of the so obtained graph g' that has 

one edge less than 9 (and in terms of discrete graphs). By repeating this pro

cedure, we can express g in terms of discrete graphs only. Let g' = (V
9

, Eg -

{e}, s, t, I, begin(g), end (g) 'S9 (e)-lg (e)) where s, t, I are the restrictions of S9' tg, 19 

to Eg - {e}, respectively. Thus, g' is obtained from 9 by removing e; moreover, 

in order to be able to reconstruct 9 from g', the sources and targets of e are 

turned into end nodes. It is now easy to verify that 

9 = g' 0 (idn Ell backfold(atom(O"))) 

where n = ]end(g)], and the backfold operation is the one defined at the end of 
Section 2.2. Intuitively) the end nodes of atom(o-) are turned into begin nodes 

(by the backfold operation), and then they are glued to the new end nodes of 

g'. It is easy to prove that, for every graph h, 

backfold(h) = (h Ell idq) 0 backfold(idq) 
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where q = lend{h)l. Consequently, 

9 = g' 0 (id n Ell (atom{u) EIlidq ) 0 backfold{idq )) 

where q = It{e)l. This shows that 9 can be expressed in terms of g' and discrete 
graphs. 

It remains to find an expression for every discrete graph. To this aim we define 

the following special permutation graphs. Let k ~ I and let a be a permutation of 
{I, ... , k}. Then 1Ta is the discrete graph with nodes {Xl, ... , x.}, begin{1Ta) = 
Xl'" Xk, and end{1Ta ) = Xa(l)'" Xa(k)' Note that 1T12 is the permutation graph 
1Ta with a{l) = 2 and a(2) = 1. We need some simple properties of permutation 

graphs. In what follows we write [n] for {I, ... , n}, for every n EN. First, if 

a and (3 are permutations of [k], then 1Ta D 1T{3 = 1Tao{3, and if id is the identity 
permutation of [k], then 1Tid = idk . Second, let 9 be a graph of type (m,n) 

with Vg = {Xl, . .. ,xk}, begin{g) = XO(I) ···xo (=)' and end{g) = X6(1)' "X6(n), 

where 'Y : [m] -+ [k] and 6 : [n] -+ [k]. If a is a permutation of In], then 

g01Ta is the same graph as 9 except that end{g 01Ta ) = X6(a(I»" ·x,(a(n»' 

This means that go 1T a is obtained from 9 py applying permutation a to end{g). 
Similarly, if a is a permutation of [m], then 1T a 0 9 is the same graph as 9 except 

that begin{1Ta 0 g) = xo(a-'(l))" ,xo(a-'(=»' Thus, to obtain 1Ta 0 9 from g, 

permutation a-I is applied to begin{g). 

Now let 9 be an arbitrary discrete graph, with type{g) = (m,n), Vg = 

{Xl,'" ,X.}, begin{g) = Xo(l)" ·xo (=)' and end{g) = x'(1)" ,x,(n), where 
'Y: [m] -+ [k] and 6 : [n]-+ [k]. For every lSi S k, let Pi be the number of occur

rences of Xi in begin{g), and let qi be the number of occurrences of Xi in end{g). 

Let a be any permutation of [m] such that Xo(a(l))" .xo(a(=» = xf'· ··xf', 
and let (3 be any permutation of [n] such that X'({3(I» ... X6({3(n)) = xi' ... x'l:. 

Thus, intuitively, a and (3 order begin{g) and end (g), respectively. Clearly, by the 

above properties of permutation graphs, the graph 1Ta-' 0 9 0 1T(J has the same 
nodes as g, has begin nodes xp .. . x~k 1 and has end nodes xr ... xic". Hence 

1Ta -, 0 9 0 1T(J = Ip"q, Ell'" Ell Ip"q, . By multiplying with 1Ta to the left, and with 
7rf3-1 to the right, we obtain that 9 = 1Ta a (Ipt,ql EB··· $ Ipk,q,J 07r{3-1. 

It now remains to find expressions for all graphs I=,n and all graphs 1Ta. The 
following equations show how to find an expression for Im.,n: 

11,1 = ft,2 012,1 

I=+l,l = {I=,l Ell Il,d 0 h,l for m ~ 2 

Il,n+l = I l ,2 0 {Il,n Ell h,d for n ~ 2 

Im,n = Im,l oI1,n for m,n E N. 

Clearly, the identity graphs can also be expressed: for every n EN, idn = 

II,I EB'" 411,1 (n times). To find an expression for 'lT0'1 where Q' is a permutation 

of [k], we note that either a is the identity on [k], in which case 1Ta = idk , 

or a is the composition of interchanging permutations, where an interchanging 

permutation Q'i interchanges i and i + 1 and leaves the other numbers as they 

are (with lSi S k - I). In the latter case, by the property of permutation 
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graphs mentioned above, 'fru is the concatenation of graphs 'fru ;' Now, clearly, 

1i'u; = id i _ 1 EB 1i'12 EEl idk _ i _ l · 

This shows that all graphs in GR(E) can be expressed in terms of 0, Ell, and 
the constants in EL( E). 0 

Theorem 7 is analogous to Proposition 3.6 of [BauCou]. It is open whether there 
exists a complete set of equations (including those of Lemma 6) for the oper
ations in {o, Ell} U EL(E). This would give a result analogous to Theorem 3.10 

of [BauCou]. It would characterize GR(E) as the free x-category satisfying the 

equations; such results are shown in [Hotl, Cia] (where I',0,!",,",2 are denoted 
U, D, V, respectively). 

It is not difficult to show that the set EL(E) is minimal, in the sense that 

if one removes one element from it, then Theorem 7 does not hold any more. 
Also, it should be clear that the concatenation operation cannot be dropped 

from Theorem 7, even if one would replace EL( E) by another finite set of graphs 

(because, with sum, only graphs with very small connected components could be 
built). To show that the sum operation cannot be dropped from Theorem 7, we 

now discuss the close relationship between the concatenation operation and the 
notion of pathwidth (introduced in [RobSey]; see also, e.g., [Bod, Kia, ElIST]). 

In the following definition we (slightly) generalize the notion of pathwidth, to 

(hyper)graphs with begin and end nodes (ef. [Cou3]). 

Definition 8. A path decomposition of a graph g is a sequence (V" ... , Vn ), 

n 2: 1, of su bsets of Vg such that 

(1) U~~, V; = Vg , 

(2) for every e E Eg there is an i with s(e) E V: and t(e) E V;" 
(3) if i < k < j, then V; n 10 ~ Vk , and 
(4) begin(g) E V,- and end (g) E V,:. 

The width of (V" ... , Vn ) is max{#V; 11 SiS n} - 1, where #V; is the 
cardinality of V;. 

The pathwidth of a graph g, denoted pathwidth(g), is the minimal width of 
a path decomposition of g. o 

The relationship between concatenation and pathwidth is expressed in the fol
lowing result, which (in view of Tlteorem 23) is essentially due to [Laul (see also 
[Cou3]). 

Theorem 9. Let k 2: I. For every graph g, pathwidth(g) S k if and only if 

there exist graphs g" ... ,gn, n 2: 1, such that 9 = g, 0 ••• 0 gn and # Vg , S k + 1 
for every 1 SiS n. 

Proof. We prove by induction on n that 9 has a path decomposition (V" . .. , Vn ) 

of width S k if and only if there exist graphs g" . .. ,gn with # Vg , S k + 1 such 
that 9 = at 0 . .. 0 gn. For n = 1 this is obvious. 

Assume that 9 has a path decomposition (V" ... , Vn , Vn+,) with #V; S k+ I. 

By condition (3) of Definition 8, (V, U· .. U Vn ) n Vn +' = Vn n Vn+,. Let g' be the 
subgraph of 9 induced by V, U·· ·UVn , such that begin(g') = begin(g) and end(g) 
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consists of the nodes in Vn n Vn+l , in some order. Let gn+1 be the subgraph of 9 

induced by Vn+1 with begin{gn+d = end{g') and end{gn+d = end{g). Clearly, 
9 = g' 0 gn+l. Also, (VI, ... , Vn ) is a path decomposition of 9', and hence, by 
induction g' = 91 a ... 09n with # Vgi ::; k + 1, and so 9 = 91 0 ... 0 9n 09n+l. 

Assume now that 9 = gl 0·· ·ognogn+1 with #17.; :s k+ 1. Let g' = gl o· . ·ogn. 

Hence 9 = g' 0 gn+l' We may assume that g' and 9n+l are disjoint, and that 

9 = {g' &gn+d/ R, as in Definition 3. By induction, 9' has a path decomposition 
(VI, ... , Vn ) with #v, :s k + 1. Let Vn+1 = Vgn+,. It should now be clear that 
the sequence (VI! R, ... , Vn / R, Vn+I/ R) is a path decomposition of g. 0 

Since there are graphs of arbitrary large pathwidth (such as the complete graph 

on n nodes, which has pathwidth n - 1), this theorem implies that, for any 
typed alphabet E, there is no finite subset E of GR{E) such that GR{E) is the 
smallest set of graphs containing E and closed under concatenation (because the 
pathwidth of all graphs in this smallest set is at most equal to the maximal size 
of the graphs in E). 

4 Context-free graph grammars 

In this section we use context-free grammars to generate graph expressions that 

are built from arbitrary constant graphs with the graph operators ° and Ell. 

Taking the values of these expressions in GR, each such context-free grammar 

generates a graph language. 

Let CS be the set of operators {o,EIl}U{cg I 9 E GR}, where ° and Ell denote 
concatenation and sum of graphs, as usual, and cg is a constant standing for the 

graph g. 

Expressions over CS are defined in the usual way. Let E be a typed alphabet, 
disjoint with CS (where, intuitively, each 17 E E is a variable that ranges over 
all graphs with the same type as (7). A (well-formed) expression over CS and E 
is a string over CS U E U {(,)} defined recursively as follows, together with its 

type: (I) every 17 E E is an expression, with the same type, (2) every constant 
cg is an expression, with type{cg ) = type{g), (3) if e and f are expressions 

with type{e) = (k,m) and type(f) = (m,n), then (e ° j) is an expression with 
type{eo j) = (k, n), and (3) if e and f are expressions with type{e) = (m, n) and 

type(f) = (p, q), then (e Ell j) is an expression with type{ e Ell j) = (m + p, n + q). 

An 'expression over CS' is defined in the same way, without clause (I). If e 
is an expression over CS, then its value, denoted by valle), is a graph in GR, 

defined recursively in the usual way: vai{cg ) = g, valle ° j) = vaile) ° val(f), and 
val { e Ell j) = vall e) Ell val (f) . 

Definition 10. A context-free graph grammar over CS is an ordinary context

free grammar G = (N, T, P, S), see Section 2.1, such that N is a typed alphabet, 
T is a finite subset of CS U {{,)}, and the right-hand side of each production in 
P is an expression over CS and N, of the same type as the left- hand side. 0 

Obviously, the context-free language L{ G) generated by G is a set of expressions 
over CS (and it is also a regular tree language, see [GecSte]). The graph language 
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generated by G is val(L(G)) = {val(e) leE L(G)}. Note that type(val(L(G))) = 

type(S). By Val(CFG(CS)) we denote the elMS of all graph languages generated 
by context-free graph grammars over CS. By the results of [MezWri], it is the 
elMS of equational subsets of the algebra of graphs with the operations 0 and Ell. 

It should be elear that, due to Theorem 7, we could restrict CS to contain 

only elementary constants, i.e., constants cg with 9 E EL(E) for some E. This 
would give the same elMS Val(CFG(CS)). 

g' = • 

Fig. 2. Graphs 9 and l. 

val(e} = 

Fig. 3. The value of graph expression e. 

As an example, consider the context-free graph grammar Gb that has one 

nonterminal X, with type(X) = (1,0), and two productions X -+ cg 0 (X Ell X) 

and X -+ cg', where 9 is the triangle of type (1,2) with V = {x,y,z}, E = 

{(x,y), (x,z), (y,z)}, s(u,v) = u, t(u,v) = v, and l(u,v) = 17 for every edge 
(u, v), begin(g) = x and end(g) = yz, and g' is the graph of type (1,0) with one 
node x, no edges, begin(g') = x and end(g') = A. The graphs 9 and g' are shown 
in Fig. 2. The expression 

is in L( G); the graph val(e) is shown in Fig. 3 (without the edge labels (7). Clearly, 
val(L( Go)) is the set of all graphs of type (1,0) that are obtained from (directed, 

rooted) binary trees by connecting each pair of children by an additional edge; 
the sequence of begin nodes consists of the root of the binary tree. This graph 
language is therefore in Val(CFG(CS)). 

The main result of this section is that generating graph languages in the 
above way is equivalent to generating them with HR grammars (see Section 2.3). 
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Thus, the HR grammars generate exactly the equational subsets of the algebra 
of graphs with the operations 0 and (J). As observed in the introduction, this is 
a simple variant of Theorem 4.11 of [BauCouJ (and the proof is analogous). 

Theorem 11. Val(CFG(CS)) = HR. 

Proof. Similar to the restriction on productions of HR grammars, we can assume 

'Without loss of generality that no nonterminal occurs more than once in the 

right-hand side of a production of a context-free graph grammar. Moreover, we 
can also assume that, in a context-free graph grammar, the nonterminals do not 

occur as edge labels in the constants cg that are used in the right-hand sides of 
its productions. 

To turn a context-free graph grammar into an HR grammar, we extend the 

definition of the 'val' function to expressions over CS and N. This is simply 
done by extending the recursive definition of 'val' with the requirement that 

val(X) = atom(X) for every X E N. 

Let G be a context-free graph grammar and G' an HR grammar. We say that 

G and G' are related if they have the same typed alphabet of nonterminals, with 

the same initial nonterminal, and P' = {X -> val(t) I X -> t E P}, where P is 
the set of productions of G and P' the one of G'. Trivially, for every context
free graph grammar there is a related HR grammar. The other way around, it 

suffices to show that for every graph h E GR(N U T), where Nand T are the 
terminal and nonterminal alphabet of the HR grammar, respectively, there is 
an expression t over CS and N such that val(t) = h. By Theorem 7 there is 

an expression e over CS such that val(e) = h, and for every constant cg that 
occurs in e, 9 E EL(N U T). Let t be the expression that is obtained from e 
by changing every subexpression atom(X} into X, for every X E N. Obviously 

t is the required expression. Hence, for eyery HR grammar there is a related 
context-free graph grammar. 

It now suffices to show that related grammars G and G' generate the same 
graph language. To this aim we show that for every nonterminal X and every 

terminal graph g, atom(X) =}' gin G' if and only if there exists an expression e 
over CS such that X =}' e in G and val(e) = g. This can be proved by induction 

on the length of the derivations, as follows. 
Consider a derivation X =} t =}' e in G. Let t contain the nonterminals 

Xl, . .. , Xn (and recall that each nonterminal Xi occurs exactly once in t). Then 
there exist expressions ei such that Xi =}' ei and e = 'if;(t) where 'if; is the string 
homomorphism with 'if;(Xi ) = ei and the identity otherwise. Now let rj> be the 

replacement with rj>(Xi ) = val(e;) and rj>(<7) = atom(<7) for all terminal symbols. 

It is straightforward to show that val('if;(t)) = rj>(val(t)), by induction on the 

structure of the expression t (cf. Proposition 4.7 of [BauCouJ). As an example, 
if t = tl 0 t2, then val('if;(t)) = val('if;(tll 0 'if;(t2)) = val ('if;(t l )) 0 val('if;(t2)) = 

rj>(val(tll) 0 rj>(val(t2)) = rj>(val(t l ) 0 val(t2)) = rj>(val(t)), where we have used 
Lemma 4(1). As another example, if t = Xi, then rj>(val(t)) = rj>(atom(X;)) = 
rj>(Xi ) = val(ei) = val('if;(t)). 

By induction, atom(Xi ) =}' val(ei) in G'. Since G and G' are related, G' has 
the production X -> val(t). It is easy to see that val(t) has n nonterminal edges, 
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labeled by Xl"'" X n . Hence, by Proposition 2, atom(X) =? val(t) =?' ¢(val(t)). 
This shows that atom(X) =?' val(1j!(t)) = valle). 

The proof in the other direction is similar and is left to the reader. D 

Since the concept of related grammars, as discussed in the above proof, preserves 

the number of nonterminals in the right-hand sides of productions, the above 
result is also true in the linear case. By Val(LIN-CFG(CS)) we denote the class 

of languages generated by linear context-free graph grammars over CS. 

Corollary 12. Val(LIN-CFG(CS)) = LIN-HR. 

However, in the linear case, the form of the context-free graph grammar can even 
be restricted to be "right-linear!! in the following sense. A context-free graph 

grammar over CS is right-linear if its productions are of the form X -4 cg 0 Y or 
of the form X -> Cg , where X and Yare nonterminals. Note in particular that Ell 
is not needed. By Val(RLIN-CFG(CS)) we denote the class of graph languages 
generated by right-linear context-free graph grammars over CS. 

Theorem 13. Val(RLIN-CFG(CS)) = LIN-HR. 

Proof. By Corollary 12, it suffices to show that LIN-HR c; Val(RLIN-CFG(CS)). 

Let L be a graph language in LIN-HR, and let G = (N, T, P, S) be a linear HR 

grammar generating L. 

We first consider the case that for every X E N there exists mEN such 

that type(X) = (m,O). By the proof of Theorem 11 it suffices to construct a 
context-free graph grammar G' that is related to G. G' has the same nonterminal 

alphabet as G, with the same initial nonterminal. G' has the set of productions 
P' = {p' I pEP}, where, for each pEP, p' is defined as follows. Let p be the 
production X -4 g. If 9 E GR(T), then we define p' to be X -4 cg. Otherwise, 

9 has exactly one edge e that is labeled with a nonterminal, say, Y. Note that 
end(g) =,\ and tg(e) =..\. Then we define pi to be the production X ----+ cg' 0 Y, 

where g' = (Vg, Eg - {e}, B, t, I, begin(g), Bg( e)) and B, t, 1 are the restrictions of 
Bg,tg,lg to Eg - {e}. Clearly, val(cg, oY) =g'oatom(Y) = g. Hence G and G' 
are indeed related. Note that the construction of g' from 9 is a special case of 
that in the first part of the proof of Theorem 7. 

We now consider the general case. To be able to use the above special case, 
define the LIN-HR grammar G = (N,T,P,S), where N is the same set as 
N with a different type function: if type(X) = (m,n) in N, then type(X) = 
(m + n, 0) in N. For every graph h E GR(N U T) we define the graph Ii = 

(Vh, Eh, 8, t, Ih, begin(h) . end(h),.\) where, for e E Eh, 8(e) and t(e) are defined 

as follows: if Ih(e) E T, then 8(e) = 8h(e) and t(e) = Ih(e); if Ih(e) E N, then 
B(e) = 8h(e)· th(e) and t(e) = A. Note that if hE GR(T) then Ii = backfold(h). 

We now define P = {X -4 Ii I X -4 h E P}. This ends the definition of G. 

It is straightforward to show that L(G) = {backfold(g) I 9 E L(G)}. In fact, 

the derivations of G are exactly all atom(S) =? gl =? 92 =? ... =? gn where 
atom(S) =? 91 =? g2 =? ... =? gn is a derivation of G. Since G satisfies the above 
special case, we conclude that backfold(L) is in Val(RLIN-CFG(CS)). 
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Suppose that type(L) = (m, n). It is easy to verify, for every 9 oftype (m, n), 
that 

9 = (idm Ell foId(idn )) 0 (backfold(g) Ell idn ). 

Hence L = {(idm Ell fold(idn )) 0 (h Ell idn ) I h E backfold(L)}. Thus, it now 

suffices to show that if L' is in Val(RLIN-CFG(CS)), then so are all languages 

{h Ell idn I h E L'}, for n E N, and all languages {go 0 hi h E L'}, for go E GR. 

To this aim, let G' be a right-linear context-free graph grammar generating L'. 
Change, in the productions of G') every constant cg into the constant CgE!lid". 

Clearly, the resulting right-linear context-free graph grammar generates all graphs 

(gl EIlidn ) o· ··0 (gk Ell idn ) with gl o· .. 0 gk E L'. By the law of strict monoidality 

(Lemma 6(5)), 

(gl Ell idn) o· . ·0 (gk EIlidn ) = (gl o· .. 0 gk) Ell (idn 0·· • 0 idn ) = (gl o· . ·0 gk) Ell idn . 

This proves that the resulting grammar generates {g Ell idn I 9 E L'}. 

Introduce a new initial nonterminal S', and add to G' all the productions 

8' ---+ Cgoog 0 Y and 8' ---+ Cgoog such that S ---+ c g 0 Y and S ---+ c g are productions 

of G', respectively (where S is the old initial nonterminal of G'). Clearly, the 

resulting right-linear grammar generates all graphs (gO 0 gl) 0 g2 0 ••• 0 gk with 

gl 0 •.. 0 gk E L'. In other words (using the associativity of concatenation), it 

generates the graph language {gO 0 h I h E L'}. Note that we could also have 
added the one production Sf ---+ cgo 0 S; the reason for not doing so will become 

clear in the proof of Theorem 27. 0 

This result suggests that for context-free graph grammars there is no difference 

between the linear and the right-linear case, as opposed to the case of ordinary 

context-free grammars (where the right-linear grammars generate the regular 

languages which form a proper subclass of the linear languages). More support 

for this intuition will be given in the next section. 

5 Strings Denote Graphs 

Since concatenation of graphs is associative, strings can be viewed as expressions 

that denote graphs. Thus, as an even simpler variation of the approach with 

expression generating context-free grammars in Section 4, we can use all possible 

string grammars to generate graph languages. More generally, every class K of 

string languages defines a class Int(K) of graph languages (where Int stands for 

'interpretation', which is similar to Val in Section 4). An "interpretation" is a 

mapping that associates a graph with each symbol of an alphabet. 

Definition 14. Let A be an alphabet. An interpretation of A is a mapping 
h: A --4 GR; h is extended to a (partial) function from A' to GR by 

h(a1a, ... an) = h(a1) 0 h(a,) 0 ···0 h(an ) 

with n "= 1 and ai E A for all 1 :S i :S n. 
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Note that the extended h is partial because the types of the h(ai) may not 

fit; moreover, h(J..) is undefined (where J.. is the empty string). Thus, the only 

"technical trouble" is that the concatenation of graphs is typed whereas the 

concatenation of strings is always possible. To deal with this, the following lemma 

is useful. It says that the domain of an interpretation is regular. 

Lemma 15. For every interpretation h : A -> GR, the language 

{w E A' I h(w) is defined} is regular. 

Proof. Clearly, h(ala2·· ·an ) is defined if and only if n:::: 1 and lend(h(a,) I = 

Ibegin(h(oi+d) I for every 1 ::; i < n. It is easy to construct a finite automaton 

that checks this. D 

For a string language L <; A', we define, as usual, the set of graphs h(L) = {g E 

GR I g = h(w) for some wE L}; note that h(L) need not be a graph language 

(in our particular meaning of the term, as defined in Section 2.2) because not 

all graphs need have the same type. 

Definition 16. Let K be a class of string languages. The interpretation of K is 

Int(K) = {h(L) I L E K,h: A -> GR with L <; A',h(L) is a graph language}. 

D 

In other words, Int(K) consists of all graph languages h(L), where L is any 

language in K and h is any mapping from the symbols of L to graphs. Intuitively, 

h determines the interpretation of the symbols, and then the concatenation of 

those symbols is interpreted as concatenation of the corresponding graphs. 

It is an immediate consequence of Theorem 9 that every graph language h( L) 
in Int(K) is of bounded pathwidth, i.e., there exists k such that pathwidth(g) ::; k 

for every g E h(L). In fact, if L <; A., then k = max{#Vh(a) I a E A} - 1. 

Corollary 17. For every K, every graph language in !nt(K) is of bounded path· 

width. 

b, b, 

/ 7D \ 
h(a) h(b) h(c) h(d) 

Fig. 4. An interpretation. 
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The first class K of interest is the class REG of regular languages. An exam
ple of a graph language in Int(REG), of type (0,0), is h(a(b U clOd) where the 
graphs h(a), h(b), h(c), and h(d) are shown in Fig. 4 (without edge directions and 
edge labels). The graph h( abbcbd) is shown in Fig. 5. Clearly, the graph language 
h( a( b U c)' d) consists of all "clothes lines" on which triangles and rectangles are 
hanging to dry. We first present a characterization of Int(REG) by regular ex-

Fig. 5. Graph interpretation of the string abbcbd. 

pressions, corresponding to the characterization of REG by regular expressions. 
To this aim we define the operations of union, concatenation, and (Kleene) star 
for graph languages. The operation of graph concatenation is extended to graph 

languages Land L' in the usual way: iftype(L) = (k,m) and type(U) = (m,n), 

then their concatenation is defined by L ° L' = {g ° g' I gEL, g' E U}. Then, 
in the obvious way, the star of a graph language is defined by iterated con
catenation: for a graph language L with type(L) = (k,k) for some kEN, 

L' = UnEN Ln where Ln = L ° ... ° L (n times) for n 2: 1, and LO = {id.}. 
Also, L+ = Un>! Ln is the (Kleene) plus of L. Finally, the union L U U of two 

graph languages Land U is defined only when type(L) = type(U) (otherwise it 
would not be a graph language). Thus, the operations of union, concatenation, 

and star are also typed operations on graph languages (as opposed to the case 
of string languages for which they are always defined). Let REX(U, 0, *, SING) 
denote the smallest class of graph languages containing the empty graph lan
guage and all singleton graph languages, and closed under the operations union, 
concatenation, and star. Thus, it is the class of all graph languages that can 

be denoted by (the usual) regular expressions, where the symbols of the al
phabet denote singleton graph languages. As an example, the above graph lan

guage of clothes lines is in REX(U,o,*,SING) because it can be written as 

{h(a)} ° ({h(b)} U {h(c)})' ° {h(d)}. 

Theorelll18. Int(REG) = REX(U, 0, *, SING). 

Proof. We have to cope with the "technical trouble" of typing, in particular with 
the empty string. Note that, for a graph language L with type(L) = (k, k), L' = 

L+ U {id.} and L+ = L ° L'. This shows that we can replace star by plus, i.e., 
REX(U, 0, *, SING) = REX(U, 0, +, SING), the smallest class of graph languages 
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containing the empty graph language and all singleton graph languages, and 
closed under the operations union, concatenation, and plus. 

To show that REX(U, 0, +, SING) ~ Int(REG), it suffices to prove that 
Int(REG) contains the empty language and all singleton graph languages, and 
that it is closed under union, concatenation, and plus. Clearly, h(0) = 0 for 

any interpretation h. Also, if heal = g, then h( {a}) = {g}. Now let LI ~ Ai 
and L2 ~ Ai be regular languages, and let hi and h, be interpretations of 

Al and A" respectively, such that hl(Lr) and h,(L,) are graph languages in 
Int(REG). Obviously, by a renaming of symbols, we may assume that Al and A2 

are disjoint. Let h = hi U h2 be the interpretation of Al U A2 that extends both 
hI and h2 • It is easy to verify that (with the appropriate conditions on types) 

hl(LI)uh,(L,) = h(LI UL,), hI (LrJoh,(L,) = h(LI·L2 ), and hI (LI)+ = h(Li), 

which shows that these graph languages are also in Int(REG). 

To show that Int(REG) ~ REX(U, 0, +, SING), we first note that, since an 
interpretation is undefined for the empty string, Int(REG) = Int(REG - A), 

where REG - A = {L - P} I L E REG} is the class of all A-free regular 
languages. It is well known (and easy to prove) that REG - A is the smallest 

class of languages containing the empty language and all languages {a} where a 
is a symbol, and closed under the operations union, concatenation, and plus. By 

induction on this characterization we show that for every language L E REG - A 

and every interpretation h of the alphabet of L, if hew) is defined for every 

wE L, and heLl is a graph language, then heLl E REX(U,o, +, SING). Note 
that by Lemma 15 (and the fact that REG is closed under intersection) we can 
indeed assume that h is defined for all strings in L. The inductive proof is as 

follows. If L is empty, then so is heLl. If L = {a}, then heLl is a singleton. If 

L = LI UL" then heLl = h(LI)uh(L,). Now let L = L I · L2 and assume that LI 
and L2 are nonempty (otherwise L is empty). Since, by assumption, h(LI . L 2 ) 

is a graph language and hew) is defined for every wELl· L" h(LI) and h(L,) 

are also graph languages; for h(LI) this is proved as follows: if WI, w; E L I , 
then, for any W2 E L21 hew! . W2) = h(wd a h(W2) and similarly for wi, and 

so Ibegin(h(wr))1 = Ibegin(h(wl . w2))1 = Ibegin(h(w; . w,))1 = Ibegin(h(w;))1 
and lend(h(wr))I = Ibegin(h(w,))1 = lend(h(wD)I· Hence heLl = h(LI . L 2 ) = 

h(Lr) 0 h( L,). Finally, let L = Li. Then h( LrJ is a graph language of some type 

(k,k) by an argument similar to the one above, and heLl = h(LI)+. D 

This result holds in fact for sets of morphisms of arbitrary categories (instead 
of the category GR of graphs, cf. Lemma 6). It generalizes a well-known char

acterization of the rational subsets of a monoid (see, e.g., Proposition III.2.2 of 

[Ber]). 

The characterization of Theorem 18 still holds after adding the sum op
eration, extended to graph languages in the usual way: for arbitrary graph 

languages Land L', L Ell L' = {g Ell 9' I 9 E L,g' E L'}. In other words, 
Int(REG) = REX(U, 0, *, Ell, SING), the smallest class of graph languages con
taining the empty graph language and all singleton graph languages, and closed 
under the operations union, concatenation, star, and sum. This is because of the 

following simple reason. 
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Lemma 19. For every class of languages K, ifInt(K) is closed under concate

nation, then it is closed under sum. 

Proof. We first show that if M is in Int(K) then so is M Ell {idd for every k. 

This was shown for Val(RLIN-CFG(CS)) in the proof of Theorem 13, and the 

following argument is the same as the one used there. Let M = h( L) for some 

L E K aud some interpretation h of the alpl,abet A of L. Define h' (a) = h( a) Ellidk 

for every a E A. Then h'(al'" an) = 

because of strict monoidality (Lemma 6(5)), and the last expression is equal to 

h(al ... an) Ellidk · This implies that h'(L) = h(L) Ell {idd = M Ell {idk}. Similarly 

it can be shown that {idd Ell M is in Int(K). 

Now, for arbitrary graph languages M and M' with type(M) = (m,n) and 

type(M') = (m' , n'), M Ell M' = (M 0 {idn }) Ell ({id=,} 0 M') = (M Ell {id=,}) 0 

({idn}EllM') by strict monoidality. Hence, by the above, and the fact that Int(K) 

is closed under 0, M Ell M' is in Int(K). 0 

If we allow EB in our regular expressions, then, as should be clear from Theorem 7, 

we do not need all singleton graph languages to start with, but only those that 

contain elementary graphs (i.e., graphs that belong to some EL(E), as defined in 

Section 3). Recall that a graph is elementary if it is an atom or one of the graphs 

IO,I, h,o, h2, 12,1, 71'12, or ido. Let REX(U, 0, *, Ell, ELSING) denote the smallest 
class of graph languages containing the eIljpty graph language and all singleton 

graph languages with an elementary graph as element, and closed under the 

operations union, concatenation, star, and sum. 

Theorem 20. Int(REG) = REX(U, 0, *, Ell, ELSING). 

Note that this result is closer to the corresponding result for regular languages, 

for which only singleton languages {a} are needed where a is a symbol. 

The next class K of interest is the class CF of context-free languages. We 

will show that Int(CF) is a (proper) subclass of HR, the class of graph languages 

generated by HR grammars. In fact, it is rather obvious that Int( CF) is exactly 

the class of languages generated by context-free graph grammars over CS that 

do not use the sum operation. Thus, Int(CF) is the class of equational subsets 

of the algebra of graphs with the concatenation operation. Inclusion in HR then 

follows from Theorem 11. As in the previous theorems, we have to cope with the 

technical trouble of typing. 

Let CSo = CS - {Ell} = {o} U {cg I 9 E GR}. If Ell does not occur in the 
productions of a context-free graph grammar over CS, then we also say that 

it is over CSo. By Val(CFG(CS o)) we denote the class of all graph languages 

generated by context-free graph grammars over CSo. Note that, by definition, 

Val(RLIN-CFG(CS)) <; Val(CFG(CSo)). 

Theorem 21. Int(CF) = Val(CFG(CSo)). 
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Proof. We first show that Val(CFG(CSo)) ~ Int(CF). Let G = (N, T, P, S) 

be a context-free graph grammar over CSo. Every production of G is of the 
form X ---+ 0'1 a 0'2 0 ... 0 Uk with k 2: 1 and (Xi E N or ai = cg for some 

9 E GR. Note that we can drop the parentheses from the right-hand sides, due 
to the associativity of concatenation. Thus) G generates expressions of the form 

cg, 0···0 cg .. with n 2': 1, and val(L(G)) = {gl 0···0 gn I Cg, 0···0 cg .. E L(G)}. 

Define the (ordinary) context-free grammar G' = (N,T',P',S) where T' is 

the set of all cg in T, and P' = {X --> a1a2··· ak I X --> "'1 0 a2 0···0 "'k E P}. 
Obviously, L(G') = {cg, .•. cg .. I cg , 0···0 Cg .. E L(G)}. Now let h : T' --> GR 

be the interpretation such that h(cg ) = g. Then, clearly, val(L(G)) = h(L(G')). 

Hence val(L(G)) is in Int(CF). 

We now show that Int(CF) ~ Val(CFG(CSo)). By Lemma 15 (and the fact 

that CF is closed under intersection with regular languages), every Int(CF) graph 
language is of the form h(L) where L is a context-free language such that his 
defined for every string in L. In particular, L is A-free. Let G = (N, T, P, S) 

be a context-free grammar generating L. We may assume that the right-hand 
sides of the productions of G are non-empty. Define the context-free grammar 

G' = (N,T',P',S) such that T' = {o} U {Ch(a) I a E T}, and P' = {X --> 

'Ij;( a1) 0 'Ij;(a2) 0 ••• 0 'Ij;(ak) I X --> a1 "'2 ••• "'k E P}, where 'Ij;(a) = Ch(a) for every 
a E T, and 'Ij;(X) = X for every X E N. Obviously, L(G') = {ch(ado ... 0Ch(a .. ) I 
a1·· ·an E L(G)}, and so val(L(G')) = h(L(G)) = h(L). 

The only thing that remains to be proved (and this is the "technical trouble") 

is that G' is a context-free graph grammar over CS (and it obviously is over CSo). 
In other words, we have to turn N into a typed alphabet, such that the right

hand sides of the productions are expressions with the same type as the left-hand 

sides. To this aim we investigate the grammar G in more detail. 

We claim that for all strings wET' generated by a given nonterminal X of G, 
h( w) is defined and type(h( w)) is the same for all such w. Here we will use the fact 
that h is defined for all strings in L. The proof is similar to the argument used at 

the end of the proof of Theorem 18. Let X =}' WI and X =}' W2, with Wi E T·. 
Consider some u,v E T' such that S =}. uXv (assuming G to be reduced). 

Then UW1V,UW2V E L. We now show that Ibegin(h(wIl)I = Ibegin(h(w2))I. Let 
type(L) = (m, n). If U = A, then WiV ELand Ibegin(h(wi))1 = Ibegin(h(wiv))1 = 
m. Note that if h is defined for a string w, then it is also defined for every non

emptysubstringofw. Nowletu oF A. Since his defined on UWiV, Ibegin(h(wi))I = 

lend(h(u))I. In the same way it can be shown that lend(h(wIl)1 = lend(h(w2))I. 

We turn N into a typed alphabet by defining type(X) = type(h(w)) if X=}' 

w in G. We now have to show that for every production X --> "'1 ... "'k of G, 

'Ij;(",d 0 ..• 0 'Ij;(ak) is a well-formed expression over CS and N, of the same 
type as X. Note first that for every a E NUT and every w E T* 1 if Q' ::::}* W, 

then h(w) is defined and type('Ij;(a)) = type(h(w)). Now consider a1, ... , ak in 
NUT, and let ai =}. Wi E T', for 1 SiS k. Then 'Ij;("'1) 0··· o'lj;(ak) is a well
formed expression (over CS and N) of type (m, n) if and only if h(W1 ... wkl is 

defined and type(h(w1·· ·Wk)) = (m,n). Consider the derivation S =}' uXv =} 

U"'l ... "'kV =}' UW1 ... WkV = z. Since z E L, h(z) is defined, and so h(W1 ... Wk) 
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is defined. Moreover, since X =?' WI·· ·Wk, type{h{WI·· ·w,)) = type{X). This 
shows that ,p{aJ) o· .. 0 ,p{a.) is a well-formed expression over CS and N, of the 
same type as X, as required. 0 

Theorem 22. Int{CF) c HR. 

Proof. Inclusion follows immediately from Theorems 21 and 11. Proper inclusion 
is a consequence of Corollary 17: the set of all trees is in HR, but is not of 
bounded pathwidth, as can easily be seen (for a characterization of the trees of 
pathwidth k, see [EllST]). 0 

Since REG is closed under intersection, the proof of Theorem 21 also works 
for Int{REG). In fact, the proof preserves the right-linearity of the grammars. 
Hence, Int{REG) = Val{RLIN-CFG{CS)). As an example, the graph language 
of clothes lines is generated by the right-linear context-free graph grammar with 

productions S ----+ Ch(a) oX, X --+ Ch(b) oX, X ---+ Ch(c) oX, and X --+ Ch(d), where 

h{a), h{b), h{c), h{d) are the graphs in Fig. 4, type{S) = (a, 0), and type{X) = 

(I, 0). 

Together with Theorem 13, this shows that the graph languages that are 
interpretations of a regular language are precisely those that can be generated 
by linear HR grammars. 

Theorem 23. Int{REG) = LIN-HR. 

Similarly, the proof of Theorem 21 preserves linearity of the grammars (and LIN 

is closed under intersection with regular languages). Since Val{LIN-CFG{CS,)) 

is inbetween Val{RLIN-CFG{CS)) and Val{LIN-CFG{CS)), we obtain the next 
result by Corollary 12 and Theorem 13. 

Theorem 24. Int{LIN) = LIN-HR. 

The results of this section suggest that for graph languages, regularity and linear

ity are the same. We have a class of graph languages that may be called the class 
of regular graph languages on the one hand (because it is equal to Int{REG) and 

to REX{U, 0, *, SING)), and may be called the class of linear graph languages 
on the other hand (because it is equal to Int{LIN) and to LIN-HR). 

It will be shown in Section 7 that Int{REG) is a proper subclass of Int{CF). 

6 Characterizations of Int(K) 

In this section and the next, we investigate properties of the class of graph lan
guages Int{J<) for arbitrary classes of string languages J<. However, to avoid 

trivialities we will mainly be interested in classes J< that are closed under se

quential machine mappings, where a sequential machine is a transducer which 

works like an ordinary nondeterministic finite automaton that, moreover, at 

each step outputs one symbol (thus it is a special case of the generalized sequen
tial machine, or gsm, which outputs a string at each step, see, e.g., [HopUll]). 
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Equivalently, K is closed under intersection with regular languages and under 
alphabetical substitutions (where an alphabetical substitution from alphabet A 

to alphabet B is a relation p <; A x B that is extended to a function from A' to 
the finite subsets of B' by p(aJ' "an) = {b J" ·bn I (ai,b;) E p, 1:S i:S n}). 

In this section we present two characterizations of Int( K). The first character

ization of Int(K) is through the notion of replacement, as defined in Section 2.2. 

The following closure property of Int (K) will be useful. 

Lemma25. For every class K, Int(K) is closed under replacements. 

Proof. Clearly, q,(h(L)) = h'(L), where hi is defined by h'(a) = q,(h(a)) for every 

a EA. In fact, for a"".,an E A, q,(h(aJ"'an)) = q,(h(a,) 0 ". 0 h(an)) = 
q,(h(a,)) 0 ••• 0 q,(h(an)) = h'(a,) 0 ••• 0 h'(an) = h'(a, ... an), where we have 

used Lemma 4(1). 0 

The characterization of Int(K) is based on the fact that every interpretation can 
be decomposed into an "atomic" interpretation and a replacement. An interpre

tation h : A -> GR of A is atomic if A is a typed alphabet and h(a) = atom(a) for 
every a E A. By AtInt(K) we denote the set of all h(L) E Int(K) such that his 
an atomic interpretation. Recall that Repl denotes the class of all replacements. 

Theorem 26. For every class K, Int(K) = Repl(AtInt(K)). 

Proof. One inclusion follows from Lemma 25. For the other inclusion, let h : A -> 

GR be an interpretation. Turn A into a typed alphabet by defining type(a) = 

type( h( a)) for every a E A. Let t be the unique atomic interpretation of the typed 
alphabet A, and let q, : A -> GR be the replacement defined by q,(a) = h(a) 

for every a E A (i.e., q, is h viewed as a replacement). Clearly, for every string 

wE A', q,(t(w)) = h(w). In fact, if w = a," 'an, then q,(t(w)) = q,(t(a,) 0'" 0 

t(an)) = q,(t(a,)) 0'" oq,(t(an)) =q,(a,) 0'" oq,(an) = h(a,) 0'" 0 h(an) = h{w), 

by Lemma 4(1) and because q,(atom(a)) = q,(a) for every a E A. 0 

Note that Lemma 25 and Theorem 26 together show that Int{K) is the smallest 

class of graph languages containing Atlnt(K) and closed under replacements. 
The second characterization of Int{K) generalizes the characterization of 

Int(REG) in Theorem 23. To this aim we consider controlled linear HR gram

mars, in the obvious sense. Let G = (N, T, P, S) be an HR grammar, and let 
C be a string language over P (where P is viewed as an alphabet). The graph 
language generated by G under control C is the set of all graphs 9 E GR(T) for 

which there is a derivation atom(S) '* .. 9, '*p, 9, ... '*p" 9n with 9n = 9, such 
that the string p,p, ... Pn is in C. Recall that '*p denotes a derivation step of 

G that uses production p. Thus, the control language C specifies the sequences 
of productions that the grammar G is allowed to use in its derivations. If C is 

taken from a class of languages K, the grammar G together with the control 
language C is also called a K -controlled HR grammar. 

For a class K of string languages, we denote by LIN-HR{K) the class of 
graph languages generated by K-controlled linear HR grammars. Generalizing 
Theorem 23 and its proof we obtain the next result. 

24 



Theorelll 27. For every class K that is closed under sequential machine map

pings, Int(K) = LIN-HR(K). 

Proof. In what follows we assume, without loss of generality, that all languages in 

K are A-free (if K' = {L- {A} I L E K}, then Int(K') = Int(K), LIN-HR(K') = 

LIN-HR(K), K' = {L E K I A rt L} because a sequential machine mapping can 
be used to remove A, and K' is closed under sequential machine mappings, 

because K is closed under sequential machine mappings and sequential machine 
mappings are length-preserving). 

With analogous definitions as above, we can define the controlled versions 
of context-free grammars and of context-free graph grammars over CS. We first 

show that K is the class of languages generated by the K-controlled right-linear 
context-free grammars. In one direction, let L E K with L <; T·. Define the 
right-linear context-free grammar G = ({S}, T, P, S), where P consists of all 

productions Po : S -> as and p~ : S -> a for all a E T. Let L' be the control 
language that is obtained from L by a sequential machine mapping that changes 

each string al ... an-l an into the string Pal' .. Pa"_lP~ .. ' Then L is the language 

generated by G under control L'. In the other direction, let G = (N, T, P, S) 

be a right-linear context-free grammar, let C E K be a control language, and 
let L be the language generated by G under control C. Let ¢ be the sequential 

machine mapping that, for a given string PI ... Pn E p', checks whether there 
is a derivation S =?-Pt WI'" :::;"p" Wn with Wn E T* (by simulating G in its 

finite control) and changes each production into the unique terminal symbol 

that occurs in its right-hand side. Then, clearly, ¢(C) = L and hence L is in K. 
It is now easy to generalize the proof of Theorem 21 to the case of K

controlled right-linear grammars. This shows that Int(K) is equal to the K
controlled version of Val(RLIN-CFG(CS)), i.e., to the class of graph languages 
generated by K-controlled right-linear context-free graph grammars over CS. 

Thus, it now suffices to check that the proof of Theorem 13 can be generalized 
to the /{"-controlled case. 

First we check that the proof of Theorem 11 can be generalized to the K
controlled case, for linear grammars. We have proved a relationship between 

the derivations X *' e of a context-free graph grammar G and the derivations 

atom(X) *' valle) of an HR grammar G'. This proof can be extended to show 
that if the sequence of productions used in the first derivation is PlP2 ... Pn, then 

the sequence of productions used in the second derivation is pip~ ... P~, where, 

for each production P = X -> t of G, P' is the production X -> val(t) of G'; to see 
this, note that in the linear case of Proposition 2, the sequence of productions 

used in h *' 9 equals the sequence of productions used in atom(Y) *' ¢(Y), 

where Y is the unique nonterminal in lab(h). Thus, if C is the control language 
of G, then the control language for G' call be obtained from C by a sequential 

machine mapping that changes every pinto p'. 

We now consider the proof of Theorem 13. Clearly, for the LIN-HR grammar 
G we can take the same control language that is used by G (modulo a renaming), 
because there is a clear one-to-one correspondence between their productions. In 

the remaining two constructions, we can take the same control language in the 
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first case, and in the second case we can apply a sequential machine mapping to 

the control language that changes the first production of a production sequence 
into the corresponding production for the new initial nonterminal S' (which was 
the reason to use that particular construction). 0 

7 Comparison of Int(K) and Int(K') 

From Theorems 23 and 24 we know that Int(REG) = Int(LIN) = LIN-HR. It 

can be shown by a direct construction (see rVer]) that even Int(DB) = LIN-HR, 

where DB is the class of derivation bounded context-free languages (see, e.g., 
Section VI.10 of [Sal), where they are called languages of "finite index"). One 
now wonders when Int(K) = Int(K'), and in particular one wonders how much 
larger the class K can be made without enlarging the class Int(K). 

It is easy to see that for every given class K there is a largest class K' such 

that Int(K') = Int(K). We will call this the extension of K, denoted Ext(K). 

In fact, Ext(K) = U{K' [Int(K') = Int(K)}. Note that, for arbitrary classes K 

and K', Int(K) = Int(K') if and only if Ext(K) = Ext(K'). 
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Fig. 7. The graph gr(a'b'c') = h(pq'r). 
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In the next theorem we give a characterization of Ext{K). For a class G 
of graph languages, let Str{ G) denote the class of string languages L such that 

gr{L) is in G. Here, gr{L) = {gr{w) I wE L}, and, for a string w = al'" an with 
n ~ I, gr{w) = (V,E,s,t,l, begin,end) is the (ordinary) graph of type (I, I) with 

V = {Xl, ... ,xn+d, E = {el,'" ,en}, s{e;) = Xi, t{ei) = Xi+l, and l{ei) = ai 

for every 1 :S i :S n, begin = Xl and end = Xn+l. Thus, gr{w) encodes w in the 
obvious way: it is a path with the symbols of w as edge labels. 

As a classical example, the language L = {anbncn I n ~ I} is in Str{Int{REG», 
because L = h{M) with M = pq'r and h is shown in Fig. 6. The graph 
gr{a'b'c5

) = h{pq4r) is shown in Fig. 7. 

Note that gr{A) is not defined. This implies that L E Str{ G) iff L - {A} E 
Str{G). It is also implies that 'gr' is the unique atomic interpretation which is 

obtained by viewing every symbol as having type (I, 1); hence gr{L) E Int{K) 
for every L E K, which means that K ~ Str{Int{K)). 

Theorem 28. For every class K that is closed under sequential machine map

pings, Ext{K) = Str{Int{K». 

Proof. Clearly, if Int{K') = Int{K), then K' ~ Str{Int{K')) = Str{Int{K)). 
Thus, it remains to show that Int{Str{Int{K») = Int{K). Since K ~ Str{Int{K», 

Int{K) ~ Int{Str{Int{K»). For the other inclusion it suffices, by Lemma 25 and 
Theorem 26, to show that AtInt{Str{Int{K))) ~ Int{K). To prove this, let Ll E 
K, let hI be an interpretation of the alphabet A of Ll such that hI (LJ) = gr{L2 ) 

for some A-free string language L2 , and let h2 be an atomic interpretation of the 
alphabet B of L2. Thus, hI : A --> GR{B) where each symbol from B has type 

(I, 1). However, for the atomic interpretation h2 each symbol b from B has an
other (arbitrary) type that we will denote by type{b). Note that h2{b) = atom{b), 

where type{atom{b» = type{b); hence type{b) = (lbegin{h2 {b»I, lend{h2 {b»I). 

b c b c 
~(w)= b

l 
~'--~ ______ --__ --~ ________ ~ ____ ----1' el 

b e 

Fig. 8. Graphs gr{w) and h,{w) for w = bebe, with type{b) = (2, 3) and type{e) = (3, 2). 

We have to construct a language L E K and an interpretation h such that 
h{L) = h2{L2)' For a string wE L2 such that h2{W) is defined, the graph h2{W) 
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can be obtained from the graph gr( w) (which is an element of hI (Ld) in an 

easy way, as follows (see Fig. 8). Each node v of grew) has to be "expanded" 
into a sequence of distinct nodes (v, 1), (v, 2), ... , (v, fL( v)), where fL stands for 
"multiplicity". Clearly, fL( v) is determined by type(b), where b is the label of an 
edge e incident with v: if e enters v, then fL(V) = lelld(h,(b))I, and if e leaves 

v, then fL(V) = Ibegin(h,(b))I· Every edge e of grew), with source u and target 

v, should be replaced by an edgee with sources (u,I), ... ,(U,fL(U)) and targets 
(v, 1), ... , (v, fL( v)) (and the same label). In Fig. 8, the multiplicity of the nodes 

of grew) is 2, 3, 2, 3, 2, respectively. The edges of h,(w) are drawn as squares, 
with "tentacles" from their sources and to their targets (where we asume that 

the tentacles are ordered, e.g., from top to bottom). 

We nOw define this expansion process formally, for arbitrary graphs in GR( B). 

Let M be a number such that for all b E B, if type(b) = (m, n), then m, n :s M. 

A decorotion of a graph 9 E GR(B) is a mapping fL : Vg -+ {I, ... , M} such that 

for every edge e of 9 with see) = u, tee) = v, and lee) = b: type(b) = (fL( u), fL( v)), 
i.e., fL(U) = Ibegin(h,(b))1 and fL(v) = lend(h2 (b))I. Note that for every graph 
gr( w), h, (w) is defined if and only if there is a decoration fL of gr( w), and in 
that case fL is unique. For a graph 9 E GR(B) and a decoration fL of g, the 

expansion of 9 by fL, denoted exp(g,fL), is the graph that has all nodes (v,i) 
where v is a node of 9 and 1 :s i :s fL(V); it has the same edges as 9 (with the 

same labels), but if see) = u and tee) = v in g, then see) = (u, 1) ... (U,fL(U)) 

and tee) = (v, 1)··· (V,fL(V)) in exp(g,fL); finally, if begin(g) = VIV,·· ·Vk, then 
begin(exp(g,fL)) = 

(VI, 1) ... (VI, fL( vtl) ... (v" 1) ... (V" fL(V,)) ... (v., 1) ... (v., fL(v.)) , 

and similarly for end(g) and end(exp(9,fL)). It should be clear that for every 

wE L2 for which h2(W) is defined, h2(W) = exp(gr(w),fL) where fL is the unique 
decoration mentioned above. 

Based on this idea of expansion we now change L1 into L and hI into h, 

as follows. Let A' be the alphabet consisting of all pairs (a, fL) with a E A and 
fL is a decoration of hl(a). Intuitively, fL is a guess of the multiplicities of the 

nodes of hl(a) as they will occur in a graph of hl(Ltl; for nodes that are in
cident with an edge, this multiplicity is determined by the label of that edge, 
but for the other nodes (which are necessarily begin or end nodes because grew) 
has no isolated nodes) their multiplicity will only be clear after concatenation. 
Let p be the alphabetical substitution that substitutes all possible (a, fL) for 

a, i.e., p = {(a,(a,fL)) I (a,fL) E A'}. Thus, peLt! = {(al,fLI)···(an,fLn) I 
al·" an ELI, (aj,fLj) E A'}. Let R be the regular language over A' that 

consists of all strings (at,fL,j···(an,fLn) such that hj(aj···an) is defined and 
fLj(end(hl (aj))(i)) = I'j+1 (begin(hl(aj+1 ))(i)) for all relevant j and i (to be pre
cise: for alII :s j < n and alii :s i:S lend(hj(aj))I; note that lend(hj(aj))1 = 
Ibegin(hl(aj+tl)1 because hl(al ·"an) is defined). In words, the language R 
checks that the guessed multiplicity of the ith end node of hl(aj) equals that of 
the ith begin node of hI (aj+tl· Thus, R checks that the guessed multiplicities 
are consistent with the identification of nodes when concatenating the graphs 
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h,(a,), ... ,h,(an) (and hence are the correct multiplicities). It should be clear 
that R is indeed regular (ef. Lemma 15). We now define £ = p(L,)nR; since, by 

assumption, K is closed under sequential machine mappings, L is in [{. Finally, 

for (a, 1') E A' we define h(a,l') = exp(h, (a), 1'). 

It should now be clear that h( L) = h2 (£2)' A formal proof can be given as 
follows. 

Let a decorated graph be a pair (g,l') with 9 E GR(B) and I' a decoration of 
g. Define the concatenation of decorated graphs, as follows. For decorated graphs 

(g"I") and (g2,1'2), if g, og2 is defined and I',(end(g,)(i)) = 1'2(begin(g2)(i)) 

for all i, then their concatenation is (g" 1',)0 (g2, 1'2) = (g, og2,1') with I'([X]R) = 

I'j(x) if x E Vgj (where we assume the terminology of Definition 3). It is easy to 
see that, the other way around, if g, 0 g2 is defined and (g, 0 g2, 1') is a decorated 

graph, then there exist decorations 1', and 1'2 of g, and g2, respectively, such that 

(g" 1',) 0 (92,1'2) = (g, 092, 1'). As a basic property of 'exp' it can be shown that 
it is a homomorphism with respect to the concatenation of decorated graphs: 

exp((g, , 1',) 0 (92,1'2)) = exp(g" 1',) 0 exp(g2, 1'2). 

Now consider some string a,"'an E L,. Then h2(gr-'(h,(a, "'an)) is de
fined if and only if there exist decorations I'i such that (h, (a;), I'i) is a deco
rated graph, for all i, and their concatenation (h,(a,),I',) 0··' 0 (h,(an),l'n) 

is defined. And this is if and only if there exist I'i such that (ai, 1';) E A' and 

(a"I',)'" (an,l'n) E R. Moreover, in that case, for the unique decoration I' of 
h,(a,·· ·an), 

h2 (gr-'(h, (a, ". an)) = exp(h, (a, ". an), 1') = 

exp((h,(a,),I',) 0'" 0 (h, (an), I'n)) = 

exp(h, (a,), 1',) 0 ... 0 exp(h, (an), I'n) = 

h(a"I',) 0'" 0 h(an,l'n) = h((a"I',)··· (an,l'n)). 

This shows that h2(L2) = h(L). D 

As a corollary of Theorem 28 we obtain that for arbitrary K and K' (both 

closed under sequential machine mappings), Int(K) = Int(K') if and only if 
Str(Int(K)) = Str(Int(K')). This means that the graph generating power of K 

is completely determined by its string generating power (with strings coded as 
graphs by the mapping gr). 

We now show that Ext( K) is a class of languages that is well known in formal 
language theory. By 2DGSM (K) we denote the class of images of languages from 

K under 2dgsm mappings, i.e., the class of all I(L) where I is a 2dgsm map

ping and £ E K. A 2dgsm (i.e., a two-way deterministic generalized sequential 
machine) is a deterministic finite automaton that can move in two directions on 

its input tape (with endmarkers), and outputs a (possibly empty) string at each 
step. As an example, {anbncn In 2: 1} is in 2DGSM(REG), because it is easy to 
construct a 2dgsm that translates pqnr into an+lbn+lcn+l for every n EN. The 

proof of the next result is obtained by generalizing the proof in [EngHey] that 
Str(LIN-HR) equals the class of output languages of 2dgsm mappings. We say 
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that K is nontrivial if it is not a subset of {0, {.\}}; in other words, K contains 
at least one language that contains a nonempty string. 

Lemma 29. For every nontrivial class K that is closed under sequential ma

chine mappings, Str{LIN-HR{K)) = 2DGSM{K). 

Proof. To reduce the proof to a generalization of the proof in [EngHeyJ, we have 
to deal with some technical details. In particular, the coding 'gr' (and hence the 

operation 'Str') is defined in a different way (see Definition 2.2 of [EngHey[). 
We will discuss this in steps. Note that, by Theorem 27, Str{LIN-HR{K)) = 

Str{Int{K)). 

First of all, let grl be defined in the same way as gr, except that additionally 
grl{.\) = id l ; and let Strl be defined in the same way as Str, with grl instead 
of gr. We claim that Strl (Int{K)) = Str{Int{K)). Thus, we have to show that 
for every language L, grl{L) E Int{K) iff gr{L) E Int{K). This is obvious if 

.\ rt L. If .\ E L, then grl (L) = gr{L) U {idd. Assume first that gr{L) is ill 
Int{K). If gr{L) = 0, we have to show that {idd E Int{K). Since K is not 
a subset of {0, {.\}}, K contains a language M ~ A' such that M contains 
at least one nonempty string. Define the interpretation h with h{a) = idl for 

all a E A. Then h{M) = {idd (because id l 0 id l = idll. Now let gr{L) oj 0. 
Let gr{ L) = h{ M) for some interpretation h and some M E K. Then M must 

contain a nonempty string w. Let b be a new symbol, not in the alphabet A 

of M, and define the interpretation h' of A U {b} such that h' (a) = h{ a) for 

every a E A and h{b) = idl . Then h'{M U {b1wl }) = h{M) U {idd = grl (L). 

It is easy to see that there is a sequential machine mapping that transforms M 

into M U {b1wl }. This proves one direction of the equivalence. To show the other 

direction, assume that grl{L) E Int{K). If id l E gr{L), then there is nothing to 

prove. Now let idl rt gr{L). Then gr{L) = grl (L) - {idd. Let gr{L) = h{M) 

for some interpretation h and some M E K, M ~ A'. Let B be the set of 

all a E A such that h{ a) has at least one edge. Then the regular language 
A' EA' is the set of all wE A' such that h{w) contains at least one edge. Hence 

gr{L) = h{M n A' BN) E Int{K). 
Second, let gr,{w) = backfold{grl (w)), and let Str, be defined on the basis of 

gr,. Then Str,{Int{K)) = Strl (Int(K)). This is because for every graph language 
L, L E Int{K) iff backfold{L) E I~t{K). To see this, note that for every graph 
9 with type{g) = (m, n), backfold{g) = (g Ell idn ) 0 backfold{idn ) (see the proof 
of Theorem 7) and 9 = (idm Ell fold{idn )) 0 (backfold{g) Ell idn ) (see the proof of 
Theorem 13). Thus, it suffices to show that Int{K) is closed under the operations 

£' Ell {idn }, {h} 0 £' , and £' 0 {h}. 'For the first operation this has been shown in 
the proof of Lemma 19. The other two operations are left to the reader (see the 

end of the proof of Theorem 13 and the end of the proof of Theorem 27). 
Third, define gr3{w) in the same way as gr,{w), except that the type of the 

edges is changed from (I, 1) to (2,0). To be precise, an edge e with s{e) = 11. and 
t{e) = v in gr,{w), has s{e) = uv and t{e) =.\ in gr3{w). It should be clear that 
Str3{Int{K)) = Str,{Int{K)), where Str3 is based on gr3 in the usual way. 

In [EngHey], the coding gr3 is used instead of gr. We have just shown that this 
does not change the class Str{LIN-IiR{K)), in the sense that Str3{LIN-HR{K)) = 
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Str(LIN-HR(K)). Another small difference is that in [EngHey] all (terminal 
and nonterminal) edges of graphs have type (m,O) for some m. Let us indi
cate this here by HR'. Since all edges of gr3(w) have type (2,0), and since 
backfold(gr3(w)) = gr3(w), it should be clear from the construction of G in 
the proof of Theorem 13 that for every language L, gr3(L) E LIN-HR'(K) iff 

gr3(L) E LIN-HR(K). This shows that Str(LIN-HR(K)) = Str3(LIN-HR'(K)), 
the class considered in [EngHey]. 

It is proved in [EngHey] that Str(LIN-HR) equals the class of ranges of 

2dgsm mappings. Since it is easy to see that LIN-HR(REG) = LIN-HR and 

that 2DGSM(REG) is the class of output languages of 2dgsm's (by incorporat

ing the regular control language in the finite control of the grammar and the 
2dgsm, respectively), this proves the theorem for K = REG. The proof of the 

general case consists of a careful analysis of the proof in [EngHey], which shows 
that it can be generalized to K-controlled grammars, under the assumption that 

K is closed under sequential machine mappings (and K is nontrivial). This anal

ysis can easily be carried out. 0 

From Theorems 27) 28) and Lemma 29, we obtain our second characterization 

of the class Ext(K). 

Theorem 30. For every nontrivial class K that is closed under sequential ma

chine mappings, Ext(K) = 2DGSM(K). 

Corollary 31. For all nontrivial classes K and K' that are closed under se

quential machine mappings, 

Int(K) = Int(K') if and only if 2DGSM(K) = 2DGSM(K'). 

Quite a lot is known about the class 2DGSM(K), see, e.g., [EngRS]. As an ex

ample, it equals the class oflanguages generated by K-controlled ETOL systems 
of finite index (Corollary 4.10 of [EngRS]). The trivial fact that Ext(Ext( K)) = 

Ext(K) corresponds to the known result that 2DGSM(2DGSM(K» is equal to 

2DGSM(K); this shows that Ext(K) is closed under 2dgsm mappings (cf. Corol
lary 5.8 of [EngRS]). 

Theorem 30 and Corollary 31 allow us to use known formal language theoretic 

results for the classes 2DGSM(K) to find out the power of the classes Int(K). 
Thus, for K = REG, Ext(K) is the class 2DGSM(REG) of output languages 
of 2dgsm mappings. Since it is well known that the class DB of derivation

bounded context-free languages is contained in 2DGSM(REG) (see, e.g., [Raj]), 
this implies the previously mentioned result that Int(DB) = Int(REG). Also, 
since there is a context-free language not in 2DGSM(REG), see Lemma 4.24 of 

[Gre] (or Theorem 3.2.17 of [EngRS]), Int(REG) is properly included in Int(CF). 

Theorem 32. Int(REG) = Int(LIN) = Int(DB) C Int(CF) C HR. 

Finally, we would like to know whether Int( CF) is the largest class Int( K) that 
is included in HR. This is true if and only if Ext(CF) is the largest class K such 
that Int(K) is included in HR. Trying to find an answer to this question, we first 
characterize this largest class. 
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Theorem 33. Str(HR) is the largest class K such that Int(K) <; HR. 

Proof. The proof is similar to the one of Theorem 28. We first observe that HR 
is closed under replacements. In fact, if G is a context-free graph grammar over 

CS (see Theorem 11) and ¢ is a replacement, then ¢(val(L(G))) = val(L(G')), 

where G' is obtained from G by changing every constant cg that occurs in the 
productions of G into c<l(g). The correctness of this construction follows from 
Lemma 4. 

As in the proof of Theorem 28 it now suffices to show that AtInt(Str(HR)) <; 
HR. Instead of HR we consider the class Val(CFG(CS)), see Theorem 11. Let 
G = (N, T, P, S) be a context-free graph grammar over CS such that val(L( G)) = 
gr(L) for some language L <; B', and let h be an atomic interpretation of B such 

that h(L) is a graph language. Note that, as in the proof of Theorem 28, each 

symbol b E B has type (1,1) in val(L( G)), and has an arbitrary type with respect 

to h. We may assume that G is in normal form, i.e., that all its productions are 
of the form X --+ cg or X --+ YoZ or X --+ YEIlZ, where X, Y, ZEN and 9 E GR 

(this is the usual normal form of regular tree grammars, see, e.g., [GecSte]). 

We have to construct a context-free graph grammar G' = (N', T', P', S') 

such that val(L(G')) = h(L). The idea of the construction is the same as in 

the proof of Theorem 28: each graph gr(w) for which h(w) is defined, is trans
formed into exp(gr(w),JL), where JL is the unique decoration of gr(w) (see the 
proof of Theorem 28 for the terminology used). Let M be the maximal number 

occurring in the types of the symbols of B (with respect to h). We define N' 

to consist of all triples (X,JLb,JL,) such that X E Nand JLb,JL, E {1, ... ,Mt 
with type(X) = (IJLbl, IJL,I); moreover, type(X, JLb, JL,) = type(X). The intuition 
is that if atom(X) =;.' 9 where 9 is terminal, then atom(X, JLb, JL,) =;.' exp(g, JL) 

where JL is the decoration of 9 such that JL(begin(g)(i)) = JLb(i) for aliI :0; i :0; IJLbl 
and JL(end(g)(j)) = JL,(j) for all 1 :0; j :0; IJL,I (note that, assuming G to be re

duced, JL is unique because all isolated nodes of 9 are begin or end nodes). 
The initial nonterminal S' of G' is (S, (m), (n», where (m,n) = type(h(L)). 

The productions in p' are defined as follows. If X --+ Y 0 Z is in P, then 
(X, JLb, JL,) --+ (Y, JLb, JL) 0 (Z, JL, JL,) is in P' for all appropriate strings JLb, JLeo 

and JL over {I, ... ,M}. If X --+ YEll Z is in P, then (X,JLb . JL~,JL, . JL;) --+ 

(Y,JLb,JL,) Ell (Z,JL~,JL;) is in P' for all (Y,JLb,JL,),(Z,JL~,JL;) EN'. Finally, if 
X -+ cg is in P, then (X, jlb, J.le) -+ Cexp(g,/.t) is in pI for all strings Ph, Jle and 

all decorations JL of 9 such that JL(begin(g)(i)) = JLb(i) and JL(end(g)(j)) = JL,(j) 
for all appropriate i and j. 

This ends the construction of G'. A formal correctness proof is left to the 

reader. It should be based on a definition of the sum of decorated graphs, and 

the fact that 'exp' is a homomorphism with respect to this sum (and the cor
responding fact for the concaten'ltion of decorated graphs, as observed in the 
proof of Theorem 28). 0 

This proves that Int(Str(HR)) is the largest class Int(K) that is included in HR. , 
It is shown in [EngHeyJ that the class Str(HR) of string languages gen

erated by HR grammars is equal to the class OUT(DTWT) of output lan-
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guages of deterministic tree-walking transducers. It now follows from Theo
rems 30 and 33 that Int(CF) is the largest class Int(K) that is included in HR 
if and only if Ext(CF) is the largest class K such that Int(K) ~ HR if and 
only if 2DGSM(CF) = OUT(DTWT). Note that it follows from our results that 
2DGSM(CF) = Ext(CF) = Str(Int(CF)) ~ Str(HR) = OUT(DTWT), which 
was proved in a completely different way in Corollary 5.6 of [EngRSj (where 

2DGSM(CF) is denoted DCS(CF), and OUT(DTWT) is denoted DCT(REC) 
or yTr,(REC)). However, equality of 2DGSM(CF) and OUT(DTWT) is men

tioned as an open problem after Corollary 5.6 of [EngRSj. Hence, it is an open 

problem whether or not Int(CF) is the largest class Int(K) that is included in 

HR. As another open problem we mention the following: is it true that every HR 
graph language of bounded pathwidth is ill Int(Str(HR))? Or even in Int(CF)? 

Note that all HR graph languages in Int(S1r(HR)) are of bounded pathwidth by 
Corollary 17. Some more open problems are: is it decidable whether an HR graph 
language is in Int(REG)? and the same question for Int(CF) and Int(Str(HR)). 

We finally mention that it would be interesting to find another natural op
eration of concatenation of graphs that can be used to characterize the graph 
languages generated by the linear edNCE grammars (which are node replace

ment graph grammars, see, e.g., [CouER]). 

Acknowledgment. We wish to thank Hans Bodlaender for the references to 
pathwidth. 
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