

Context-free graph grammars and concatenation of graphs

Citation for published version (APA):
Engelfriet, J., & Vereijken, J. J. (1995). Context-free graph grammars and concatenation of graphs. (Computing
science reports; Vol. 9533). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/c7be526a-d36f-4011-9986-ff86cb96a8c0

lSSN 0926-4515

All rights reserved

Eindhoven University of Technology

Department of Mathematics and Computing Science

Context-Free Graph Grammars and

Concatenations of Graphs

by

Joost Engelfriet and Jan Joris Vereijken

95/33

editors: prof. dr. I.C.M. Baeten

prof.dr. M. Rem

Computing Science Report 95/33
Eindhoven, December 1995

Context-Free Graph Grammars and

Concatenation of Graphs

Joost Engelfriet * and Jan Joris Vereijken **

Department of Computer Science, Leiden University

P.O.Box 9512, NL-2300 RA Leiden, The Netherlands

e-mail: engelfri<Dvi.leidenuniv.nl

Abstract. An operation of concatenation is defined for graphs. This

allows strings to be viewed as expressions denoting graphs, and string

languages to be interpreted as graph languages. For a class J{ of string

languages, IntC K) is the class of all graph languages that are interpre

tations of languages from J(. For the classes REG and LIN of regular

and linear context-free languages, respectively, Int(REG) = Int(LIN).

Int(REG) is the smallest class of graph languages containing all sin

gletons and closed under union, concatenation and star (of graph lan

guages). Int(REG) equals the class of graph languages generated by lin

ear HR (= Hyperedge Replacement) grammars, and Int(J() is generated

by the corresponding J(-controlled grammars. Two characterizations are

given of the largest class J(' such that Int(J(I) = Int(J(). For the class CF

of context-free languages, Int(CF) lies properly inbetween Int(REG) and

the class of graph languages generated by HR grammars. The concate

nation operation on graphs combines nicely with the sum operation on

graphs. The class of context-free (or equational) graph languages, with

respect to these two operations, is the class of graph languages generated

by HR grammars.

1 Introduction

Context-free graph languages are generated by context-free graph grammars,
which are usually graph replacement systems. One of the most popular types of

context-free graph grammar is the Hyperedge Replacement System, or HR gram
mar (see, e.g., [Hab, HabKre, HabKV]). A completely different way of generating

graphs is to select a number of graph operations, to generate a set of expressions
(built from these operations), and to interpret the expressions as graphs. The set
of expressions is generated by a classical context-free grammar generating strings

(or more precisely, by a regular tree grammar). This way of generating graphs
was introduced, for arbitrary objects rather than graphs, in [MezWri], where

the generated sets of objects are called equational. For graphs in particular, this

• The first author was supported by ESPRIT BRWG No.7183 COMPUGRAPH II.

n The present address of the second author is Faculty of Mathematics and Computing

Science, Eindhoven University of Technology, P.O.Box 513, NL-5600 MB Eindhoven,

The Netherlands, e-mail: janjorislDacm.org

1

generation method was first investigated in [BauCou). It is shown in [BauCou)
that, for a particular collection of graph operations, this new graph generating

method is equivalent with the HR grammar. Other work on the generation of
graphs through graph expressions is in, e.g., [CouZ, CouER, Dre, Eng).

In this framework we investigate another, natural operation on graphs that

was introduced (for "planar nets") in [HoU) (and which is a simple variation of
the graph operations in [BauCou)). Due to its similarity to the concatenation of

strings, we call it concatenation of 9mphs. Together with the sum operation of
graphs (introduced for planar nets in [Hot1) and defined for graphs in [BauCou))
and all constant graphs, a collection of graph operations is obtained that is

simpler than the one in [BauCou), but also has the power of the HR grammar
(which is our first main result, proved in Section 4). Concatenation and sum
satisfy some nice basic properties, discussed in Section 3; in particular, all graphs

can be built from a small number of elementary graphs with the operations of
concatenation and sum. Thus, it suffices to use these elementary graphs in the

context-free grammars that generate graph expressions.

The basic laws that are satisfied by concatenation and sum of planar nets,

form the basis of the theory of x-categories developed in [HoU) (also called
strict monoidal categories, see, e.g., [EhrKKK, Ben)). Free x-categories model

the sets of derivation graphs of Chomsky type 0 grammars (see [HotZ, Ben)).
Finite automata on such graphs are considered, e.g., in [BosDW). The idea of
using concatenation and sum in graph grammars is from [HotKM}, where "logic

topological nets" are generated by graph grammars (with parallel rewriting). Our

first main result (mentioned above) confirms the naturalness of these operations.

Our main interest in this paper is in the generation of graphs through graph

expressions that use concatenation only. Since graph concatenation is associative,

an expression that is built from constant graphs by concatenation, is essentially
the same as a string. This shows that we can use arbitrary context-free gram
mars as graph grammars, by just interpreting the generated strings as graphs.

More generally, every class K of string languages determines a class Int(K) of
graph languages: Int(K) is the set of all graph languages h(L) where h is an

"interpretation" and L is a string language from K. An interpretation of an al

phabet A is a mapping h that associates a graph h(a) with every symbol a; it is
extended to strings over A by h(a, ... an) = h(a,) e··· e h(an), where e denotes
concatenation of graphs. Thus, symbols are interpreted as graphs, strings are

interpreted as graphs (by interpreting string concatenation as graph concate
nation), and string languages are interpreted as graph languages. Note that an

interpretation looks like a semi-group homomorphism; however, it is not exactly

one, because concatenation on graphs is, in fact, a partial operation. More pre
cisely, graphs are typed, and concatenation is defined only if the types "fit". In

fact, as in [Hab), our graphs are equipped with a designated sequence of "begin
nodes" and a designated sequence of "end nodes" (generalizing the idea that

strings have a beginning and an end). A graph 9' can be concatenated with a
graph 92 only if the sequence of end nodes of 9' has the same length as the se
quence of begin nodes of g2. Their concatenation g, eg2 is obtained by identifying

Z

each end node of 91 with the corresponding begin node of 92 (just as strings are
concatenated by identifying the end of the first string with the beginning of the
second).

We investigate Int(K) for specific K (such as the class REG of regular

languages, the class CF of context-free languages, and the class LIN of linear
context-free languages), but also for arbitrary K (satisfying some mild closure
properties). In Section 5, after defining the notion of interpretation, we show

that the graph languages in Int(REG) are exactly those that can be denoted
by regular expressions, built from singleton graph languages with the opera

tions of union, concatenation, and star (on graph languages). We also show that

Int(REG) = Int(LIN) and that it equals the class LIN-HR of graph languages
generated by linear HR grammars. This suggests that regularity and linearity are
the same for graph languages. The class Int(CF) contains, as expected, exactly

those graph languages that can be generated by expression generating context
free grammars that do not use the sum operation. Thus, by our first main result,

it is included in the class of graph languages generated by HR grammars. The
inclusion is proper, due to the close connection between graph concatenation and

the pathwidth of graphs: every graph language in Int(K) is of bounded path

width (and graph languages of unbounded pathwidth, such as the set of trees,
can be generated by HR grammars).

Generalizing the result that Int(REG) = LIN-HR, we show in Section 6 that

(under the rather weak assumption that K is closed under sequential machine
mappings) Int(K) is equal to LIN-HR(K), the class of graph languages that are
generated by linear HR grammars with a control language from K (with the

usual notion of control).

As observed above, Int(REG) = Int(LIN). In Section 7 we investigate the

question, for given K and K', whether or not Int(K') = Int(K) (where we assume
that K and K' are closed under sequentjal machine mappings). Trivially, for
every K there is a largest class K such that Int(K) = Int(K). We call this class

the extension of K, denoted Ext(I<). Clearly, the question Int(K') = Int(K)
is now reduced to the question Ext(K') = Ext(K), which concerns classes of
string languages rather than graph languages. The main result of this section is
that Ext(K) consists exactly of all string languages that are in Int(K), coding

strings as graphs in the obvious way (viz., as edge-labeled chain graphs). Using
the characterization in Section 6, and generalizing a result concerning the string

generating power of linear HR grammars from [EngHey], we show that Ext(K) =

2DGSM(K), the class of all languages that are images of languages from K under

2-way deterministic gsm mappings. Thus, Int(K') = Int(K) iff 2DGSM(K') =
2DGSM(K), a purely formal language-theoretic question. By the well-known
result that 2DGSM(REG) is properly included in 2DGSM(CF), we conclude
that Int(REG) is properly included in Int(CF).

A preliminary version of this paper was presented at the 5th International
Workshop on Graph Grammars and their Application to Computer Science
[EngVer). The work is based on the Master's Thesis of the second author [VerI.

3

2 Preliminaries

2.1 Strings

We assume the reader to be familiar with formal language theory (see, e.g.,
[Ber, HopUll, Sal]). Here we just recall some of the concepts to be used.

N = {O, 1, 2, ... J denotes the set of natural numbers. For a set V, V' de
notes the set of all finite sequences (or strings) of elements of V. A sequence

(Vl,V2) ... ,Vn) E V*, with Vi E V, is also written as VIV2" 'Vn (as A if n = 0).

The length of a string w E V' is denoted Iwl, and, for 1 :s i :s Iwl, its ith
element is denoted w(i). Thus, if w = Vj ... V n , then Iwl = nand w(i) = Vi.

Concatenation of strings is defined in the usual way.

A context-free grammar is a tuple G = (N,T, P, S) where N is the nonter

minal alphabet, T is the terminal alphabet (disjoint with N), P is the set of

productions (of the form X -> ", with" E (N U T)'), and S is the initial non
terminal. The language L(G) ~ T' generated by G is defined in the usual way.

A context-free grammar is linear ~f there is at most one nonterminal occurrence

in each right-hand side of a prod~ction, and it is right-linear if each production
is of the form X -> aY or X -> a, with X, YEN and a E T. The class of lan

guages generated by all (all linear) context-free grammars is denoted CF (LIN,
respectively). By REG we denote the class of regular languages. Note that the
right-linear context-free grammars generate the class of A-free regular languages
(i.e., those regular languages that do not contain A).

2.2 Graphs and graph replacement

We consider the multi-pointed, directed, edge-labeled hypergraphs of [HabJ. Such
a hyper graph consists of a set of nodes and a set of (hyper ledges, just as an
ordinary graph, except that an edge may have any number of sources and any
number of targets, rather than just one source and one target. Each edge is

labeled with a symbol from a "doubly-ranked" alphabet, in such a way that
the first (second) rank of its label equals the number of its sources (targets,
respectively). Finally, every hypergraph is multi-pointed in the sense that it
has a designated sequence of "begin nodes", and a designated sequence of "end

nodes"; these can be used conveniently for gluing hypergraphs to each other.

Formally, a typed (or doubly ranked) alphabet is an alphabet E together with
a mapping type: E -> N x N. A multi-pointed hypergraph over E is a tuple

9 = (V, E, 8, t, /, begin, end), where V is the finite set of nodes, E is the finite set
of (hyper)edges, 8 : E -> V' is the source function, t : E -> V' is the target

function, / : E -> E is the labeling function such that type(l(e)) = (18(e)l, It(e)l)
for every e E E, begin E V* is the sequence of begin nodes, and end E V* is the

sequence of end nodes.
For a given multi-pointed hypergraph g, its components will also be denoted

by Vg , Eg , 8 g , tg, /g, begin(g), and end(g). If Ibegin(g)1 = m and lend(g)1 = n,

then 9 is said to be of type (m,n) and we write type(g) = (m,n). Similarly,
for an edge e of g, we write type(e) to denote type(l(e)); thus, by the above

4

requirement, iftype(e) = (m,n), then e has m sources and n targets. If a multi
pointed hypergraph is of type (0,0) and all its edges are of type (1,1), then it is
an ordinary directed graph (with labeled edges).

For a typed symbol 17, with type(l7) = (m,n), we denote by atom(l7) the
multi-pointed hypergraph 9 of type (m, n) such that Vg = {Xl, ... , Xm , YI , ... , Yn},

Eg = {e} with I(e) = 17, and begin(g) = s(e) = (XI, ... ,Xm), and end(g) =
tIe) = (YI, ... ,Yn). A multi-pointed hypergraph of the form atom(l7) will be
called an atom (it is called a handle in [Hab]).

Two multi-pointed hypergraphs 9 and h are disjoint if Vg n Vh = 0 and

Eg nEh =0.

From now on we will just say graph instead of multi-pointed hypergraph. As

usual we consider both concrete and abstract graphs, where an abstract graph is
an equivalence class of isomorphic concrete graphs. The isomorphisms between

graphs g and h are the usual ones, which, additionally, should map begin(g) to
begin(h), and end (g) to end(h). In particular, isomorphic graphs have the same
type. We are only interested in abstract graphs; concrete graphs are just used

as representatives of abstract graphs. The set of abstract graphs over a typed
alphabet E will be denoted GR(E), and GR denotes the union of all GR(E)
(where E is taken from some fixed, infinite set of symbols). A (typed) graph

language is a subset L of GR(E), for some E, such that all graphs in L have the
same type (m, n), also called the type of L, and denoted by type(L) = (m, n).

A basic operation on graphs is the substitution of a graph for an edge (see
[Hab, BauCou]). To define it formally, it is convenient to use an operation of

node identification (or "gluing"), as follows.

Let 9 be a graph, and let R <; Vg x Vg. Intuitively, we wish to identify nodes

X and Y, for every pair (x, y) E R. For x E Vg, let [XJR denote the equivalence
class of x with respect to the smallest equivalence relation on Vg containing R.

For V <; Vg, let VIR = {[XJR] x E V}. For a sequence x = (Xl, ... ,Xn) E V;

with Xi E Vg , let IxlR = (lx.]R, ... , IXnIR)' Then we define the graph g/ R by
g/ R = (Vg/ R, Eg, s, t, Ig, [beginJR' [endJR) such that s(e) = [Sg(e)JR and tIe) =

[tg(e)IR for every e E Eg.

Substitution of a graph for an edge is now defined as follows. Let 9 be a graph,
let e be an edge of g, and let h be a graph such that type(h) = type(e) = (m, n).

We assume that 9 and h are disjoint (otherwise an isomorphic copy of h should
be taken). Let g' be the graph that is obtained from 9 by removing e and adding

h (disjointly), i.e., g' = (Vg U Vh, (Eg - {e}) U Eh, S, t, I, begin(g), end(g)), where
8(e) = 8g(e) for e E Eg - {e} and s(e) = shIel for e E Eh, and similarly for t and
I. Note that g' has the begin and end nodes of g. Then the substitution of h for e in

g, denoted by g[e/h], is the graph g'/R where R = {(sg(e)(i), begin(h)(i))]1 ::;
i::; m} U {(tg(e)(i),end(h)(i))]1 ::; i::; n}. Thus, intuitively, after removing e
and adding h, the ith source of e is identified with the ith begin node of h, and the
ith target of e is identified with the ith end node of h. The notion of substitution

defined here is not precisely the one in [HabJ, but it is (the appropriate extension
to the doubly ranked case of) the one in [BauCouJ; however, they are equivalent
from the point of view of graph generation'by hyperedge replacement grammars.

5

In a substitution g[e/h]' h can be taken as an abstract graph (in the sense that
if hand h' are isomorphic, then so are g[e/h] and g[e/h']); but 9 is necessarily

concrete, because its concrete edge e is involved. To turn substitution into an

operation on abstract graphs, we substitute graphs for all edges of 9 and let the
graph h to be substituted for edge e be determined by the label of e. This leads

us to a notion of substitution that generalizes the notion of homomorphism of
strings (in formal language theory), and that we will call "replacement" (of edges

by graphs).

Let E be a typed alphabet. A replacement is a mapping </> : E ---> GR such
that type(</>(er)) = type(er) for every er E E; it is extended to a mapping from

GR(E) to GR by defining, for 9 E GR(E), </>(g) = g[eI/</>(I(e.))] ... [ek/4>(I(ek))]'
where Eg = {eJ, ... , ed. Thus, every edge e of 9 with label l(e) = er is replaced

by the graph </>(er). It is well known that this definition does not depend on the
order el,' .. ,ek in which the edges are replaced (because substitution is conflu

ent, cf. [Caul]). It should also be clear that every replacement is an operation
on abstract graphs: if 9 and g' are isomorphic, then so are </>(g) and </>(g').

We denote the class of all replacements by Repl, and, for a class K of graph
languages, we let Repl(K) = {</>(L) I </> E Repl, L E K}.

Another basic property of substitution is its associativity (see [Caul]). In our

present formulation it means that the composition of two replacements is again
a replacement (as one would expect from a generalization of string homomor
phism).

Proposition 1. Repl is closed under composition.

Proof. It can be shown, based on the associativity of substitution, that, for a re

placement </>, </>(g[eI/h1] .. • [ek/h.]) = g[el/4>(h.)] .. · [ek/</>(hk)], where Eg =

{el,'" ,ed· Now let El and E, be two typed alphabets. Let </>1 : El --->

GR(E,) and </>, : E, ---> GR be two replacements. Define the replacement

</> : El ---> GR by: </>(er) = </>'(</>I(er)) for every er EEl. Then, for a graph

9 with Eg = {el, ... ,ed, </>'(</>I(g)) = </>,(g[eI/</>I(I(el))] .. ·[e./4>I(l(ek))]) =

g[el/4>'(</>I(lhlll]'" [ek/4>2(</>I(l(ek)))] = g[eI/</>(l(eIl)]'" [ek/4>(l(ek))] = </>(g).
This shows that </> = </>, 0 </>1, 0

A useful elementary property of replacements is that, for every replacement
</> : E ---> GR and every er E E, </>(atom(er)) = </>(er). Also, if </>(er) = atom(er) for
everyer E E, then </>(g) = 9 for every 9 E GR(E).

Besides replacement operations, there are two other, simpler operations on
(abstract) graphs that will be useful. They only change the begin and end

nodes of a graph. Let 9 be a graph. The fold of g, denoted fold(g), is the
same as g, except that begin(fold(g)) = A and end(fold(g)) = begin(g)· end(g),

where· denotes concatenation or'strings, as usual. The back/old of g, denoted
backfold(g), is the same as g, except that begin(backfold(g)) = begin(g)· end(g)
and end(backfold(g)) = A.

6

2.3 Hyperedge replacement grammars

Hyperedge replacement grammars (or HR grammars) are context-free graph
grammars that substitute graphs for edges. An HR grammar is a tuple G =
(N, T, P, S) where N is a typed alphabet of nonterminals, T is a typed alphabet
of terminals (disjoint with N), P is a finite set of productions, and SEN is the

initial nonterminal. Every production in P is of the form X --+ h with X E N,

hE GR(N U T), and type(X) = type(h); moreover, we assume (without loss of
generality) that no two edges of h are labeled by the same nonterminal.

Application of a production p = X --+ h to a graph is defined as follows. Let

9 E GR(N U T), and let e E Eg. Then p is applicable to e if Ig(e) = X, and the

result of the application is the graph g[elh]. We write 9 *p g', or just 9 * g', if
g' is the result of applying p to e of g, i.e., if g' is (isomorphic to) g[el h]. As usual,

*' denotes the transitive reflexive closure of *. The graph language generated

by G is L(G) = {g E GR(T) I atom(S) *' g}. Note that type(L(G)) = type(S).

We denote by HR the class of graph languages generated by HR grammars.
An HR grammar is linear if there is at most one nonterminal edge in each right
hand side of a production. We denote by LIN-HR the class of graph languages
generated by linear HR grammars.

A fundamental property of HR grammars is formulated in the following
"context-freeness lemma" (cf. Section 11.2 of [Hab]). As shown in Lemma 2.14

of [Coul], it is based on the associativity of substitution. Due to the above as
sumption that a nonterminal occurs at most once in the right-hand side of a

production, it can be stated in terms of replacements, as follows.

Proposition 2. Let G = (N, T, P, S) be an HR grammar. Let X --+ h be in

P, and let 9 E GR(T). Let lab(h) = {lh(e) leE E h}. Then h *' 9 if and

only if there exists a replacement ¢ : lab(h) --+ GR(T) such that ¢(h) = 9 and

atom(O") *' ¢(O") for every 0" E lab(h). Moreover, the length of the derivation

h =>' g equals the sum of the lengths of all derivations atom(O") =>' </>(<7).

3 Concatenation and Sum

In this section we define the graph operation of concatenation, and investigate
some of its basic properties. In particular we show that it combines well with

the sum operation on graphs. These operations work on abstract graphs. Intu
itively, concatenation is sequential composition of graphs, and sum is parallel

composition of graphs.

If 9 and h are graphs with type(g) = (k, m) and type(h) = (m, n), then their
concatenation 9 0 h is the graph obtained by first taking the disjoint union of 9

and h, and then identifying the ith end nod~ of 9 with the ith begin node of h, for
every i E {I, ... , m}; moreover, begin(g 0 h) = begin(g) and end(g 0 h) = end(h),
and so type(g 0 h) = (k,n). Note that th~ concatenation of 9 and h is defined

only when lend(g)1 = Ibegin(h)l. Formally, the definition is as follows (where we
use node identification as defined in Section 2.2).

7

Definition 3. Let 9 and h be graphs such that lend(g)1 = Ibegin(h)l. We as·
sume that 9 and h are disjoint (otherwise an isomorphic copy of 9 or h should
be taken). The concatenation go h of 9 and h is the graph (g&h)/ R where
g&h = (Vg U Vh, Eg U Eh,8g U 8h, tg U th, Ig U Ih , begin(g),end(h)) and R =

{(end(g)(i), begin(h)(i)) 11 SiS lend(g)I}. D

The sum 9 Ell h of arbitrary graphs 9 and h is their disjoint union, with their
sequences of begin nodes concatenated, and similarly for their end nodes. More

formally, assuming that 9 and h are disjoint, 9 Ell h = (Vg U Vh, Eg U E h, 8g U
8h, tg U th, Ig U Ih , begin(g) . begin(h), end (g) . end(h)).

The sum operation is taken from [BauCou] (where only graphs without end

nodes are considered). All other operations in [BauCou] (viz. source redefinitions
and source fusions) are unary operations) each of which is left-concatenation with

a specific fixed graph.

g= h=

"
bl

,
f3 el ,
"

e,

blob, c9" ,
, el

b3 . 0:

f3

goh = gEllh=

bl~'1 "
'Y f3 f3 'Y

ex ')' el

f3 " b,

f3 e,

Fig. 1. Two graphs, their concatenation, and their sum.

Figure 1 shows two (ordinary) abstract graphs, 9 of type (2,3) and h of type
(3,1), with their concatenation go h of type (2,1) and their sum 9 Ell h of type

8

(5,4). The graphs are drawn in the usual way; the ith begin node is indicated
by bi , and the ith end node by ei.

These two graph operations have a number of simple properties. We stress
again that the following lemmas are all about abstract graphs; in particular,

the equality sign refers to the equality of abstract graphs (which is isomorphism
of concrete graphs). First of all we show the basic fact that replacements are

homomorphisms with respect to concatenation (just as string homomorphisms)

of which they are a generalization) and with respect to sum.

Lemma4. Let q,: E -+ GR be a replacement, and let g,h E GR(E).

(1) if lend(g)1 = Ibegin(h)l, then q,(g 0 h) = q,(g) 0 q,(h), and

(2) q,(g Ell h) = q,(g) Ell q,(h).

Proof. (1) It is easy to verify this equality in the case that both 9 and hare
atoms (for the definition of an atom, see Section 2.2). The general case is then
proved as follows. Let r7 and r be two symbols with the same type as 9 and h,

respectively. Let 'I/J : {r7,r} -+ GR(E) be the replacement with 'I/J(r7) = 9 and
'I/J(r) = h. Then, by the above special case, 'I/J(atom(r7)oatom(r)) = 'I/J(atom(r7))0

'I/J(atom(r)) = 'I/J(r7) 0 'I/J(r) = 9 0 h. Hence q,(g 0 h) = q,('I/J(atom{r7) 0 atom(r))).
By Proposition 1, q,o'I/J is a replacement. Hence, again by the above special case,
q,(g 0 h) = q,('I/J(atom(r7)) 0 q,('I/J(atom(r)) = q,('I/J(r7)) 0 q,('I/J(r)) = q,(g) 0 q,(h).

The proof of (2) is analogous. 0

This lemma allows us to prove laws about 0 and Ell by proving them for atoms

only (as, in fact, we already did in the proof of Lemma 4). The next lemma
summarizes the main basic properties of 0 and Ell.

Definition 5. For every n E N the identity idn of type (n, n) is the discrete

graph with nodes Xl, ..• , Xn and begin(idn) = end(idn) = Xl ... xn. Thus, idn
is the (abstract) graph ({XI"", xn}, 0,0,0,0, (Xl, ... ,Xn), (XI, . .. , Xn}). In par-
ticular, ida is the empty graph. 0

Lemma 6.

(1) Concatenation is associative, i.e., if lel1d(gdl = Ibegin(g,)1 and lend(g,)1 =
Ibegin(g3)1, then (gl 0 g,) 0 g3 = gl 0 (g, 0 g3).

(2) The id n are identities with respect to concatenation, i.e., go idn = 9 and

idn 0 h = h for every 9 with lend(g)1 = nand h with Ibegin(h)1 = n.

(3) Sum is associative with unity ida, i.e., (gl Ell g,) Ell g3 = gl Ell (g, Ell g3) and

9 Ell ida = ida Ell 9 = g.

(4) For every m, n E N, id=+n = id= Ell idn.
(5) Concatenation and sum satisfy the law of strict monoidality:

if lend(g)1 = Ibegin(g')1 and lend(h)1 = Ibegin(h'}10 then

(g Ell h) 0 (g' Ell h') = (g 0 g') Ell (h 0 h').

Proof. (1) It is easy to verify that concatenation is associative for atoms. Now
let r7 i be a symbol with the same type as gi, and let q, be the replacement
with q,h) = gi· Then q,((atom{r7IJ 0 atom(r7,)} 0 atom(r73)) = q,(atom(r7I) 0

9

(atom(0"2) oatom(0"3)), and, by Lemma 4, 1>((atom(O",) 0 atom(0"2)) 0 atom(0"3)) =

(1)(atomh)) 0 1>(atom(0"2))) 0 1>(atom(0"3)) = (gl 0 g2) 0 g3 and 1>(atom(O",) 0

(atom(0"2) 0 atom(0"3)) = 1>(atom(O",)) 0 (1)(atom(0"2)) 0 1>(atom(0"3))) = g, 0 (g2 0

g3).

Properties (2), (3), and (5) can be shown in exactly the same way: by veri

fying them for atoms, and applying Lemma 4. Note that 1>(idn) = idn for every

replacement 1>. Property (4) is obvious. D

Lemma 6 means that GR is a strict monoidal category (or x-category), see, e.g.,

[EhrKKK, Hot!, Benl. The objects of this category are the natural numbers in

N, and each (abstract) graph of type (m, n) is a morphism from m to n in this

category. Concatenation is the composition of morphisms (but is usually written

hog rather than goh), and the idn are the identity morphisms. The set of objects

and the set of morphisms form a monoid with respect to + and Ell, respectively

(where + is ordinary addition for natural numbers, with monoid identity 0).
We now show that all graphs can be built from a small number of elementary

graphs with the operations of concatenation and sum.

For m, n E N, let Im,n be the graph of type (m, n) with one node x, no edges,

begin(Im,n) = xm = (x, . .. ,x) (m times), and end(Im,n) = xn = (x, . .. , x) (n

times). Note that 1,,1 = id l . Let 7r12 be the graph oftype (2,2) with two nodes x

and y, no edges, begin(7r12) = xy, and end(7r12) = yx. For every typed alphabet

E we define the set of elementary graphs over E by

EL(E) = {atom(O")] 0" E E} U {IO,I,!I,O,!,,2,!2,1,7I'12,ido}.

Theorem 7. For every typed alphabet E, GR(E) is the smallest class of graphs

containing EL(E) and closed under 0 and Ell.

Proo]. We have to show that every graph in GR(E) can be written as an ex

pression with the operators 0 and Ell, and constants from EL(E). We do this by

reducing the problem to smaller and smaller sets of graphs. First we reduce it
to the class of discrete graphs, i.e., graphs without edges.

Let 9 E GR(E), and let e be an edge of 9 with 19(e) = 0". We will re
move e from g, and express g in terms of the so obtained graph g' that has

one edge less than 9 (and in terms of discrete graphs). By repeating this pro

cedure, we can express g in terms of discrete graphs only. Let g' = (V
9

, Eg -

{e}, s, t, I, begin(g), end (g) 'S9 (e)-lg (e)) where s, t, I are the restrictions of S9' tg, 19

to Eg - {e}, respectively. Thus, g' is obtained from 9 by removing e; moreover,

in order to be able to reconstruct 9 from g', the sources and targets of e are

turned into end nodes. It is now easy to verify that

9 = g' 0 (idn Ell backfold(atom(O")))

where n =]end(g)], and the backfold operation is the one defined at the end of
Section 2.2. Intuitively) the end nodes of atom(o-) are turned into begin nodes

(by the backfold operation), and then they are glued to the new end nodes of

g'. It is easy to prove that, for every graph h,

backfold(h) = (h Ell idq) 0 backfold(idq)

10

where q = lend{h)l. Consequently,

9 = g' 0 (id n Ell (atom{u) EIlidq) 0 backfold{idq))

where q = It{e)l. This shows that 9 can be expressed in terms of g' and discrete
graphs.

It remains to find an expression for every discrete graph. To this aim we define

the following special permutation graphs. Let k ~ I and let a be a permutation of
{I, ... , k}. Then 1Ta is the discrete graph with nodes {Xl, ... , x.}, begin{1Ta) =
Xl'" Xk, and end{1Ta) = Xa(l)'" Xa(k)' Note that 1T12 is the permutation graph
1Ta with a{l) = 2 and a(2) = 1. We need some simple properties of permutation

graphs. In what follows we write [n] for {I, ... , n}, for every n EN. First, if

a and (3 are permutations of [k], then 1Ta D 1T{3 = 1Tao{3, and if id is the identity
permutation of [k], then 1Tid = idk . Second, let 9 be a graph of type (m,n)

with Vg = {Xl, . .. ,xk}, begin{g) = XO(I) ···xo (=)' and end{g) = X6(1)' "X6(n),

where 'Y : [m] -+ [k] and 6 : [n] -+ [k]. If a is a permutation of In], then

g01Ta is the same graph as 9 except that end{g 01Ta) = X6(a(I»" ·x,(a(n»'

This means that go 1T a is obtained from 9 py applying permutation a to end{g).
Similarly, if a is a permutation of [m], then 1T a 0 9 is the same graph as 9 except

that begin{1Ta 0 g) = xo(a-'(l))" ,xo(a-'(=»' Thus, to obtain 1Ta 0 9 from g,

permutation a-I is applied to begin{g).

Now let 9 be an arbitrary discrete graph, with type{g) = (m,n), Vg =

{Xl,'" ,X.}, begin{g) = Xo(l)" ·xo (=)' and end{g) = x'(1)" ,x,(n), where
'Y: [m] -+ [k] and 6 : [n]-+ [k]. For every lSi S k, let Pi be the number of occur

rences of Xi in begin{g), and let qi be the number of occurrences of Xi in end{g).

Let a be any permutation of [m] such that Xo(a(l))" .xo(a(=» = xf'· ··xf',
and let (3 be any permutation of [n] such that X'({3(I» ... X6({3(n)) = xi' ... x'l:.

Thus, intuitively, a and (3 order begin{g) and end (g), respectively. Clearly, by the

above properties of permutation graphs, the graph 1Ta-' 0 9 0 1T(J has the same
nodes as g, has begin nodes xp .. . x~k 1 and has end nodes xr ... xic". Hence

1Ta -, 0 9 0 1T(J = Ip"q, Ell'" Ell Ip"q, . By multiplying with 1Ta to the left, and with
7rf3-1 to the right, we obtain that 9 = 1Ta a (Ipt,ql EB··· $ Ipk,q,J 07r{3-1.

It now remains to find expressions for all graphs I=,n and all graphs 1Ta. The
following equations show how to find an expression for Im.,n:

11,1 = ft,2 012,1

I=+l,l = {I=,l Ell Il,d 0 h,l for m ~ 2

Il,n+l = I l ,2 0 {Il,n Ell h,d for n ~ 2

Im,n = Im,l oI1,n for m,n E N.

Clearly, the identity graphs can also be expressed: for every n EN, idn =

II,I EB'" 411,1 (n times). To find an expression for 'lT0'1 where Q' is a permutation

of [k], we note that either a is the identity on [k], in which case 1Ta = idk ,

or a is the composition of interchanging permutations, where an interchanging

permutation Q'i interchanges i and i + 1 and leaves the other numbers as they

are (with lSi S k - I). In the latter case, by the property of permutation

11

graphs mentioned above, 'fru is the concatenation of graphs 'fru ;' Now, clearly,

1i'u; = id i _ 1 EB 1i'12 EEl idk _ i _ l ·

This shows that all graphs in GR(E) can be expressed in terms of 0, Ell, and
the constants in EL(E). 0

Theorem 7 is analogous to Proposition 3.6 of [BauCou]. It is open whether there
exists a complete set of equations (including those of Lemma 6) for the oper
ations in {o, Ell} U EL(E). This would give a result analogous to Theorem 3.10

of [BauCou]. It would characterize GR(E) as the free x-category satisfying the

equations; such results are shown in [Hotl, Cia] (where I',0,!",,",2 are denoted
U, D, V, respectively).

It is not difficult to show that the set EL(E) is minimal, in the sense that

if one removes one element from it, then Theorem 7 does not hold any more.
Also, it should be clear that the concatenation operation cannot be dropped

from Theorem 7, even if one would replace EL(E) by another finite set of graphs

(because, with sum, only graphs with very small connected components could be
built). To show that the sum operation cannot be dropped from Theorem 7, we

now discuss the close relationship between the concatenation operation and the
notion of pathwidth (introduced in [RobSey]; see also, e.g., [Bod, Kia, ElIST]).

In the following definition we (slightly) generalize the notion of pathwidth, to

(hyper)graphs with begin and end nodes (ef. [Cou3]).

Definition 8. A path decomposition of a graph g is a sequence (V" ... , Vn),

n 2: 1, of su bsets of Vg such that

(1) U~~, V; = Vg ,

(2) for every e E Eg there is an i with s(e) E V: and t(e) E V;"
(3) if i < k < j, then V; n 10 ~ Vk , and
(4) begin(g) E V,- and end (g) E V,:.

The width of (V" ... , Vn) is max{#V; 11 SiS n} - 1, where #V; is the
cardinality of V;.

The pathwidth of a graph g, denoted pathwidth(g), is the minimal width of
a path decomposition of g. o

The relationship between concatenation and pathwidth is expressed in the fol
lowing result, which (in view of Tlteorem 23) is essentially due to [Laul (see also
[Cou3]).

Theorem 9. Let k 2: I. For every graph g, pathwidth(g) S k if and only if

there exist graphs g" ... ,gn, n 2: 1, such that 9 = g, 0 ••• 0 gn and # Vg , S k + 1
for every 1 SiS n.

Proof. We prove by induction on n that 9 has a path decomposition (V" . .. , Vn)

of width S k if and only if there exist graphs g" . .. ,gn with # Vg , S k + 1 such
that 9 = at 0 . .. 0 gn. For n = 1 this is obvious.

Assume that 9 has a path decomposition (V" ... , Vn , Vn+,) with #V; S k+ I.

By condition (3) of Definition 8, (V, U· .. U Vn) n Vn +' = Vn n Vn+,. Let g' be the
subgraph of 9 induced by V, U·· ·UVn , such that begin(g') = begin(g) and end(g)

12

consists of the nodes in Vn n Vn+l , in some order. Let gn+1 be the subgraph of 9

induced by Vn+1 with begin{gn+d = end{g') and end{gn+d = end{g). Clearly,
9 = g' 0 gn+l. Also, (VI, ... , Vn) is a path decomposition of 9', and hence, by
induction g' = 91 a ... 09n with # Vgi ::; k + 1, and so 9 = 91 0 ... 0 9n 09n+l.

Assume now that 9 = gl 0·· ·ognogn+1 with #17.; :s k+ 1. Let g' = gl o· . ·ogn.

Hence 9 = g' 0 gn+l' We may assume that g' and 9n+l are disjoint, and that

9 = {g' &gn+d/ R, as in Definition 3. By induction, 9' has a path decomposition
(VI, ... , Vn) with #v, :s k + 1. Let Vn+1 = Vgn+,. It should now be clear that
the sequence (VI! R, ... , Vn / R, Vn+I/ R) is a path decomposition of g. 0

Since there are graphs of arbitrary large pathwidth (such as the complete graph

on n nodes, which has pathwidth n - 1), this theorem implies that, for any
typed alphabet E, there is no finite subset E of GR{E) such that GR{E) is the
smallest set of graphs containing E and closed under concatenation (because the
pathwidth of all graphs in this smallest set is at most equal to the maximal size
of the graphs in E).

4 Context-free graph grammars

In this section we use context-free grammars to generate graph expressions that

are built from arbitrary constant graphs with the graph operators ° and Ell.

Taking the values of these expressions in GR, each such context-free grammar

generates a graph language.

Let CS be the set of operators {o,EIl}U{cg I 9 E GR}, where ° and Ell denote
concatenation and sum of graphs, as usual, and cg is a constant standing for the

graph g.

Expressions over CS are defined in the usual way. Let E be a typed alphabet,
disjoint with CS (where, intuitively, each 17 E E is a variable that ranges over
all graphs with the same type as (7). A (well-formed) expression over CS and E
is a string over CS U E U {(,)} defined recursively as follows, together with its

type: (I) every 17 E E is an expression, with the same type, (2) every constant
cg is an expression, with type{cg) = type{g), (3) if e and f are expressions

with type{e) = (k,m) and type(f) = (m,n), then (e ° j) is an expression with
type{eo j) = (k, n), and (3) if e and f are expressions with type{e) = (m, n) and

type(f) = (p, q), then (e Ell j) is an expression with type{ e Ell j) = (m + p, n + q).

An 'expression over CS' is defined in the same way, without clause (I). If e
is an expression over CS, then its value, denoted by valle), is a graph in GR,

defined recursively in the usual way: vai{cg) = g, valle ° j) = vaile) ° val(f), and
val { e Ell j) = vall e) Ell val (f) .

Definition 10. A context-free graph grammar over CS is an ordinary context

free grammar G = (N, T, P, S), see Section 2.1, such that N is a typed alphabet,
T is a finite subset of CS U {{,)}, and the right-hand side of each production in
P is an expression over CS and N, of the same type as the left- hand side. 0

Obviously, the context-free language L{ G) generated by G is a set of expressions
over CS (and it is also a regular tree language, see [GecSte]). The graph language

13

generated by G is val(L(G)) = {val(e) leE L(G)}. Note that type(val(L(G))) =

type(S). By Val(CFG(CS)) we denote the elMS of all graph languages generated
by context-free graph grammars over CS. By the results of [MezWri], it is the
elMS of equational subsets of the algebra of graphs with the operations 0 and Ell.

It should be elear that, due to Theorem 7, we could restrict CS to contain

only elementary constants, i.e., constants cg with 9 E EL(E) for some E. This
would give the same elMS Val(CFG(CS)).

g' = •

Fig. 2. Graphs 9 and l.

val(e} =

Fig. 3. The value of graph expression e.

As an example, consider the context-free graph grammar Gb that has one

nonterminal X, with type(X) = (1,0), and two productions X -+ cg 0 (X Ell X)

and X -+ cg', where 9 is the triangle of type (1,2) with V = {x,y,z}, E =

{(x,y), (x,z), (y,z)}, s(u,v) = u, t(u,v) = v, and l(u,v) = 17 for every edge
(u, v), begin(g) = x and end(g) = yz, and g' is the graph of type (1,0) with one
node x, no edges, begin(g') = x and end(g') = A. The graphs 9 and g' are shown
in Fig. 2. The expression

is in L(G); the graph val(e) is shown in Fig. 3 (without the edge labels (7). Clearly,
val(L(Go)) is the set of all graphs of type (1,0) that are obtained from (directed,

rooted) binary trees by connecting each pair of children by an additional edge;
the sequence of begin nodes consists of the root of the binary tree. This graph
language is therefore in Val(CFG(CS)).

The main result of this section is that generating graph languages in the
above way is equivalent to generating them with HR grammars (see Section 2.3).

14

Thus, the HR grammars generate exactly the equational subsets of the algebra
of graphs with the operations 0 and (J). As observed in the introduction, this is
a simple variant of Theorem 4.11 of [BauCouJ (and the proof is analogous).

Theorem 11. Val(CFG(CS)) = HR.

Proof. Similar to the restriction on productions of HR grammars, we can assume

'Without loss of generality that no nonterminal occurs more than once in the

right-hand side of a production of a context-free graph grammar. Moreover, we
can also assume that, in a context-free graph grammar, the nonterminals do not

occur as edge labels in the constants cg that are used in the right-hand sides of
its productions.

To turn a context-free graph grammar into an HR grammar, we extend the

definition of the 'val' function to expressions over CS and N. This is simply
done by extending the recursive definition of 'val' with the requirement that

val(X) = atom(X) for every X E N.

Let G be a context-free graph grammar and G' an HR grammar. We say that

G and G' are related if they have the same typed alphabet of nonterminals, with

the same initial nonterminal, and P' = {X -> val(t) I X -> t E P}, where P is
the set of productions of G and P' the one of G'. Trivially, for every context
free graph grammar there is a related HR grammar. The other way around, it

suffices to show that for every graph h E GR(N U T), where Nand T are the
terminal and nonterminal alphabet of the HR grammar, respectively, there is
an expression t over CS and N such that val(t) = h. By Theorem 7 there is

an expression e over CS such that val(e) = h, and for every constant cg that
occurs in e, 9 E EL(N U T). Let t be the expression that is obtained from e
by changing every subexpression atom(X} into X, for every X E N. Obviously

t is the required expression. Hence, for eyery HR grammar there is a related
context-free graph grammar.

It now suffices to show that related grammars G and G' generate the same
graph language. To this aim we show that for every nonterminal X and every

terminal graph g, atom(X) =}' gin G' if and only if there exists an expression e
over CS such that X =}' e in G and val(e) = g. This can be proved by induction

on the length of the derivations, as follows.
Consider a derivation X =} t =}' e in G. Let t contain the nonterminals

Xl, . .. , Xn (and recall that each nonterminal Xi occurs exactly once in t). Then
there exist expressions ei such that Xi =}' ei and e = 'if;(t) where 'if; is the string
homomorphism with 'if;(Xi) = ei and the identity otherwise. Now let rj> be the

replacement with rj>(Xi) = val(e;) and rj>(<7) = atom(<7) for all terminal symbols.

It is straightforward to show that val('if;(t)) = rj>(val(t)), by induction on the

structure of the expression t (cf. Proposition 4.7 of [BauCouJ). As an example,
if t = tl 0 t2, then val('if;(t)) = val('if;(tll 0 'if;(t2)) = val ('if;(t l)) 0 val('if;(t2)) =

rj>(val(tll) 0 rj>(val(t2)) = rj>(val(t l) 0 val(t2)) = rj>(val(t)), where we have used
Lemma 4(1). As another example, if t = Xi, then rj>(val(t)) = rj>(atom(X;)) =
rj>(Xi) = val(ei) = val('if;(t)).

By induction, atom(Xi) =}' val(ei) in G'. Since G and G' are related, G' has
the production X -> val(t). It is easy to see that val(t) has n nonterminal edges,

15

labeled by Xl"'" X n . Hence, by Proposition 2, atom(X) =? val(t) =?' ¢(val(t)).
This shows that atom(X) =?' val(1j!(t)) = valle).

The proof in the other direction is similar and is left to the reader. D

Since the concept of related grammars, as discussed in the above proof, preserves

the number of nonterminals in the right-hand sides of productions, the above
result is also true in the linear case. By Val(LIN-CFG(CS)) we denote the class

of languages generated by linear context-free graph grammars over CS.

Corollary 12. Val(LIN-CFG(CS)) = LIN-HR.

However, in the linear case, the form of the context-free graph grammar can even
be restricted to be "right-linear!! in the following sense. A context-free graph

grammar over CS is right-linear if its productions are of the form X -4 cg 0 Y or
of the form X -> Cg , where X and Yare nonterminals. Note in particular that Ell
is not needed. By Val(RLIN-CFG(CS)) we denote the class of graph languages
generated by right-linear context-free graph grammars over CS.

Theorem 13. Val(RLIN-CFG(CS)) = LIN-HR.

Proof. By Corollary 12, it suffices to show that LIN-HR c; Val(RLIN-CFG(CS)).

Let L be a graph language in LIN-HR, and let G = (N, T, P, S) be a linear HR

grammar generating L.

We first consider the case that for every X E N there exists mEN such

that type(X) = (m,O). By the proof of Theorem 11 it suffices to construct a
context-free graph grammar G' that is related to G. G' has the same nonterminal

alphabet as G, with the same initial nonterminal. G' has the set of productions
P' = {p' I pEP}, where, for each pEP, p' is defined as follows. Let p be the
production X -4 g. If 9 E GR(T), then we define p' to be X -4 cg. Otherwise,

9 has exactly one edge e that is labeled with a nonterminal, say, Y. Note that
end(g) =,\ and tg(e) =..\. Then we define pi to be the production X ----+ cg' 0 Y,

where g' = (Vg, Eg - {e}, B, t, I, begin(g), Bg(e)) and B, t, 1 are the restrictions of
Bg,tg,lg to Eg - {e}. Clearly, val(cg, oY) =g'oatom(Y) = g. Hence G and G'
are indeed related. Note that the construction of g' from 9 is a special case of
that in the first part of the proof of Theorem 7.

We now consider the general case. To be able to use the above special case,
define the LIN-HR grammar G = (N,T,P,S), where N is the same set as
N with a different type function: if type(X) = (m,n) in N, then type(X) =
(m + n, 0) in N. For every graph h E GR(N U T) we define the graph Ii =

(Vh, Eh, 8, t, Ih, begin(h) . end(h),.\) where, for e E Eh, 8(e) and t(e) are defined

as follows: if Ih(e) E T, then 8(e) = 8h(e) and t(e) = Ih(e); if Ih(e) E N, then
B(e) = 8h(e)· th(e) and t(e) = A. Note that if hE GR(T) then Ii = backfold(h).

We now define P = {X -4 Ii I X -4 h E P}. This ends the definition of G.

It is straightforward to show that L(G) = {backfold(g) I 9 E L(G)}. In fact,

the derivations of G are exactly all atom(S) =? gl =? 92 =? ... =? gn where
atom(S) =? 91 =? g2 =? ... =? gn is a derivation of G. Since G satisfies the above
special case, we conclude that backfold(L) is in Val(RLIN-CFG(CS)).

16

Suppose that type(L) = (m, n). It is easy to verify, for every 9 oftype (m, n),
that

9 = (idm Ell foId(idn)) 0 (backfold(g) Ell idn).

Hence L = {(idm Ell fold(idn)) 0 (h Ell idn) I h E backfold(L)}. Thus, it now

suffices to show that if L' is in Val(RLIN-CFG(CS)), then so are all languages

{h Ell idn I h E L'}, for n E N, and all languages {go 0 hi h E L'}, for go E GR.

To this aim, let G' be a right-linear context-free graph grammar generating L'.
Change, in the productions of G') every constant cg into the constant CgE!lid".

Clearly, the resulting right-linear context-free graph grammar generates all graphs

(gl EIlidn) o· ··0 (gk Ell idn) with gl o· .. 0 gk E L'. By the law of strict monoidality

(Lemma 6(5)),

(gl Ell idn) o· . ·0 (gk EIlidn) = (gl o· .. 0 gk) Ell (idn 0·· • 0 idn) = (gl o· . ·0 gk) Ell idn .

This proves that the resulting grammar generates {g Ell idn I 9 E L'}.

Introduce a new initial nonterminal S', and add to G' all the productions

8' ---+ Cgoog 0 Y and 8' ---+ Cgoog such that S ---+ c g 0 Y and S ---+ c g are productions

of G', respectively (where S is the old initial nonterminal of G'). Clearly, the

resulting right-linear grammar generates all graphs (gO 0 gl) 0 g2 0 ••• 0 gk with

gl 0 •.. 0 gk E L'. In other words (using the associativity of concatenation), it

generates the graph language {gO 0 h I h E L'}. Note that we could also have
added the one production Sf ---+ cgo 0 S; the reason for not doing so will become

clear in the proof of Theorem 27. 0

This result suggests that for context-free graph grammars there is no difference

between the linear and the right-linear case, as opposed to the case of ordinary

context-free grammars (where the right-linear grammars generate the regular

languages which form a proper subclass of the linear languages). More support

for this intuition will be given in the next section.

5 Strings Denote Graphs

Since concatenation of graphs is associative, strings can be viewed as expressions

that denote graphs. Thus, as an even simpler variation of the approach with

expression generating context-free grammars in Section 4, we can use all possible

string grammars to generate graph languages. More generally, every class K of

string languages defines a class Int(K) of graph languages (where Int stands for

'interpretation', which is similar to Val in Section 4). An "interpretation" is a

mapping that associates a graph with each symbol of an alphabet.

Definition 14. Let A be an alphabet. An interpretation of A is a mapping
h: A --4 GR; h is extended to a (partial) function from A' to GR by

h(a1a, ... an) = h(a1) 0 h(a,) 0 ···0 h(an)

with n "= 1 and ai E A for all 1 :S i :S n.

17

o

Note that the extended h is partial because the types of the h(ai) may not

fit; moreover, h(J..) is undefined (where J.. is the empty string). Thus, the only

"technical trouble" is that the concatenation of graphs is typed whereas the

concatenation of strings is always possible. To deal with this, the following lemma

is useful. It says that the domain of an interpretation is regular.

Lemma 15. For every interpretation h : A -> GR, the language

{w E A' I h(w) is defined} is regular.

Proof. Clearly, h(ala2·· ·an) is defined if and only if n:::: 1 and lend(h(a,) I =

Ibegin(h(oi+d) I for every 1 ::; i < n. It is easy to construct a finite automaton

that checks this. D

For a string language L <; A', we define, as usual, the set of graphs h(L) = {g E

GR I g = h(w) for some wE L}; note that h(L) need not be a graph language

(in our particular meaning of the term, as defined in Section 2.2) because not

all graphs need have the same type.

Definition 16. Let K be a class of string languages. The interpretation of K is

Int(K) = {h(L) I L E K,h: A -> GR with L <; A',h(L) is a graph language}.

D

In other words, Int(K) consists of all graph languages h(L), where L is any

language in K and h is any mapping from the symbols of L to graphs. Intuitively,

h determines the interpretation of the symbols, and then the concatenation of

those symbols is interpreted as concatenation of the corresponding graphs.

It is an immediate consequence of Theorem 9 that every graph language h(L)
in Int(K) is of bounded pathwidth, i.e., there exists k such that pathwidth(g) ::; k

for every g E h(L). In fact, if L <; A., then k = max{#Vh(a) I a E A} - 1.

Corollary 17. For every K, every graph language in !nt(K) is of bounded path·

width.

b, b,

/ 7D \
h(a) h(b) h(c) h(d)

Fig. 4. An interpretation.

18

The first class K of interest is the class REG of regular languages. An exam
ple of a graph language in Int(REG), of type (0,0), is h(a(b U clOd) where the
graphs h(a), h(b), h(c), and h(d) are shown in Fig. 4 (without edge directions and
edge labels). The graph h(abbcbd) is shown in Fig. 5. Clearly, the graph language
h(a(b U c)' d) consists of all "clothes lines" on which triangles and rectangles are
hanging to dry. We first present a characterization of Int(REG) by regular ex-

Fig. 5. Graph interpretation of the string abbcbd.

pressions, corresponding to the characterization of REG by regular expressions.
To this aim we define the operations of union, concatenation, and (Kleene) star
for graph languages. The operation of graph concatenation is extended to graph

languages Land L' in the usual way: iftype(L) = (k,m) and type(U) = (m,n),

then their concatenation is defined by L ° L' = {g ° g' I gEL, g' E U}. Then,
in the obvious way, the star of a graph language is defined by iterated con
catenation: for a graph language L with type(L) = (k,k) for some kEN,

L' = UnEN Ln where Ln = L ° ... ° L (n times) for n 2: 1, and LO = {id.}.
Also, L+ = Un>! Ln is the (Kleene) plus of L. Finally, the union L U U of two

graph languages Land U is defined only when type(L) = type(U) (otherwise it
would not be a graph language). Thus, the operations of union, concatenation,

and star are also typed operations on graph languages (as opposed to the case
of string languages for which they are always defined). Let REX(U, 0, *, SING)
denote the smallest class of graph languages containing the empty graph lan
guage and all singleton graph languages, and closed under the operations union,
concatenation, and star. Thus, it is the class of all graph languages that can

be denoted by (the usual) regular expressions, where the symbols of the al
phabet denote singleton graph languages. As an example, the above graph lan

guage of clothes lines is in REX(U,o,*,SING) because it can be written as

{h(a)} ° ({h(b)} U {h(c)})' ° {h(d)}.

Theorelll18. Int(REG) = REX(U, 0, *, SING).

Proof. We have to cope with the "technical trouble" of typing, in particular with
the empty string. Note that, for a graph language L with type(L) = (k, k), L' =

L+ U {id.} and L+ = L ° L'. This shows that we can replace star by plus, i.e.,
REX(U, 0, *, SING) = REX(U, 0, +, SING), the smallest class of graph languages

19

containing the empty graph language and all singleton graph languages, and
closed under the operations union, concatenation, and plus.

To show that REX(U, 0, +, SING) ~ Int(REG), it suffices to prove that
Int(REG) contains the empty language and all singleton graph languages, and
that it is closed under union, concatenation, and plus. Clearly, h(0) = 0 for

any interpretation h. Also, if heal = g, then h({a}) = {g}. Now let LI ~ Ai
and L2 ~ Ai be regular languages, and let hi and h, be interpretations of

Al and A" respectively, such that hl(Lr) and h,(L,) are graph languages in
Int(REG). Obviously, by a renaming of symbols, we may assume that Al and A2

are disjoint. Let h = hi U h2 be the interpretation of Al U A2 that extends both
hI and h2 • It is easy to verify that (with the appropriate conditions on types)

hl(LI)uh,(L,) = h(LI UL,), hI (LrJoh,(L,) = h(LI·L2), and hI (LI)+ = h(Li),

which shows that these graph languages are also in Int(REG).

To show that Int(REG) ~ REX(U, 0, +, SING), we first note that, since an
interpretation is undefined for the empty string, Int(REG) = Int(REG - A),

where REG - A = {L - P} I L E REG} is the class of all A-free regular
languages. It is well known (and easy to prove) that REG - A is the smallest

class of languages containing the empty language and all languages {a} where a
is a symbol, and closed under the operations union, concatenation, and plus. By

induction on this characterization we show that for every language L E REG - A

and every interpretation h of the alphabet of L, if hew) is defined for every

wE L, and heLl is a graph language, then heLl E REX(U,o, +, SING). Note
that by Lemma 15 (and the fact that REG is closed under intersection) we can
indeed assume that h is defined for all strings in L. The inductive proof is as

follows. If L is empty, then so is heLl. If L = {a}, then heLl is a singleton. If

L = LI UL" then heLl = h(LI)uh(L,). Now let L = L I · L2 and assume that LI
and L2 are nonempty (otherwise L is empty). Since, by assumption, h(LI . L 2)

is a graph language and hew) is defined for every wELl· L" h(LI) and h(L,)

are also graph languages; for h(LI) this is proved as follows: if WI, w; E L I ,
then, for any W2 E L21 hew! . W2) = h(wd a h(W2) and similarly for wi, and

so Ibegin(h(wr))1 = Ibegin(h(wl . w2))1 = Ibegin(h(w; . w,))1 = Ibegin(h(w;))1
and lend(h(wr))I = Ibegin(h(w,))1 = lend(h(wD)I· Hence heLl = h(LI . L 2) =

h(Lr) 0 h(L,). Finally, let L = Li. Then h(LrJ is a graph language of some type

(k,k) by an argument similar to the one above, and heLl = h(LI)+. D

This result holds in fact for sets of morphisms of arbitrary categories (instead
of the category GR of graphs, cf. Lemma 6). It generalizes a well-known char

acterization of the rational subsets of a monoid (see, e.g., Proposition III.2.2 of

[Ber]).

The characterization of Theorem 18 still holds after adding the sum op
eration, extended to graph languages in the usual way: for arbitrary graph

languages Land L', L Ell L' = {g Ell 9' I 9 E L,g' E L'}. In other words,
Int(REG) = REX(U, 0, *, Ell, SING), the smallest class of graph languages con
taining the empty graph language and all singleton graph languages, and closed
under the operations union, concatenation, star, and sum. This is because of the

following simple reason.

20

Lemma 19. For every class of languages K, ifInt(K) is closed under concate

nation, then it is closed under sum.

Proof. We first show that if M is in Int(K) then so is M Ell {idd for every k.

This was shown for Val(RLIN-CFG(CS)) in the proof of Theorem 13, and the

following argument is the same as the one used there. Let M = h(L) for some

L E K aud some interpretation h of the alpl,abet A of L. Define h' (a) = h(a) Ellidk

for every a E A. Then h'(al'" an) =

because of strict monoidality (Lemma 6(5)), and the last expression is equal to

h(al ... an) Ellidk · This implies that h'(L) = h(L) Ell {idd = M Ell {idk}. Similarly

it can be shown that {idd Ell M is in Int(K).

Now, for arbitrary graph languages M and M' with type(M) = (m,n) and

type(M') = (m' , n'), M Ell M' = (M 0 {idn }) Ell ({id=,} 0 M') = (M Ell {id=,}) 0

({idn}EllM') by strict monoidality. Hence, by the above, and the fact that Int(K)

is closed under 0, M Ell M' is in Int(K). 0

If we allow EB in our regular expressions, then, as should be clear from Theorem 7,

we do not need all singleton graph languages to start with, but only those that

contain elementary graphs (i.e., graphs that belong to some EL(E), as defined in

Section 3). Recall that a graph is elementary if it is an atom or one of the graphs

IO,I, h,o, h2, 12,1, 71'12, or ido. Let REX(U, 0, *, Ell, ELSING) denote the smallest
class of graph languages containing the eIljpty graph language and all singleton

graph languages with an elementary graph as element, and closed under the

operations union, concatenation, star, and sum.

Theorem 20. Int(REG) = REX(U, 0, *, Ell, ELSING).

Note that this result is closer to the corresponding result for regular languages,

for which only singleton languages {a} are needed where a is a symbol.

The next class K of interest is the class CF of context-free languages. We

will show that Int(CF) is a (proper) subclass of HR, the class of graph languages

generated by HR grammars. In fact, it is rather obvious that Int(CF) is exactly

the class of languages generated by context-free graph grammars over CS that

do not use the sum operation. Thus, Int(CF) is the class of equational subsets

of the algebra of graphs with the concatenation operation. Inclusion in HR then

follows from Theorem 11. As in the previous theorems, we have to cope with the

technical trouble of typing.

Let CSo = CS - {Ell} = {o} U {cg I 9 E GR}. If Ell does not occur in the
productions of a context-free graph grammar over CS, then we also say that

it is over CSo. By Val(CFG(CS o)) we denote the class of all graph languages

generated by context-free graph grammars over CSo. Note that, by definition,

Val(RLIN-CFG(CS)) <; Val(CFG(CSo)).

Theorem 21. Int(CF) = Val(CFG(CSo)).

21

Proof. We first show that Val(CFG(CSo)) ~ Int(CF). Let G = (N, T, P, S)

be a context-free graph grammar over CSo. Every production of G is of the
form X ---+ 0'1 a 0'2 0 ... 0 Uk with k 2: 1 and (Xi E N or ai = cg for some

9 E GR. Note that we can drop the parentheses from the right-hand sides, due
to the associativity of concatenation. Thus) G generates expressions of the form

cg, 0···0 cg .. with n 2': 1, and val(L(G)) = {gl 0···0 gn I Cg, 0···0 cg .. E L(G)}.

Define the (ordinary) context-free grammar G' = (N,T',P',S) where T' is

the set of all cg in T, and P' = {X --> a1a2··· ak I X --> "'1 0 a2 0···0 "'k E P}.
Obviously, L(G') = {cg, .•. cg .. I cg , 0···0 Cg .. E L(G)}. Now let h : T' --> GR

be the interpretation such that h(cg) = g. Then, clearly, val(L(G)) = h(L(G')).

Hence val(L(G)) is in Int(CF).

We now show that Int(CF) ~ Val(CFG(CSo)). By Lemma 15 (and the fact

that CF is closed under intersection with regular languages), every Int(CF) graph
language is of the form h(L) where L is a context-free language such that his
defined for every string in L. In particular, L is A-free. Let G = (N, T, P, S)

be a context-free grammar generating L. We may assume that the right-hand
sides of the productions of G are non-empty. Define the context-free grammar

G' = (N,T',P',S) such that T' = {o} U {Ch(a) I a E T}, and P' = {X -->

'Ij;(a1) 0 'Ij;(a2) 0 ••• 0 'Ij;(ak) I X --> a1 "'2 ••• "'k E P}, where 'Ij;(a) = Ch(a) for every
a E T, and 'Ij;(X) = X for every X E N. Obviously, L(G') = {ch(ado ... 0Ch(a ..) I
a1·· ·an E L(G)}, and so val(L(G')) = h(L(G)) = h(L).

The only thing that remains to be proved (and this is the "technical trouble")

is that G' is a context-free graph grammar over CS (and it obviously is over CSo).
In other words, we have to turn N into a typed alphabet, such that the right

hand sides of the productions are expressions with the same type as the left-hand

sides. To this aim we investigate the grammar G in more detail.

We claim that for all strings wET' generated by a given nonterminal X of G,
h(w) is defined and type(h(w)) is the same for all such w. Here we will use the fact
that h is defined for all strings in L. The proof is similar to the argument used at

the end of the proof of Theorem 18. Let X =}' WI and X =}' W2, with Wi E T·.
Consider some u,v E T' such that S =}. uXv (assuming G to be reduced).

Then UW1V,UW2V E L. We now show that Ibegin(h(wIl)I = Ibegin(h(w2))I. Let
type(L) = (m, n). If U = A, then WiV ELand Ibegin(h(wi))1 = Ibegin(h(wiv))1 =
m. Note that if h is defined for a string w, then it is also defined for every non

emptysubstringofw. Nowletu oF A. Since his defined on UWiV, Ibegin(h(wi))I =

lend(h(u))I. In the same way it can be shown that lend(h(wIl)1 = lend(h(w2))I.

We turn N into a typed alphabet by defining type(X) = type(h(w)) if X=}'

w in G. We now have to show that for every production X --> "'1 ... "'k of G,

'Ij;(",d 0 ..• 0 'Ij;(ak) is a well-formed expression over CS and N, of the same
type as X. Note first that for every a E NUT and every w E T* 1 if Q' ::::}* W,

then h(w) is defined and type('Ij;(a)) = type(h(w)). Now consider a1, ... , ak in
NUT, and let ai =}. Wi E T', for 1 SiS k. Then 'Ij;("'1) 0··· o'lj;(ak) is a well
formed expression (over CS and N) of type (m, n) if and only if h(W1 ... wkl is

defined and type(h(w1·· ·Wk)) = (m,n). Consider the derivation S =}' uXv =}

U"'l ... "'kV =}' UW1 ... WkV = z. Since z E L, h(z) is defined, and so h(W1 ... Wk)

22

is defined. Moreover, since X =?' WI·· ·Wk, type{h{WI·· ·w,)) = type{X). This
shows that ,p{aJ) o· .. 0 ,p{a.) is a well-formed expression over CS and N, of the
same type as X, as required. 0

Theorem 22. Int{CF) c HR.

Proof. Inclusion follows immediately from Theorems 21 and 11. Proper inclusion
is a consequence of Corollary 17: the set of all trees is in HR, but is not of
bounded pathwidth, as can easily be seen (for a characterization of the trees of
pathwidth k, see [EllST]). 0

Since REG is closed under intersection, the proof of Theorem 21 also works
for Int{REG). In fact, the proof preserves the right-linearity of the grammars.
Hence, Int{REG) = Val{RLIN-CFG{CS)). As an example, the graph language
of clothes lines is generated by the right-linear context-free graph grammar with

productions S ----+ Ch(a) oX, X --+ Ch(b) oX, X ---+ Ch(c) oX, and X --+ Ch(d), where

h{a), h{b), h{c), h{d) are the graphs in Fig. 4, type{S) = (a, 0), and type{X) =

(I, 0).

Together with Theorem 13, this shows that the graph languages that are
interpretations of a regular language are precisely those that can be generated
by linear HR grammars.

Theorem 23. Int{REG) = LIN-HR.

Similarly, the proof of Theorem 21 preserves linearity of the grammars (and LIN

is closed under intersection with regular languages). Since Val{LIN-CFG{CS,))

is inbetween Val{RLIN-CFG{CS)) and Val{LIN-CFG{CS)), we obtain the next
result by Corollary 12 and Theorem 13.

Theorem 24. Int{LIN) = LIN-HR.

The results of this section suggest that for graph languages, regularity and linear

ity are the same. We have a class of graph languages that may be called the class
of regular graph languages on the one hand (because it is equal to Int{REG) and

to REX{U, 0, *, SING)), and may be called the class of linear graph languages
on the other hand (because it is equal to Int{LIN) and to LIN-HR).

It will be shown in Section 7 that Int{REG) is a proper subclass of Int{CF).

6 Characterizations of Int(K)

In this section and the next, we investigate properties of the class of graph lan
guages Int{J<) for arbitrary classes of string languages J<. However, to avoid

trivialities we will mainly be interested in classes J< that are closed under se

quential machine mappings, where a sequential machine is a transducer which

works like an ordinary nondeterministic finite automaton that, moreover, at

each step outputs one symbol (thus it is a special case of the generalized sequen
tial machine, or gsm, which outputs a string at each step, see, e.g., [HopUll]).

23

Equivalently, K is closed under intersection with regular languages and under
alphabetical substitutions (where an alphabetical substitution from alphabet A

to alphabet B is a relation p <; A x B that is extended to a function from A' to
the finite subsets of B' by p(aJ' "an) = {b J" ·bn I (ai,b;) E p, 1:S i:S n}).

In this section we present two characterizations of Int(K). The first character

ization of Int(K) is through the notion of replacement, as defined in Section 2.2.

The following closure property of Int (K) will be useful.

Lemma25. For every class K, Int(K) is closed under replacements.

Proof. Clearly, q,(h(L)) = h'(L), where hi is defined by h'(a) = q,(h(a)) for every

a EA. In fact, for a"".,an E A, q,(h(aJ"'an)) = q,(h(a,) 0 ". 0 h(an)) =
q,(h(a,)) 0 ••• 0 q,(h(an)) = h'(a,) 0 ••• 0 h'(an) = h'(a, ... an), where we have

used Lemma 4(1). 0

The characterization of Int(K) is based on the fact that every interpretation can
be decomposed into an "atomic" interpretation and a replacement. An interpre

tation h : A -> GR of A is atomic if A is a typed alphabet and h(a) = atom(a) for
every a E A. By AtInt(K) we denote the set of all h(L) E Int(K) such that his
an atomic interpretation. Recall that Repl denotes the class of all replacements.

Theorem 26. For every class K, Int(K) = Repl(AtInt(K)).

Proof. One inclusion follows from Lemma 25. For the other inclusion, let h : A ->

GR be an interpretation. Turn A into a typed alphabet by defining type(a) =

type(h(a)) for every a E A. Let t be the unique atomic interpretation of the typed
alphabet A, and let q, : A -> GR be the replacement defined by q,(a) = h(a)

for every a E A (i.e., q, is h viewed as a replacement). Clearly, for every string

wE A', q,(t(w)) = h(w). In fact, if w = a," 'an, then q,(t(w)) = q,(t(a,) 0'" 0

t(an)) = q,(t(a,)) 0'" oq,(t(an)) =q,(a,) 0'" oq,(an) = h(a,) 0'" 0 h(an) = h{w),

by Lemma 4(1) and because q,(atom(a)) = q,(a) for every a E A. 0

Note that Lemma 25 and Theorem 26 together show that Int{K) is the smallest

class of graph languages containing Atlnt(K) and closed under replacements.
The second characterization of Int{K) generalizes the characterization of

Int(REG) in Theorem 23. To this aim we consider controlled linear HR gram

mars, in the obvious sense. Let G = (N, T, P, S) be an HR grammar, and let
C be a string language over P (where P is viewed as an alphabet). The graph
language generated by G under control C is the set of all graphs 9 E GR(T) for

which there is a derivation atom(S) '* .. 9, '*p, 9, ... '*p" 9n with 9n = 9, such
that the string p,p, ... Pn is in C. Recall that '*p denotes a derivation step of

G that uses production p. Thus, the control language C specifies the sequences
of productions that the grammar G is allowed to use in its derivations. If C is

taken from a class of languages K, the grammar G together with the control
language C is also called a K -controlled HR grammar.

For a class K of string languages, we denote by LIN-HR{K) the class of
graph languages generated by K-controlled linear HR grammars. Generalizing
Theorem 23 and its proof we obtain the next result.

24

Theorelll 27. For every class K that is closed under sequential machine map

pings, Int(K) = LIN-HR(K).

Proof. In what follows we assume, without loss of generality, that all languages in

K are A-free (if K' = {L- {A} I L E K}, then Int(K') = Int(K), LIN-HR(K') =

LIN-HR(K), K' = {L E K I A rt L} because a sequential machine mapping can
be used to remove A, and K' is closed under sequential machine mappings,

because K is closed under sequential machine mappings and sequential machine
mappings are length-preserving).

With analogous definitions as above, we can define the controlled versions
of context-free grammars and of context-free graph grammars over CS. We first

show that K is the class of languages generated by the K-controlled right-linear
context-free grammars. In one direction, let L E K with L <; T·. Define the
right-linear context-free grammar G = ({S}, T, P, S), where P consists of all

productions Po : S -> as and p~ : S -> a for all a E T. Let L' be the control
language that is obtained from L by a sequential machine mapping that changes

each string al ... an-l an into the string Pal' .. Pa"_lP~ .. ' Then L is the language

generated by G under control L'. In the other direction, let G = (N, T, P, S)

be a right-linear context-free grammar, let C E K be a control language, and
let L be the language generated by G under control C. Let ¢ be the sequential

machine mapping that, for a given string PI ... Pn E p', checks whether there
is a derivation S =?-Pt WI'" :::;"p" Wn with Wn E T* (by simulating G in its

finite control) and changes each production into the unique terminal symbol

that occurs in its right-hand side. Then, clearly, ¢(C) = L and hence L is in K.
It is now easy to generalize the proof of Theorem 21 to the case of K

controlled right-linear grammars. This shows that Int(K) is equal to the K
controlled version of Val(RLIN-CFG(CS)), i.e., to the class of graph languages
generated by K-controlled right-linear context-free graph grammars over CS.

Thus, it now suffices to check that the proof of Theorem 13 can be generalized
to the /{"-controlled case.

First we check that the proof of Theorem 11 can be generalized to the K
controlled case, for linear grammars. We have proved a relationship between

the derivations X *' e of a context-free graph grammar G and the derivations

atom(X) *' valle) of an HR grammar G'. This proof can be extended to show
that if the sequence of productions used in the first derivation is PlP2 ... Pn, then

the sequence of productions used in the second derivation is pip~ ... P~, where,

for each production P = X -> t of G, P' is the production X -> val(t) of G'; to see
this, note that in the linear case of Proposition 2, the sequence of productions

used in h *' 9 equals the sequence of productions used in atom(Y) *' ¢(Y),

where Y is the unique nonterminal in lab(h). Thus, if C is the control language
of G, then the control language for G' call be obtained from C by a sequential

machine mapping that changes every pinto p'.

We now consider the proof of Theorem 13. Clearly, for the LIN-HR grammar
G we can take the same control language that is used by G (modulo a renaming),
because there is a clear one-to-one correspondence between their productions. In

the remaining two constructions, we can take the same control language in the

25

first case, and in the second case we can apply a sequential machine mapping to

the control language that changes the first production of a production sequence
into the corresponding production for the new initial nonterminal S' (which was
the reason to use that particular construction). 0

7 Comparison of Int(K) and Int(K')

From Theorems 23 and 24 we know that Int(REG) = Int(LIN) = LIN-HR. It

can be shown by a direct construction (see rVer]) that even Int(DB) = LIN-HR,

where DB is the class of derivation bounded context-free languages (see, e.g.,
Section VI.10 of [Sal), where they are called languages of "finite index"). One
now wonders when Int(K) = Int(K'), and in particular one wonders how much
larger the class K can be made without enlarging the class Int(K).

It is easy to see that for every given class K there is a largest class K' such

that Int(K') = Int(K). We will call this the extension of K, denoted Ext(K).

In fact, Ext(K) = U{K' [Int(K') = Int(K)}. Note that, for arbitrary classes K

and K', Int(K) = Int(K') if and only if Ext(K) = Ext(K').

b1
a

h
a

• e} e1

b2 •
b

<e

2 • e2

b,
c

c e3 e3

hlp) h(q) h(r)

Fig. 6. Interpretation h.

a a

b

c

Fig. 7. The graph gr(a'b'c') = h(pq'r).

26

In the next theorem we give a characterization of Ext{K). For a class G
of graph languages, let Str{ G) denote the class of string languages L such that

gr{L) is in G. Here, gr{L) = {gr{w) I wE L}, and, for a string w = al'" an with
n ~ I, gr{w) = (V,E,s,t,l, begin,end) is the (ordinary) graph of type (I, I) with

V = {Xl, ... ,xn+d, E = {el,'" ,en}, s{e;) = Xi, t{ei) = Xi+l, and l{ei) = ai

for every 1 :S i :S n, begin = Xl and end = Xn+l. Thus, gr{w) encodes w in the
obvious way: it is a path with the symbols of w as edge labels.

As a classical example, the language L = {anbncn I n ~ I} is in Str{Int{REG»,
because L = h{M) with M = pq'r and h is shown in Fig. 6. The graph
gr{a'b'c5

) = h{pq4r) is shown in Fig. 7.

Note that gr{A) is not defined. This implies that L E Str{ G) iff L - {A} E
Str{G). It is also implies that 'gr' is the unique atomic interpretation which is

obtained by viewing every symbol as having type (I, 1); hence gr{L) E Int{K)
for every L E K, which means that K ~ Str{Int{K)).

Theorem 28. For every class K that is closed under sequential machine map

pings, Ext{K) = Str{Int{K».

Proof. Clearly, if Int{K') = Int{K), then K' ~ Str{Int{K')) = Str{Int{K)).
Thus, it remains to show that Int{Str{Int{K») = Int{K). Since K ~ Str{Int{K»,

Int{K) ~ Int{Str{Int{K»). For the other inclusion it suffices, by Lemma 25 and
Theorem 26, to show that AtInt{Str{Int{K))) ~ Int{K). To prove this, let Ll E
K, let hI be an interpretation of the alphabet A of Ll such that hI (LJ) = gr{L2)

for some A-free string language L2 , and let h2 be an atomic interpretation of the
alphabet B of L2. Thus, hI : A --> GR{B) where each symbol from B has type

(I, 1). However, for the atomic interpretation h2 each symbol b from B has an
other (arbitrary) type that we will denote by type{b). Note that h2{b) = atom{b),

where type{atom{b» = type{b); hence type{b) = (lbegin{h2 {b»I, lend{h2 {b»I).

b c b c
~(w)= b

l
~'--~ ______ --__ --~ ________ ~ ____ ----1' el

b e

Fig. 8. Graphs gr{w) and h,{w) for w = bebe, with type{b) = (2, 3) and type{e) = (3, 2).

We have to construct a language L E K and an interpretation h such that
h{L) = h2{L2)' For a string wE L2 such that h2{W) is defined, the graph h2{W)

27

can be obtained from the graph gr(w) (which is an element of hI (Ld) in an

easy way, as follows (see Fig. 8). Each node v of grew) has to be "expanded"
into a sequence of distinct nodes (v, 1), (v, 2), ... , (v, fL(v)), where fL stands for
"multiplicity". Clearly, fL(v) is determined by type(b), where b is the label of an
edge e incident with v: if e enters v, then fL(V) = lelld(h,(b))I, and if e leaves

v, then fL(V) = Ibegin(h,(b))I· Every edge e of grew), with source u and target

v, should be replaced by an edgee with sources (u,I), ... ,(U,fL(U)) and targets
(v, 1), ... , (v, fL(v)) (and the same label). In Fig. 8, the multiplicity of the nodes

of grew) is 2, 3, 2, 3, 2, respectively. The edges of h,(w) are drawn as squares,
with "tentacles" from their sources and to their targets (where we asume that

the tentacles are ordered, e.g., from top to bottom).

We nOw define this expansion process formally, for arbitrary graphs in GR(B).

Let M be a number such that for all b E B, if type(b) = (m, n), then m, n :s M.

A decorotion of a graph 9 E GR(B) is a mapping fL : Vg -+ {I, ... , M} such that

for every edge e of 9 with see) = u, tee) = v, and lee) = b: type(b) = (fL(u), fL(v)),
i.e., fL(U) = Ibegin(h,(b))1 and fL(v) = lend(h2 (b))I. Note that for every graph
gr(w), h, (w) is defined if and only if there is a decoration fL of gr(w), and in
that case fL is unique. For a graph 9 E GR(B) and a decoration fL of g, the

expansion of 9 by fL, denoted exp(g,fL), is the graph that has all nodes (v,i)
where v is a node of 9 and 1 :s i :s fL(V); it has the same edges as 9 (with the

same labels), but if see) = u and tee) = v in g, then see) = (u, 1) ... (U,fL(U))

and tee) = (v, 1)··· (V,fL(V)) in exp(g,fL); finally, if begin(g) = VIV,·· ·Vk, then
begin(exp(g,fL)) =

(VI, 1) ... (VI, fL(vtl) ... (v" 1) ... (V" fL(V,)) ... (v., 1) ... (v., fL(v.)) ,

and similarly for end(g) and end(exp(9,fL)). It should be clear that for every

wE L2 for which h2(W) is defined, h2(W) = exp(gr(w),fL) where fL is the unique
decoration mentioned above.

Based on this idea of expansion we now change L1 into L and hI into h,

as follows. Let A' be the alphabet consisting of all pairs (a, fL) with a E A and
fL is a decoration of hl(a). Intuitively, fL is a guess of the multiplicities of the

nodes of hl(a) as they will occur in a graph of hl(Ltl; for nodes that are in
cident with an edge, this multiplicity is determined by the label of that edge,
but for the other nodes (which are necessarily begin or end nodes because grew)
has no isolated nodes) their multiplicity will only be clear after concatenation.
Let p be the alphabetical substitution that substitutes all possible (a, fL) for

a, i.e., p = {(a,(a,fL)) I (a,fL) E A'}. Thus, peLt! = {(al,fLI)···(an,fLn) I
al·" an ELI, (aj,fLj) E A'}. Let R be the regular language over A' that

consists of all strings (at,fL,j···(an,fLn) such that hj(aj···an) is defined and
fLj(end(hl (aj))(i)) = I'j+1 (begin(hl(aj+1))(i)) for all relevant j and i (to be pre
cise: for alII :s j < n and alii :s i:S lend(hj(aj))I; note that lend(hj(aj))1 =
Ibegin(hl(aj+tl)1 because hl(al ·"an) is defined). In words, the language R
checks that the guessed multiplicity of the ith end node of hl(aj) equals that of
the ith begin node of hI (aj+tl· Thus, R checks that the guessed multiplicities
are consistent with the identification of nodes when concatenating the graphs

28

h,(a,), ... ,h,(an) (and hence are the correct multiplicities). It should be clear
that R is indeed regular (ef. Lemma 15). We now define £ = p(L,)nR; since, by

assumption, K is closed under sequential machine mappings, L is in [{. Finally,

for (a, 1') E A' we define h(a,l') = exp(h, (a), 1').

It should now be clear that h(L) = h2 (£2)' A formal proof can be given as
follows.

Let a decorated graph be a pair (g,l') with 9 E GR(B) and I' a decoration of
g. Define the concatenation of decorated graphs, as follows. For decorated graphs

(g"I") and (g2,1'2), if g, og2 is defined and I',(end(g,)(i)) = 1'2(begin(g2)(i))

for all i, then their concatenation is (g" 1',)0 (g2, 1'2) = (g, og2,1') with I'([X]R) =

I'j(x) if x E Vgj (where we assume the terminology of Definition 3). It is easy to
see that, the other way around, if g, 0 g2 is defined and (g, 0 g2, 1') is a decorated

graph, then there exist decorations 1', and 1'2 of g, and g2, respectively, such that

(g" 1',) 0 (92,1'2) = (g, 092, 1'). As a basic property of 'exp' it can be shown that
it is a homomorphism with respect to the concatenation of decorated graphs:

exp((g, , 1',) 0 (92,1'2)) = exp(g" 1',) 0 exp(g2, 1'2).

Now consider some string a,"'an E L,. Then h2(gr-'(h,(a, "'an)) is de
fined if and only if there exist decorations I'i such that (h, (a;), I'i) is a deco
rated graph, for all i, and their concatenation (h,(a,),I',) 0··' 0 (h,(an),l'n)

is defined. And this is if and only if there exist I'i such that (ai, 1';) E A' and

(a"I',)'" (an,l'n) E R. Moreover, in that case, for the unique decoration I' of
h,(a,·· ·an),

h2 (gr-'(h, (a, ". an)) = exp(h, (a, ". an), 1') =

exp((h,(a,),I',) 0'" 0 (h, (an), I'n)) =

exp(h, (a,), 1',) 0 ... 0 exp(h, (an), I'n) =

h(a"I',) 0'" 0 h(an,l'n) = h((a"I',)··· (an,l'n)).

This shows that h2(L2) = h(L). D

As a corollary of Theorem 28 we obtain that for arbitrary K and K' (both

closed under sequential machine mappings), Int(K) = Int(K') if and only if
Str(Int(K)) = Str(Int(K')). This means that the graph generating power of K

is completely determined by its string generating power (with strings coded as
graphs by the mapping gr).

We now show that Ext(K) is a class of languages that is well known in formal
language theory. By 2DGSM (K) we denote the class of images of languages from

K under 2dgsm mappings, i.e., the class of all I(L) where I is a 2dgsm map

ping and £ E K. A 2dgsm (i.e., a two-way deterministic generalized sequential
machine) is a deterministic finite automaton that can move in two directions on

its input tape (with endmarkers), and outputs a (possibly empty) string at each
step. As an example, {anbncn In 2: 1} is in 2DGSM(REG), because it is easy to
construct a 2dgsm that translates pqnr into an+lbn+lcn+l for every n EN. The

proof of the next result is obtained by generalizing the proof in [EngHey] that
Str(LIN-HR) equals the class of output languages of 2dgsm mappings. We say

29

that K is nontrivial if it is not a subset of {0, {.\}}; in other words, K contains
at least one language that contains a nonempty string.

Lemma 29. For every nontrivial class K that is closed under sequential ma

chine mappings, Str{LIN-HR{K)) = 2DGSM{K).

Proof. To reduce the proof to a generalization of the proof in [EngHeyJ, we have
to deal with some technical details. In particular, the coding 'gr' (and hence the

operation 'Str') is defined in a different way (see Definition 2.2 of [EngHey[).
We will discuss this in steps. Note that, by Theorem 27, Str{LIN-HR{K)) =

Str{Int{K)).

First of all, let grl be defined in the same way as gr, except that additionally
grl{.\) = id l ; and let Strl be defined in the same way as Str, with grl instead
of gr. We claim that Strl (Int{K)) = Str{Int{K)). Thus, we have to show that
for every language L, grl{L) E Int{K) iff gr{L) E Int{K). This is obvious if

.\ rt L. If .\ E L, then grl (L) = gr{L) U {idd. Assume first that gr{L) is ill
Int{K). If gr{L) = 0, we have to show that {idd E Int{K). Since K is not
a subset of {0, {.\}}, K contains a language M ~ A' such that M contains
at least one nonempty string. Define the interpretation h with h{a) = idl for

all a E A. Then h{M) = {idd (because id l 0 id l = idll. Now let gr{L) oj 0.
Let gr{ L) = h{ M) for some interpretation h and some M E K. Then M must

contain a nonempty string w. Let b be a new symbol, not in the alphabet A

of M, and define the interpretation h' of A U {b} such that h' (a) = h{ a) for

every a E A and h{b) = idl . Then h'{M U {b1wl }) = h{M) U {idd = grl (L).

It is easy to see that there is a sequential machine mapping that transforms M

into M U {b1wl }. This proves one direction of the equivalence. To show the other

direction, assume that grl{L) E Int{K). If id l E gr{L), then there is nothing to

prove. Now let idl rt gr{L). Then gr{L) = grl (L) - {idd. Let gr{L) = h{M)

for some interpretation h and some M E K, M ~ A'. Let B be the set of

all a E A such that h{ a) has at least one edge. Then the regular language
A' EA' is the set of all wE A' such that h{w) contains at least one edge. Hence

gr{L) = h{M n A' BN) E Int{K).
Second, let gr,{w) = backfold{grl (w)), and let Str, be defined on the basis of

gr,. Then Str,{Int{K)) = Strl (Int(K)). This is because for every graph language
L, L E Int{K) iff backfold{L) E I~t{K). To see this, note that for every graph
9 with type{g) = (m, n), backfold{g) = (g Ell idn) 0 backfold{idn) (see the proof
of Theorem 7) and 9 = (idm Ell fold{idn)) 0 (backfold{g) Ell idn) (see the proof of
Theorem 13). Thus, it suffices to show that Int{K) is closed under the operations

£' Ell {idn }, {h} 0 £' , and £' 0 {h}. 'For the first operation this has been shown in
the proof of Lemma 19. The other two operations are left to the reader (see the

end of the proof of Theorem 13 and the end of the proof of Theorem 27).
Third, define gr3{w) in the same way as gr,{w), except that the type of the

edges is changed from (I, 1) to (2,0). To be precise, an edge e with s{e) = 11. and
t{e) = v in gr,{w), has s{e) = uv and t{e) =.\ in gr3{w). It should be clear that
Str3{Int{K)) = Str,{Int{K)), where Str3 is based on gr3 in the usual way.

In [EngHey], the coding gr3 is used instead of gr. We have just shown that this
does not change the class Str{LIN-IiR{K)), in the sense that Str3{LIN-HR{K)) =

30

Str(LIN-HR(K)). Another small difference is that in [EngHey] all (terminal
and nonterminal) edges of graphs have type (m,O) for some m. Let us indi
cate this here by HR'. Since all edges of gr3(w) have type (2,0), and since
backfold(gr3(w)) = gr3(w), it should be clear from the construction of G in
the proof of Theorem 13 that for every language L, gr3(L) E LIN-HR'(K) iff

gr3(L) E LIN-HR(K). This shows that Str(LIN-HR(K)) = Str3(LIN-HR'(K)),
the class considered in [EngHey].

It is proved in [EngHey] that Str(LIN-HR) equals the class of ranges of

2dgsm mappings. Since it is easy to see that LIN-HR(REG) = LIN-HR and

that 2DGSM(REG) is the class of output languages of 2dgsm's (by incorporat

ing the regular control language in the finite control of the grammar and the
2dgsm, respectively), this proves the theorem for K = REG. The proof of the

general case consists of a careful analysis of the proof in [EngHey], which shows
that it can be generalized to K-controlled grammars, under the assumption that

K is closed under sequential machine mappings (and K is nontrivial). This anal

ysis can easily be carried out. 0

From Theorems 27) 28) and Lemma 29, we obtain our second characterization

of the class Ext(K).

Theorem 30. For every nontrivial class K that is closed under sequential ma

chine mappings, Ext(K) = 2DGSM(K).

Corollary 31. For all nontrivial classes K and K' that are closed under se

quential machine mappings,

Int(K) = Int(K') if and only if 2DGSM(K) = 2DGSM(K').

Quite a lot is known about the class 2DGSM(K), see, e.g., [EngRS]. As an ex

ample, it equals the class oflanguages generated by K-controlled ETOL systems
of finite index (Corollary 4.10 of [EngRS]). The trivial fact that Ext(Ext(K)) =

Ext(K) corresponds to the known result that 2DGSM(2DGSM(K» is equal to

2DGSM(K); this shows that Ext(K) is closed under 2dgsm mappings (cf. Corol
lary 5.8 of [EngRS]).

Theorem 30 and Corollary 31 allow us to use known formal language theoretic

results for the classes 2DGSM(K) to find out the power of the classes Int(K).
Thus, for K = REG, Ext(K) is the class 2DGSM(REG) of output languages
of 2dgsm mappings. Since it is well known that the class DB of derivation

bounded context-free languages is contained in 2DGSM(REG) (see, e.g., [Raj]),
this implies the previously mentioned result that Int(DB) = Int(REG). Also,
since there is a context-free language not in 2DGSM(REG), see Lemma 4.24 of

[Gre] (or Theorem 3.2.17 of [EngRS]), Int(REG) is properly included in Int(CF).

Theorem 32. Int(REG) = Int(LIN) = Int(DB) C Int(CF) C HR.

Finally, we would like to know whether Int(CF) is the largest class Int(K) that
is included in HR. This is true if and only if Ext(CF) is the largest class K such
that Int(K) is included in HR. Trying to find an answer to this question, we first
characterize this largest class.

31

Theorem 33. Str(HR) is the largest class K such that Int(K) <; HR.

Proof. The proof is similar to the one of Theorem 28. We first observe that HR
is closed under replacements. In fact, if G is a context-free graph grammar over

CS (see Theorem 11) and ¢ is a replacement, then ¢(val(L(G))) = val(L(G')),

where G' is obtained from G by changing every constant cg that occurs in the
productions of G into c<l(g). The correctness of this construction follows from
Lemma 4.

As in the proof of Theorem 28 it now suffices to show that AtInt(Str(HR)) <;
HR. Instead of HR we consider the class Val(CFG(CS)), see Theorem 11. Let
G = (N, T, P, S) be a context-free graph grammar over CS such that val(L(G)) =
gr(L) for some language L <; B', and let h be an atomic interpretation of B such

that h(L) is a graph language. Note that, as in the proof of Theorem 28, each

symbol b E B has type (1,1) in val(L(G)), and has an arbitrary type with respect

to h. We may assume that G is in normal form, i.e., that all its productions are
of the form X --+ cg or X --+ YoZ or X --+ YEIlZ, where X, Y, ZEN and 9 E GR

(this is the usual normal form of regular tree grammars, see, e.g., [GecSte]).

We have to construct a context-free graph grammar G' = (N', T', P', S')

such that val(L(G')) = h(L). The idea of the construction is the same as in

the proof of Theorem 28: each graph gr(w) for which h(w) is defined, is trans
formed into exp(gr(w),JL), where JL is the unique decoration of gr(w) (see the
proof of Theorem 28 for the terminology used). Let M be the maximal number

occurring in the types of the symbols of B (with respect to h). We define N'

to consist of all triples (X,JLb,JL,) such that X E Nand JLb,JL, E {1, ... ,Mt
with type(X) = (IJLbl, IJL,I); moreover, type(X, JLb, JL,) = type(X). The intuition
is that if atom(X) =;.' 9 where 9 is terminal, then atom(X, JLb, JL,) =;.' exp(g, JL)

where JL is the decoration of 9 such that JL(begin(g)(i)) = JLb(i) for aliI :0; i :0; IJLbl
and JL(end(g)(j)) = JL,(j) for all 1 :0; j :0; IJL,I (note that, assuming G to be re

duced, JL is unique because all isolated nodes of 9 are begin or end nodes).
The initial nonterminal S' of G' is (S, (m), (n», where (m,n) = type(h(L)).

The productions in p' are defined as follows. If X --+ Y 0 Z is in P, then
(X, JLb, JL,) --+ (Y, JLb, JL) 0 (Z, JL, JL,) is in P' for all appropriate strings JLb, JLeo

and JL over {I, ... ,M}. If X --+ YEll Z is in P, then (X,JLb . JL~,JL, . JL;) --+

(Y,JLb,JL,) Ell (Z,JL~,JL;) is in P' for all (Y,JLb,JL,),(Z,JL~,JL;) EN'. Finally, if
X -+ cg is in P, then (X, jlb, J.le) -+ Cexp(g,/.t) is in pI for all strings Ph, Jle and

all decorations JL of 9 such that JL(begin(g)(i)) = JLb(i) and JL(end(g)(j)) = JL,(j)
for all appropriate i and j.

This ends the construction of G'. A formal correctness proof is left to the

reader. It should be based on a definition of the sum of decorated graphs, and

the fact that 'exp' is a homomorphism with respect to this sum (and the cor
responding fact for the concaten'ltion of decorated graphs, as observed in the
proof of Theorem 28). 0

This proves that Int(Str(HR)) is the largest class Int(K) that is included in HR. ,
It is shown in [EngHeyJ that the class Str(HR) of string languages gen

erated by HR grammars is equal to the class OUT(DTWT) of output lan-

32

guages of deterministic tree-walking transducers. It now follows from Theo
rems 30 and 33 that Int(CF) is the largest class Int(K) that is included in HR
if and only if Ext(CF) is the largest class K such that Int(K) ~ HR if and
only if 2DGSM(CF) = OUT(DTWT). Note that it follows from our results that
2DGSM(CF) = Ext(CF) = Str(Int(CF)) ~ Str(HR) = OUT(DTWT), which
was proved in a completely different way in Corollary 5.6 of [EngRSj (where

2DGSM(CF) is denoted DCS(CF), and OUT(DTWT) is denoted DCT(REC)
or yTr,(REC)). However, equality of 2DGSM(CF) and OUT(DTWT) is men

tioned as an open problem after Corollary 5.6 of [EngRSj. Hence, it is an open

problem whether or not Int(CF) is the largest class Int(K) that is included in

HR. As another open problem we mention the following: is it true that every HR
graph language of bounded pathwidth is ill Int(Str(HR))? Or even in Int(CF)?

Note that all HR graph languages in Int(S1r(HR)) are of bounded pathwidth by
Corollary 17. Some more open problems are: is it decidable whether an HR graph
language is in Int(REG)? and the same question for Int(CF) and Int(Str(HR)).

We finally mention that it would be interesting to find another natural op
eration of concatenation of graphs that can be used to characterize the graph
languages generated by the linear edNCE grammars (which are node replace

ment graph grammars, see, e.g., [CouER]).

Acknowledgment. We wish to thank Hans Bodlaender for the references to
pathwidth.

References

[BauCau] M.Bauderon, B.Courcelle; Graph expressions and graph rewritings, Math.

Syst. Theory 20 (1987), 83-127

[Ben] D.B.Benson; The basic algebraic structures in categories of derivations, In

form. and Control 28 (1975), 1-29

[Ber] J.Berstel; Transductions and Context-Free Languages, Teubner, Stuttgart,

1979

[Bod] H.L.Bodlaender; A partial k-arboretum of graphs with bounded treewidth,

Preliminary version, Utrecht University, September 1995

[BosDW] F.Bossut, M.Dauchet, B.Warin; A Kleene theorem for a class of planar

acyclic graphs, Inform. and Comput. 117 (1995), 251-265

[Cia] V.Claus; Ein Vollstandigkeitssatz fiir Programme und Schaltkreise, Acta In

formatica 1 (1971), 64-78

[Cou1] B.Courcellej An axiomatic definition of context-free rewriting and its appli

cation to NLC graph grammars, Theor. Comput. Sci. 55 (1987), 141-181

[Cou2] B.Courcelle; Graph rewriting: an algebraic and logic approach, in Handbook

of Theoretical Compu.ter Science, Vol.R (J.van Leeuwen, ed.), Elsevier, 1990,

pp.193-242

[Cou3] B.Courcelle; The monadic second-order logic of graphs III: Tree

decompositions, minors and complexity issues, RAIRO Theoretical Infor

matics and Applications 26 (1992), 257-286

[CouER] B.Courcelle, J.Engelfriet, G.Rozenbergj Handle-rewriting hypergraph lan

guages, J. of Compo Syst. Sci. 46 (1993), 218-270

33

[Dre] F.Drewesj Transducibility - symbolic computation by tree-transductions,

University of Bremen, Bericht NT. 2/93, 1993

[EhrKKKj R.Ehrig, K.-D.Kiermeier, H.-J,Kreowski, W.Kiihnelj Universal Theory of

Automata, Teubner, Stuttgart, 1974

[EUST] J.A.Ellis, I.H.Sudborough, J.S.Turner; The vertex separation and search

number of a graph, Inform. and Cam put. 113 (1994), 50-79

[Eng] J.Engelfriet; Graph grammars and tree transducers, Proc. CAAP'94

(S.TisOll, ed.), Lecture Notes in Computer Science 787, Springer-Verlag,

Berlin, 1994, pp.15-36

[EngHey] J.Engelfriet, L.M.Heykeri The string generating power of context-free hy

pergraph grammars, J. of Compo Syst. Sci. 43 (1991),328-360

[EngRS] J.Engelfriet, G.Rozenberg, G.Slutzki; Tree transducers, L systems, and two

way machines, J. of Compo Syst. Sci. 20 (1980), 150-202

[EngVerJ J.Engelfriet, J.J.Vereijkenj Concatenation of graphs, in Graph-Grammars

and their Application to Computer Science, Proceedings of the 5th Inter

national Workshop, Williamsburg, 1994, to appear as Lecture Notes in Com

puter Science, Springer-Verlag, Berlin

[GecSte]

[Gre]

F.Gecseg, M.SteinbYi Tree Automata, Akademiai Kiado, Budapest, 1984

S.Greibachj One-way finite visit automata, Theor. Comput. Sci. 6 (1978),

175-221

[Hab] A.Habel; Hyperedge Replacement: Grammars and Languages, Lecture Notes

in Computer Science 643, Springer-Verlag, Berlin, 1992

[HabKre] A.Habel, H.-J .Kreowskij May we introduce to you: hyperedge replacement,

in Graph-Grammars and their Application to Computer Science (H.Ehrig,

M.Nagl, G.Rozenberg, A.Rosenfeld, eds.), Lecture Notes in Computer Sci

ence 291, Springer-Verlag, Berlin, 1987, pp.15-26

[HabKV] A.Habel, H.-J.Kreowski, W.Voglerj Metatheorems for decision problems on

hyperedge replacement graph languages, Acta Informatica 26 (1989), 657-677

[HopUll] J.E.Hopcroft, J.D.Ullmanj Introduction to A~domata Theory, Languages, and

Computation, Addison-Wesley, Reading, Mass., 1979

[HotI] G.Hotzj Eine Algebraisierung des Syntheseproblems von Schaltkreisen, ElK 1

(1965), 185-205, 209-231

[Hot2] G.Hotzj Eindeutigkeit und Mehrdeutigkeit formaler Sprachen, ElK 2 (1966),

235-246

[HotKM] G.Hotz, R.Kolla, P.Molitorj On network algebras and recursive equations,

in Graph-Grammars and Their Application to Computer Science (H.Ehrig,

M.Nagl, G.Rozenberg, A.Rosenfeld, eds.), Lecture Notes in Computer Sci

ence 291, Springer-Verlag, Berlin, 1987, pp.250-261

[Klo] T.Kloksj Treewidth, Lecture Notes in Computer Science 842, Springer-Verlag,

Berlin, 1994

[Lau] C.Lautemanni Decomposition trees: structured graph representation and ef

ficient algorithms, Proc. CAAP'88, Lecture Notes in Computer Science 299,

Springer-Verlag, Berlin, 1988, pp.28-39

[MezWriJ J.Mezei, J.B.Wright; Algebraic automata and context-free sets, Inform. and

Control 11 (1967), 3-29

[Raj] V.Rajlichj Absolutely parallel grammars and two-way finite state transduc

ers, J. of Compo Syst. Sci. 6 (1972), 324-342

[RobSeY1 N.Robertson, P.D.Seymour; Graph minors I. Excluding a forest, J. Comb.

Theory Ser.B 35 (1983), 39-61

[Sal] A.Salomaaj Formal Languages, Academic Press, New York, 1973

34

[Ver] J.J.Vereijkenj Graph Grammars and Operations on Graphs, Master's Thesis,

Leiden University, May 1993

This article was processed using the ~'IEX macro package with LLNCS style

35

Computing Science Reports

In this series appeared:

93,1)1

93,1)2

93,1)3

93104

93,1)5

93106

93/00

93,1)8

93,1)9

93/10

93/11

93/12

93/13

93/14

93/15

93/16

93/17

93/18

93/19

93{20

93/21

93{l2

93/23

93124

93125

93126

93127

93128

93129

93/30

R van Ge1drop

T. Verhoeff

T. Verhoeff

RH.L. Aans
J.H.M. Korst
P.I. Zwietering

J.C.M Baeten
C.Vcthod

J.P. Veltkamp

P.O. Moerland

J. Vcthoosel

K.M. van Hee

K.M. vanHee

K.M. van Hee

K.M. van Hee

K.M. van Hee

I.C.M. Baeten
I.A. Bergsb'a

I.C.M. Baeten
I.A. Bergsb'a
R.N. Bol

H. Schepen
J. Hooman

D. Alslein
P. van der Stok

C. Vcthod

G-J. Houben

F.S. de Boer

M. Codish
D. Dams
G. FilO
M. Bruyrtooghe

E.Poll

E. de Kogel

E. pon and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. Kloks and D. Kratsch

F. Kamareddine and
R. Nederpe1t

R Post and P. De Bra

J. Deegun
T. Kloks
D. Krstsch
H. Miiller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algoriduns: a case study into the synergy of program
ming methods., p. 36.

A continuQUs versioo. of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predica1el, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprograrruning, p. rn

A Formal Deterministic Scheduling Model for Hard Real-Time Executioos in
DE1XlS, p. 32-

Systems Engineering: a Fonna! Approach
Part I: System Concepts, p. 72-

Systems Engineering: a Fonnal Approach
Part TI: Frameworks, p. 44.

Systems Engineering: a Formal Approach
Part ID: Modeling Methods, p. 101.

Systems Engineering: a Formal Approach
Pan IV: Analysis Methods, p. 63.

Systems Engineering: a Fonna! Approach Part V: Specification Language. p. 89.

On Sequential Compositioo, Action Prefixes and
Process Prefix, p. 21.

A Real-TIme Process Logic, p. 31.

A Trace·Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real· TIlDe Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Programming, p. 15.

Freeness Analysis for Logic Programs· And Correctness, p. 24

A Typechecter for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Deftnitions, p. 38.

A Compositimal Proof Theory for Fauh Tolerant Rea1·Time Distributed Systems,
p.31.

Multi.dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a nne l--calcu1us with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Pennutation and Other Graphs,
p.l1.

93131 W. Kfuver

93/32 H. ten Eikelder and
H. van Geldrop

93133 L. Loyens and I. Moonen

93/34 I.C.M. Baet ... and
I.A. Bergstra

93/35 W. Ferrer and
P. Severi

93/36 I.C.M Baeten and
I.A. Bergstr.

93/37 I. Bnmekreef
I-P. Katoen
R. Koyman.
S.Mauw

93/38 C. Verl>oef

93/39 W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taahnan Kip
K..M. van Hee

93/40 P.D.V. van der Stoic:
M.M.M.PJ. Claessen
D. Alstein

93/41 A. Bijlsma

93/42 P.M.P. Rambags

93/43 B.W. Watson

93/44 B.W. Watsoo

93/45 E.I. Luit
I.M.M. Martin

93/46 T. Kloks
D. Kratsch
I. Spinrad

93/41 W. v.d. Aalst
P. De Bra
GJ. Houben
Y. Komatzky

93/48 R. Genh

94,01 P. America
M. van der Kammen
R.P. Nederpe1t
O.S. van Roosrnalen
H.C.M de Swart

94!02 F. Kamareddine
R.P. Nederpe1t

94,03 L.B. Hartman
K.M. van Hee

94!04 I.C.M Baeten
I.A. Bergstra

94!05 P. Zbou
I. Hooman

94!06 T. Basten
T. KlDlZ
I. Black
M. Coffin
D. Taylor

94m K.R. Apt
R. Bol

94!08 O.S. van Roosmalen

94!09 I.C.M Baeten
I.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits, using
direacd conunands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Autcmata for Regular Expressions, p. 17.

lllAS. a sequemia11anguage for parallel matrix computations, p. 20.

Real Ttme Process Algebra with Infmitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra, p. 17.

Job Shop Scheduling by Constraint Satisfaction., p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Sy.tem., p. 43.

Temponl operaton viewed as predicate transfonners, p. 11.

Automatic Verification of Regular Protocols in P{f Nets, p. 23.

A taxomomy of fmite automata construction algoriduns, p. 87.

A taxooomy of fmite automata minimization algorithms, p. 23.

A precise clock syndllonization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
BOtmded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refmemmt, p. 20.

The object-oriented paradigm, p. 28.

Canooica1 typing and TI-conversioo, p. 51.

Application of Marcov Decision Processe to Search
Probkm., p. 21.

Graph Isomorphism Models for Non Interleaving Process
A1gebnl, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Qass Structure, p. 22.

Process Algebra with Panial Cloice, p. 16.

94110 T. verhoef{

94/11 J. Peleska
C. Huizing
C. Pelenobn

94/12 T. Klola
D. Kratsch
H. MUller

94/13 R. SeljU

94/14 W. Peremans

94/15 RJ.M Vaessens
E.H.L Aort.
J.K. Lenstra

94/16 R.C. Backbouse
H. Doornbos

94/17 S. Mauw
M.A. Renien

94/18 F. Kamareddine
R. Nederpe1t

94/19 B.W. Watson

94120 R. Bloo
F. Kamareddine
R. Nederpe1t

94121 B.W. Watsoo

94/22 B.W. Watson

94/23 S. Mauw and M.A. RenieR

94/24 D. Dams
O. Grumberg
R. Gerth

94/25 T. Kloks

94/26 R.R. Hoogerwoord

94/27 S. Mauw and H. Mulder

94/28 C.W.A.M van Overve1d
M. Verhoeven

94/29 J. Hooman

94/30 J.C.M. Baeten
J.A. Bergstra
Gh. ~anescu

94/31 B.W. Watson
R.E. Watsoo

94/32 13. Vcrcijken

94133 T. Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpe1t

94135 I.C.M Baeten
S. Mauw

94/36 F. Kamareddine
R. Ncderpe1t

94/37 T. Basten
R. Bo1
M. Voorhoeve

94138 A. Bijlsma
C.s. Scholten

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transformation
Schema with State- & Activitycharts, p. 30.

Dominoes. p. 14.

A New Method for Integrity Constraint checking in Deductive Database., p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by l.ocal Search, p. 21.

Mathematicallndoction Made Calcu1ational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Chatts, p. 9.

Ref'ming Reduction in the Lambda Calculus. p. 15.

The perfonnance of single-keyword and multiple-keyword pattern matching
algoritlnns, p. 46.

Beyend ,P-Reduction in Oturch's l~. p. 22.

An introduction to the Fire engine: A C++ toolkit for Fmite automata and Regular
Expressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving V'CI'L", 3CfL" and CI'L". p. 28.

K1.]-free and W.-free graphs, p. 10.

On the foundations of functional programming: a programmer's point of view, p.
54.

Regoiarity of BPA-System. i. Decidable, p. 14.

Stars or Stripes: a COOIparative srudy of fmite and
transfmite teclmiques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expressioo
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A formalization of the Ramified Type Theory. p.40.

The Barendregt Cube with Defmitions and Generalised
Reduction, p. ~7.

Delayed choice: an operator for joining Message
Seqoence Charts, p. IS.

Canooical typing and II-cooversion in the Barendregt
Cabe, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substirution, p. 10.

94/39 A. Blokhuis
T. Kloks

94/40 D. Alstein

94/41 T. Kloks
D. Kratsch

94/42 I. E\J!eHriet
JJ. ereijken

94/43 R.C. Backhouse
M. Bijsterve1d

94/44 E.Brinksma I. Davies
R. Gerth S.Gnd'
W. Janssen B. Jonsson
S. KaIZ G. Lowe
M. Poe! A. Poueli
C. Rump 1. Zwiers

94/45 GJ. Houbcn

94/46 R. Bl00
F. Kamareddine
R. Nederpelt

94/47 R. D100
F. Kamareddine
R. Nederpelt

94/48 Mathematics of Program
Construction Group

94/49 I.C.M. Baeten
I.A. Bergstra

94/50 H. Geuvers

94/51 T. Kloks
D. Kratsch
H. MillIer

94/52 W. Pcnczek
R. Kuiper

94/53 R. Gerth
R. Kuiper
D. Peled
W. Penczek

95m JJ. Lukkien

95ft]2 M. Dezern
R. Dol
J.F. Grooce

95J1)3 I.C.M. Baeten
C.Verhoef

95J1l4 I. Hidden

95J1)5 P. Severi

95,1)6 T.W.M. Vossen
M.G.A. Verhoeven
HMM. ten llikelder
E.H.L. Aarts

95m G.A.M de Druyn
O.S. van Roosmalen

95J1)8 R. B100

95J1)9 I.C.M Baeten
J .A. Bergstra

95/10 R.C. Backllouse
R. Verhoeven
O.Weber

On the equivalence covering number of splitgraphs, p. 4.

Distributed Coosensus and Hard Real-Tune Systems, p. 34.

Computing a peIfect edge without vertex eliminatioo
ordering of a chonlal bipartite graph. p. 6.

Concatenation of Graphs, p. 7.

CategOty Theory as Coherently Constructive Lattice
Theory: An Dlustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect-bibliotheek voor .. Administratieve Logistiek", p. 43.

The l-cube with classes of terms modulo conversion,
p. 16.

On TI-cooversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for Ihe Calrulus of Constructions, p. 'n.

Listing simplicial venices and recognizing
diamond-free graphs, p. 4.

Traces and Logic. p. 81

A Panial Order Approach to
Branching Ttme Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary, p.16.

Formalizing Process Algebraic Verificatioo.s in Ihe Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pore Type Systems, p.20.

A Quantitative Analysis of Iterated Local Search, p.23.

Drawing Execution Graphs by Parsing. p. 10.

Preservation of Stroog Normalisatioo for Explicit Substitution, p. 12.

Discrete Time Process Algebra, p. 20

MathJpad: A System for On-Line Prepararation of Mathematical
Doaunents, p. 15

:' I

95/11 R. Seljee

95/12 s. Mauw and M. Reniers

95/13 B.W. Watson and O. Zwaan

95/14 A. Poose, C. Verhoef,
S.F.M Vlijrnen (ed,.)

95/15 P. Niebert and W. Penczek

95/16 D. Dams, O. Grumberg, R. Gerth

95/17 S. Mauw and E.A. van der Mewen

95/18 F. KlIlnareddine and T. Laan

95/19 I.C.M. Baeten and I.A. Berg,tra

95!20 F. van Raamsdonk and P. Severi

95(21 A. van Dennen

95{22 B. Arnold, A. v. Deursen, M Res

95/23 W.M.P. van der Aalst

95(24 F.P.M Dignum, W.P M. Nuijten,
LMA. Ianssen

95(1.5 1.. Feij'

95/26 W.M.P. van der Aalst

95f27 P.D.V. van der Stok, 1. van der Wal

95f28 W. Fokkink, C. Verlloef

95f29 H.Iurjus

95/30 I. Hidden, C. Haskens, I. Paredaens

95/31 P. Ke1b. D. Dams and R. Gerth

95/32 W.MP. van der Aalsl

Deductive Database Systems and integrity constraint checking. p. 36.

Empty Interworkings and Refinement
Semantics of Interworkings Revised. p. 19.

A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

De proceedings: ACP95, p.

On the Connection of Partial Order Logics and Partial Order Reductioo Methods,
p. 12.

Abstract Interpretation of Reactive Systems: PresclVation of CfL *. p. 27.

Specification of tools for Message Sequence OIarts, p. 36.

A Reflection (Il Russell's Ramified Types and Kripke's Hierarchy of Truths,
p.14.

Discrete Time Process Algebra with Abstraction. p. IS.

On Normalisatioo, p. 33.

Axicmatizing Early and Late Input by Variable Elimination. p. 44.

An Algebraic Specification of a language for Describing Financial Products,
p. ll.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfactioo, p. 14.

Synclrronous Sequen", Otarts In Action, p. 36.

A Qass of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real-Time Database Workshop, p. 106.

A Conservative Look at term Deduction Systems with Variable Binding, p. 29.

On Nesting of a Ncmnonotoruc Cmditional, p. 14

The Formal Model of a Pauem Browsing Technique. p.24.

Practical Symbolic Model Otecking of the full p-calculus using Compositional
Abstractions, p. 17.

Handboek. simulatie, p. 51.

	Abstract
	1. Introduction
	2. Preliminaries
	2.1 Strings
	2.2 Graphs and graph replacement
	2.3 Hyperedge replacement grammars
	3. Concatenation and Sum
	4. Context-free graph grammars
	5. Strings Denote Graphs
	6. Characterizations of Int(K)
	7. Comparison in Int(K) and Int(K')
	References

