
 Open access Book Chapter DOI:10.1007/11548133_14

Context-free languages via coalgebraic trace semantics — Source link

Ichiro Hasuo, Bart Jacobs

Institutions: Radboud University Nijmegen

Published on: 03 Sep 2005 - Conference on Algebra and Coalgebra in Computer Science

Topics: Denotational semantics, Coalgebra, Category of sets, Initial algebra and Monad (functional programming)

Related papers:

 Universal coalgebra: a theory of systems

 Trace Semantics for Coalgebras

 A Coalgebraic Foundation for Linear Time Semantics

 Generic forward and backward simulations

 Generic trace semantics via coinduction

Share this paper:

View more about this paper here: https://typeset.io/papers/context-free-languages-via-coalgebraic-trace-semantics-
5ocokiukgp

https://typeset.io/
https://www.doi.org/10.1007/11548133_14
https://typeset.io/papers/context-free-languages-via-coalgebraic-trace-semantics-5ocokiukgp
https://typeset.io/authors/ichiro-hasuo-2a3y55cnhe
https://typeset.io/authors/bart-jacobs-26zypv00vd
https://typeset.io/institutions/radboud-university-nijmegen-1p1bp5sl
https://typeset.io/conferences/conference-on-algebra-and-coalgebra-in-computer-science-xkqyovee
https://typeset.io/topics/denotational-semantics-1yuhzyhm
https://typeset.io/topics/coalgebra-2381xtho
https://typeset.io/topics/category-of-sets-2me69zkj
https://typeset.io/topics/initial-algebra-10vtifcd
https://typeset.io/topics/monad-functional-programming-ryrhz334
https://typeset.io/papers/universal-coalgebra-a-theory-of-systems-3uo82qdtfr
https://typeset.io/papers/trace-semantics-for-coalgebras-1gp2ljqxto
https://typeset.io/papers/a-coalgebraic-foundation-for-linear-time-semantics-17rzqwldyu
https://typeset.io/papers/generic-forward-and-backward-simulations-4g9x802t6c
https://typeset.io/papers/generic-trace-semantics-via-coinduction-3zaauhuovh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/context-free-languages-via-coalgebraic-trace-semantics-5ocokiukgp
https://twitter.com/intent/tweet?text=Context-free%20languages%20via%20coalgebraic%20trace%20semantics&url=https://typeset.io/papers/context-free-languages-via-coalgebraic-trace-semantics-5ocokiukgp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/context-free-languages-via-coalgebraic-trace-semantics-5ocokiukgp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/context-free-languages-via-coalgebraic-trace-semantics-5ocokiukgp
https://typeset.io/papers/context-free-languages-via-coalgebraic-trace-semantics-5ocokiukgp

PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/32359

Please be advised that this information was generated on 2022-05-30 and may be subject to

change.

http://hdl.handle.net/2066/32359

Context-free Languages

via Coalgebraic Trace Semantics

Ichiro Hasuo and Bart Jacobs

Department of Computer Science, Radboud University

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

E-mail: {ichiro, B.Jacobs}@cs.ru.nl

URL: http://www.cs.ru.nl/{~ichiro, B.Jacobs}

January, 2005

Abstract

In this paper we identify context-free grammars as coalgebras. To ob-
tain the associated context-free languages (consisting of only finite-length

strings) we introduce a general and novel technique of finite trace se-

mantics for coalgebras. It builds on top of the (possibly infinite) trace
semantics introduced earlier by the second author, but extracts only finite
behavior. Interestingly the finite trace is uniquely characterized corecur-
sively and hence it yields a final coalgebra in a suitable Kleisli category,
while the ordinary trace is not unique and yields a weakly final coalgebra.
Additionally, the constructions of both finite and possibly infinite parse
trees are shown to be monads. Hence our extension of the application
domain of coalgebras identifies several new mathematical constructions
and structures.
Keywords: coalgebra, coinduction, context-free grammar, formal lan-
guage, monad
Classification: 18C50, 68Q70 (AMS 2000); D.3.1, F.4.2, F.4.3 (ACM
CR 1998)

1 Introduction

Context-free grammars and context-free languages are undoubtedly among the
most fundamental notions in computer science. Introduced by Chomsky [Cho56],
they have come to serve as a theoretical basis for formal (programming) lan-
guages [ASU86]. This paper presents the first steps in a coalgebraic analysis of
those notions. In a sense it extends previous coalgebraic work [Jac05, Rut03]
on regular languages.

A context-free grammar is a clear example of a coalgebra: the state space
consists of its non-terminal symbols and the coalgebraic structure is defined by
its generation rules. Then the context-free language generated by the grammar

1

should be the “behavior” of the coalgebra. Our motivation is to find a suitable
setting which gives that behavior by coinduction, i.e. an argument using finality.

What is unusual here is that we are concerned only with the finite behavior
(i.e. generated strings of only finite length): usually the final coalgebra consists
of all the (possibly) infinite behavior.

We give a solution by presenting the novel technique of finite trace semantics
for coalgebras. It builds on (ordinary, possibly infinite) trace semantics from
[Jac04b] but the domain of the semantics is now the powerset of the initial
algebra, not that of the final coalgebra.

It is shown that finite trace semantics is uniquely determined by a corecursive
characterization while the ordinary one is not. In other words, the finite trace
yields a final coalgebra in a suitable Kleisli category (of sets and relations), while
the ordinary one yields a weakly final coalgebra (without uniqueness).

The paper is organized as follows. Section 2 formulates context-free gram-
mars as coalgebras, and introduces the notion of skeletal parse trees (SPTs)
which correspond to parsed strings and which will be used instead of (flat)
strings. It is shown in Section 3 that (finite) SPTs carry the initial algebra/final
coalgebra for an appropriate functor, and that their formation has a monad
structure. Section 4 reviews coalgebraic trace semantics from [Jac04b]. Then
our main technical result is presented and applied to context-free grammars in
Section 5. Section 6 is for conclusions and future work.

It is assumed that the reader is familiar with the basic categorical theory of
algebras and coalgebras for both functors and monads. For these preliminaries
see e.g. [Rut00, BW83].

Notations. The i-th coprojection into a coproduct is denoted by κi.
The set X∗ =

∐

n<ω Xn is so-called a Kleene star, consisting of all the strings
of finite length over X . It is standard that the mapping (−)∗ : X 7→ X∗ has a
monad structure with unit

∗

η creating strings of length one and multiplication
∗

µ

“flattening” a string of strings into a string (Kleene monad).
We designate by a symbol on top of η or µ for which monad it works as a

unit or multiplication. For example
∗

ηΣ is the Σ-component of the unit of Kleene
monad, and when mapped by the functor (−)∗ it is denoted by (

∗

ηΣ)∗.
We will heavily use two powerset functors: one is covariant P and the other

is contravariant P . They act the same on objects. For a function f : X → Y ,
Pf maps a subset of X to its direct image under f , and Pf maps a subset of
Y to its inverse image.

We will also use another notation
∐

for direct images, especially for relations:
for a relation R X1 × X2 and functions f1 : X1 → Y1 and f2 : X2 → Y2,

∐

f1×f2
(R) = { 〈 f1(x1) , f2(x2) 〉 | 〈x1, x2〉 ∈ R} .

The empty string (of length zero) is denoted by ε.

2

2 Context-free grammars

In this section we formulate context-free grammars and context-free languages,
from a coalgebraic perspective. For more about traditional treatment of those
notions the reader is referred to [LP81]. In fact, what we are interested in here
is not a language, i.e. a set of (flat) strings, but a set of parsed strings equipped
with a tree structure, called skeletal parse trees [ASU86].

A context-free grammar (CFG for short) consists of a set Σ of terminal
symbols, a set X of non-terminal symbols, and a relation R ⊆ X × (Σ + X)∗

consisting of generation rules. Using a common trick of “relation-into-function”,
we have the following coalgebraic presentation of a CFG.

X
g

P
(

(Σ + X)∗
)

x {s ∈ (Σ + X)∗ | 〈x, s〉 ∈ R}

This gives a bijective correspondence between coalgebras of the functor P
(

(Σ+

−)∗
)

: Sets → Sets and context-free grammars with its terminal symbols from
Σ. Here non-terminal symbols correspond to states of the coalgebra.

Example 2.1. Consider the following context-free grammar meant for the syn-

tax of Peano arithmetic, where 〈x, w〉 ∈ R is denoted by x
R
→ w:

Σ = {0, s, =,∧,∨,⊃,¬, ∀, ∃} ∪ Var , X = {T,Q,F},

T
R
→ 0, T

R
→ x (x ∈ Var), T

R
→ sT,

Q
R
→ ∀x (x ∈ Var), Q

R
→ ∃x (x ∈ Var),

F
R
→ T=T, F

R
→ F∧F, F

R
→ F∨F, F

R
→ F⊃F, F

R
→ ¬F, F

R
→ QF.

The corresponding coalgebraic presentation g : X → P
(

(Σ + X)∗
)

is as follows.

g(T) = {0} ∪ Var ∪ {sT},

g(Q) = {∀x | x ∈ Var} ∪ {∃x | x ∈ Var},

g(F) = {T=T,F∧F,F∨F,F⊃F,¬F,QF}.

Definition 2.2 (Context-free grammars). Throughtout this paper we refer
to a coalgebra for a functor P

(

(Σ+−)∗
)

as a context-free grammar (CFG) over
Σ.

Usually a context-free grammar over Σ is considered as a machine which
generates strings of letters from Σ, i.e. elements of Σ∗. However, as noted
before, here we prefer to work on skeletal parse trees rather than flat strings.

Remark 2.3. By a tree we mean an ordered tree; it is rooted and the order of
the subtrees matters, so we distinguish the following two.

a b b a

3

We will refer to the order of the subtrees as “left-to-right”.

Definition 2.4 ((Skeletal) parse trees). Let g : X → P
(

(Σ + X)∗
)

be a
context-free grammar over Σ. A parse tree generated by g from x ∈ X is a
(possibly infinite-depth) tree which satisfy the following:

1. All leaf nodes are labelled from Σ ∪ X;

2. All internal (i.e. non-leaf) nodes are labelled from X ;

3. The root is labelled with x;

4. If a leaf node is labelled from X , say with y, then the empty string ε

belongs to g(y);

5. For each internal node let y ∈ X be its label and let its immediate succes-
sors be labelled with c1, c2, . . . , cm (ci ∈ Σ + X) from left to right. Then
the string c1c2 . . . cm is an element of g(y).1

Condition 5 ensures that a parse tree is finitely-branching. A parse tree is finite
if its depth is finite.

A skeletal parse tree (SPT for short) generated by g from x is a parse tree
generated by g from x, with all of its labels from X deleted. It is finite if its
depth is finite.

A skeletal parse tree (SPT) over Σ is a skeletal parse tree generated by some
context-free grammar g over Σ. Equivalently, it is a finitely-branching, possibly
infinite-depth tree with some of its leaves labelled from Σ and its internal nodes
not labelled, and if it is trivial (i.e. root-only) then the sole node is not labelled.2

An SPT is finite if its depth is finite.

The above definition is a bit complicated; the reader may find illustrating
an alternative characterization (Proposition 3.1) in terms of initial algebra/final
coalgebra.

Remark 2.5. In a parse tree generated by a CFG g, a leaf node labelled with
y ∈ X corresponds to the application of generation rule y → ε of g. It is
standard [ASU86, Exercise 4.20] that every CFG is effectively equivalent to an
ε-free CFG, i.e. one without a rule with its right-hand side ε. For ε-free CFGs
we can simplify the definition of (skeletal) parse trees that all of the leaf nodes
are labelled from Σ.

In many cases we are only concerned with finite SPTs, as is illustrated in
the next example.

Example 2.6. The following two are parse trees generated by the context-free
grammar in Example 2.1, from the non-terminal symbol F. The one on the left

1Condition 4 may be considered as an instance of Condition 5 when m = 0.
2Since an SPT is generated from a non-terminal symbol.

4

is finite.

F

Q

∀ x

F

¬ F

T

s T

x

= T

0

F

T

s T

s T

s ...

= T

0

Forgetting about the non-terminal symbols from X , we obtain the following
SPTs generated by the grammar from F.

∀ x ¬

s

x

=

0

s

s

s ...

=

0

The infinite one on the right has no corresponding well-formed formula, while
the other one can be read as ∀x.¬(s(x) = 0).

The notion of (finite) SPTs generated by a grammar will be given a coalge-
braic characterization via (finite) trace semantics in Sections 4 and 5.

3 (Co)algebraic structures on skeletal parse trees

In this section we investigate (co)algebraic structures on the set of (finite) SPTs,
monad structures in their formation, and the “flattening” function mapping
SPTs to strings. The following observation is the first step.

Proposition 3.1. The set of all finite SPTs over Σ, denoted by Σ△, carries the
initial (Σ+−)∗-algebra. The algebraic structure αΣ makes a sequence c1c2 . . . cn

(where ci ∈ Σ + Σ△) into a tree by adding a fresh root whose immediate succes-
sors are c1, c2, . . . , cn. For example,

(Σ + Σ△)∗
αΣ

∼=
Σ△

a1 S1 a2 a3 S2

a1

S1

a2 a3

S2

and αΣ(ε) is the trivial tree which is not labelled.

5

The set of (possibly infinite) SPTs over Σ, denoted by Σ∧, carries the final
(Σ + −)∗-coalgebra. The coalgebraic structure ζΣ removes the root and returns
the sequence of its immediate successors. For example,3

Σ∧
ζΣ

∼=
(Σ + Σ∧)∗

a1

S1

a2 a3

S2
a1 S1 a2 a3 S2

and the trivial tree is mapped to the empty string ε.

Proof. The first part is by induction on the depth. The second part is shown
similarly to that Σω carries the final (Σ ×−)-coalgebra; see e.g. [JR97].

Remark 3.2. We can think of the functor (Σ + −)∗ as a “signature” in a
traditional sense. Let ⋆ be a fresh symbol, and for each s ∈ (Σ + {⋆})∗ let ‖s‖
denote the number of ⋆’s appearing in s. Then we have an obvious isomorphism

(Σ + X)∗ ∼=
∐

s∈(Σ+{⋆})∗

X‖s‖ .

Hence (Σ +−)∗ is a signature such that (Σ + {⋆})∗ is the set of operations and
each operation s ∈ (Σ + {⋆})∗ is ‖s‖-ary.

Each of the mappings (−)
△

: Σ 7→ Σ△ and (−)
∧

: Σ 7→ Σ∧ extends to a
functor as follows. For f : Σ → Φ,

(Σ + Σ△)∗
(Σ + f△)∗

αΣ ∼=

(Σ + Φ△)∗

(f + Φ△)

(Φ + Φ△)∗

αΦ∼=

Σ△

f△
Φ△

and

(Φ + Σ∧)∗
(Φ + f∧)∗

(Φ + Φ∧)∗

(Σ + Σ∧)∗

(f + Σ∧)∗

Σ∧

ζΣ
∼=

f∧ Φ∧

∼= ζΦ

.

This is an instance of standard results about initial algebras and final coalgebras
for a functor F (Σ,−), where F is a bifunctor.

It turns out that both (−)
△

and (−)
∧

have a monad structure.4 The forma-

tion of units
△

η,
∧

η and multiplications
△

µ,
∧

µ is much like for the free monad and
free iterative monad generated by a functor [AAMV03, Jac04a]. The difference

3An open triangle designates a tree with a possibly infinite depth, while a closed one is a
tree with a finite depth. This conforms to the notation Σ∧ and Σ△.

4The notation (−)△ and (−)∧ is used to suggest an analogy with the Kleene (or list,
string) monad (−)∗. Indeed, these constructions are closely related.

6

is that here the parameter set Σ is inside the Kleene monad (−)∗, which adds
some complexity.

Σ
κ1

△

ηΣ

Σ + Σ△

∗

ηΣ+Σ△

(Σ + Σ△)∗

αΣ∼=

Σ△

(Σ + Σ)∗
(Σ +

∧

ηΣ)∗
(Σ + Σ∧)∗

Σ + Σ

∗

ηΣ+Σ

Σ

κ1

∧

ηΣ

Σ∧

ζΣ
∼=

(Σ△ + Σ△△)∗

αΣ△∼=

(Σ△ +
△

µΣ)∗
(Σ△ + Σ△)∗

[α−1
Σ ,

∗

ηΣ+Σ△ ◦ κ2]
∗

(Σ + Σ△)∗∗

∗

µΣ+Σ△

(Σ + Σ△)∗

αΣ∼=

Σ△△
△

µΣ

Σ△

The definition of
∧

µ is rather complicated. Let aΣ be the following composite on
the left.

Σ∧∧
ζΣ∧

∼=

aΣ

(Σ∧ + Σ∧∧)∗
(ζΣ + Σ∧∧)∗

∼=

(

(Σ + Σ∧)∗ + Σ∧∧
)∗

[κ∗
1,

∗

η(Σ+Σ∧)+Σ∧∧ ◦ κ2]
∗

(

Σ + (Σ∧ + Σ∧∧)
)∗ (

(Σ + Σ∧) + Σ∧∧
)∗

[Σ + κ1, κ2 ◦ κ2]
∗

(

(Σ + Σ∧) + Σ∧∧
)∗∗

∗

µ(Σ+Σ∧)+Σ∧∧

This map aΣ is used in the coalgebraic structure map on the left in:

(

Σ + (Σ∧ + Σ∧∧)
)∗ (Σ + bΣ)∗

(Σ + Σ∧)∗

Σ∧ + Σ∧∧

[(Σ + κ1)
∗ ◦ ζΣ, aΣ]

bΣ
Σ∧

∼= ζΣ

Σ∧∧

κ2
∧

µΣ .

By finality one easily obtains bΣ ◦ κ1 = Σ∧.

7

It is straightforward, but laborious, to show that the constructions above
satisfy the requirements of a monad.

Proposition 3.3. The constructions 〈(−)
△

,
△

η,
△

µ〉 and 〈(−)∧,
∧

η,
∧

µ〉 are indeed
monads.

Let ιΣ : Σ△
 Σ∧ be the canonical embedding of the initial algebra into

the final coalgebra. It is a mono by [Bar93, Theorem 3.2].

(Σ + Σ△)∗

αΣ ∼=

(Σ + ιΣ)∗
(Σ + Σ∧)∗

Σ△
ιΣ

Σ∧

ζΣ
∼=

Again it is straightforward to show that ιΣ is natural in Σ, and makes the
following diagrams commute.

Σ

△

ηΣ

∧

ηΣ

Σ△

ιΣ

Σ∧

Σ△△

△

µΣ

(ι ◦ ι)Σ

Σ△

ιΣ

Σ∧∧
∧

µΣ

Σ∧

Proposition 3.4. The embedding ι : (−)
△ ⇒ (−)

∧
is a map of monads.

The flattening function ϕΣ : Σ△ → Σ∗, which maps a finite SPT to a flat
string demolishing the tree structure, is obtained via initiality of αΣ:

(Σ + Σ△)∗
(Σ + ϕΣ)∗

∼=αΣ

(Σ + Σ∗)∗

∗

µΣ ◦ [
∗

ηΣ , Σ∗]∗

Σ△
ϕΣ

Σ∗ .

The definition says that ϕΣ maps the trivial (one-node) tree to the empty string
ε, and for example

a1

S1

a2 a3

S2

ϕΣ
a1

(

ϕΣ(S1)
)

a2 a3

(

ϕΣ(S2)
)

,

as desired. The next result is again straightforward.

Proposition 3.5. The flattening map ϕ : (−)△ ⇒ (−)∗ is a map of monads.

8

Remark 3.6. It is not clear whether we have an infinite version of ϕΣ, that is, a
flattening map which takes a possibly infinite SPT to a possibly infinite string.
It is standard [JR97] that the set Σ∞ = Σ∗ + Σω of possibly infinite strings
over Σ carries the final coalgebra for the functor (1 + Σ×−). Hence the key to
obtaining a flattening map Σ∧ → Σ∞ would be a suitable (1+Σ×−)-coalgebra
structure over Σ∧. How to define it is not obvious.

4 Trace semantics for coalgebras

In this section we sketch and slightly improve the technique of trace semantics
for coalgebras from [Jac04b]. This scheme gives a coalgebraic characterization
of (possibly infinite) SPTs generated by a context-free grammar, and also forms
a basis of finite trace semantics which is used for finite SPTs.

We will give trace semantics for PF -coalgebras, where F is in the family of
endofunctors on Sets defined by the following BNF notation:

F ::= ISets | KΣ | F × F |
∐

n<ω

Fn | FΣ .

The functor KΣ is a constant functor into a set Σ. This family is that of poly-
nomial functors extended by countable coproducts,5 and contains the functor
F = (Σ + −)∗ =

∐

n<ω(Σ + −)n which makes a PF -coalgebra a context-free
grammar.

It is easy to show that such functors F preserve ω-colimits and ωop-limits.
Therefore such F have both an initial algebra and a final coalgebra (see e.g.
[Bar93, AK95]) which are, together with the canonical embedding, denoted as
follows.

FA

α ∼=

Fι
FZ

A ι Z

ζ∼=

We will look at their construction in detail later, when it is necessary.
An endofunctor F yields a relation lifting: given a relation 〈r1, r2〉 : R

X×Y , a lifted relation RelF (R) FX×FY is defined by image factorization.

FR

〈Fr1, F r2〉

RelF (R)

FX × FY

Since a functor F considered here preserves weak pullbacks, we obtain the fol-
lowing standard compatibility results which are used heavily throughout this
paper.

5The results in [Jac04b] are presented for polynomial functors with only finite coproducts,
but they immediately generalize to this family of functors.

9

Lemma 4.1. Relation liftings are compatible with such operations on relations
as:

1. Equality: RelF (=X) is equal to =FX .

2. Composition: for R X×Y , S Y ×Z and their composition S ◦ R =
{〈x, z〉 ∈ X × Z | ∃y ∈ Y.〈x, y〉 ∈ R and 〈y, z〉 ∈ Z} we have

RelF (S ◦ R) = RelF (S) ◦ RelF (R) .

3. Inclusion: if R ⊆ S then RelF (R) ⊆ RelF (S).

4. Opposite relation: for R X×Y and its opposite Rop = {〈y, x〉 | 〈x, y〉 ∈
R} we have

RelF (Rop) =
(

RelF (R)
)op

.

5. Graph of a function and functor application: for a function f : X → Y

and its graph Gf = {〈x, f(x)〉 | x ∈ X} we have

RelF (Gf) = GFf .

6. Inverse image and direct image: for functions f1 : X1 → Y1, f2 : X2 → Y2

and relations R X1 × X2, S Y1 × Y2 we have

RelF
(

(f1 × f2)
−1(S)

)

= (Ff1 × Ff2)
−1

(

RelF (S)
)

,

RelF
(
∐

f1×f2
(R)

)

=
∐

Ff1×Ff2

(

RelF (R)
)

.

Points 4 and 5 are not presented in [Jac04b] but immediately follow from
the definition.

The membership relation ∈X X×PX on a set X is lifted to RelF (∈X)

FX ×PFX . By transposition we obtain the following function λX .

FPX
λX

PFX

u {a ∈ FX | 〈a, u〉 ∈ RelF (∈X)}

Then the map λX is

• natural in X , and

• compatible with the monad structure of P : when we denote the unit
(singleton map) by {−} and the multiplication (union) by

⋃

, the following
diagrams commute.

FX
F{−}X

{−}FX

FPX

λX

PFX

FP2X
λPX

F
⋃

X

PFPX
PλX

P2FX
⋃

FX

FPX
λX

PFX

10

This says that the natural transformation λ : FP ⇒ PF is a distributive law.6

Lemma 4.2 ([Jac04b]). The maps λX thus defined form a distributive law of
a functor F over a monad P. It is called the “Power law”.

Example 4.3. Here we are interested in the case where F = (Σ + −)∗. The
lifted membership relation Rel(Σ+−)∗(∈X) between (Σ + X)∗ and (Σ + PX)∗

is described concretely as follows: a pair 〈 c1c2 . . . cm, d1d2 . . . dm 〉 belongs to
Rel(Σ+−)∗(∈X) if and only if for each i = 1, 2, . . . , m,

• if ci ∈ Σ then di is also from Σ and ci = di;

• if ci ∈ X then di is in PX and ci ∈ di.

Definition 4.4 (Traces of coalgebras). Let g : X → PFX be a PF -

coalgebra and ζ : Z
∼=
→ FZ be the final F -coalgebra. A map t : X → PZ

is said to be a trace of g if it makes the following diagram commute.

PFX
PFt

PFPZ

PλZ

P2FZ
⋃

FZ

PFZ

X

g

t
PZ

∼= Pζ

(1)

That is, for each x ∈ X ,

{ζ(z) | z ∈ t(x)} =
⋃

{ (λZ ◦ Ft)(y) | y ∈ g(x)} .

Remark 4.5. The Kleisli category SetsP of the powerset monad P has sets
as objects and relations as arrows, via “relation-into-function” trick. In this
category the definition of traces becomes clearer [Jac04b, Section 5]. The dis-
tributive law λ : FP ⇒ PF gives rise to a lifting FP : SetsP → SetsP of a
functor F by

FP :
(

X
f

Y
)

7→
(

FX
λY ◦ Ff

FY
)

.

One can readily show that the diagram (1) in Sets commutes if and only if the
following diagram in SetsP commutes:

FPX
FPt

FPZ

X

g

t
Z

{−}FZ ◦ ζ

,

which says that t is a morphism of FP -coalgebras.

6The use of a distributive law in coalgebraic settings is investigated elaborately in [Bar04].

11

Theorem 4.6 (Main result of [Jac04b]). Let g : X → PFX a coalgebra.

1. A trace of g always exists, but need not be unique. In other words, the
coalgebra {−}FZ ◦ ζ : Z → FPZ is weakly final in CoAlg(FP).

2. There is a canonical choice t0 of a trace of g, namely the largest one.7

For later uses we sketch the construction of the largest trace t0. Let the
relations Rn Fn+1X × F nX be defined inductively by

R0 = (1 × g)−1(∈FX) , Rn+1 = RelF (Rn) ,

and the set U be defined by

U = {u ∈
∏

n<ω

FnX | ∀n < ω. 〈un+1, un〉 ∈ Rn} .

As presented in [Bar93], the carrier A of the initial F -algebra is obtained as a
colimit (denoted by σ below) of the initial sequence of F , and the carrier Z of
the final F -coalgebra is as a limit (denoted by τ) of the terminal sequence.

A

ι

0
h

i

σ0

F0
Fh

Fi

σ1

F 20

F 2i

σ2

· · · Fn0
Fnh

Fni

σn

Fn+10

Fn+1i

σn+1

· · ·

X

j

FX

Fj

F 2X

F 2j

· · · FnX

Fnj

Fn+1X

Fn+1j

· · ·

1

τ0

F1
k

τ1

F 21
Fk

τ2

· · · Fn1

τn

Fn+11
Fnk

τn+1

· · ·

Z

Here the arrows h, i, j, k are induced by the universality of 0 and 1. The embed-
ding ι is obtained by the successive use of universality of the limit τ and that of
the colimit σ; equivalently ι is characterized as the unique arrow which makes
the diagram commute, i.e. for each n < ω

Fnj ◦ F ni = τn ◦ ι ◦ σn .

Then the largest trace t0 of g is described as

t0(x) = {
(

∏

n<ω

Fnj
)

(u) | u ∈ U ∧ u0 = x} .

7In terms of pointwise inclusion, i.e. t(x) ⊆ t0(x) for every trace t and every x ∈ X.

12

The construction of limits via products and equalizers says that the carrier Z

consists of those elements of
∏

n<ω Fn1 which satisfy the chain property [Jac04b,

Remark 6.4]; the definition of U ensures that
(
∏

n<ω Fnj
)

(u) indeed satisfy this
property and hence t0(x) is well-defined as an element of PZ.

Example 4.7. We apply the results to context-free grammars. For the functor
F = (Σ + −)∗ the definition of a trace is interpreted as follows, using Example
4.3. The map t : X → PΣ∧ is a trace of a context-free grammar g : X →
P

(

(Σ + X)∗
)

if and only if for each element

c1 c2 . . . cn

of t(x) (here c1, c2, . . . , cn ∈ Σ + Σ∧), there exists a string d1d2 . . . dn ∈ g(x)
such that for each i = 1, 2, . . . , n:

• if ci ∈ Σ then di is also in Σ and ci = di ;

• if ci ∈ Σ∧ then di is in X and ci ∈ t(di).

Although this definition would seem to determine a trace t(x) uniquely as the
set of all the generated SPTs in the sense of Definition 2.4, Theorem 4.6 says
that it is not always the case. However a close look at the construction of t0
reveals that the largest trace t0 gives the set of all the generated SPTs.

5 Finite trace semantics for coalgebras

In this section we use the approach from the last section to obtain finite trace
semantics for coalgebras. This gives the set of generated finite SPTs (which is
usually of our interest, see Example 2.6) when applied to a context-free gram-
mar. The finite trace is unique, differently from ordinary traces. The approach
here makes an initial algebra (in the category of sets and functions) into a final
coalgebra (in the category of sets and relations).

Definition 5.1 (Finite traces of coalgebras). Let g : X → PFX be a PF -

coalgebra and α : FA
∼=
→ A be the initial F -algebra. A map f : X → PA is said

to be a finite trace of g if it makes the following diagram commute.

In Sets, equivalently (Remark 4.5), in SetsP ,

PFX
PFf

PFPA

PλA

P2FA
⋃

FA

PFA

X

g

f
PA

∼= Pα−1

,

FPX
FPf

FPA

X

g

f
A

{−}FA ◦ α−1

.

13

That is, for each x ∈ X , {α−1(a) | a ∈ f(x)} =
⋃

{ (λA ◦ Ff)(y) | y ∈ g(x)}. It
is shown later (Corollary 5.9) that such f uniquely exists.

First we start with observing (Proposition 5.3) that any trace gives rise to
a finite trace, and vice versa, using the following preliminaries. Recall that P
denotes the contravariant powerset functor.

Lemma 5.2. 1. For a mono m : X Y , Pm is a split mono with its left
inverse Pm.

2. For an epi e : X ։ Y , Pe is a split epi with right inverse Pe.

PX
Pm

PY

Pm

PX

PX
Pe

PY

Pe

PX

3. For an iso i : X
∼=
→ Y , Pi is also an iso with its inverse Pi.

4. The union maps
⋃

X : P2X → PX form a natural transformation PP ⇒
P.

5. The maps λX : FPX → PFX in Lemma 4.2 form a natural transforma-
tion FP ⇒ PF .

To put Points 4 and 5 diagramatically: for each f : X → Y the following
two squares commute.

PPY

PPf

⋃

Y
PY

Pf

PPX ⋃

X

PX

FPY

FPf

λY
PFY

PFf

FPX
λX

PFX

Proof. Points 1 and 2 are straightforward, from which Point 3 follows. Point 4
is equivalent to saying that union is preserved by taking an inverse image. For
Point 5, let s ∈ FX and r ∈ FPY . Then

s ∈ (λX ◦ FPf)(r) ⇐⇒ 〈 s, (FPf)(r) 〉 ∈ RelF (∈X)

⇐⇒ 〈s, r〉 ∈ (1 × FPf)−1 RelF (∈X)

⇐⇒ 〈s, r〉 ∈ RelF
(

(1 ×Pf)−1(∈X)
)

(Lemma 4.1)

⇐⇒ 〈s, r〉 ∈ RelF
(

(f × 1)−1(∈Y)
)

(2)

⇐⇒ 〈 (Ff)(s), r 〉 ∈ RelF (∈Y) (Lemma 4.1)

⇐⇒ (Ff)(s) ∈ λY (r)

⇐⇒ s ∈ (PFf ◦ λY)(r) ,

14

where (2) holds because

〈x, u〉 ∈ (1 ×Pf)−1(∈X) ⇐⇒ x ∈ (Pf)(u)

⇐⇒ f(x) ∈ u

⇐⇒ 〈x, u〉 ∈ (f × 1)−1(∈Y) .

Recall that ι : A → Z is the canonical embedding of the initial F -algebra in
the final F -coalgebra.

Proposition 5.3. For a coalgebra g : X → PFX, a trace t gives rise to a finite
trace by

X
t

PZ
Pι

PA ,

and a finite trace f gives rise to an (ordinary) trace by

X
f

PA
Pι

PZ .

Proof. It suffices to show that the following diagram commute: for the first part
of the proposition take the three squares on the left and put them on the right
of the definition of a trace, and for the second part take those on the right.

PFPZ

PλZ

PFPι

(i)

PFPA
PFPι

PλA (iv)

PFPZ

PλZ

P2FZ
⋃

FZ

PPFι
(ii)

P2FA

(v)
P2Fι

⋃

FA

P2FZ
⋃

FZ

PFZ

Pζ
PFι
(iii)∼=

PFA

(vi)
PFι

Pα∼=

PFZ

PZ

Pζ

Pι
PA

Pι

Pα

PZ

Pζ∼=

Square (i) commutes by Lemma 5.2.5, (ii) by Lemma 5.2.4, (iii) is the definition
of ι mapped by P, (iv) commutes by naturality of λ, (v) by naturality of

⋃

,
and (vi) is the definition of ι.

We will further investigate the smallest one among ordinary, possibly infinite
traces (Theorem 5.8), which together with the previous proposition yields the
uniqueness of a finite trace. To that goal we need some preliminaries. In the
following we will heavily use the empty relation ∅, whose subscript designates
between which sets the empty relation resides: for example ∅C×D C × D.

Lemma 5.4. For arbitrary sets X1, X2 and every n < ω we have

RelnF (∅X1×X2
) =

∐

F n !X1
×F n !X2

(=F n0) .

15

Proof. By induction on n. When n = 0 both sides of the equality are the empty
relation ∅X1×X2

. For the step case use Lemma 4.1.

Definition 5.5. For each n < ω, a natural transformation

λn : FnP ⇒ PF n

is defined inductively by: λ0
X = 1PX and

Fn+1PX
FnλX

Fλn
X λn+1

X

FnPFX

λn
FX

FPFnX
λF nX

PFn+1X .

It is easily shown by induction that the outer square commutes.
For a map t : X → PZ (meant to be a trace) and each n < ω, we define a

map tn : FnX → PFnZ by tn = λn
Z ◦ F nt.

Lemma 5.6 ([Jac04b], Lemma 4.2). For each n < ω and each set X we
have a characterization of RelnF (∈X) via the natural transformation λn:

RelnF (∈X) = (1 × λn
X)−1(∈F nX) .

Recall that a coalgebra g : X → PFX induces a relation

Ri = ReliF
(

(1 × g)−1(∈FX)
)

 F i+1X × F iX

for each i < ω, as defined in the construction of Theorem 4.6.

Lemma 5.7. Let t : X → PZ be an arbitrary trace of a coalgebra g : X →
PFX, and z ∈ Z. The following is sufficient to have z ∈ t(x):

There exists a sequence of finite length

u0 ∈ X, u1 ∈ FX, . . . , un ∈ FnX

such that:

1. u0 = x;

2. 〈ui+1, ui〉 ∈ Ri for each i = 0, 1, . . . , n − 1;

3. (Fn−1ζ ◦ F n−2ζ ◦ · · · ◦ Fζ ◦ ζ)(z) ∈ tn(un).

Proof. By induction on n. When n = 0 the claim is obvious. Assume that the
claim holds for n, and consider n + 1. Since t is a trace we have

(LHS)
def
= {ζ(z) | z ∈ t(x)} =

⋃

{ (λZ ◦ Ft)(y) | y ∈ g(x)}
def
= (RHS) .

16

We consider each side of this equality as a relation between FZ and X . Then
as presented in the proof of [Jac04b, Theorem 6.5], if each side is repeatedly
lifted the following hold:8

RelnF (LHS) =
∐

F nζ×1

(

1 × F nt
)−1(

1 × λn
Z

)−1
(∈F nZ) ,

RelnF (RHS) = {〈v, w〉 | ∃u ∈ F n+1X. v ∈ tn+1(u) ∧ 〈u, w〉 ∈ Rn} .

Now our assumption 3 (for n + 1 instead of n) says that

〈 (Fnζ ◦ F n−1ζ ◦ · · · ◦ ζ)(z) , un 〉 ∈ RelnF (RHS) ,

hence replacing (RHS) by (LHS) we obtain

〈 (Fnζ ◦ F n−1ζ ◦ · · · ◦ ζ)(z) , un 〉 ∈
∐

F nζ×1

(

1 × F nt
)−1(

1 × λn
Z

)−1
(∈F nZ) ,

then using that F nζ is an iso we have

〈 (Fn−1ζ ◦ · · · ◦ ζ)(z) , (λn
Z ◦ F nt)(un) 〉 ∈

(

∈F nZ

)

.

By the definition of tn we have

(Fn−1ζ ◦ · · · ◦ ζ)(z) ∈ tn(un) ,

which allows us to use the induction hypothesis to conclude that z ∈ t(x).

Theorem 5.8. Let g : X → PFX be a coalgebra and t : X → PZ be an
arbitrary (possibly infinite) trace of g. Then the trace

X
t

PZ
Pι

PA
Pι

PZ

is the smallest among all traces of g.

Proof. Proposition 5.3 yields that the composite is indeed a trace. To show that
it is the smallest one, we can take the largest trace t0 as a trace t above, since
Pι and Pι are both monotonic .

The following general fact is shown straightforwardly: given a map l : C →
D, the map Pl ◦ Pl is such that

PD
Pl

PC
Pl

PD

u u ∩ Im l .

This fact, together with the construction of t0 in Theorem 4.6, gives the following
characterization: z ∈ Z belongs to (Pι ◦ Pι ◦ t0)(x) if and only if there exist
a ∈ A and u ∈ U such that

8In [Jac04b] the second equality is presented only as an inclusion ⊆. In fact Lemma 3.1 used
therein is strengthened to obtain an equality, not an inclusion; use the fact that T = S ◦ R in
the lemma.

17

• u0 = x, and

• (
∏

n<ω Fnj)(u) = ι(a) = z.

Now to prove the theorem take an arbitrary trace t of g, an element x of
X and z ∈ (Pι ◦ Pι ◦ t0)(x). Let a ∈ A and u ∈ U be such as in the above
characterization of z. We use Lemma 5.7 to establish that z ∈ t(x).

Recall the construction of the initial F -algebra as a colimit, as presented
after Theorem 4.6. It is standard (see e.g. [AK95]) that the structure map
α and its inverse α−1 are characterized as the unique arrows which make the
following diagram commute for each m < ω.

A

α−1∼=Fm0

σm

Fσm−1

Fmh
Fm+10

σm+1

Fσm

FA

α

Since the carrier A is a quotient of the coproduct
∐

n<ω Fn0 we can choose a
number n such that some element an of Fn0 yields a ∈ A as its equivalence
class, i.e. a = σn(an). Pick the first n + 1 components of u as the sequence
u0, u1, . . . , un in Lemma 5.7. By the definition of u ∈ U the sequence satisfies
Conditions 1 and 2 of the lemma. Condition 3 is equivalent to

(Fn−1ζ ◦ F n−2ζ ◦ · · · ◦ ζ ◦ ι)(a) ∈ tn(un) ,

which is transformed by the repeated use of the definition ζ ◦ ι = Fι ◦ α−1 of ι

to
(Fnι ◦ F n−1α−1 ◦ F n−2α−1 ◦ · · · ◦ Fα−1 ◦ α−1)(a) ∈ tn(un) .

This is successively transformed to equivalent statements as follows:

(Fnι ◦ F n−1α−1 ◦ · · · ◦ α−1)(a) ∈ (λn
Z ◦ F nt)(un) , (Definition of tn)

〈 (Fnι ◦ F n−1α−1 ◦ · · · ◦ α−1)(a), (F nt)(un) 〉 ∈ (1 × λn
Z)−1(∈F nZ) ,

〈 (Fnι ◦ F n−1α−1 ◦ · · · ◦ α−1)(a), (F nt)(un) 〉 ∈ RelnF (∈Z) . (Lemma 5.6)

Since we have a = σn(an) and α−1 ◦ σm+1 = Fσm for each m, this is equivalent
to

〈 (Fnι ◦ F nσ0)(an), (Fnt)(un) 〉 ∈ RelnF (∈Z) . (∗)

Our aim is to show (∗). First, applying the n-th projection to the equality

z = (
∏

n<ω

Fnj)(u) = (ι ◦ σn)(an)

which defines u and an, we have

(Fnj)(un) = (τn ◦ ι ◦ σn)(an)

=
(

Fn(j ◦ i)
)

(an) .
(3)

18

The second equality holds by the characterization of ι presented after Theorem
4.6. Then we proceed as follows.

〈an, an〉 ∈ (=F n0)

=⇒ 〈 (F nσ0)(an),
(

Fn(j ◦ i)
)

(an) 〉 ∈
∐

F nσ0×F n(j◦i)(=F n0)

⇐⇒ 〈 (F nσ0)(an),
(

Fn(j ◦ i)
)

(an) 〉 ∈ RelnF (∅A×1) (Lemma 5.4)

⇐⇒ 〈 (F nσ0)(an), (Fnj)(un) 〉 ∈ RelnF (∅A×1) (Using (3))

⇐⇒ 〈 (F nσ0)(an), un 〉 ∈
(

1 × F nj
)−1

RelnF (∅A×1) = RelnF (∅A×X)
(Lemma 4.1)

=⇒ 〈 (F nι ◦ F nσ0)(an), (Fnt)(un) 〉 ∈
∐

F nι×F nt RelnF (∅A×X) = RelnF (∅Z×PZ)

Our goal (∗) follows from ∅Z×PZ ⊆ ∈Z and Lemma 4.1. This concludes the
proof.

Now that we know both the greatest and the least (ordinary) trace, we obtain
the uniqueness of a finite trace as a corollary. This is our main technical result.

Corollary 5.9. For a coalgebra g : X → PFX, its finite trace f : X → PA

uniquely exists. Equivalently, the initial F -algebra α : FA
∼=
→ A in Sets gives

rise to a final FP -coalgebra {−}FA ◦ α−1 in SetsP .

Proof. We show that an arbitrary finite trace f of g is equal to Pι ◦ t0. Note that
both Pι and Pι are monotonic, and from Lemma 5.2.2 we have Pι ◦ Pι = 1PA.
Lemma 5.3 yields that Pι ◦ f is a trace. Hence by the theorem we have

Pι ◦ Pι ◦ t0 ⊆ Pι ◦ f

=⇒ Pι ◦ Pι ◦ Pι ◦ t0 ⊆ Pι ◦ Pι ◦ f

⇐⇒ Pι ◦ t0 ⊆ f .

For the opposite inclusion we use that t0 is the largest trace:

Pι ◦ f ⊆ t0

=⇒ f = Pι ◦ Pι ◦ f ⊆ Pι ◦ t0 .

By the antisymmetry of ⊆ we obtain the claim.

Example 5.10. Now we go back to context-free grammars. For the functor
F = (Σ + −)∗ the definition of a finite trace is interpreted as follows. The map
f : X → PΣ△ is a finite trace of a context-free grammar g : X → P

(

(Σ + X)∗
)

if and only if for each element

c1 c2 . . . cn

of f(x) (here c1, c2, . . . , cn ∈ Σ + Σ△), there exists a string d1d2 . . . dn ∈ g(x)
such that for each i = 1, 2, . . . , n:

19

• if ci ∈ Σ then di is also in Σ and ci = di ;

• if ci ∈ Σ△ then di is in X and ci ∈ f(di).

In contrast to the case in Example 4.7, Corollary 5.9 says that the above core-
cursive statement determines f(x) uniquely, as the set of all the finite SPTs
generated by g from x. Hence we have obtained the set of generated finite SPTs
by FP -coinduction, in the Kleisli category SetsP of sets and relations.

Theorem 5.8 says that the finite trace, when embedded, yields the smallest
trace. For the grammar in Example 2.1 this smallest trace Pι ◦ f is strictly
smaller than the largest one t0: the infinite SPT on the right in Example 2.6 is
in t0(F) but not in (Pι ◦ f)(F).

Example 5.11. In relation to [Jac04b, Section 2], we consider here the functor
F = Σ × −, which makes a PF -coalgebra a labelled transition system (LTS).
Traditionally the word trace is used for what is called the largest trace in this
paper. Hence Theorem 4.6 can be read as: the notion of trace (in a traditional
sense) cannot be captured only by our corecursive equation in Definition 4.4.

Since the carrier of the initial (Σ×−)-algebra is empty, the finite trace of any
LTS maps each state to the emptyset, as is implied by the “never-terminating”
nature of LTSs. The smallest trace, induced by this finite trace via embedding,
gives a more trivial counterexample of the uniqueness of traces (in our sense)
than the one presented in [Jac04b].

6 Conclusions and future work

We have presented an abstract framework for extracting only the finite behavior
of a (non-deterministic) coalgebra, which is uniquely determined via corecursive
characterization, and then applied it to context-free grammars/languages. The
(co)algebraic structures on skeletal parse trees have been also elaborated.

The well-known relationship between context-free languages and pushdown
automata (see e.g.[LP81]) would be an interesting topic to consider from a coal-
gebraic perspective. So is the problem of parsing, which is a partial inverse of
the flattening function ϕΣ in Section 3.

References

[AAMV03] Peter Aczel, Jǐŕı Adámek, Stefan Milius, and Jǐŕı Velebil. Infinite
trees and completely iterative theories: a coalgebraic view. Theor.
Comp. Sci., 300:1–45, 2003.

[AK95] Jǐŕı Adámek and Václav Koubek. On the greatest fixed point of a
set functor. Theor. Comp. Sci., 150(1):57–75, 1995.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley series in Computer
Science. Addison-Wesley, 1986.

20

[Bar93] Michael Barr. Terminal coalgebras in well-founded set theory.
Theor. Comp. Sci., 114:299–315, 1993.

[Bar04] Falk Bartels. On Generalized Coinduction and Probabilistic Speci-
fication Formats: Distributive Laws in Coalgebraic Modelling. PhD
thesis, Free Univ. Amsterdam, 2004.

[BW83] Michael Barr and Charles Wells. Toposes, Triples and The-
ories, volume 278 of Grundlehren der math. Wissenschaften.
Springer-Verlag, 1983. Available free for downloading at
http://www.cwru.edu/artsci/math/wells/pub/ttt.html.

[Cho56] Noam Chomsky. Three models for the description of language. IRE
Transactions on Information Theory, 2:113–124, 1956.

[Jac04a] Bart Jacobs. Relating two approaches to coinductive solution of
recurisve equations. In Coalgebraic Methods in Computer Science
(CMCS 2004), volume 106 of Elect. Notes in Theor. Comp. Sci.
Elsevier, Amsterdam, 2004.

[Jac04b] Bart Jacobs. Trace semantics for coalgebras. In Coalgebraic Methods
in Computer Science (CMCS 2004), volume 106 of Elect. Notes in
Theor. Comp. Sci. Elsevier, Amsterdam, 2004.

[Jac05] Bart Jacobs. A bialgebraic review of regular expressions, deter-
ministic automata and languages. Techn. Rep. NIII-R05003, Inst.
for Computing and Information Sciences, Radboud Univ. Nijmegen,
2005.

[JR97] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and
(co)induction. Bulletin of EATCS, 62:222–259, 1997.

[LP81] Harry R. Lewis and Christos H. Papadimitriou. Elements of the
Theory of Computation. Prentice-Hall, 1981.

[Rut00] Jan Rutten. Universal coalgebra: a theory of systems. Theor. Comp.
Sci., 249:3–80, 2000.

[Rut03] J Rutten. Behavioural differential equations: a coinductive calculus
of streams, automata, and power series. Theor. Comp. Sci., 308:1–
53, 2003.

21

