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Abstract

In neural machine translation (NMT), genera-

tion of a target word depends on both source

and target contexts. We find that source con-

texts have a direct impact on the adequacy of a

translation while target contexts affect the flu-

ency. Intuitively, generation of a content word

should rely more on the source context and

generation of a functional word should rely

more on the target context. Due to the lack

of effective control over the influence from

source and target contexts, conventional NMT

tends to yield fluent but inadequate transla-

tions. To address this problem, we propose

context gates which dynamically control the

ratios at which source and target contexts con-

tribute to the generation of target words. In

this way, we can enhance both the adequacy

and fluency of NMT with more careful con-

trol of the information flow from contexts.

Experiments show that our approach signif-

icantly improves upon a standard attention-

based NMT system by +2.3 BLEU points.

1 Introduction

Neural machine translation (NMT) (Kalchbrenner

and Blunsom, 2013; Sutskever et al., 2014; Bah-

danau et al., 2015) has made significant progress

in the past several years. Its goal is to construct

and utilize a single large neural network to accom-

plish the entire translation task. One great advan-

tage of NMT is that the translation system can be

completely constructed by learning from data with-

out human involvement (cf., feature engineering in

statistical machine translation (SMT)). The encoder-

decoder architecture is widely employed (Cho et al.,

input jı̄nnián qián liǎng yuè guǎngdōng

gāoxı̄n jı̀shù chǎnpı̌n chūkǒu 37.6yı̀

měiyuán

NMT in the first two months of this year ,

the export of new high level technology

product was UNK - billion us dollars

▽src china ’s guangdong hi - tech exports hit

58 billion dollars

▽tgt china ’s export of high and new hi - tech

exports of the export of the export of the

export of the export of the export of the

export of the export of the export of · · ·

Table 1: Source and target contexts are highly cor-

related to translation adequacy and fluency, respec-

tively. ▽src and ▽tgt denote halving the contribu-

tions from the source and target contexts when gen-

erating the translation, respectively.

2014; Sutskever et al., 2014), in which the encoder

summarizes the source sentence into a vector repre-

sentation, and the decoder generates the target sen-

tence word-by-word from the vector representation.

The representation of the source sentence and the

representation of the partially generated target sen-

tence (translation) at each position are referred to as

source context and target context, respectively. The

generation of a target word is determined jointly by

the source context and target context.

Several techniques in NMT have proven to be

very effective, including gating (Hochreiter and

Schmidhuber, 1997; Cho et al., 2014) and at-

tention (Bahdanau et al., 2015) which can model

long-distance dependencies and complicated align-
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ment relations in the translation process. Using an

encoder-decoder framework that incorporates gat-

ing and attention techniques, it has been reported

that the performance of NMT can surpass the per-

formance of traditional SMT as measured by BLEU

score (Luong et al., 2015).

Despite this success, we observe that NMT usu-

ally yields fluent but inadequate translations.1 We

attribute this to a stronger influence of target con-

text on generation, which results from a stronger

language model than that used in SMT. One ques-

tion naturally arises: what will happen if we change

the ratio of influences from the source or target con-

texts?

Table 1 shows an example in which an attention-

based NMT system (Bahdanau et al., 2015) gener-

ates a fluent yet inadequate translation (e.g., missing

the translation of “guǎngdōng”). When we halve the

contribution from the source context, the result fur-

ther loses its adequacy by missing the partial trans-

lation “in the first two months of this year”. One

possible explanation is that the target context takes a

higher weight and thus the system favors a shorter

translation. In contrast, when we halve the con-

tribution from the target context, the result com-

pletely loses its fluency by repeatedly generating the

translation of “chūkǒu” (i.e., “the export of”) un-

til the generated translation reaches the maximum

length. Therefore, this example indicates that source

and target contexts in NMT are highly correlated to

translation adequacy and fluency, respectively.

In fact, conventional NMT lacks effective control

on the influence of source and target contexts. At

each decoding step, NMT treats the source and tar-

get contexts equally, and thus ignores the different

needs of the contexts. For example, content words

in the target sentence are more related to the transla-

tion adequacy, and thus should depend more on the

source context. In contrast, function words in the

target sentence are often more related to the trans-

lation fluency (e.g., “of” after “is fond”), and thus

should depend more on the target context.

In this work, we propose to use context gates to

control the contributions of source and target con-

texts on the generation of target words (decoding)

1Fluency measures whether the translation is fluent, while

adequacy measures whether the translation is faithful to the

original sentence (Snover et al., 2009).

Figure 1: Architecture of decoder RNN.

in NMT. Context gates are non-linear gating units

which can dynamically select the amount of context

information in the decoding process. Specifically, at

each decoding step, the context gate examines both

the source and target contexts, and outputs a ratio

between zero and one to determine the percentages

of information to utilize from the two contexts. In

this way, the system can balance the adequacy and

fluency of the translation with regard to the genera-

tion of a word at each position.

Experimental results show that introducing con-

text gates leads to an average improvement of +2.3

BLEU points over a standard attention-based NMT

system (Bahdanau et al., 2015). An interesting find-

ing is that we can replace the GRU units in the de-

coder with conventional RNN units and in the mean-

time utilize context gates. The translation perfor-

mance is comparable with the standard NMT system

with GRU, but the system enjoys a simpler structure

(i.e., uses only a single gate and half of the param-

eters) and a faster decoding (i.e., requires only half

the matrix computations for decoding).2

2 Neural Machine Translation

Suppose that x = x1, . . . xj , . . . xJ represents a

source sentence and y = y1, . . . yi, . . . yI a target

sentence. NMT directly models the probability of

translation from the source sentence to the target

sentence word by word:

P (y|x) =

I
∏

i=1

P (yi|y<i,x) (1)

2Our code is publicly available at https://github.

com/tuzhaopeng/NMT.
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where y<i = y1, . . . , yi−1. As shown in Figure 1,

the probability of generating the i-th word yi is com-

puted by using a recurrent neural network (RNN) in

the decoder:

P (yi|y<i,x) = g(yi−1, ti, si) (2)

where g(·) first linearly transforms its input then ap-

plies a softmax function, yi−1 is the previously gen-

erated word, ti is the i-th decoding hidden state, and

si is the i-th source representation. The state ti is

computed as follows:

ti = f(yi−1, ti−1, si)

= f(We(yi−1) + Uti−1 + Csi) (3)

where

• f(·) is a function to compute the current de-

coding state given all the related inputs. It can

be either a vanilla RNN unit using tanh func-

tion, or a sophisticated gated RNN unit such as

GRU (Cho et al., 2014) or LSTM (Hochreiter

and Schmidhuber, 1997).

• e(yi−1) ∈ R
m is an m-dimensional embedding

of the previously generated word yi−1.

• si is a vector representation extracted from the

source sentence by the encoder. The encoder

usually uses an RNN to encode the source

sentence x into a sequence of hidden states

h = h1, . . . hj , . . . hJ , in which hj is the

hidden state of the j-th source word xj . si
can be either a static vector that summarizes

the whole sentence (e.g., si ≡ hJ ) (Cho et

al., 2014; Sutskever et al., 2014), or a dy-

namic vector that selectively summarizes cer-

tain parts of the source sentence at each decod-

ing step (e.g., si =
∑J

j=1
αi,jhj in which αi,j

is alignment probability calculated by an atten-

tion model) (Bahdanau et al., 2015).

• W ∈ R
n×m, U ∈ R

n×n, C ∈ R
n×n′

are matri-

ces with n and n′ being the numbers of units of

decoder hidden state and source representation,

respectively.

The inputs to the decoder (i.e., si, ti−1, and yi−1)

represent the contexts. Specifically, the source rep-

resentation si stands for source context, which em-

beds the information from the source sentence. The

(a) Lengths of translations in words.

(b) Subjective evaluation.

Figure 2: Effects of source and target contexts. The

pair (a, b) in the legends denotes scaling source and

target contexts with ratios a and b respectively.

previous decoding state ti−1 and the previously gen-

erated word yi−1 constitute the target context.3

2.1 Effects of Source and Target Contexts

We first empirically investigate our hypothesis:

whether source and target contexts correlate to trans-

lation adequacy and fluency. Figure 2(a) shows the

translation lengths with various scaling ratios (a, b)

3In a recent implementation of NMT (https:

//github.com/nyu-dl/dl4mt-tutorial), ti−1

and yi−1 are combined together with a GRU before being fed

into the decoder, which can boost translation performance. We

follow the practice and treat both of them as target context.
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for source and target contexts:

ti = f(b⊗ (We(yi−1) + Uti−1) + a⊗ Csi)

For example, the pair (1.0, 0.5) means fully lever-

aging the effect of source context while halving the

effect of target context. Reducing the effect of tar-

get context (i.e., the lines (1.0, 0.8) and (1.0, 0.5))

results in longer translations, while reducing the ef-

fect of source context (i.e., the lines (0.8, 1.0) and

(0.5, 1.0)) leads to shorter translations. When halv-

ing the effect of the target context, most of the gener-

ated translations reach the maximum length, which

is three times the length of source sentence in this

work.

Figure 2(b) shows the results of manual evalu-

ation on 200 source sentences randomly sampled

from the test sets. Reducing the effect of source con-

text (i.e., (0.8, 1.0) and (0.5, 1.0)) leads to more flu-

ent yet less adequate translations. On the other hand,

reducing the effect of target context (i.e., (1.0, 0.5)

and (1.0, 0.8)) is expected to yield more adequate

but less fluent translations. In this setting, the source

words are translated (i.e., higher adequacy) while

the translations are in wrong order (i.e., lower flu-

ency). In practice, however, we observe the side ef-

fect that some source words are translated repeatedly

until the translation reaches the maximum length

(i.e., lower fluency), while others are left untrans-

lated (i.e., lower adequacy). The reason is two fold:

1. NMT lacks a mechanism that guarantees that

each source word is translated.4 The decod-

ing state implicitly models the notion of “cover-

age” by recurrently reading the time-dependent

source context si. Lowering its contribution

weakens the “coverage” effect and encour-

ages the decoder to regenerate phrases multiple

times to achieve the desired translation length.

2. The translation is incomplete. As shown in Ta-

ble 1, NMT can get stuck in an infinite loop

repeatedly generating a phrase due to the over-

whelming influence of the source context. As

a result, generation terminates early because

4The recently proposed coverage based technique can allevi-

ate this problem (Tu et al., 2016). In this work, we consider an-

other approach, which is complementary to the coverage mech-

anism.

Figure 3: Architecture of context gate.

the translation reaches the maximum length al-

lowed by the implementation, even though the

decoding procedure is not finished.

The quantitative (Figure 2) and qualitative (Ta-

ble 1) results confirm our hypothesis, i.e., source and

target contexts are highly correlated to translation

adequacy and fluency. We believe that a mechanism

that can dynamically select information from source

context and target context would be useful for NMT

models, and this is exactly the approach we propose.

3 Context Gates

3.1 Architecture

Inspired by the success of gated units in

RNN (Hochreiter and Schmidhuber, 1997; Cho

et al., 2014), we propose using context gates to

dynamically control the amount of information

flowing from the source and target contexts and thus

balance the fluency and adequacy of NMT at each

decoding step.

Intuitively, at each decoding step i, the context

gate looks at input signals from both the source (i.e.,

si) and target (i.e., ti−1 and yi−1) sides, and outputs

a number between 0 and 1 for each element in the

input vectors, where 1 denotes “completely trans-

ferring this” while 0 denotes “completely ignoring

this”. The corresponding input signals are then pro-

cessed with an element-wise multiplication before

being fed to the activation layer to update the decod-

ing state.

Formally, a context gate consists of a sigmoid

neural network layer and an element-wise multipli-

cation operation, as illustrated in Figure 3. The con-

text gate assigns an element-wise weight to the input
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(a) Context Gate (source) (b) Context Gate (target) (c) Context Gate (both)

Figure 4: Architectures of NMT with various context gates, which either scale only one side of translation

contexts (i.e., source context in (a) and target context in (b)) or control the effects of both sides (i.e., (c)).

signals, computed by

zi = σ(Wze(yi−1) + Uzti−1 + Czsi) (4)

Here σ(·) is a logistic sigmoid function, and Wz ∈
R
n×m, Uz ∈ R

n×n, Cz ∈ R
n×n′

are the weight

matrices. Again, m, n and n′ are the dimensions

of word embedding, decoding state, and source rep-

resentation, respectively. Note that zi has the same

dimensionality as the transferred input signals (e.g.,

Csi), and thus each element in the input vectors has

its own weight.

3.2 Integrating Context Gates into NMT

Next, we consider how to integrate context gates into

an NMT model.

The context gate can decide the amount of con-

text information used in generating the next target

word at each step of decoding. For example, after

obtaining the partial translation “. . . new high level

technology product”, the gate looks at the translation

contexts and decides to depend more heavily on the

source context. Accordingly, the gate assigns higher

weights to the source context and lower weights to

the target context and then feeds them into the de-

coding activation layer. This could correct inade-

quate translations, such as the missing translation of

“guǎngdōng”, due to greater influence from the tar-

get context.

We have three strategies for integrating context

gates into NMT that either affect one of the transla-

tion contexts or both contexts, as illustrated in Fig-

ure 4. The first two strategies are inspired by out-

put gates in LSTMs (Hochreiter and Schmidhuber,

1997), which control the amount of memory content

utilized. In these kinds of models, zi only affects

either source context (i.e., si) or target context (i.e.,

yi−1 and ti−1):

• Context Gate (source)

ti = f
(

We(yi−1) + Uti−1 + zi ◦ Csi
)

• Context Gate (target)

ti = f
(

zi ◦ (We(yi−1) + Uti−1) + Csi
)

where ◦ is an element-wise multiplication, and zi is

the context gate calculated by Equation 4. This is

also essentially similar to the reset gate in the GRU,

which decides what information to forget from the

previous decoding state before transferring that in-

formation to the decoding activation layer. The dif-

ference is that here the “reset” gate resets the context

vector rather than the previous decoding state.

The last strategy is inspired by the concept of up-

date gate from GRU, which takes a linear sum be-

tween the previous state ti−1 and the candidate new

state t̃i. In our case, we take a linear interpolation

between source and target contexts:

• Context Gate (both)

ti = f
(

(1− zi) ◦ (We(yi−1) + Uti−1)

+ zi ◦ Csi
)
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(a) Gating Scalar (b) Context Gate

Figure 5: Comparison to Gating Scalar proposed

by Xu et al. (2015).

4 Related Work

Comparison to (Xu et al., 2015): Context gates

are inspired by the gating scalar model proposed

by Xu et al. (2015) for the image caption genera-

tion task. The essential difference lies in the task

requirement:

• In image caption generation, the source side

(i.e., image) contains more information than the

target side (i.e., caption). Therefore, they em-

ploy a gating scalar to scale only the source

context.

• In machine translation, both languages should

contain equivalent information. Our model

jointly controls the contributions from the

source and target contexts. A direct interaction

between input signals from both sides is useful

for balancing adequacy and fluency of NMT.

Other differences in the architecture include:

1 Xu et al. (2015) uses a scalar that is shared

by all elements in the source context, while we

employ a gate with a distinct weight for each el-

ement. The latter offers the gate a more precise

control of the context vector, since different el-

ements retain different information.

2 We add peephole connections to the architec-

ture, by which the source context controls the

gate. It has been shown that peephole connec-

tions make precise timings easier to learn (Gers

and Schmidhuber, 2000).

3 Our context gate also considers the previously

generated word yi−1 as input. The most re-

cently generated word can help the gate to bet-

ter estimate the importance of target context,

especially for the generation of function words

in translations that may not have a correspond-

ing word in the source sentence (e.g., “of” after

“is fond”).

Experimental results (Section 5.4) show that these

modifications consistently improve translation qual-

ity.

Comparison to Gated RNN: State-of-the-art

NMT models (Sutskever et al., 2014; Bahdanau et

al., 2015) generally employ a gated unit (e.g., GRU

or LSTM) as the activation function in the decoder.

One might suspect that the context gate proposed in

this work is somewhat redundant, given the existing

gates that control the amount of information carried

over from the previous decoding state si−1 (e.g., re-

set gate in GRU). We argue that they are in fact com-

plementary: the context gate regulates the contextual

information flowing into the decoding state, while

the gated unit captures long-term dependencies be-

tween decoding states. Our experiments confirm the

correctness of our hypothesis: the context gate not

only improves translation quality when compared

to a conventional RNN unit (e.g., an element-wise

tanh), but also when compared to a gated unit of

GRU, as shown in Section 5.2.

Comparison to Coverage Mechanism: Re-

cently, Tu et al. (2016) propose adding a coverage

mechanism into NMT to alleviate over-translation

and under-translation problems, which directly

affect translation adequacy. They maintain a cov-

erage vector to keep track of which source words

have been translated. The coverage vector is fed to

the attention model to help adjust future attention.

This guides NMT to focus on the un-translated

source words while avoiding repetition of source

content. Our approach is complementary: the cov-

erage mechanism produces a better source context

representation, while our context gate controls the

effect of the source context based on its relative

importance. Experiments in Section 5.2 show that

combining the two methods can further improve

translation performance. There is another difference
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as well: the coverage mechanism is only applicable

to attention-based NMT models, while the context

gate is applicable to all NMT models.

Comparison to Exploiting Auxiliary Contexts in

Language Modeling: A thread of work in lan-

guage modeling (LM) attempts to exploit auxiliary

sentence-level or document-level context in an RNN

LM (Mikolov and Zweig, 2012; Ji et al., 2015; Wang

and Cho, 2016). Independent of our work, Wang

and Cho (2016) propose “early fusion” models of

RNNs where additional information from an inter-

sentence context is “fused” with the input to the

RNN. Closely related to Wang and Cho (2016), our

approach aims to dynamically control the contribu-

tions of required source and target contexts for ma-

chine translation, while theirs focuses on integrating

auxiliary corpus-level contexts for language mod-

elling to better approximate the corpus-level prob-

ability. In addition, we employ a gating mechanism

to produce a dynamic weight at different decoding

steps to combine source and target contexts, while

they do a linear combination of intra-sentence and

inter-sentence contexts with static weights. Exper-

iments in Section 5.2 show that our gating mech-

anism significantly outperforms linear interpolation

when combining contexts.

Comparison to Handling Null-Generated Words

in SMT: In machine translation, there are certain

syntactic elements of the target language that are

missing in the source (i.e., null-generated words).

In fact this was the preliminary motivation for our

approach: current attention models lack a mecha-

nism to control the generation of words that do not

have a strong correspondence on the source side.

The model structure of NMT is quite similar to the

traditional word-based SMT (Brown et al., 1993).

Therefore, techniques that have proven effective in

SMT may also be applicable to NMT. Toutanova et

al. (2002) extend the calculation of translation prob-

abilities to include null-generated target words in

word-based SMT. These words are generated based

on both the special source token null and the neigh-

bouring word in the target language by a mixture

model. We have simplified and generalized their ap-

proach: we use context gates to dynamically control

the contribution of source context. When produc-

ing null-generated words, the context gate can as-

sign lower weights to the source context, by which

the source-side information have less influence. In

a sense, the context gate relieves the need for a null

state in attention.

5 Experiments

5.1 Setup

We carried out experiments on Chinese-English

translation. The training dataset consisted of 1.25M

sentence pairs extracted from LDC corpora5, with

27.9M Chinese words and 34.5M English words re-

spectively. We chose the NIST 2002 (MT02) dataset

as the development set, and the NIST 2005 (MT05),

2006 (MT06) and 2008 (MT08) datasets as the test

sets. We used the case-insensitive 4-gram NIST

BLEU score (Papineni et al., 2002) as the evalua-

tion metric, and sign-test (Collins et al., 2005) for

the statistical significance test.

For efficient training of the neural networks, we

limited the source and target vocabularies to the

most frequent 30K words in Chinese and English,

covering approximately 97.7% and 99.3% of the

data in the two languages respectively. All out-of-

vocabulary words were mapped to a special token

UNK. We trained each model on sentences of length

up to 80 words in the training data. The word em-

bedding dimension was 620 and the size of a hid-

den layer was 1000. We trained our models until the

BLEU score on the development set stops improv-

ing.

We compared our method with representative

SMT and NMT6 models:

• Moses (Koehn et al., 2007): an open source

phrase-based translation system with default

configuration and a 4-gram language model

trained on the target portion of training data;

• GroundHog (Bahdanau et al., 2015): an open

source attention-based NMT model with de-

fault setting. We have two variants that differ

in the activation function used in the decoder

5The corpora include LDC2002E18, LDC2003E07,

LDC2003E14, Hansards portion of LDC2004T07,

LDC2004T08 and LDC2005T06.
6There is some recent progress on aggregating multiple

models or enlarging the vocabulary(e.g.,, in (Jean et al., 2015)),

but here we focus on the generic models.
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# System #Parameters MT05 MT06 MT08 Ave.

1 Moses – 31.37 30.85 23.01 28.41

2 GroundHog (vanilla) 77.1M 26.07 27.34 20.38 24.60

3 2 + Context Gate (both) 80.7M 30.86∗ 30.85∗ 24.71∗ 28.81

4 GroundHog (GRU ) 84.3M 30.61 31.12 23.23 28.32

5 4 + Context Gate (source) 87.9M 31.96∗ 32.29∗ 24.97∗ 29.74

6 4 + Context Gate (target) 87.9M 32.38∗ 32.11∗ 23.78 29.42

7 4 + Context Gate (both) 87.9M 33.52∗ 33.46∗ 24.85∗ 30.61

8 GroundHog-Coverage (GRU ) 84.4M 32.73 32.47 25.23 30.14

9 8 + Context Gate (both) 88.0M 34.13∗ 34.83∗ 26.22∗ 31.73

Table 2: Evaluation of translation quality measured by case-insensitive BLEU score. “GroundHog

(vanilla)” and “GroundHog (GRU )” denote attention-based NMT (Bahdanau et al.,2015) and uses a sim-

ple tanh function or a sophisticated gate function GRU respectively as the activation function in the de-

coder RNN. “GroundHog-Coverage” denotes attention-based NMT with a coverage mechanism to indicate

whether a source word is translated or not (Tu et al., 2016). “*” indicate statistically significant difference

(p < 0.01) from the corresponding NMT variant. “2 + Context Gate (both)” denotes integrating “Context

Gate (both)” into the baseline system in Row 2 (i.e., “GroundHog (vanilla)”).

RNN: 1) GroundHog (vanilla) uses a simple

tanh function as the activation function, and 2)

GroundHog (GRU ) uses a sophisticated gate

function GRU ;

• GroundHog-Coverage (Tu et al., 2016)7: an

improved attention-based NMT model with a

coverage mechanism.

5.2 Translation Quality

Table 2 shows the translation performances in terms

of BLEU scores. We carried out experiments on

multiple NMT variants. For example, “2 + Context

Gate (both)” in Row 3 denotes integrating “Con-

text Gate (both)” into the baseline in Row 2 (i.e.,

GroundHog (vanilla)). For baselines, we found that

the gated unit (i.e., GRU , Row 4) indeed surpasses

its vanilla counterpart (i.e., tanh, Row 2), which

is consistent with the results in other work (Chung

et al., 2014). Clearly the proposed context gates

significantly improve the translation quality in all

cases, although there are still considerable differ-

ences among the variants:

Parameters Context gates introduce a few new

parameters. The newly introduced parameters in-

clude Wz ∈ R
n×m, Uz ∈ R

n×n, Cz ∈ R
n×n′

in

7https://github.com/tuzhaopeng/

NMT-Coverage.

Equation 4. In this work, the dimensionality of the

decoding state is n = 1000, the dimensionality of

the word embedding is m = 620, and the dimen-

sionality of context representation is n′ = 2000. The

context gates only introduce 3.6M additional param-

eters, which is quite small compared to the number

of parameters in the existing models (e.g., 84.3M in

the “GroundHog (GRU )”).

Over GroundHog (vanilla) We first carried out

experiments on a simple decoder without gating

function (Rows 2 and 3), to better estimate the im-

pact of context gates. As shown in Table 2, the

proposed context gate significantly improved trans-

lation performance by 4.2 BLEU points on average.

It is worth emphasizing that context gate even out-

performs a more sophisticated gating function (i.e.,

GRU in Row 4). This is very encouraging, since our

model only has a single gate with half of the param-

eters (i.e., 3.6M versus 7.2M) and less computations

(i.e., half the matrix computations to update the de-

coding state8).

8We only need to calculate the context gate once via Equa-

tion 4 and then apply it when updating the decoding state. In

contrast, GRU requires the calculation of an update gate, a re-

set gate, a proposed updated decoding state and an interpolation

between the previous state and the proposed state. Please refer

to (Cho et al., 2014) for more details.
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GroundHog vs. GroundHog+Context Gate

Adequacy Fluency

< = > < = >

evaluator1 30.0% 54.0% 16.0% 28.5% 48.5% 23.0%

evaluator2 30.0% 50.0% 20.0% 29.5% 54.5% 16.0%

Table 3: Subjective evaluation of translation adequacy and fluency.

Over GroundHog (GRU) We then investigated

the effect of the context gates on a standard NMT

with GRU as the decoding activation function (Rows

4-7). Several observations can be made. First, con-

text gates also boost performance beyond the GRU

in all cases, demonstrating our claim that context

gates are complementary to the reset and update

gates in GRU. Second, jointly controlling the infor-

mation from both translation contexts consistently

outperforms its single-side counterparts, indicating

that a direct interaction between input signals from

the source and target contexts is useful for NMT

models.

Over GroundHog-Coverage (GRU) We finally

tested on a stronger baseline, which employs a cov-

erage mechanism to indicate whether or not a source

word has already been translated (Tu et al., 2016).

Our context gate still achieves a significant improve-

ment of 1.6 BLEU points on average, reconfirm-

ing our claim that the context gate is complemen-

tary to the improved attention model that produces

a better source context representation. Finally, our

best model (Row 7) outperforms the SMT baseline

system using the same data (Row 1) by 3.3 BLEU

points.

From here on, we refer to “GroundHog” for

“GroundHog (GRU )”, and “Context Gate” for

“Context Gate (both)” if not otherwise stated.

Subjective Evaluation We also conducted a sub-

jective evaluation of the benefit of incorporating

context gates. Two human evaluators were asked

to compare the translations of 200 source sentences

randomly sampled from the test sets without know-

ing which system produced each translation. Table 3

shows the results of subjective evaluation. The two

human evaluators made similar judgments: in ade-

quacy, around 30% of GroundHog translations are

worse, 52% are equal, and 18% are better; while in

System SAER AER

GroundHog 67.00 54.67

+ Context Gate 67.43 55.52

GroundHog-Coverage 64.25 50.50

+ Context Gate 63.80 49.40

Table 4: Evaluation of alignment quality. The lower

the score, the better the alignment quality.

fluency, around 29% are worse, 52% are equal, and

19% are better.

5.3 Alignment Quality

Table 4 lists the alignment performances. Follow-

ing Tu et al. (2016), we used the alignment error rate

(AER) (Och and Ney, 2003) and its variant SAER to

measure the alignment quality:

SAER = 1−
|MA ×MS |+ |MA ×MP |

|MA|+ |MS |

where A is a candidate alignment, and S and P

are the sets of sure and possible links in the refer-

ence alignment respectively (S ⊆ P ). M denotes

the alignment matrix, and for both MS and MP we

assign the elements that correspond to the existing

links in S and P probability 1 and the other elements

probability 0. In this way, we are able to better eval-

uate the quality of the soft alignments produced by

attention-based NMT.

We find that context gates do not improve align-

ment quality when used alone. When combined

with coverage mechanism, however, it produces bet-

ter alignments, especially one-to-one alignments by

selecting the source word with the highest align-

ment probability per target word (i.e., AER score).

One possible reason is that better estimated decod-

ing states (from the context gate) and coverage in-

formation help to produce more concentrated align-

ments, as shown in Figure 6.
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(a) GroundHog-Coverage (SAER=50.80) (b) + Context Gate (SAER=47.35)

Figure 6: Example alignments. Incorporating context gate produces more concentrated alignments.

# System Gate Inputs MT05 MT06 MT08 Ave.

1 GroundHog – 30.61 31.12 23.23 28.32

2 1 + Gating Scalar ti−1 31.62∗ 31.48 23.85 28.98

3 1 + Context Gate (source) ti−1 31.69∗ 31.63 24.25∗ 29.19

4

1 + Context Gate (both)

ti−1 32.15∗ 32.05∗ 24.39∗ 29.53

5 ti−1, si 31.81∗ 32.75∗ 25.66∗ 30.07

6 ti−1, si, yi−1 33.52∗ 33.46∗ 24.85∗ 30.61

Table 5: Analysis of the model architectures measured in BLEU scores. “Gating Scalar” denotes the model

proposed by (Xu et al.,2015) in the image caption generation task, which looks at only the previous decod-

ing state ti−1 and scales the whole source context si at the vector-level. To investigate the effect of each

component, we list the results of context gate variants with different inputs (e.g., the previously generated

word yi−1). “*” indicates statistically significant difference (p < 0.01) from “GroundHog”.

5.4 Architecture Analysis

Table 5 shows a detailed analysis of architecture

components measured in BLEU scores. Several ob-

servations can be made:

• Operation Granularity (Rows 2 and 3):

Element-wise multiplication (i.e., Context Gate

(source)) outperforms the vector-level scalar

(i.e., Gating Scalar), indicating that precise

control of each element in the context vector

boosts translation performance.

• Gate Strategy (Rows 3 and 4): When only fed

with the previous decoding state ti−1, Context

Gate (both) consistently outperforms Context

Gate (source), showing that jointly controlling

information from both source and target sides

is important for judging the importance of the

contexts.

• Peephole connections (Rows 4 and 5): Peep-

holes, by which the source context si controls

the gate, play an important role in the context

gate, which improves the performance by 0.57

in BLEU score.

• Previously generated word (Rows 5 and 6):

Previously generated word yi−1 provides a

more explicit signal for the gate to judge the

importance of contexts, leading to a further im-

provement on translation performance.

5.5 Effects on Long Sentences

We follow Bahdanau et al. (2015) and group sen-

tences of similar lengths together. Figure 7 shows
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Figure 7: Performance of translations on the test set with respect to the lengths of the source sentences.

Context gate improves performance by alleviating in-adequate translations on long sentences.

the BLEU score and the averaged length of trans-

lations for each group. GroundHog performs very

well on short source sentences, but degrades on long

source sentences (i.e., > 30), which may be due to

the fact that source context is not fully interpreted.

Context gates can alleviate this problem by balanc-

ing the source and target contexts, and thus improve

decoder performance on long sentences. In fact, in-

corporating context gates boost translation perfor-

mance on all source sentence groups.

We confirm that context gate weight zi correlates

well with translation performance. In other words,

translations that contain higher zi (i.e., source con-

text contributes more than target context) at many

time steps are better in translation performance. We

used the mean of the sequence z1, . . . , zi, . . . , zI as

the gate weight of each sentence. We calculated

the Pearson Correlation between the sentence-level

gate weight and the corresponding improvement on

translation performance (i.e., BLEU, adequacy, and

fluency scores),9 as shown in Table 6. We observed

that context gate weight is positively correlated with

translation performance improvement and that the

correlation is higher on long sentences.

As an example, consider this source sentence

from the test set:

9We use the average of correlations on subjective evaluation

metrics (i.e., adequacy and fluency) by two evaluators.

Length BLEU Adequacy Fluency

< 30 0.024 0.071 0.040

> 30 0.076 0.121 0.168

Table 6: Correlation between context gate weight

and improvement of translation performance.

“Length” denotes the length of source sentence.

“BLEU”, “Adequacy”, and “Fluency” denotes

different metrics measuring the translation perfor-

mance improvement of using context gates.

zhōuliù zhèngshı̀ yı̄ngguó mı́nzhòng dào

chāoshı̀ cǎigòu de gāofēng shı́kè, dāngshı́

14 jiā chāoshı̀ de guānbı̀ lı̀ng yı̄ngguó

zhè jiā zuı̀ dà de liánsuǒ chāoshı̀ sǔnshı̄

shùbǎiwàn yı̄ngbàng de xiāoshòu shōurù .

GroundHog translates it into:

twenty - six london supermarkets were

closed at a peak hour of the british pop-

ulation in the same period of time .

which almost misses all the information of the

source sentence. Integrating context gates improves

the translation adequacy:

this is exactly the peak days British peo-

ple buying the supermarket . the closure
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of the 14 supermarkets of the 14 super-

markets that the largest chain supermar-

ket in england lost several million pounds

of sales income .

Coverage mechanisms further improve the transla-

tion by rectifying over-translation (e.g., “of the 14

supermarkets”) and under-translation (e.g., “satur-

day” and “at that time”):

saturday is the peak season of british peo-

ple ’s purchases of the supermarket . at

that time , the closure of 14 supermarkets

made the biggest supermarket of britain

lose millions of pounds of sales income .

6 Conclusion

We find that source and target contexts in NMT are

highly correlated to translation adequacy and flu-

ency, respectively. Based on this observation, we

propose using context gates in NMT to dynamically

control the contributions from the source and target

contexts in the generation of a target sentence, to

enhance the adequacy of NMT. By providing NMT

the ability to choose the appropriate amount of in-

formation from the source and target contexts, one

can alleviate many translation problems from which

NMT suffers. Experimental results show that NMT

with context gates achieves consistent and signifi-

cant improvements in translation quality over differ-

ent NMT models.

Context gates are in principle applicable to all

sequence-to-sequence learning tasks in which infor-

mation from the source sequence is transformed to

the target sequence (corresponding to adequacy) and

the target sequence is generated (corresponding to

fluency). In the future, we will investigate the ef-

fectiveness of context gates to other tasks, such as

dialogue and summarization. It is also necessary to

validate the effectiveness of our approach on more

language pairs and other NMT architectures (e.g.,

using LSTM as well as GRU, or multiple layers).
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