
HAL Id: hal-03693656
https://hal.science/hal-03693656

Submitted on 13 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context Knowledge-aware Recognition of Composite
Intents in Task-oriented Human-Bot Conversations

Sara Bouguelia, Hayet Brabra, Boualem Benatallah, Marcos Baez, Shayan
Zamanirad, Hamamache Kheddouci

To cite this version:
Sara Bouguelia, Hayet Brabra, Boualem Benatallah, Marcos Baez, Shayan Zamanirad, et al.. Context
Knowledge-aware Recognition of Composite Intents in Task-oriented Human-Bot Conversations. 34th
International Conference, CAiSE 2022, Jun 2022, Leuven, Belgium. pp.237-252, �10.1007/978-3-031-
07472-1_14�. �hal-03693656�

https://hal.science/hal-03693656
https://hal.archives-ouvertes.fr


Context Knowledge-aware Recognition of
Composite Intents in Task-oriented Human-Bot

Conversations

Sara Bouguelia1 0000-0003-4538-0927, Hayet Brabra1 0000-0001-7484-2268,
Boualem Benatallah2 0000-0002-8805-1130, Marcos Baez1

0000-0003-1666-2474, Shayan Zamanirad2 0000-0002-3371-9631, and
Hamamache Kheddouci1 0000-0002-5561-6203

1 LIRIS – University of Claude Bernard Lyon 1, Villeurbanne, France
{sara.bouguelia, hayet.brabra, marcos.baez,

hamamache.kheddouci}@univ-lyon1.fr
2 University of New South Wales (UNSW), Sydney Australia

{boualem, shayanz}@cse.unsw.edu.au

Abstract. Task-oriented dialogue systems employ third-party APIs to
serve end-users via natural language interactions. While existing ad-
vances in Natural Language Processing (NLP) and Machine Learning
(ML) techniques have produced promising and useful results to recog-
nize user intents, the synthesis of API calls to support a broad range of
potentially complex user intents is still largely a manual and costly pro-
cess. In this paper, we propose a new approach to recognize and realize
complex user intents. Our approach relies on a new rule-based technique
that leverages both (i) natural language features extracted using exist-
ing NLP and ML techniques and (ii) contextual knowledge to capture
the different classes of complex intents. We devise a context knowledge
service to capture the requisite contextual knowledge.

Keywords: Task-oriented Conversational Bots · Complex Intent Recog-
nition · Context knowledge · Slot value inference

1 Introduction

Task-oriented dialogue systems (or simply bots) use natural language conver-
sations to enable interactions between humans and software-enabled services
[3]. In these, fulfilling a user request consists of: (1) understanding the user ut-
terance expressed in natural language (e.g., “What is the weather in Paris?”),
(2) recognizing the user intent (e.g., GetWeather), (3) extracting relevant slot-
value pairs (e.g., (location, Paris)), (4) invoking the corresponding API (e.g.,
OpenWeatherMap to get weather condition), and (5) returning a natural language
response to the user (e.g., “We have light rain in Paris”).

Ideally, the bot should detect intents and infer slot values with the least
possible interactions with the user (i.e., the bot asks the user for a missing value
only when it cannot infer it from other sources). A key challenge to achieve



2 S. Bouguelia et al.

this objective is devising robust intent recognition and slot inference despite the
potentially ambiguous and complex utterances. An utterance may not always
follow a simple conversation pattern, where the bot recognizes a basic intent and
infers all required slot values from the utterance, as in the previous example.

Natural user conversations can be rich, potentially ambiguous, and express
complex user intents [6,21]. An intent is complex when its realization requires
the bot to break it down into a list of atomic actions and infer potentially
missing values from different sources, not directly from the utterance. Given the
utterance “Can you book a table for 2 people at Mirazur restaurant for the next
public holiday?”, the bot should be able to infer the information such as number
of people and restaurant from this utterance; however, it also needs to search
when will the next holiday be. Failing to support such complex intents can lead
to repetitive and less natural interactions affecting the user experience [11].

Existing NLP and ML techniques have produced useful results to recog-
nize basic intents [19]. ML based techniques rely on the availability of massive
amounts of annotated data. Using these techniques to recognize complex intents
requires laborious, costly and hard to acquire training datasets. In addition, each
time a new complex intent is identified, extending or producing a new dataset is
needed as well. Therefore, more advanced and flexible techniques that cater for
complex intent recognition are needed.

In our previous work, we identified and characterized a set of composite di-
alog patterns that naturally emerge when conversing with services [2]. In this
paper, we focus on the recognition of complex intents in human-bot conversa-
tions. We take the view that complex intent recognition could be significantly
improved by considering composite dialog patterns in addition to basic intent
features. We propose an approach that relies on (i) existing NLP and ML tech-
niques to extract natural language features (e.g., basic intents, dialog acts) and
(ii) a rule-based approach that leverages these features together with contextual
knowledge, enabled by composite dialog patterns and other metadata, to define
complex intent recognition rules. These rules enable a higher-level of abstrac-
tion that offers flexibility for an extensible library of composite dialog patterns.
When a new complex intent class is identified, a new rule template is added to
recognize intents of this class from utterances. This approach requires to capture
fairly complex context knowledge in addition to basic intents in order recognize
complex intents. Thus, there is a need for advanced context representation and
exploitation techniques that go beyond conversation history to include infor-
mation inference that leverage metadata such as intent and API schemas (e.g,
intents, slots, API methods) and relationships between their elements. Our con-
tributions in this work are summarized as:

– We propose a rule-based approach that combines (i) natural language fea-
tures (ii) composite dialog patterns and contextual knowledge to capture
different classes of complex intents in a generic way.

– We propose major extensions to the preliminary context knowledge service
(CKS) presented in [2]. These extensions consist of an improved context
knowledge model and a set of new services providing the contextual knowl-
edge that is needed for the rules to recognize complex intents.



Title Suppressed Due to Excessive Length 3

– Empirical evidence showing the effectiveness and user experience of the CKS
and complex intent recognition. The user study showed that endowing bots
with the complex intent recognition allow more natural interactions, as per-
ceived by users and confirmed by performance metrics.

This paper is organized as follows: Section 2 describes a scenario and the general
architecture; Section 3 details the CKS; Section 4 shows the rules to recognize
and realize complex intents; Section 5 presents the experimentation; Section 6
presents the related work; Section 7 presents the conclusion and future work.

2 Scenario and Architecture

Before delving into the main contributions, we first introduce a scenario illus-
trating the proposition value of the CKS, and the supporting architecture.

2.1 Scenario

Consider a user who wants to plan some activities by conversing with a bot, as
shown in Figure 1. The user interacts with the bot using complex intents where
there may exist missing values. Existing state-tracking3 (ST) techniques support
these interactions only in some cases and tend to be chatty and prompt users for
the missing values. Slot values can be inferred by leveraging different sources:
Infer slot value from conversation history. The composite pattern called
slot-value-flow allows resolving a missing value of a slot by extracting it from
conversation history. Existing ST techniques provide a limited support to this
pattern. For example, in utterance #2, they can deduce that the missing value
of the slot cinema-area is the same as the value of the slot restaurant-area
and reuse it. However, in utterance #3, they use a coreference model to replace
the expressions “the cinema” and “the restaurant” with the mentions “UGC
cinema” and “LaGoulette restaurant”, respectively, which are wrong values be-
cause they should be addresses. This will lead the bot to ask the user to provide
the precise addresses values. A bot improved with CKS can infer these values
by detecting that the departure is more likely related to the cinema-address
than the cinema-name and thus reusing the address value.
Infer slot value by calling another API method. The composite pattern
called nested-method allows resolving a missing value of a slot by triggering an-
other method. For example, in utterance #4, the user wants to send a message.
Instead of giving the recipient’s phone number (i.e., tel), the user gives an ex-
pression that refers to the recipient’s name (i.e., “my friend” to refer to “Hayet”).
While existing ST techniques can deduce that the expression “my friend” refers
to “Hayet”, they cannot infer the value of the slot tel. A bot improved with
CKS can detect that there is an API method having an output similar to the
missing slot and therefore invokes this API method to infer the missing value.

3State-tracking consists of determining user intent and its required slot values.



4 S. Bouguelia et al.

User: Oh, I also need a taxi to go from 21 Rue Maximilien Palaiseau Paris to the Eiffel Tower today at 10 am

Bot: Done! I have booked a taxi from 21 Rue Maximilien Palaiseau Paris to Champ de Mars, 5 Av. Anatole France, Paris 

today at 10 am.


User: Just one last thing, can you start the playlist called My Happy Melodies on Spotiffy  

Bot: Sure, starting playlist ...Done!

User: Send a message to my friend, tell her "I'll be at UGC cinema at 3 pm"

Bot:  Done! I sent the message "I'll be at UGC cinema at 3 pm" to Hayet phone number +33783425005

API-METHOD: contacts-get: (contact, Hayet), (phoneNbr, +33783425005), (email, b.hayet@gmail.com)

   	 	 	    twilio-SendMessages: (tel, +33783425005) (msg, I'll be at UGC cinema at 3 pm)


User: I am excited to see my friend Hayet! Book a taxi from the cinema to the restaurant today at 5 pm

Bot:  Done! I booked a taxi from 166 Boulevard Macdonald Paris to 59 Rue de la verrerie Paris today at 5 pm.

Text

.

User: I am also looking for a cinema

Bot: I found the UGC cinema.  The address is 166 Boulevard Macdonald Paris.

#2

#3

#4

#5

#6

User: I am looking for a Tunisian restaurant in Paris

Bot: LaGoulette restaurant serves Tunisian food. The address is 59 Rue de la verrerie Paris.

#1
INTENT:	 SearchRestaurant: (restaurant-area, Paris), (food, Tunisian restaurant)


API-METHOD:  Yelp-SearchBusiness: (location, Paris), (term, Tunisian restaurant), (name, LaGoulette), (address, 59 Rue de la verrerie Paris)


INTENT: SearchCinema: (cinema-area, ?), (term, cinema)

API-METHOD:  Yelp-SearchBusiness: (location, Paris), (term, cinema), (name, UGC), (address, 166 Boulevard Macdonald Paris)


INTENT: BookTaxi: (departure, ?), (destination, ?), (date, today), (time, 5 pm) 

API-METHOD: taxicode-booking: (pickup, 166 Boulevard Macdonald Paris), (destination, 59 Rue de la verrerie Paris), (date, today), (time, 5 pm) 


API-METHOD: Soptify-Search: (q, My Happy Melodies) (item, playlist) (spotify_id, 59ZbFPE)

   	 	 	    Soptify-Player: (spotify_id, 59ZbFPE)

INTENT: BookTaxi: (departure, 21 Rue Maximilien Palaiseau Paris), (destination, ?), (date, today), (time, 10 am) 

API-METHOD: taxicode-booking: (pickup, 21 Rue Maximilien Palaiseau Paris), (destination, Champ de Mars, 5 Av. Anatole France, Paris),
(date, today), (time, 10 am) 


Input parameter
Output parameter
Inferred value

Legend

value inferred from history

value inferred from history value inferred from history

value inferred by calling another API Method (i.e., contacts-get)

value inferred by calling the dependent method (i.e., Spotify-Search)

value inferred from an external data service

INTENT: SendMsg: (tel, ?) (msg, I'll be at UGC cinema at 3 pm)

INTENT: StartPlaylist: (playlist-id, ?)

Fig. 1. Example of user-bot conversation where there are some complex intents.

Identify the dependent method to get a value of an id. The composite
pattern called API-calls ordering allows mapping an intent to a sequence of API
calls to satisfy order constraints. For example, in utterance #5, the user wants to
start a playlist, but the value of the slot playlist_id is missing. In existing ST
techniques, unless the bot developer implements an intermediate method that
combines the two API methods Spotify-Search and Spotify-Player, the bot
will ask the user for the value of the slot playlist_id. A bot improved with
CKS will automatically map the user intent (i.e., StartPlaylist) to a sequence of
API calls to get the value of the id.
Infer slot value from an external data service. The composite pattern
called entity-enrichment allows resolving a missing value of a slot from an ex-
ternal data service. The user is not always precise; she might refer to an entity
mention that is common knowledge to inform a slot value. For example, in ut-
terance #6, the user provides “Eiffel Tower” as a taxi destination instead of
the precise address. Since they leverage only the conversation history, existing
ST techniques will fail to infer the value of the destination slot. A bot im-
proved with CKS, however, can enrich the “Eiffel Tower” entity with additional
information such as its address, which is the target destination value.

2.2 Architecture

To empower bots in handling the previous scenario, the bot needs services that
initiate, monitor, and control conversations. Figure 2 shows the workflow be-



Title Suppressed Due to Excessive Length 5

External Resources 

(APIs, databases,
knowledge graphs,

etc.)

User

Co-Ref NLU
DM

CKS

BOT

NLG

(1)
(2)

(3)

(4)

(5)

(6)(7)

CIR CSM

Fig. 2. General architecture supporting our approach.

tween these services. When a bot receives a new utterance, (1) the Co-Ref
service takes this utterance and the previous messages as input and resolves the
potential referenced mentions. We use Neuralcoref4, as a coreference resolution
model. Then, (2) the utterance is sent to the Natural Language Understand-
ing (NLU) service to extract intent and slot values. We use DialogFlow5 NLU
model. The Dialogue Manager (DM) aims to coordinate the information flow in
the conversation. In our approach, the DM uses a Conversational State Machine
(CSM) model to represent bot behaviors [22] and relies on a Complex Intent
Recognition (CIR) technique to identify complex intents (details in Section 4).
(3) Once the DM gets the intent and slot values, it creates a composite state,
in the CSM, if the CIR recognizes a complex intent. Otherwise it creates an
ordinary state. (4) The CKS keeps track of conversation knowledge, infers miss-
ing slot values, and provides a set of new services supporting the recognition of
complex intents (details in Section 3).

Once the DM collects all required information for the current state, (5) it
calls the related API method and (6) sends the results to the Natural Language
Generator (NLG). (7) NLG uses then predefined templates to generate human-
like responses to the user.

3 Extended Context Knowledge Service

3.1 Context Knowledge Model

The context knowledge model consists of: (1) the metadata of bot schema, user
profile and external services and (2) the data stored as conversation progresses.
Metadata is denoted as a context knowledge graph that includes mainly: (i) the
definition of intents, slots, API methods, API parameters, and entity types, and
(ii) relationships between these elements (e.g., SearchCinema intent is realized by
the method Yelp-SearchBusiness, departure slot is same-as address parame-
ter, etc.). Figure 3 illustrates an example of this graph related to the conversation
scenario. The context knowledge graph includes also the metadata of external
data services (e.g., Google KG, wikidata) and user profiles. The key intuition
behind including external data services is to endow the bot with the capability of

4NeuralCoref: https://spacy.io/universe/project/neuralcoref
5DialogFlow: https://dialogflow.com/

https://spacy.io/universe/project/neuralcoref
https://dialogflow.com/


6 S. Bouguelia et al.

Yelp-
SearchBusiness term

location

stringinput
input

iis-a

iis-a

businesses objectiis-a
nameihas

address

country

city

display_address
string

Google-Place Search


has

place

Intent

EntityType Attribute

Slot

Legends

External
service

is-retrieved-by

is-asquery

input

String

formatted

_address

place_id

name

Parameter

has
has

is-realised-by
Search

Cinema

has
has

is-realised-by
Search

Restaurant
restaurant-area

same-ascinema-area

ihas

has
has

is-realised-by

SendMsg

is-realised-by

has GetContact

string

msg

same-as
tel

name

has

is-realised-by

StartPlaylist
hashas

is-realised-by

SearchItems

output input input

Soptify-Search

input

depends-onSoptify-Player

q item_type

API
Method

term

food

twilio-SendMessages

input
output
outputcontacts-get

taxicode-
booking

destination

pickup
input
input

dateinput
input

same-as

same-as
destination

date
time

time

same-as

same-as
departure

output
has

has
has

is-a

has
has
has
has

is-realised-by

BookTaxi

has

contact

email

PhoneNbr

playlist_id

itemqspotify_idsame-asspotify_id

cityhas
has

location
filtered-by

Profile
attribute

Fig. 3. Context knowledge graph related to the conversation of Figure 1. For clarity
purpose we do not represent all nodes and edges.

enriching entities with additional information from these services. However, an
external data service may return several entities for a given mention. Thus, hav-
ing a mechanism that links the entity mention to its corresponding entity in the
data service is necessary. This is where the user profile comes into play. User pro-
file attributes like location, preferences can be used as filters to select the appro-
priate entity. Thus, we introduce the following node types: External service,
Profile attribute and relationship types: is-retrieved-by, filtered-by.
External service refers to a data service used for an entity enrichment. Often,
a data service has an input parameter that takes a text query, which in our case
will be filled by the entity mention (e.g., “Eiffel Tower”). is-retrieved-by is de-
fined between an entity type and an external service, (e.g., the entity type place
can be retrieved from Google-PlaceSearch service). filtered-by is defined be-
tween an entity type and a profile attribute, meaning that entities of that entity
type can be filtered by the given attribute (e.g., place entities can be filtered
by location). The generation of filtered-by edges is based on computing the
cosine similarity [18] between the vector embedding6 of each pair of entity type
attributes and profile attributes. Assume that a user profile is defined by this set
of attributes (gender, location, dietary) and the entity type place has the
attribute city among others, a filter-by edge will be added between place
and only location since it is similar to city. We assume that the external data
services and their input parameters, the related is-retrieved-by relationships
and the user profile attributes7 are specified by the bot developer.
Data includes relevant information that should be memorized during user-bot
conversations for later reuse. Two memory structures are used to store this data:
Local Context Memory (LCM) and External Context Memory (ECM). The LCM

6Vector embeddings are obtained using the off-the-shelf spaCy NLP model
7Updating user profiles from conversations is out of the paper scope.



Title Suppressed Due to Excessive Length 7

keeps track of all the traces related to each intent fulfillment. This includes the
utterance, the intent, the method call, alongside with its timestamp, its inputs,
and its outputs. The ECM, on the other hand, keeps track of all entities mentions
in user utterances. It also provides all information that external data services
extract to enrich these entities mentions. We structure ECM in terms of entities;
each is associated with its mention, entity type, and its retrieved attribute values.
Examples of data related to the scenario are documented in online appendix8.

3.2 CK services

The CKS features four services, two of which are devoted to supporting the
inference of slot values from the conversation history and external data services,
whereas the two others aim at providing the contextual knowledge that is needed
for the rules to recognize complex intents.
History search: This service allows inferring slot values from the conversation
history. It is enabled by the endpoint “CKS/history? ms & u” which takes as
inputs the missing slot ms, and the utterance u and returns the value of the slot
ms when possible. First, the service extracts the relevant entity-mention pairs
from the utterance. An entity-mention is relevant if the extracted entity has an
attribute same-as the missing slot. Consider utterance #3„ the entity-mention
(restaurant, LaGoulette) is relevant because the entity restaurant has an
attribute address same-as the missing slot taxi-destination. Second, the ser-
vice rewrites the utterance by replacing each mention with the corresponding
attribute’s value. For example, the utterance “book a taxi from UCG cinema to
LaGoulette restaurant” will be “book a taxi from [UCG-address] to [LaGoulette-
address]”. The rewriting is important to know if the value of taxi-destination
is the restaurant or the cinema address. The service then extracts the missing
value from the new utterance. If there is no relevant entity-mention in the ut-
terance, the service returns the most recent value of the parameters same-as the
missing slot. For example, in utterance #2, there is no entity-mention, so the
service returns the value of the restaurant’s area.
Entity enrichment: This service allows enriching entity attributes from exter-
nal data services. It is enabled by the endpoint “CKS/invoke_external_service?
s & em & a”. Consider utterance #6, the service takes as inputs: the external
data service s: Google-PlaceSearch, the entity-mention em: (place, Eiffel
Tower), and the attribute a: address and it returns the value of a. To obtain the
attribute value from the appropriate entity, three steps are followed. First, the
service invokes the external data service related to the given entity-mention em,
which returns a set of entities. Then, it filters the returned entities by discarding
any entity, whose similarity with the entity-mention em is less than a predefined
threshold and it does not contain the target attribute value. The similarity is
computed on the basis of the cosine distance between the embedding vectors
of the entity-mention em and the name of the entity returned by the external

8Examples of data: https://tinyurl.com/scenario-data

https://tinyurl.com/scenario-data


8 S. Bouguelia et al.

service. After this step, if only one entity is returned, the service retrieves the
target attribute value from it. Otherwise, in order to identify the right entity,
the service proceeds a second filtering step based on the filter attributes related
to the mention entity type in the metadata. This filter step is expected to return
one entity that matches the most of filters while giving a high priority to the
location filter.
Nested method identification: This service allows identifying an API method
that needs to be invoked to obtain the missing value. It is enabled by the end-
point “CKS/nested_method? ms & set_em”. Consider utterance #4. The service
takes as inputs the missing slot ms: tel, and the set of detected entity-mentions
set_em: {(person, Hayet)}. It then gets from the metadata the methods that
have an output parameter same-as the slot. For example, the service gets the
set of methods {contacts-get, businessDetails-get} where the missing slot
tel is the same-as one of the outputs of contacts-get (i.e., phoneNbr) and also
the same-as one of the outputs of businessDetails-get (i.e., phone). The ser-
vice relies on the detected entity-mentions to select the relevant method from the
set of methods. For example, in contrast to the method businessDetails-get,
the method contacts-get has an input parameter contact same-as to one of
the detected entity person. Thus, the service selects contacts-get as the nested
method and returns it along with its input values {(contact, Hayet)} and one
of its outputs phoneNbr that is same-as the slot tel.
Dependent Method identification: This service allows identifying a depen-
dent method to get a value of an id. It is enabled by the endpoint “CKS/dependent
_method? i” where i is the given intent. This endpoint first gets the method
m1 that realize the intent i. Then, it gets the dependent method m2 where m1
depends on m2. For example, in utterance #5, the endpoint takes the intent
StartPlaylist as input and returns: the dependent method Spotify-Search,
its input parameters {q, item}, and its id output parameter spotify_id.

4 Complex Intent Recognition

We propose a new rule-based approach to support Complex Intent Recognition
(CIR). Our approach offers flexibility for an extensible library of dialog patterns,
i.e., when a new class of a complex intent is identified, we can add its new rule to
recognize the intents of this class from user utterances. We express a rule using
a combination of natural language features and contextual knowledge. In what
follows, we first define functions that we use to specify the rules, then we specify
the rule of each pattern introduced in Section 2.1.

4.1 Functions

Functions are the primitives that we use to define the rules. We consider function
input and output types to be standard data types found in common programming
languages such as string and boolean; as well complex data types such as Tuple
or Set. Thus, we can leverage the standard operators designed for these data



Title Suppressed Due to Excessive Length 9

Table 1. Examples of boolean functions to express triggers

Functions Inputs Description
IS_NEW_INTENT() u: string returns true if the identified intent in the utterance u

is a new intent.
HAS_MISSING_SLOT() u: string

s: string
returns true if the value of the given slot s is not rec-
ognized in the utterance u.

HAS_SAMEAS_PARA() s: string returns true if there is at least one parameter that is
the same-as the slot s.

EXIST_NESTED() s: string returns true if there is at least one output parameter
that is the same-as the slot s.

IS_DEPENDENT() i: string returns true if the method that realize i depends on
another method.

HAS_SAMEAS_ATT() set_em: set
s: string

returns true if at least one entity in set_em has an
attribute that is the same-as the slot s.

types. We distinguish two types of functions: dialog act functions to capture
natural language features and context metadata functions to capture contextual
knowledge. These functions are offered by the NLU and the CKS, respectively.
Dialog Act functions identify hidden actions in user or bot messages. Whether
the user is providing information, or asking a question, or the bot is providing
suggestions, are all hidden acts in user or bot messages. We focus on two di-
alog act functions: INTENT_OF(), which identifies the intent i expressed in a
given utterance u, and SLOT_VALUE(), which returns the value of a given slot s
recognized in the utterance u or NULL if no value of s is recognized in u.
Context Metadata functions allow to access and query the metadata graph
defined in Section 3.1 to get the contextual knowledge. For example: GET_SAMEAS_
PARA() is a metadata function that returns a set of parameters that are the same-
as a given slot s; DEPENDS_ON() returns a method name mb given a method name
ma where ma depends on mb or it returns NULL if there is no dependent method.

4.2 Complex Intent Recognition Rules

A rule consists of trigger and action clauses. The trigger clause specifies the con-
ditions that need to be verified to recognize complex intents. Then, the sequence
of operations specified in the action clause are executed to fulfill the related
complex intent. The following statement specify a rule:

Rule “name of the rule” when trigger then action
Triggers are expressed as boolean conditions over functions, including dialog act
and metadata functions. Table 1 provides examples of boolean functions that are
used to define triggers. Conditions may be combined using conjunction operator
(AND). The action is a sequence of operations. For instance, an operation can be
an assignment of a value to a given variable, or an invocation of a CKS service.
Figure 4 shows the definition of rules for each composite pattern:
Slot-value-flow Rule. The first condition checks if the identified intent i is a
new intent. The second condition checks if the value of the slot ms is missing.
These two conditions are the same for nested-method and entity-enrichment
rules. The third condition checks if there is at least one already fulfilled parameter
that is the same-as the slot ms. If the conditions are satisfied, the bot: (1) invokes



10 S. Bouguelia et al.

Fig. 4. Rules of composite dialog patterns

the history search CKS service to get the missing value, (2) adds this value to
the set of slot-value pairs, and (3) invokes the method that realize the intent i.

Nested-method Rule. The third condition checks if there is at least one output
parameter that is the same-as the slot ms. If the conditions are satisfied, the
bot: (1) invokes the nested method CKS service to identify: the nested method
mnes, its input values set_ivnes, and its output parameter ones. Then, the bot
(2) invokes the method mnes to get the value of ones, (3) uses this value as a
value for the slot ms, and (4) invokes the method that realize the intent i.

API-calls-ordering Rule. The first condition is similar to the first condition of
the other rules. The second condition checks if the method that realize the intent
i depends on another method. If the conditions are satisfied, the bot: (1) invokes
the CKS service to identify: the dependent method mdep, its inputs set_idep, and
the id parameter iddep. Then, the bot (2) calls GET_VALUES_ASKUSER() to get
the input values of the method mdep by extracting them from the utterance, the
history, or by asking the user. After getting the input values, (3) invokes mdep

to get the value of iddep, (4) uses this value as a value for the parameter id,
and (5) invokes the method that realize the intent i.

Entity-enrichment Rule. Given a set of entities mentions set_em, extracted
from u, the third condition checks if there is at least one attribute of an entity-
mention that is the same-as the slot ms. If the conditions are satisfied, the
bot: (1) calls the metadata function GET_REQUIREMENTS() to get the following
information: the related service s, the entity-mention em, and the attribute a.
Note that this function chooses one entity-mention from set_em based on the
one that has an attribute same-as the slot ms, (2) invokes the entity enrichment
CKS service to get the value of the attribute, (3) uses this value as a value for
the slot ms, and (4) invokes the method that realize the intent i.



Title Suppressed Due to Excessive Length 11

5 Experiments

The first objective of the study was to explore the effectiveness and limitations
of (i) the proposed CKS (i.e., its capability of inferring slots’ values correctly
and reducing unnecessary interactions) and (ii) the CIR (i.e., its capability of
recognizing correctly the composite dialog patterns mentioned previously). The
second objective was to evaluate the user experience (i.e., naturalness, repetitive-
ness, understanding) in interacting with a bot improved with CIR and CKS.

5.1 Methods

Experimental design. Participants were recruited via email from the extended
network of contacts of the authors. The call for volunteers resulted in a total of
20 participants. We prepared an evaluation scenario that required participants
to interact with a set of API methods through a bot to plan an evening activity
in Paris. Participants were asked to complete four different tasks in this scenario
(T1: checking the weather and searching for restaurants, T2: booking a restau-
rant table, T3: booking a taxi, and T4: sending a confirmation message to the
travel partner). The tasks were designed to leverage the type of support provided
by the CKS, if the composite dialog patterns were to be effectively recognized
(T1: inferring slot value from conversation history, T2: identifying dependent
method, T3: using an external data source, and T4: identifying nested method).
We followed a within-subjects design,9 tasking participants to interact with two
bots representing the following experimental conditions:

– DM-Baseline. The baseline implements a standard conversational manage-
ment, without composite dialog patterns and CKS support.

– DM-CKS. This bot is implemented with the CIR and CKS support.
The two bots relied on the same NLU implementation (in DialogFlow), bot

interface, and differed only in the composite patterns and CKS support.
Procedure. The study was conducted online. Participants received a link to
an online form that included an informed consent, all the instructions, links
to the bots and feedback required. In the study, participants were introduced
to the evaluation scenario and tasks, and were asked to perform those tasks
with the two bots. The order in which the bots were presented to users was
counterbalanced. For each bot, participants were asked to provide open-ended
feedback on the pros and cons of their experience. The last part of the study then
asked participants about their preferred bot, the reason why, and a quantitative
feedback on their user experience. We adopted the user experience questions
from prior work [9], to get feedback on the perceived naturalness (i.e., ability to
fulfill user tasks in human-like conversations), repetitiveness (i.e., ability to avoid
redundant questions) and understanding (i.e., ability to interpret user requests).
Data analysis. We performed an analysis of conversation logs so as to assess the
effectiveness of the CKS and the CIR. These are calculated in relation to optimal

9Study materials and in-depth results available at https://tinyurl.com/
study-materials

https://tinyurl.com/study-materials
https://tinyurl.com/study-materials


12 S. Bouguelia et al.

conversation scenarios10 that we designed based on participants conversations.
The CKS effectiveness is calculated by considering the following metrics: number
of (M1) conversation turns, (M2) prompts asking for missing slot values, and
(M3) missing slot values correctly inferred. The effectiveness of the CIR (only
available in DM-CKS) is calculated by considering the number of (M4) complex
intents correctly detected. These metrics are calculated per user conversation,
aggregated (mean) and then used to compute the relative performance against
the optimal scenario. We also performed a qualitative analysis of open-ended
responses and conversation logs to contextualise the results from the metrics
and identify limitations.

5.2 Results

Effectiveness of CKS and CIR. Table 2 shows the relative performance by
task of both bots DM-Baseline and DM-CKS in relation to the optimal reference
scenario. For the four tasks, we can see that DM-CKS bot experienced a boost
in performance for M1 and M2 metrics (mean across tasks 94.66% and 88.4% re-
spectively), approaching the efficiency in terms of number of turns and prompts
of the reference ideal scenario. This level of performance is possible due to the
accuracy of the slot value inference (M3) performed by the CKS services sup-
porting each task – a mean relative performance across tasks of 96%. In contrast,
not having the support of the CKS services lead the DM-Baseline bot to per-
form poorly in comparison, with the best performance being at around 37.18%
for the metrics considered. These results provide evidence for the benefits and
effectiveness of the CKS support. Table 2 also shows the relative performance
of recognizing complex intent (M4) by the bot DM-CKS in relation to the refer-
ence scenario. By analyzing the conversations, we noticed that the recognition
error of the composite dialog patterns is mostly caused by the detection error
of the correct intent by the NLU during the conversation. For example, if the
NLU detects the intent SearchRestaurant instead of BookTaxi, in the utter-
ance “I want to go to this restaurant”, this will lead to an error in detecting
the slot-value-flow pattern that takes the restaurant address as the destination
address. However, for the four tasks, we can see that DM-CKS bot is close to
the reference scenario with a mean relative performance across tasks of 94.86%.
User experience. All but one participant (19/20 participants) expressed a
preference towards the DM-CKS bot as opposed to the baseline. The one excep-
tion was due to NLU limitations in recognizing user expressions that led to the
enactment of the wrong services. The feedback to the specific user experience
questions, as well as the open-ended feedback, highlighted the reasons behind
the preference. Participants agreed with DM-CKS interactions describing natu-
ralness (14/20), less repetitiveness (16/20) and understanding (15/20), whereas
the baseline was poorly rated on these fronts (1/20). Interestingly, these qual-
ities were linked to the CKS support, such as the ability to infer missing slot
values from conversation history (e.g., “saying that the drop-off address was the

10Scenarios assuming ideal accuracy of slot-value inference and intent recognition.



Title Suppressed Due to Excessive Length 13

Table 2. Bot performance for each task according to relevant metrics. Values in bold
denote best performance. Percentages denote the relative performance with respect to
the reference (optimal) scenario.

DM-Baseline DM-CKS
Task (service) M1

(TURNS)
M2

(PROMPTS)
M3

(SLOTS)
M1

(TURNS)
M2

(PROMPTS)
M3

(SLOTS)
M4

(PATTERN)

T1 (history) 59.70% 21.18% 49.24% 98.04% 90% 96.97% 95%
T2 (dependent) 61.18% 42.11% 17.86% 92.86% 95.24% 95.24% 94.44%
T3 (external) 46.97% 32.39% 3.17% 91.18% 88.37% 95.24% 95%
T4 (nested) 52.97% 20% 39.41% 96.55% 80% 96.55% 95%
Mean 55.21% 28.92% 27.42% 94.66% 88.4% 96% 94.86%

restaurant I have just booked was enough”, P1), or from external services (e.g.,
“[it] found the address when I said Eiffel Tower”, P6). The ability to handle
complex intents also emerged as a defining feature (e.g., “[DM-CKS] is capa-
ble of undertaking complex tasks and retaining previous information”, P16). In
contrast, participants reported having to copy & paste previous values or google
some information during their interactions with the baseline bot.
Limitations. The conversation analysis revealed some limitations in supporting
the natural language interaction described by the users:
Enumerating entities when the number of entities is expected. In the context of
T2, when asked “For how many people do you want to book a table?”, some
participants would respond with “For me and my friend”. The bot could not
infer the number of seats from the participant’s utterance because it expected to
extract a number. This would be an acceptable answer in a natural conversation,
and represent as a new type of inference that needs to be considered.
Introducing typos when providing slot values. When booking a taxi in the con-
text of T3, some participants spelled “Eiffel tower” incorrectly (e.g., “Book a
Taxi from the Eifeltower”), which led to the failure of the CKS service for in-
ferring values from a external data source. Handling mistakes when performing
inferences is a situation that needs to be addressed.

6 Related Work

Our work is related to the ST process that aims to infer the dialog state in terms
of the user intent and its slot-value pairs during conversations [15]. Depending
on the leveraged knowledge sources, existing ST approaches can be organized
into history-based, schema-based, and Linguistic patterns (LPs) based.
History-based approaches rely on the whole or window-size of the dialogue
history to predict the dialog state. Deep learning models including HRNN [8],
LSTM [7] and BERT [23] are utilised to encode the dialog history. Other works
[4,17] leverage only on the previous dialog states to predict the current state
instead of taking the whole history. More advanced approaches [14,20,10] focused
first on the learning of slot dependencies from the history and then incorporated
them into the ST model, allowing it to infer slot values from similar slots. Most
of the ST approaches either focused on recognizing only basic intents or ignored
their recognition at all. Similar to some of these, we build upon advances in



14 S. Bouguelia et al.

ML techniques to enable the recognition of basic intents but contribute a new
rule-based approach to recognize complex intents.

Schemas-based approaches leverage schemas capturing the structural repre-
sentation of conversation data to predict the dialog state. Works like [5], [13]
[19] use a slot-level schema graph that captures dependencies between slots. The
aim is to allow the ST model to infer slot values from similar slots. Other ef-
forts like [12] leverage the backend database schema in ST model to allow slot
inference from the database entities. These methods, however, work with bots
integrated only with databases, where the inferred slot-value pairs are used to
frame the query. Since our context knowledge model integrates API/Service
schema, where each intent is associated with its corresponding API method, our
approach can handle flows supported by software-enabled services. The work [1]
represents the dialogue state as a dataflow graph and the complex user intent as a
dataflow program. For each user utterance, a trained model allows predicting the
corresponding dataflow program. This approach relies on datasets where each
utterance must be annotated with the corresponding dataflow program; how-
ever, it is not intuitive task to annotate utterances with programs. The closest
work to ours is [15] which introduced a unified schema defining a service or API
as a combination of intents and slots. A BERT-based ST model then takes this
schema as input to enable the recognition of intents and inferring their slot-value
pairs. The captured knowledge (i.e., the unified schema), however, can only help
in the recognition of basic intents. In our work, we devise the CKS mainly to
capture the contextual knowledge that is required to recognize complex intents.
In addition to the conversation history and intent/slot schemas, this knowledge
includes API/Service schemas and enriched entities. Our CIR technique exploits
both this knowledge and basic intent features to recognize the complex intents.

LPs-based approaches leverages linguistic patterns that are drawn mainly
from human conversation to handle some complex intents and inferring their
slots [6], [16]. For example, IRIS [6] draws on two existing LPs dependent ques-
tions (i.e., one question depends on the answer to some subsequent request), and
anaphora (i.e., expressions that depend on previous expressions) to allow com-
position and sequencing of intents.These approaches, however, are not enough
to capture complex intents that naturally emerge when conversing with services.
For instance, while this utterance “Send the message ‘I will be at UGC cinema
at 3 pm’ to Hayet” refers to a complex intent requiring a composition of two API
methods, it cannot be recognized by IRIS. The reason is that IRIS can recognize
composition based only on linguistic features (e.g., A composition is recognized
when a user answers with a new intent to the bot request for a missing slot). In
contrast to the LPs-based approaches, we focus on using composite dialog pat-
terns that cater to the inherent features in interactions between humans, bots,
and services in addition to the linguistic ones. These patterns are used to enable
the contextual knowledge required by the CIR to recognize complex intents.



Title Suppressed Due to Excessive Length 15

7 Conclusions and Future Work

We proposed reusable and extensible rule-based technique that uses a sophisti-
cated context service to recognize and realize complex intents. We believe that
our approach charts novel abstractions that unlock the seamless and scalable
integration of natural language-based conversations with software-enabled ser-
vices. We devised a novel complex intent recognition that allows the incremental
acquisition of rule templates to identify composite intents from basic dialog acts
and context features. The contextual knowledge required at run-time to recognise
complex intents and infer slot values from user-bot conversations is extracted
from conversation history, enriched entities, intents and API schemas and rep-
resented in graph structure. Future work includes identifying new composite
patterns (e.g., supporting conversations with business process models) and de-
veloping privacy-aware task-oriented bots by reasoning about privacy-preserving
conversations.

References

1. Andreas, J., et al.: Task-oriented dialogue as dataflow synthesis. Transactions of
the Association for Computational Linguistics 8, 556–571 (2020)

2. Bouguelia, S., et al.: Reusable abstractions and patterns for recognising composi-
tional conversational flows. Proc. CAiSE 2021

3. Brabra, H., et al.: Dialogue management in conversational systems: A review of
approaches, challenges, and opportunities. IEEE TCDS (2021)

4. Chao, G.L., Lane, I.: Bert-dst: Scalable end-to-end dialogue state tracking with
bidirectional encoder representations from transformer. pp. 1468–1472 (09 2019)

5. Chen, L., et al.: Schema-guided multi-domain dialogue state tracking with graph
attention neural networks. Proc. AAAI Conference on Artificial Intelligence (2020)

6. Fast, E., et al.: Iris: A conversational agent for complex tasks. In: Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (2018)

7. Gao, S., Sethi, A., Agarwal, S., Chung, T., Hakkani-Tür, D.Z.: Dialog state track-
ing: A neural reading comprehension approach. In: SIGdial (2019)

8. Goel, R., Paul, S., Hakkani-Tür, D.: Hyst: A hybrid approach for flexible and
accurate dialogue state tracking. In: Interspeech (2019)

9. Holmes, S., et al.: Usability testing of a healthcare chatbot: Can we use conventional
methods to assess conversational user interfaces? In: Proc. of ECCE (2019)

10. Hu, J., et al.: SAS: Dialogue state tracking via slot attention and slot information
sharing. In: ACL. Association for Computational Linguistics (2020)

11. Jain, M., Kumar, P., Kota, R., Patel, S.N.: Evaluating and informing the design of
chatbots. In: Proc. of the 2018 Designing Interactive Systems Conference (2018)

12. Liao, L., Long, L.H., Ma, Y., Lei, W., Chua, T.S.: Dialogue State Tracking with
Incremental Reasoning. TACL 9, 557–569 (2021)

13. Lin, W., Tseng, B., Byrne, B.: Knowledge-aware graph-enhanced GPT-2 for dia-
logue state tracking. CoRR (2021)

14. Ouyang, Y., et al.: Dialogue state tracking with explicit slot connection modeling.
In: ACL (2020)

15. Rastogi, A., et al.: Towards scalable multi-domain conversational agents: The
schema-guided dialogue dataset. ArXiv abs/1909.05855 (2020)



16 S. Bouguelia et al.

16. Rastogi, P., Gupta, A., Chen, T., Lambert, M.: Scaling multi-domain dialogue
state tracking via query reformulation. In: NAACL. pp. 97–105 (2019)

17. Ren, L., Ni, J., McAuley, J.: Scalable and accurate dialogue state tracking via
hierarchical sequence generation. In: EMNLP (2019)

18. Sitikhu, P., et al.: A comparison of semantic similarity methods for maximum
human interpretability. In: Proc. AITB (2019)

19. Wu, P., et al.: Gcdst: A graph-based and copy-augmented multi-domain dialogue
state tracking. In: Findings of the ACL: EMNLP 2020 (2020)

20. Ye, F., et al.: Slot self-attentive dialogue state tracking. In: WWW. ACL (2021)
21. Zamanirad, S.: Superimposition of natural language conversations over software

enabled services (2019)
22. Zamanirad, S., et al.: Hierarchical state machine based conversation model and

services. Proc. CAiSE 2020
23. Zhang, J., et al.: Find or classify? dual strategy for slot-value predictions on multi-

domain dialog state tracking. In: STARSEM (2020)


	Context Knowledge-aware Recognition of Composite Intents in Task-oriented Human-Bot Conversations
	Introduction
	Scenario and Architecture
	Scenario
	Architecture

	Extended Context Knowledge Service
	Context Knowledge Model
	CK services

	Complex Intent Recognition
	Functions
	Complex Intent Recognition Rules

	Experiments
	Methods
	Results

	Related Work
	Conclusions and Future Work


