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Abstract. In port surveillance, video-based monitoring is a valuable
supplement to a radar system by helping to detect smaller ships in
the shadow of a larger ship and with the possibility to detect nonmetal
ships. Therefore, automatic video-based ship detection is an important
research area for security control in port regions. An approach that auto-
matically detects moving ships in port surveillance videos with robust-
ness for occlusions is presented. In our approach, important elements
from the visual, spatial, and temporal features of the scene are used to
create a model of the contextual information and perform a motion
saliency analysis. We model the context of the scene by first segment-
ing the video frame and contextually labeling the segments, such as
water, vegetation, etc. Then, based on the assumption that each object
has its own motion, labeled segments are merged into individual
semantic regions even when occlusions occur. The context is finally
modeled to help locating the candidate ships by exploring semantic
relations between ships and context, spatial adjacency and size con-
straints of different regions. Additionally, we assume that the ship
moves with a significant speed compared to its surroundings. As a
result, ships are detected by checking motion saliency for candidate
ships according to the predefined criteria. We compare this approach
with the conventional technique for object classification based on sup-
port vector machine. Experiments are carried out with real-life surveil-
lance videos, where the obtained results outperform two recent
algorithms and show the accuracy and robustness of the proposed
ship detection approach. The inherent simplicity of our algorithmic sub-
systems enables real-time operation of our proposal in embedded video
surveillance, such as port surveillance systems based on moving, non-
static cameras. © 2013 SPIE and IS&T [DOI: 10.1117/1.JEI.22.4

.041114]

1 Introduction

In port areas, various hazardous scenarios occur, which are
caused by heavy traffic conditions and the mixing of
large sea ships with local smaller vessels. In particular, dan-
gerous situations can occur when small ships travel in the
radar shadow of large ships, so that they become invisible
for the radar system and the harbor management. Visual
surveillance is a possibility, but because of the large diversity
of ships’ functionalities and shapes, human visual inspec-
tion is highly laborious and error-prone. Automatic ship
detection is an attractive research topic in the field of port
surveillance which can nurture various applications such as
vessel traffic monitoring, ship identity management, and
smuggling prevention.

To complement the deficiencies of a radar system, differ-
ent port surveillance technologies are explored. Although
satellite imagery has sufficient resolution to perform ship
detection, those systems are highly sensitive to noise and
not efficient in detecting small ships. Moreover, limited
by the low frequency of satellite revisit, those systems cannot
perform 24∕7 monitoring on the port area.1–4 Some systems
are based on infrared imagery,5–7 in which the acquired
images are suitable for automatic detection and recognition.
Another benefit is that those systems are able to work in
extreme conditions such as hazy weather or lack of visible
lights. However, infrared systems are costly and prone to the
damages caused by bright lights.

Camera-based ship detection is another attractive option
due to its low cost and the ease of management both in instal-
lation and maintenance. Although video-based techniques
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are broadly explored for vehicle detection along roads, video
analysis for ship detection still remains as a domain of active
research. Ships traveling in highly dynamic water regions
and complex surroundings largely limit the usage of conven-
tional background modeling, which is typically applied in
this kind of research. Furthermore, highly variable ship
appearances intrinsically bring in difficulties for constructing
robust matching templates. Figure 1 shows a few examples
of different appearances of surroundings and the large varia-
tion of ships in port surveillance videos.

In the last decade, a number of papers discussed the prom-
ising usage of video cameras to perform the ship detection
task. Based on the state-of-the-art literature, there are mainly
two types of techniques used for ship detection: background
estimation and appearance modeling. For background esti-
mation, some techniques8–10 aim at first detecting the horizon
line in the frame and separating the ships from the modeled
sky or water using image registration and subtraction. Socek
et al.11 proposed a more general approach where they cluster
color features through segmentation and feed them to a back-
ground registration. Using the modeled background, they
detect the foreground. Arshad et al.12 use edge information
instead of color and use them in morphological operations
based on background modeling. Generally, these methods
try to solve ship detection problems by modeling the back-
ground. However, in real-life surveillance videos, the back-
ground has large variations due to the dynamic surroundings
in port regions, such as illumination changes and scintilla-
tion, which easily lead to failures of such approaches.
Although those failures can be reduced by creating dynamic
background models, the high complexity makes those tech-
niques inadequate for real-time applications. Moreover, sys-
tems using background estimation either work for fixed
camera or require a setup time to model the background
in case of change of camera position. All these approaches
require the camera to be static during the normal operation of
the algorithm and do not operate when the camera moves to a
different position. We target a system where the surveillance
continues even during the camera movement.

As for the appearance modeling approaches, they mostly
rely on the local features. Although local properties are fun-
damental in object detection research, its performance is
easily affected by the light variations and dependent on
the complexity of the object appearances. On one hand,
objects with specific regional appearances, like smoothness
and position in the image, can be recognized as either part of
sky or water using local features. On the other hand, objects
with variable appearances and displacement through the

image, such as ships, cannot be described by local features
to construct robust appearance descriptors. Sullivan and
Shah13 created complete descriptors by training a set of filters
for each vessel class. By applying each template to the videos
and analyzing the outputs of cross-correlation in the fre-
quency domain, the system can locate the ships in the
image. However, their algorithm tends to miss a target if
the appearances of the ship differ from the pretrained tem-
plates. Wijnhoven et al.14 make efforts to utilize local
descriptors for representative parts of ships instead of mod-
eling the complete ship appearances. They build a cabin
detector based on a histogram of oriented gradients
(HOG)15 and classify the resulting patterns. However, the
simplified local descriptors are hardly distinctive from
other highly textured patches in the image, such as vegeta-
tion. Moreover, the algorithm fails to work on the ships with-
out cabins.

We envision two approaches for improving the reliability
of ship detection. The first way is to design a complete but
more complicated appearance model using local features.
The model aims at solving the above-mentioned limitations
of ship detection, especially when the targeted objects are
noisy or partly occluded. However, the intrinsic complexity
of such method limits its usage in real-time applications. The
second approach follows the concept of context-based object
detection in recent research.16,17 The performance of local
descriptors can be significantly enhanced when combined
with contextual information. The reason for it is a spatial
and temporal co-occurrence consistency between different
objects or between an object and its surroundings. For exam-
ple, a moving flag will remain in the vicinity of its surround-
ings. It has been shown that in object detection and
recognition tasks, this consistency can provide a rich source
of information to reduce ambiguities of local appearances of
different objects,16,18 which leads to an improved reliability
and probability of detection.

In our earlier work,19,20 we presented a preliminary frame-
work of context-based ship detection by extracting the water
region as contextual information. Although the context is not
fully modeled because only water regions are labeled, the
performances of those approaches are promising for the con-
text-based detection.

In this paper, we present a ship detection system based on
moving camera, where the system can detect ships without
initiation when the field of view in the system changes.
We further develop a context-based method to perform auto-
matic moving ship detection, which completes the context
model explored in our previous work.19,20 Additionally, the

Fig. 1 Examples of dynamic/complex surroundings and various types of ships in port surveillance videos.
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temporal properties of moving ships are exploited to fuse the
visual, spatial, and temporal features in a single framework.
Although some previous work also extracts supporting infor-
mation to facilitate ship detection, such as modeled water
region,9,21 the water region is only used as a background
model and modeled at the pixel level. This approach is
not suitable for a moving camera-based system. In our
improved approach, we consider more advanced usage of
such supporting information. We extend water region extrac-
tion to region labeling and explore the relations between ship
and those labeled regions in a context model. In the mean-
time, the region appearances are modeled at the region level,
which achieves higher robustness. Temporal features are also
explored in ship detection.9,10,21,22 However, a temporal fea-
ture approach either relies on multisource images or a com-
plete tracking system, both of which have a high complexity
for real-time applications.

Generally, our approach is based on the following two
observations in the scenario of port surveillance: (1) ships
can only travel within the water region and (2) each ship
has a particular motion that distinguishes itself from other
ships and from the surroundings. Concerning the motion
characteristics of ships, we note that each ship has its
own motion pattern and its motion is more significant
than the motion within the local background. Based on
these observations, we first explore the context information
using region labeling and motion similarity analysis to reli-
ably derive the positions of ships in the scene. We consider
three aspects to model the context information:23

1. Semantic context—presence of an object indicates
other objects’ existence in a port scene.

2. Spatial context (position)—natural or logical geomet-
ric placement of different objects in a port scene.

3. Scale context (size)—size dependence of different
objects or constraints between an object and
surroundings.

After the context modeling, the region-level motion of
presumed ships and the corresponding local background
are analyzed to detect the ships. The major advantage of
our approach is that it combines two techniques: context
modeling with motion similarity and a separate stage with
motion saliency analysis. Both techniques are designed to
have moderate complexity, enabling a real-time implemen-
tation for embedded port surveillance while performing
reliable ship detection. The two proposed algorithmic sub-
systems are also designed to operate on videos obtained
by moving cameras. Thus, it requires no background sub-
straction techniques and no prior knowledge of ship appear-
ances for a higher robustness in real-life applications.
Furthermore, it can handle occlusions between ships as
well as clutters between ships and vegetation.

This paper is organized as follows. In Sec. 2, we give a
short and clear overview of our ship detection approach. In
Sec. 3, we mainly focus on describing the context modeling,
which includes region labeling for semantic understanding of
the video, the segment merging into semantic regions based
on motion similarity, and the context extraction based on
these regions. In Sec. 4, we discuss the analysis of motion
saliency based on the extracted context for moving ship
detection. In Sec. 5, we present the experimental results

for both region labeling and ship detection. Additionally, we
compare this approach with the ship detection based on
HOG15 and support vector machine (SVM)14,19,24 and an ini-
tial version of the concept discussed in this paper.20 Finally,
Sec. 6 presents conclusions and discusses future work.

2 Overview of Our Approach

We consider two frameworks to perform context-based ship
detection (see Figs. 2 and 3). The first framework (frame-
work A) employs parallel processing for context modeling
and ship detection, where the two results are fused with a
verification stage. The false alarms can be reduced when
the detection adequately benefits from the extracted context
information. To enable parallel processing, the ship detection
should be independent of the context modeling, which
emphasizes the use of a more complex and robust appearance
model for ships, according to the discussion in Sec. 1. The
second framework (framework B) processes the context
modeling and ship detection in a sequential strategy, as
shown in Fig. 3. The extracted context in this framework
not only provides additional information for ship detection,
but also creates the initial detection results, enabling a com-
plexity reduction of ship detection. The sequential frame-
work exempts the approach from solving the problems of
ship detection algorithms where no context is applied.
Furthermore, the simplified ship detection enables real-
time implementation for port surveillance.

We further explore framework B to accomplish the ship
detection through a two-stage sequential approach, combin-
ing the context modeling and motion analysis. At the first
stage, we aim at modeling the context for a better under-
standing of the port scenario. A graph-based segmentation25

is employed to divide a video frame into segments. The
object-centric region labeling is then employed to classify
those segments into three classes: water, vegetation, and
unknown. The labeled segments are then used to analyze
motion similarity employing statistical region merging
(SRM).26 Adjacent segments with the same labels and sta-
tistically similar motion are merged into semantic regions,
through which occluded regions are also separated from
each other. These regions are analyzed based on semantic,
spatial, and scale constraints to build the context model,
which provides knowledge of locations of candidate ships.
At the second stage, based on the common understanding
that ships should have more significant motion, the regions
with salient motions are detected as moving ships. This ship
detection approach is a first initial step; when more

Fig. 2 Framework A: ship detection with parallel processing of con-
text modeling and ship detection.

Fig. 3 Framework B: ship detection with sequential processing of
context modeling and ship detection.
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knowledge about the ships is required, additional features
can be added. In our research, salient motion is defined
based on a set of criteria to distinguish it from other types
of motion, such as the scintillation/ripples of the water sur-
face and the wind-based motion of vegetation. Our approach
is depicted in Fig. 4, which we will further discuss in detail in
the following sections.

3 Context Modeling

In a context-based object detection and recognition task,
there are basically two types of approaches to model the con-
text.17 The first is scene-centric, which models the context at
the entire image level to generate a description of the scene,
such as the theme or gist of the scene.27,28 The scene-centric
methods either model the context with statistics vectors of
low-level visual features, such as pixel-based color, texture,
and shape features, computed from the whole image or they
group vocabularies like bag-of-words29 with those features.
The second approach is object-centric, which explores the
relationships between different objects like the co-occur-
rence or the spatial replacement.30–32 In our ship detection
approach, the surveillance video already gives an implicit
gist for the scene. Therefore, we focus on generating an
object-centric context model that gives knowledge concern-
ing the possible locations of ships. To model the context, an
object-centric region labeling is performed followed by a
motion analysis. Finally, an object-centric analysis of the
semantic regions is conducted.

3.1 Object-Centric Region Labeling

As the demand for surveillance application grows, a huge
amount of surveillance video is captured daily. The workload
of the operators or analysts become bigger and bigger. An
automated video processing tool is needed to reduce the
workload of these operators. This desired video processing
tool should automatically extract information that is easy to
summarize or analyze by an end user.33 Region labeling in a
video will contribute to the semantic understanding of that
video, such as a better understanding of the natural surround-
ings and their arrangement in a port scene. In this section, we
present our fast region labeling approach. We propose a
region labeling system based on the observation that each
region is more likely to be found at a specific vertical posi-
tion. A region corresponding to a specific semantic meaning
normally covers a certain part of the color space and has a
distinct texture. We aim at classifying n types of regions such
as sky, vegetation, water, etc. Our algorithm contains three
stages, as depicted in Fig. 5 and given below.

• Stage 1: Context/region segmentation: In our system,
the basic idea is to combine the image segmentation
with the region classification technique. Instead of
labeling each region directly at the pixel level, we
first divide the image into several regions with uniform
color (or texture), which sufficiently considers addi-
tional assumptions on the color continuity discussed
later.

• Stage 2: Context/region analysis: In this step, global
and local features of each segmented region are
extracted.

• Stage 3: Context/object classification: This is divided
into two aspects as follows:

- Multi-SVM (one versus all): For each class of
regions, we use an off-line separately trained
SVM (a binary classifier). The SVM classification
provides a better performance compared with the
other approaches,34 and the method is generic and
can be reused for different types of objects.
Therefore, it is further explored for region label-
ing in this paper.

- Statistical model process: As postprocessing, we
compare the percentage of labeled pixels with a
predetermined threshold T for each region. We
assign a label to a region for which the percentage
of positively classified pixels is ≥T.

3.1.1 Context/region image segmentation

We adopt an efficient graph-based segmentation from
Ref. 25 as preprocessing in our region labeling to achieve
two objectives: (1) distinguish each region from other objects
while preserving the overall characterization of the region
itself and (2) perform fast segmentation to support a real-
time application in surveillance systems.35 The basic idea

Fig. 4 Flow chart of the moving ship detection based on context modeling and motion saliency analysis.

Fig. 5 Block diagram of our region labeling approach.
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of the graph-based method is that pixels within one region
are closer in color space than pixels from different regions.

We define the segmentation stage more formally. For each
pair of neighboring pixels i, j, there is an edge with an
Euclidean weight wi;j, which is specified by

wi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRi − RjÞ
2 þ ðGi − GjÞ

2 þ ðBi − BjÞ
2

q

; (1)

where Ri, Gi, Bi are the RGB color values of the pixel i (or
j). Based on a normalized wi;j, a threshold is defined depend-
ing on the size of the region, in which we assume that large
regions should be given a higher tolerance. If a region is
large, it tends to incorporate more neighboring pixels.
Three parameters are considered: the standard deviation σ,
initial inner threshold κ, and minimum region size Smin.
The image is first blurred using a Gaussian filter, and σ is
the standard deviation of the Gaussian filter. To determine
if two regions should merge, intraregion weight (WA) of
region A is defined as the maximum edge weight within
the region. Initially, each pixel is regarded as a region, and
the initial threshold τ for each region is set to τA ¼ κ∕jAj,
where jAj is the pixel size of region A. Note that jAj ¼ 1
if region A is 1 pixel and κ is a constant parameter controlling
the merging, such that a larger value results in larger
segments.

Two weights are further defined: (1) inter-region weight
of a pair of regions A and B [Wm−interðA; BÞ], meaning the
minimum edge weight between those two regions and (2) the
minimum of intraregion weights of the involved regions A
and B [Wm−intraðA; BÞ]. This weight now becomes

Wm−intraðA; BÞ ¼ minðWA þ τA;WB þ τBÞ: (2)

The two regions A and B are merged into a new region if it
satisfies the following condition:

Wm−interðA; BÞ < Wm−intraðA;BÞ: (3)

If the merge occurs, it is evident that the weight for the
merged region (A ∪ B) now becomes identical to WðA∪BÞ ¼
Wm−interðA; BÞ þ τðA∪BÞ. Note that very small regions are
merged based on the minimum region size, even if the merg-
ing criterion is not satisfied.

The above concept is incorporated in Algorithm 1.

3.1.2 Context/region analysis: feature extraction

This involves the second stage in our region labeling system.
Prior to training a reliable and robust SVM classifier, it can
be sufficient to use only local features such as color and tex-
ture. However, when classes have similar characteristics
(overlapping classes), complications arise. These complica-
tions can be solved by using spatial context as an additional
feature. This context involves and exploits the vertical posi-
tion of the regions in the image, e.g., the water is typically at
the bottom of the image. Later, we will also employ vegeta-
tion detection to find possible occlusions, so that we use a
generalized concept of region labeling. Summarizing, we
combine the locally calculated pixel-based features and the
region-based features to achieve a more reliable region label-
ing approach. We have trained and tested two different data-
sets with different scenes and the results are satisfying. This
section presents all features used for analyzing the images.

Pixel-based features. (1) Color may be one of the most
straightforward features utilized by humans for visual recog-
nition and discrimination.36 Here, we use the RGB color
space. (2) Texture takes into account the local neighborhood
variation and a better classification is achieved when texture
information is included in the analysis.37 Gabor features are
widely applied to computer vision and image analysis. In
addition to accurate time-frequency location, they also pro-
vide robustness against varying brightness and contrast of
images.38 Based on these properties, we apply here a
group of Gabor filters with three scales and six orientations.

Region-based features. We propose two different region-
based features based on the vertical position of each region,
i.e., water and vegetation. To compose the feature vector, we
combine the above pixel-based features with one of the fol-
lowing two region-based features. If the feature vector is
composed of pixel-based features and the spatial context
(SC), we call the approach a gravity model. If the feature
vector is composed of pixel-based features and global region
statistics, the approach is called a statistics-based model.

• SC helps to perform accurate region labeling.18 For
each pixel ði; jÞ, we calculate its normalized vertical
position SCij ¼ i∕n, where i is the row number in
the image and j the column number. Each region con-
sists of n rows. We call this method a gravity model.
We will use this concept further in this paper.

• Global region statistics model the vertical location of
regions in the set of images. The statistics are com-
puted as follows. Let us assume that we haveM regions
of a particular type, for example, sky, in the training
set of images. For each region, we calculate mean val-
ues μk ðk ¼ 1; : : : ;MÞ of the vertical positions of its
pixels. We also calculate the standard deviation σk
of the vertical pixel positions for each region. Then
we take minimum and maximum values for all
means and standard deviations for this region type:

Algorithm 1 Our graph-based segmentation approach in pseudo-
language.

Initialization: regard each node as a region and sort edges in a
nondecreasing order of weights w

for each region do

Extract the two nodes A and B it connects;

if A and B are different regions and Wm−intraðA;BÞ is computed
as in Eq. (2) then

if Wm−interðA;BÞ < Wm−intraðA;BÞ then

Join A and B as a new region; Update the weight of the
new region;

end

end

end
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μmin ¼ minðμ1; : : : ; μMÞ, μmax ¼ maxðμ1; : : : ; μMÞ,
σmin ¼ minðσ1; : : : ; σMÞ and σmax ¼ maxðσ1; : : : ; σMÞ.
In this way, we obtain intervals for mean and variance
for the region. We assume that the mean value of ver-
tical pixel positions lies in the interval ðμmin; μmaxÞ and
the standard deviation in ðσmin; σmaxÞ. We find these
intervals for each of the n region types described in
this paper. We call this method a statistics-based
model. We employ this method for comparison with
the above gravity model.

3.1.3 Context region/object classification approaches

After segmenting and analyzing the image, we proceed to
obtain the labeling results. The labeling is performed by a
classification system based on an off-line trained SVM.
Here, we present two approaches for region classification.

Fast classification using the gravity model. In the first
region classification approach, color, texture, and spatial
context are used to train the SVM (one versus all) for each
class of regions separately, i.e., an individual binary SVM
(unitary-category classifier) is trained for each type of region.
Our fast unitary-category classification is described in the
inner part of Algorithm 2.

For multicategory labeling, we assign to each segment
one of the n labels such as sky, vegetation, water, etc. To
this end, we classify each segment by n specified SVMs
using our unitary-category classification Algorithm 2 and
obtain n values, indicating the percentages of positive pixels
for each SVM as described in Eq. (4) below.

P ¼ ½Pclass�; class ∈ f1; 2; : : : ; ng; (4)

where numbers 1; : : : ; n represent n labels. Following this,
we calculate the maximum percentage MP ¼ maxðPÞ and
then we compare it with the corresponding empirically deter-
mined threshold Teclass

. This threshold was tuned after
processing of a broad random set of images from the
same dataset. Finally, a segmented region is assigned to a
particular class if its percentage is higher than the corre-
sponding empirically determined threshold MP > Teclass

. If
it is not higher, we repeat this step for the second maximum,
and so on.

Algorithm 2 illustrates our multicategory classification
algorithm with the unitary-category algorithm embedded
into it. The empirical threshold Teclass

for each region has
been found to be in the interval ð0.1; 0.8Þ.

Classification using the statistics-based model. We pro-
pose a second region classification approach to classify
images based on the position of each region using statistical
information from the statistics model defined in Sec. 3.1.2.
First, we apply the SVM with color and texture while using
the same steps as in the first classification approach. Then,
for assigning a label to a region, we check that both the
following conditions are satisfied: (1) the percentage of pos-
itively classified pixels exceeds the threshold Te (otherwise,
they are labeled as “unknown”) and (2) the mean and vari-
ance of the vertical positions of the pixels lie in the intervals
defined in Sec. 3.1.2.

3.2 Segment Merging

In our ship detection, we semantically interpret a port area
scene, where water and vegetation are the two dominant
regions. To achieve that, the segments obtained in Sec. 3.1.1
are divided by the aforementioned object-centric region
labeling into three classes: water, vegetation, and unknown.
Afterward, we have to merge the labeled segments into
semantic regions. Although merging based on labels and
spatial adjacency is possible, the occluded objects with
the same labels will be merged into one region, which will
deteriorate the detection results. In order to avoid this, we
consider motion similarity between these segments.39 We
assume that segments from the same object should have sim-
ilar motion patterns, which distinguish them from other
objects. Therefore, based on motion similarity, spatial adja-
cency, and labels, we design a more reliable merging process
to group the segments while separating the occluded seman-
tic regions.

We first calculate the pixel-wise motion for the image
using optical flow.40–42 Derived from the SRM algorithm,26

we define a merging predicate PðCi; CjÞ to determine
whether two segments Ci and Cj are from the same statistical
region (i ≠ j). Instead of using color features as in Ref. 26,
we reuse the criterion with motion features in segment level.
We use an average flow vector, which is the average of flow
vectors of all pixels in a segment, to represent the motion of a
segment. Based on the segmentation results (Sec. 3.1.1), we
create a motion map by calculating the values of magnitude
MAG and angle ANG for each average flow vector. The val-
ues of MAG belong to the set f1; 2; : : : ; gMAGg and ANG to
f1; 2; : : : ; gANGg (here, the set sizes gMAG ¼ 60 and

Algorithm 2 Our fast multicategory classification with embedded uni-
tary-category algorithm (a binary classifier) in pseudo-language.

for n classes do

Define the next class type;

Set corresponding threshold T eclass
;

for a segmented region do

Randomly choose 100 pixels in this region and use the SVM
classifier to label the pixels;

Calculate the percentage of positive pixels in this region

if the percentage of positive pixels exceeds the possibility
threshold p then

Set this region to positive

End

Compare results to class threshold T eclass

Label the current region

End

end
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gANG ¼ 360). Each segment in the motion map is assumed to
be described by a set of distributions. In the motion map, the
semantic regions representing objects should have a common
homogeneity property in two ways: (1) In a certain statistical
region, each statistical segment has the same expectation in
both MAG and ANG. (2) For two adjacent statistical regions,
the expectations differ from each other in either MAG or
ANG values.

As SRM, we consider the merge of two segments only if
they are spatially adjacent. Furthermore, consider there is a
possibility that two adjacent segments from two different

objects have similar motion, requiring the definition of con-
straints in our motion similarity analysis to prevent a merging
of those segments. Since the region labeling (Sec. 3.1) pro-
vides the label information of each segment, we can use
the information and impose a constraint in merging criteria
that each statistical region should contain only segments with
the same label. Suppose MAG and ANG are represented by
a set of Q independent random variables and any possible
sum of those variables belong to f1; 2; : : : ; gMAGg and
f1; 2; : : : ; gANGg, respectively, the merging predicate can
be defined as

PðCi; CjÞ ¼

8

<

:

true if ∀ k ∈ fMAG;ANGgit holds that

ðj ¯CjðkÞ −
¯CiðkÞj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2ðCi; kÞ þ b2ðCj; kÞ
q

∧ ½LðCiÞ ¼ LðCjÞ�;

false otherwise;

(5)

where bðCiÞ is equal to (index j may also be used)

bðCi; kÞ ¼ gk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1∕ð2QjCijÞ lnðjCjCijj∕δÞ
q

; (6)

where δ is the probability error, Lð·Þ is the label of the
segment (0 ¼ water, 1 ¼ vegetation, and 2 ¼ unknown),
and CjCij is the set of segments with jCij pixels. The
parameter Q indicates a user-controlled parameter to
guide the level of segmentation merging. Since the con-
textual information already gives a prediction of the object
types (water, vegetation, or unknown), we guide the seg-
ment merging with a small value for Q, which imposes a
strong merging trend on the segmentation results. After
merging, the labeled segments are finally grouped into
individual semantic regions with a particular regional
motion.

3.3 Context Model: Object-Centric Analysis

The semantic regions are then used in the following two
steps to form the context model in three aspects.

3.3.1 Step 1: Semantic and spatial context extraction

As discussed in the Introduction, ships are supposed to travel
inside the water region in port surveillance videos. This fact
leads to the deduction that unknown regions that are sur-
rounded by water or have common borders with it are poten-
tially ships. Meanwhile, ships cannot be fully buried inside
vegetation, which exclude the unknown regions only con-
nected with vegetation. These two deductions can be mod-
eled as spatial and semantic context in our approach, which
defines the region C as candidate ships Ccand if it satisfies the
following two criteria:

Ccand ∩ Cwater ≠ ⊘; BoundaryðCcandÞ ⊈ BoundaryðCvegÞ;

(7)

where Cwater and Cveg represent the water and vegetation
regions. The boundary pixels of the candidate ship region
are enclosed in BoundaryðCcandÞ and a similar definition
applies to BoundaryðCvegÞ.

3.3.2 Step 2: Scale context extraction

Limited by the scope of port surveillance and co-occurred
objects, the size of candidate ships should fall in a certain
interval, which provides scale contextual information in
our context model. The pixel size of Ccand, denoted by
jCcandj, should satisfy

600 < jCcandj < 0.5 ×
X

W

i¼1

jCwaterj; (8)

where jCj denotes the number of pixels in the corresponding
region and W is the number of segments labeled as Cwater.
The lower bound is used to reduce the effect from small
incorrectly classified regions, and the upper bound filters
out large incorrect regions that occur, for example, with sun-
rise. The proposed threshold values were empirically esti-
mated from the available video sequences and fixed for
all experiments. We have found that for these sequences,
the selected threshold values result in good detection perfor-
mance over the broad range of different scenarios.

4 Ship Detection Based on Motion Saliency
Analysis

In the previous step, we define two dominant regions (water
and vegetation) in region labeling. Other objects, such as har-
bor infrastructures and floating buoys, are classified as
unknown regions together with ships and can remain after
modeling the contextual information. Therefore, in this sec-
tion, we will discuss our method that can distinguish moving
ships from those objects. As stated previously, one of the
criteria for distinguishing ships from other objects adjacent
to the water region is that ships generally show more signifi-
cant motion than the local background. This means that the
candidate ship region Ccand, whose pixels have salient
motion, is detected as a ship. We now describe our approach
to salient motion detection.

4.1 Extraction of Regions of Interest Based on
Image Morphology

Since we have obtained the regions for candidate ships Ccand

in the previous step, the expensive pixel-wise saliency check-
ing can be avoided by determining motion saliency at the
region level. For this purpose, the motion of the candidate
ships and the motion of the surrounding background should
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be calculated and compared. Therefore, we need to extract
the regions of interest (ROIs), which include the outer
part of a candidate ship, termed Cship, and the local back-
ground around it, called Cbg. The reason to consider only
the outer part of a ship is that the inner parts of big vessels
are often painted in a uniform color, which tends to result in
false motion estimation. We use morphological operations to
obtain the ROIs, which lead to the expressions

Cship ¼ Ccand − ErosionðCcandÞ; (9)

Cbg ¼ DilationðCcandÞ − Ccand: (10)

In Eqs. (9) and (10), Erosion and Dilation are the corre-
sponding morphological operations. The structuring ele-
ments are disks with a radius of 5 pixels for erosion and
10 pixels for dilation. Figure 6 shows the extracted ROIs
for a typical frame.

4.2 Motion Saliency Analysis

Using the calculated motion values for all pixels, the motion
vship of the candidate ship can be defined as the average
motion for all pixels inside Cship.

vship ¼
1

jCshipj
ðv1 þ v2 þ : : : þ vjCshipjÞ; (11)

where vi is the motion of pixel i, which belongs to Cship,
while jCshipj represents the number of pixels in Cship. The
motion of local background vbg is defined similarly.

Another important issue we need to consider is the influ-
ence of the dynamic global background, i.e., the motion of
water. In certain circumstances, this type of motion can
easily lead to difficulties in defining robust criteria for salient
motion. To limit the effects of the motion in global back-
ground, we can calculate the relative motion in Cship and
Cbg. Using the extracted context information, we calculate
the motion of the whole water region vwater. We denote the
relative motion of Cship as rvship and relative motion of Cbg as
rvbg.

rvship ¼ vship − vwater; rvbg ¼ vbg − vwater: (12)

The motion contrast between Cship and Cbg is determined
as the difference D between the relative motion of Cship and
that of its surrounding region Cbg.

D ¼ jrvship − rvbgj: (13)

The motion of Cship is salient if the difference D is vis-
ually dominant, which leads to the first criterion defining
motion saliency.

D

jrvshipj
> T1: (14)

In the first criterion, rvship is employed as the reference
motion in the denominator to normalize the motion contrast
between the ship and the local background. The normaliza-
tion is performed for achieving a robust motion saliency def-
inition that is independent of the camera zooming factor in
the frame. Threshold T1 is used to filter nonship objects
whose relative motion is not significant (e.g., float-
ing buoys).

We still need to consider two typical cases that can result
in false saliency detections: nonship objects (e.g., floating
buoys) with small distracting motions in a static water region
and static nonship objects (e.g., harbor infrastructure) in the
water region with small distracting motions. Therefore, the
second criterion for motion saliency is defined as

jrvshipj − jrvbgj > T2: (15)

In our practical conditions, we have empirically set T1 ¼
0.1 and T2 ¼ 0.1. We have fixed the threshold over the total
set of video sequences for different scenarios. The moving
ships are detected as the candidate ship regions that satisfy
the above two criteria for motion saliency in Eqs. (14)
and (15).

4.3 Presentation Processing: Ship Centroid and
Bottom Line Estimation

In port surveillance scenarios, the centroid of a ship can pro-
vide the ship location for radar systems. Moreover, the bot-
tom line estimation has great practical values. We define the
bottom of a ship as the lowest row of pixels belonging to the
ship body above the water surface. This definition suits a
common installation setting in a harbor where the camera
acquires images with the ships moving in a horizontal direc-
tion. In general, we envisage defining the bottom line of a
ship in accordance with its moving vectors. Another property
of the bottom line is that its length indicates the length of the
ship, which is important for monitoring tasks. Therefore, in
our algorithm, the bottom line is estimated only if the ship is
fully visible in the frame. We check this condition by veri-
fying whether the bounding box touches any of the image
borders. We obtain the corner pixel coordinates of the bound-
ing box by taking the extremities of the contour pixel coor-
dinates of the detected ships. We calculate the centroid of a
ship by a simple geometric computation since the coordi-
nates of the corners of its bounding box are given. Visual
examples for presentation processing will be shown in the
experimental section (Fig. 7).

There is a possibility that the algorithm misses a ship in a
frame. It may result in flickering effects in the video because
ship detections appear and disappear from frame to frame.
The flickering effects deteriorate the visual presentation of
our ship detection. We assume that a ship cannot disappear
suddenly and cannot move too far between two consecutive

Fig. 6 Results of ROIs extraction: (a) original frame, (b) extracted
ROIs with outer part of object in white color and local background
in gray color.
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frames. These assumptions lead to adding a temporal filter to
improve the consistency of our detection results for presen-
tation. Based on another assumption that all ships move in
our surveillance video, we remove a detected ship if the cent-
roid of the ship remains in the same position in five consecu-
tive frames, targeting the propagation problem caused by
false (positive) detections.

For each detection in the previous frame, we search inside
an area that includes the corresponding bounding box in
order to determine if the current frame fully or partially con-
tains a ship detection in this area. If there is no detection
found and the search area does not touch any of the
image borders, a missed detection is spotted, and it is recov-
ered by propagating the bounding box of the previous detec-
tion to the current frame.

5 Experimental Results

To evaluate the performance of our ship detection, the algo-
rithm is tested on real-life video sequences recorded in the
harbor of Rotterdam, the Netherlands. Since a benchmarking
dataset for testing our system does not exist yet, we present
the results on our own dataset. All the videos have been cap-
tured with a pan-tilt-zoom (PTZ) camera with an standard-
definition (SD) resolution of 720 × 576 pixels and are
recorded between 9:00 a.m. and 7:00 p.m. during sunny
and cloudy weather without rain, including sunrise and sun-
set moments. In those videos, the ships are of various types,
including container ships, speed boats, tanker ships, fishing
boats, and sailing boats, whose distance from the camera is
between 0.1 and 1.5 km, with a zoom range of 1 to 35× and
with tilting angles in the interval ½−45 deg; 0 deg�. The
selected video sequences are intervals with fixed camera set-
tings per interval and have various lighting conditions and
different backgrounds. All videos are made in the framework
of the WATERVisie project, which will be called the
WATERVisie dataset in this section. This project aims at
building a video-based port surveillance system using a
PTZ camera to detect and track ships, supporting the
radar system. The total dataset used for evaluation contains
16 video sequences. The total number of sequences is limited

Fig. 7 Presentation processing. Red rectangles represent the region
of detected ships; red dots indicate the centroid; blue dots are the left
and right ends of the bottom line; yellow numbers indicate the image
coordinations, which can be mapped into real world.

Fig. 8 (a) Image from our dataset. (b) Ground truth of (a). (c) Gravity model-based region labeling. The circled regions show the zoomed imper-
fections of our region labeling and the same regions in the ground truth.
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since we have restricted access to the system in the harbor.
However, the sequences we use contain a significant amount
of visual variation, which we believe captures most variation
that appears at this physical camera location.

We target a system that can operate on moving cameras.
Note that the experimental results are generated on video
from a (temporarily static) camera only. We would like to
remark that all the proposed algorithmic subsystems are
able to operate on video from a moving camera, assuming
that the produced images are of sufficient quality and taking
the global direction of motion of the camera into account.43

5.1 Object-Centric Region Labeling

We start with our region labeling experiments. We distin-
guish between two cases in our evaluation: (1) a generic
six-class classification that can be applied in a more broad
application range outside the domain of port surveillance
and (2) a three-class classification targeting port surveillance.
Basically, we are interested in the binary water versus non-
water classification. However, since we want to exploit the
availability of vegetation in the scene for our motion saliency
algorithm, we extend the two-class problem to a three-class
problem.

We first discuss the generic application of region labeling.
We have constructed a broad dataset that consists of images
from multiple Internet datasets and a personal archive. It con-
tains six classes (sky, vegetation, road, water, construction,
and zebra-crossing) plus one class (unknown), using dataset
of 255 images which contains 121 images for training and
134 images for testing. For the segmentation, there are three
parameters to be defined: the standard deviation σ of the

Gaussian filter, threshold κ, and the minimum region size.
When the minimum region size is small, there will be more
regions after segmentation, and it will bring an extra burden
for the following classification process. For real-time appli-
cations, σ ¼ 1.4 and κ ¼ 2, the minimum region size ¼ 800
for the WATERVisie dataset and theminimum region size ¼
300 for the dataset that we used to evaluate our region
labeling algorithm. Those parameter settings are a good
choice for complex images. The means and variances in

Fig. 9 (a) Image from our dataset. (b) Gravity model-based region labeling. (c) Region labeling from Bao.

Table 1 Coverability rates of the gravity model in three different color
spaces.

Region HSV (%) CIE L�U�V� (%) RGB (%)

Sky 97 94 93

Construction 90 82 89

Water 96 89 92

Road 94 89 90

Vegetation 89 88 86

Zebra 99 99 98

Unknown 98 97 95

Average 95 89 92
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the statistics-based model are calculated based on 20 images
from the training set.

We now present the experimental results on region label-
ing. Figure 8 shows results for the generic application with
six-class classification. Figure 9 shows results for the three-
class classification, specifically targeting port surveillance.
Examples of labeling results for two different images are
shown in this section. Figure 8(a) shows an original image
of our dataset. Figure 8(b) visualizes the ground truth for
region labeling of that image, which is achieved by manually
segmenting the original image. Figure 8(c) shows the result
of the gravity model. Figure 9 illustrates a challenging image
along with the results of three different region labeling

approaches to highlight the differences between the labeling
algorithms. This image is challenging for labeling and con-
tains several ROIs while the color information is quite poor
with only small color differences between neighboring
regions. It can be observed that our gravity model achieves
better results while considerably improving the false detec-
tion/rejection rates.

To evaluate the performance of the region labeling algo-
rithm, we use the coverability rate (CR), which measures
how much of the true region is detected by the algorithm.
This rate is computed by CRðO;GTÞ ¼ jO ∩ GTj∕jGTj,
where we use the manually annotated ground-truth area
(GT), and O is the automatically detected area.44 In order
to analyze the performance of our region labeling algorithm,
we have compared our results with the method of Bao et al.35

We train and test our gravity model on different color spaces
on our dataset. Table 1 illustrates the experimental results of
the classification approach based on the gravity model on 30
images of the dataset in three different color spaces: CIE
L�u�v� (proposed in Ref. 45 as the most efficient color
space), RGB, and HSV. Table 1 indicates that compared
to the gravity model in RGB color space, the gravity
model in HSV color space improves the results by 3%.
Therefore, we choose the HSV color space for our classifi-
cation. Table 2 shows the results of applying the gravity
model and statistics-based model approaches compared to
Bao’s algorithm for our dataset. We can observe that the
gravity model results in a higher CR. In the literature, it
has been shown that the unitary-category classification of
Bao35 demonstrates a better performance compared to
another state-of-the-art approach.46 We have extended the
unitary-category classification of Bao et al.35 into multicate-
gory classification and applied contextual information as a
special feature. With our contribution, we have shown that
our gravity model for region labeling outperforms the results
achieved by Bao et al.35

Table 2 Coverability rates for three region labeling approaches.

Region

Gravity model
(%)

Statistics-based
model (%)

Bao et al.35

(%)

Sky 97 91 90

Construction 90 88 87

Water 96 93 84

Road 94 95 94

Vegetation 89 84 84

Zebra 99 98 98

Unknown 98 87 94

Average 95 91 90

Note: The gravity model and statistics-based model use HSV color
space; Bao et al.35 use RGB color space.

Fig. 10 Region labeling results for WATERVisie dataset. From left column to right column: frames from WATERVisie dataset, ground truth of
corresponding frames, intermediate results of graph-based segmentation. The colors are randomly chosen and are not related to semantic
class labels. Region labeling results using gravity model (green ¼ vegetation, blue ¼ water, and black ¼ unknown).
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We have evaluated the performance of our gravity model
on the WATERVisie dataset. The region labeling classifier is
trained on 111 typical frames selected from four sequences
and tested on 16 videos in this dataset. Those typical frames
are representative of various scenarios: water region with/
without passing ships, with smooth/rippled surface, and
with low/high reflections. Figure 10 visualizes the result
of the gravity model on frames from WATERVisie video
sequences. This dataset includes three different categories
such as water, vegetation, and possible ships, which are
labeled as unknown in our approach. Despite the lack of

color information, it is obvious that the gravity model per-
forms in a promising manner. Table 3 illustrates the cover-
ability rates for the gravity model on 120 frames of the
WATERVisie dataset. The results show that the region label-
ing is suitable for context modeling in our ship detection
system.

5.2 Ship Detection

The ship detection test set consists of 16 different video
sequences. Those sequences contain a significant amount
of visual variation and are categorized into three scenarios:
single/multiple ship without occlusion ðS1Þ; ships present
with occlusions between different ships and/or clutter caused
by vegetation ðS2Þ; ships during sunrise or sunset moment
(highly flickering water) ðS3Þ. Since the ship detection sys-
tem in our project is based on a PTZ camera, it is hard to
compare it with other existing systems, which are mainly
based on a static camera or untethered camera. Further-
more, there is no benchmark dataset to evaluate the ship
detection systems. Therefore, the performances of different
ship detection techniques are difficult to compare. To analyze
our improved approach, we compare it with our previous
algorithms Existing20 and Cabin detector.14,19

5.2.1 Cabin detector

The Cabin detector14,19 employs framework A (Fig. 2) to per-
form context modeling and ship detection in parallel, whose
outputs are combined in a verification process. For the ship
detection, the appearance model is constructed using HOG
features. First, the image is divided into cells and a gradient
orientation histogram is computed for each cell. Each histo-
gram is then normalized to be invariant to contrast changes.
When the training images of cabins and background are con-
verted to HOG descriptions, the Cabin detector can be
trained using SVM. Based on the trained classifier, cabin
detection is performed by sliding a detection window over
the image at several scales to locate the cabins independently
from the cabin size. For the context modeling, water region is
extracted by combining a graph-based segmentation with a

Table 3 Coverability rates for gravity model onWATERVisie dataset.

Region Gravity model on WATERVisie (%)

Water 97

Vegetation 92

Unknown 98

Average 96

Table 4 Ship detection results of Cabin detector.

Test
videos TP� FN TP� FP TP

Precision
(%)

Recall
(%)

S1 189 163 152 93.3 80.4

S2 455 207 190 91.8 41.8

S3 1593 2135 1389 65.1 87.2

Note: TPþ FN ¼ manually marked ships, TPþ FP ¼ detected ships,
TP ¼ correctly detected ships.

Table 5 Ship detection results of proposed method and Cabin detector.

Test videos Methods TP� FN TP� FP TP Precision (%) Recall (%)

S1 a. Improved method 1593 1496 1413 94.5 88.7

b. Existing 1593 1491 1374 92.1 86.3

c. Cabin detector 1593 2135 1389 65.1 87.2

S2 a. Improved method 455 433 422 97.5 92.7

b. Existing 455 325 320 98.5 70.3

c. Cabin detector 455 207 190 91.8 41.8

S3 a. Improved method 173 135 130 96.3 75.0

b. Existing 173 130 122 93.8 71.8

c. Cabin detector 173 115 97 84.3 56.1
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region-based classification. A verification process is
designed to check the percentage of water inside the detected
cabin regions, where the extracted water region can provide
contextual information to reduce the false alarms.

Table 4 shows the detection results for the Cabin detector
tested in each video sequence. These test results include the
number of manually marked ships, which is the sum of true
positive and false negative (TPþ FN); the total number of
detected ships, which is the sum of true positive and false
positive (TPþ FP); the number of correctly detected ships,
which is the true positive (TP); the precision, and recall. Note
that the numbers indicating ships refer to ships presenting in
images and not different physical ships.

The numerical results will be analyzed in the following
section with a complete comparison among three algorithms.
Furthermore, visual results will also be presented and
discussed.

5.2.2 Our improved approach

Table 5 shows the detection results for our improved
approach described in Secs. 2, 3, and 4, and the Existing
technique from Ref. 20 and Cabin detector14,19 tested in
each video sequence. Existing is the algorithm that detects
water regions as contextual information and applies motion
saliency detection as we present in this paper. This approach
is a basis of the advanced and improved algorithm presented
and tested in this paper. In this evaluation, we only consider
the miss or hit, which means that the detection is successful
even if the detected ship contains a certain portion of nonship
objects.

In the experiment, we manually identify ships on a total
set of 2731 frames from all test videos. In these sequences, a
single frame may contain a single ship, multiple ships, or no
ship. In scenario 1, our ship detection approach successfully
detects 1413 ships out of 1593 ships in frames, with a total

Fig. 11 Visual comparison among our ship detection, Existing method, and Cabin detector. The first row shows the results for our ship detection
approach; the second and third rows are the corresponding results of the Existing method and Cabin detector. The typical frames demonstrate the
categorized three scenarios from left to right: a long vessel without occlusion (S1); a ship cluttered by vegetation (S2); two ships occlude each other
(S2); a sailing ship during sunrise moment (S3).
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precision of 94.5% and a recall of 88.7%. It gains ∼2% in
both precision and recall over the Existing method, benefit-
ing from the more advanced context model. For Cabin detec-
tor, it obtains similar recall value at the cost of a low
precision value. The reason is that the appearance model
it builds is simplified but not distinctive from other textured
objects. Therefore it tends to generate false detections in veg-
etation or redundant detections along long vessels. In sce-
nario 3, the numerical results show that our improved
approach outperforms the Cabin detector when highly flick-
ering background affects the ship appearance severely [e.g.,
sunrise in Figs. 11(b) and 11(j)]. Though our algorithm
avoids using the detector, which is trained for finding
ship appearances (Cabin detector), it still performs well
when the target ship differs from the training samples.
However, the Cabin detector relies on features in a single
frame, where the performance badly deteriorates when
affected by the water flickering. Comparing between our
improved approach and the Existing method, the higher val-
ues in both precision and recall again demonstrate the advan-
tage of a complete context model.

To evaluate the performance of three approaches in sce-
nario 2, Table 6 shows an additional comparison between
three approaches in cases of occlusions/clutters. Different
from the metrics in measuring precision and recall, only
when the occlusions/clutters are solved can the detection dis-
tinguish ship from other ship or from nonship objects. The
advantage of a complete context model in our improved
approach gives a better understanding of context compared
to the extraction of water region, which is employed in the
other two methods. When there is significant motion in veg-
etation, the water-ship method will recognize the vegetation
region as ships. Moreover, when a ship is cluttered by veg-
etation, it easily leads to the miss detection or erroneously
detects vegetation as part of the ship. As for cabin detection,
the clutters affect the ship appearances, which brings diffi-
culties in detecting ships. However, since the vegetation is
already labeled as nonship through our context modeling
stage, the false detection is avoided before performing the
motion analysis. For the occlusion between ships, the motion
similarity analysis in our new approach can distinguish dif-
ferent ships while other approaches may fail to work.

We have also made a visual comparison between three
approaches as shown in Fig. 11. For all the typical frames,
our improved approach can successfully find the whole ship
with a bounding box, indicating the delineation of the ship
body. However, the Cabin detector can only mark the cabin
parts of the ship [Fig. 11(j)] or generate several detection
windows along the ship body [Fig. 11(i)]. For small ships
moving in a highly flickering water region, the Cabin detec-
tor misses the target [Fig. 11(l)], while our improved

approach can still find the ship with a boundary indication
[Fig. 11(d)]. As for the Existing method, Fig. 11(f) gives an
example when a ship is cluttered by vegetation; the approach
detects the ship and vegetation as one object because the
receiver operating characteristic (ROC) extraction only con-
siders spatial adjacency of nonwater segments. In Fig. 11(g),
the detection fails to work because the two ships traveling in
two opposite directions are regarded as one ship, which
makes the motion of the object not salient compared to
the surroundings.

For the presentation processing, we also show some
examples as in Fig. 7 to indicate the possible usage in
real-life applications.

All the algorithmic components in our proposed detection
system use thresholds. For all thresholds that we use in our
system, we have investigated different values. For zooming
factors in a given interval, we have fixed each threshold after
empirical estimation of the proper value and have found that
over the total set of video sequences, detection performance
is good. Note that the set of video sequences that we consider
covers a large range of possible outdoor scenarios.

6 Conclusion and Future Work

In this paper, we have presented an automatic ship detection
system for camera-based port surveillance, featuring the
analysis of context information for improving the reliability.
The information processing is mapped onto a sequential
processing architecture, where the derived context informa-
tion feeds the subsequent ship detection with specific infor-
mation about the typical ship locations and candidates in the
image, thereby simplifying the ship detection and making it
more robust and suitable for real-time implementation. The
proposed algorithms are not limited to static cameras and en-
able the use of moving cameras.

The context information is based on earlier research
results and is devoted to extracting various features for an
advanced region labeling method. Besides both color and
texture, the region labeling also exploits the vertical position
as part of a gravity model and a novel statistics model, which
involves statistics such as means and standard deviations of
the vertical region positions. For the context analysis, a
graph-based segmentation is carried out as a preprocessing
step to increase the accuracy, by grouping the features with
similar local features (color and texture). Meanwhile, the
classification at the region level also decreases the compu-
tation complexity to enable real-time operation. We have
selected the HSV color feature and combined this with
Gabor-transformed textures for standard features. For fast
region classification, we have applied a random sampling
for each segment, and the subsequent multiple-SVM classi-
fication is based on a probability model of the segment to be
classified as a specific region type. Actually, we model the
region-level appearance for each segment, since each region
varies considerably depending on environmental and
weather conditions. We have found that even in a single
image, e.g., pixels representing water tend to have large dis-
tances in the feature space, which leads to a low performance
of an off-line trained SVM. However, grouping of such pix-
els belonging to a specific region can have a more stable
appearance when fusing multiple features.

One of the key features is also the application of a gravity
model to the harbor scenes. Segments classified by a gravity

Table 6 Comparison of three approaches in occlusions/clutters
cases.

Methods Occlusions/solved Clutters/solved

Improved method 203∕184 175∕168

Existing 203∕21 175∕5

Cabin detector 203∕180 175∕14
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model are merged into semantic regions based on motion
similarity analysis. These regions then provide additional
information for finding candidate ships in each frame,
which is based on an object-centric context model. The
value of this model is that it provides possible locations
of candidate ships by exploring the semantic, spatial, and
scale constraints between the labeled regions. The unknown
segments are merged into candidate ship regions, which have
statistically similar motion. Knowing the candidate ships in
the region and the contextual ship area, motion saliency
detection is the core function in our ship detection. The
motion saliency is defined with two criteria that remove non-
ship objects with small relative motion and static nonship
objects surrounded by small distracting motion.

In our system, motion features are important and well
explored at three levels: (1) pixel-based motion vectors
are computed as basic motion features; (2) segment-level
motion is analyzed to group labeled segments into semantic
regions based on motion similarity; (3) region-level motion
is explored to distinguish ships from other unknown objects
based on motion saliency. Because of the detailed motion
analysis, we have established a higher robustness for occlu-
sions as we are able to reason about the different moving
objects.

The main advantages of our ship detection system are that
(1) it requires no prior knowledge of ship appearances and
yet it works successfully for various types of moving ships
(container ships, speed boats, tanker ships, fishing boats, and
sailing boats); (2) it detects the entire ship instead of only a
part of the ship (bow, cabin, stern); (3) it produces a full
pixel-true segmentation between the ships and their sur-
roundings with a corresponding bounding box and indication
of centroid and bottom line; (4) it is able to handle occlusions
between different ships and is robust to clutter caused by
vegetation; (5) all the proposed algorithmic subsystems
are designed to operate on videos obtained by moving cam-
eras. The system is compared to two recent ship detection
algorithms and shows robustness and good accuracy for
real-life surveillance videos.

Currently, our improved approach cannot handle the
detection of temporarily static ships or long vessels across
the whole frame with little visual changes. To deal with
the limitation, we aim at developing a ship tracking algo-
rithm for combined detection-tracking strategies to further
improve consistency and robustness.
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