
Context-sensitive decision problems in groups

Steve Lakin

Thesis submitted for the degree of Doctor of Philosophy at the

University of Leicester

September 2002

UMI Number: U158574

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U158574
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

The seemingly distinct areas of group theory, formal language theory and

complexity theory interact in an important way when one considers decision

problems in groups, such as the question of whether a word in the generators

of the group represents the identity or not. In general, these problems are

known to be undecidable. Much work has been done on the solvability of

these problems in certain groups, however less has been done on the resource

bounds needed to solve them, in particular with regard to space considera

tions. The focus of the work presented here is that of groups with (deter

ministic) context-sensitive decision problems, that is those that have such

problems decidable in (deterministic) linear space. A classification of such

groups (similarly to the way that the groups with, for example, regular or

context-free word problem, have been classified) seems untenable at present.

However, we present a series of interesting results with regard to such groups,

with the intention that this will lead to a better understanding of this area.

Amongst these results, we emphasise the difficulty of the conjugacy prob

lem by showing that a group may have unsolvable conjugacy problem, even

if it has a subgroup of finite index with context-sensitive conjugacy prob

lem. Our main result eliminates the previously-considered possibility that

the groups with context-sensitive word problem could be classified as the set

of groups which are subgroups of automatic groups, by constructing a group

with context-sensitive word problem which is not a subgroup of an automatic

group. We also consider a range of other issues in this area, in an attempt

to increase the understanding of the sort of groups under consideration.

Acknowledgem ents

I would like to thank my supervisor, Professor Rick Thomas, for all of his

help, guidance, inspiration and advice throughout.

I would also like to thank my examiners, Professor Derek Holt, and Pro

fessor Iain Stewart, for many constructive suggestions which improved this

thesis.

In addition, I would like to thank many other members of the Department

of Mathematics and Computer Science at the University of Leicester (both

staff and postgraduate students) for their help, and for creating a friendly

and welcoming environment in which to work.

I am extremely grateful to the Engineering and Physical Sciences Re

search Council (EPSRC) for funding this research.

Finally, I would particularly like to thank my family and friends for their

constant encouragement and support.

Contents

1 Introduction 1

1.1 Background and m o tiv a tio n .. 1

1.2 Structure of the t h e s i s .. 3

2 Prelim inary definitions and results 5

2.1 Definitions... 5

2.1.1 Formal language theory .. 5

2.1.2 Groups and genera to rs... 10

2.1.3 Decision problems.. 12

2.2 Independence of generating s e t s .. 16

2.3 Some comments on complexity classes.. 21

2.3.1 The Chomsky hierarchy .. 21

2.3.2 The space-time hierarchy.. 24

2.3.3 Determinism versus non-determinism? 26

2.3.4 A brief note on groups without context-sensitive deci

sion p rob lem s.. 27

2.4 Techniques used in context-sensitive Turing m ach in es.................. 29

2.4.1 Re-using space .. 29

2.4.2 Recognising sy m b o ls .. 29

2.4.3 Marking symbols and su b w o rd s ... 30

ii

2.4.4 Adding to and deleting from the input w o r d 31

2.4.5 Incorporating other Turing m a c h in e s 32

2.4.6 Sequential algorithm s...33

2.5 Some simple e x a m p le s .. 33

3 Products o f groups with context-sensitive decision problems 42

3.1 Products of g ro u p s ...43

3.2 Direct p ro d u c ts ...44

3.3 Free and amalgamated free products ... 47

3.4 Central p ro d u c ts .. 55

4 Subgroups and extensions of groups w ith context-sensitive

decision problems 58

4.1 HNN extensions and Britton extensions...................................... 58

4.1.1 The word p ro b le m .. 61

4.1.2 A brief note on the conjugacy p ro b le m 65

4.1.3 Some simple pinching le m m a s ... 66

4.2 The word problem and extensions of finite in d e x69

4.3 The conjugacy problem and extensions of finite in d e x72

4.3.1 Defining the g roups.. 73

4.3.2 The set-theoretic approach and preliminary lemmas . . 79

4.3.3 Reducing the conjugacy problem100

4.3.4 Solving the conjugacy problem ... 102

4.3.5 The main th e o re m .. 119

5 Em bedding a group with context-sensitive word problem 120

5.1 Embedding into two-generator g roups... 120

5.2 Higman’s r e s u l t ... 126

iii

6 The word problem of subgroups of autom atic groups 128

6.1 Automatic g roups...128

6.1.1 D efin itio n ...128

6.1.2 The word problem of automatic g ro u p s131

6.2 The Heisenberg group ... 136

6.3 Subgroups of automatic groups ..139

6.3.1 The word problem of subgroups of automatic groups . 139

6.3.2 Small cancellation theo ry ..140

6.3.3 Some preliminary le m m a s ...141

6.3.4 The main th e o re m ..148

6.4 Further is su e s ..154

6.4.1 Real-time and context-sensitive word problem s................ 154

6.4.2 Generalising the techn ique...154

7 The reduced and irreducible word problem 157

7.1 Reduced and irreducible word problem s...157

7.2 Other decision p ro b lem s...162

8 Groups w ith context-sensitive decision problems 164

8.1 Some groups with context-sensitive decision p rob lem s................164

8.1.1 Linear g ro u p s ...165

8.1.2 Automatic groups.. 167

8.1.3 Combable g ro u p s ...169

8.1.4 Real-time a lgorithm s.. 170

8.1.5 Other g r o u p s ...171

8.1.6 The conjugacy problem .. 172

8.2 One-relator g r o u p s .. 173

8.2.1 D efin ition ... 173

iv

8.2.2 Certain one relator-groups..173

8.2.3 Surface groups ... 174

8.3 The relative difficulty of the word, conjugacy and generalised

word problems...176

Conclusions 179

Chapter 1

Introduction

1.1 Background and motivation

The idea of a decision problem in a group, for example the word or conjugacy

problem, has been around for some time. These problems developed in the

early twentieth century, as topology and combinatorial group theory began to

interact via the connection of the fundamental group. The first real instance

of such a problem being stated was by Tietze in 1908 (see [58]), when he posed

the question of deciding whether or not two groups are isomorphic, which

became known as the isomorphism problem. In 1910, in the paper [16], Dehn

first introduced the idea of the word problem. Dehn was a topologist and was

interested in the question of when two knots are the same, and this led to the

question of when two words in a group represent the same element. It was he

who first specifically stated the three decision problems that occupy much of

this area - the word problem, the conjugacy problem, and the isomorphism

problem, all of which have strong topological, as well as group-theoretic,

connections.

This interaction between topology and group theory led to the first in

1

stances of the word problem being solvable being geometrical examples. For

example, Dehn showed that the fundamental groups of closed orient able sur

faces have solvable word problem, and in 1926 Artin showed, in [4], that

the braid groups also have solvable word problem. Perhaps the most impor

tant progress, though, came in 1932 when Magnus showed in [38] that all

one-relator groups have solvable word problem. Magnus’ proof is long and

complicated, but this was one of the first really broad classes of groups to be

shown to have solvable word problem.

Around this time the idea of computation was beginning to come to the

fore, through the work of Godel in the famous paper [22], and then through

the development of the fundamental model of computation, the Turing ma

chine, introduced by Turing in [59]. It had been widely suspected from the

beginning that these problems were not solvable in every case, and the de

velopment of these computational ideas led to a great deal of work on the

solvabilty and unsolvability of these problems. However, it was not until 1955

that Novikov finally showed in [46] that the word problem was unsolvable in

general. Soon after, Adian, in [1], and Rabin, in [49], independently showed

that the isomorphism problem was unsolvable, and this led Markov in the

1958 paper [40] to show the unsolvability of the homeomorphism problem in

topology, returning the area to its original roots.

The issue of solvability and unsolvability is fundamental, but of course

there are many more questions to ask about the algorithms to decide a prob

lem. We are not only interested in whether or not a problem is solvable,

but also, if it is, on the actual resource bounds of the algorithm, in terms of

the time needed and the amount of storage space required. A natural ques

tion is to ask what we can say about groups with decision problems lying in

some particular complexity class. The first real progress in this area came in

2

1971, when Anisimov noted in [2] that the class of groups with regular word

problem is precisely the class of finite groups. Following from this, in the

early 1980s, Muller and Schupp proved, in [44], that the class of groups with

context-free word problem is precisely the class of virtually free accessible

groups, Dunwoody then, in [17], removed the need for the word ‘accessible’

by showing that all finitely presented groups are accessible.

Noting that a corollary of a famous result of Higman in [26] is that the

groups with recursively enumerable word problem are precisely those groups

which can be embedded in finitely presented groups, the final step in the

Chomsky hierarchy is to consider the context-sensitive languages, that is

those that can be decided in non-deterministic linear space, and this is our

particular area of interest. We are still some way off a ‘classification’ result

as we have obtained for other groups in the hierarchy, indeed when asked

the question some years ago, of when we will have a classification of groups

with context-sensitive word problem, Paul Schupp replied ‘not this century’.

Perhaps the passing of the new millennium has improved our chances but we

are still a long way from achieving this!

Our main area of interest then, is in groups with context-sensitive de

cision problems, and with the results presented here we hope to increase

the understanding of such groups, and hopefully move another rung up the

ladder towards a classification.

1.2 Structure of the thesis

The structure of the remainder of the thesis is as follows. We begin in Chapter

2 by making the necessary definitions and introducing some preliminary,

basic results to illustrate the area of interest. We then move on, in Chapters

3

3 and 4, to ask what happens when we try to combine two groups with

(deterministic) context-sensitive word problem, or extend a single such group,

in some way. This culminates in us showing that the property of a group

having (deterministic) context-sensitive word problem is closed under taking

extensions of finite index, but that this situation is not true for the conjugacy

problem.

In Chapter 5, we consider embeddings of groups with context-sensitive

word problem, and we show that any group with (deterministic) context-

sensitive word problem can be embedded in a two-generator group with (de

terministic) context-sensitive word problem, and we also make a conjecture

regarding embeddings. We then move on to perhaps the main focus of the

thesis, in Chapter 6. Here, we show that the class of groups with context-

sensitive word problem cannot be classified as the set of groups which are

subgroups of automatic groups, by producing a suitable group which cannot

be a subgroup of an automatic group. This construction also allows us to

produce groups without a context-sensitive word problem.

Chapter 7 is devoted to a brief study of other decision problems, in par

ticular the reduced and irreducible word problems, where we show that the

property of a group having context-sensitive reduced, or irreducible, word

problem is equivalent to having context-sensitive word problem.

Finally, before we give our conclusions and final comments, in Chapter 8

we provide a wide series of groups with context-sensitive decision problems.

4

Chapter 2

Preliminary definitions and

results

We give the necessary preliminaries in great detail, since we wish to make

this thesis accessible to readers interested in both formal language theory

and group theory.

2.1 Definitions

2.1.1 Formal language theory

We begin with some ideas from computation and formal language theory. An

alphabet X is simply a finite set of symbols. A word over X is a string of

symbols in X , and we denote by X* the set of all words over X , including the

empty word which will we denote by A. X + denotes the set of all non-empty

words over X . The length of a word w over X is the number of symbols it

contains, and we use the notation l(w) to denote the length of w. A language

L is a subset of X* and a class (or family) of languages C is simply a collection

5

of languages.

We can combine words together by concatenation. Hence, by the word

a (3, we mean the word obtained by writing the symbols of a followed by the

symbols of (3.

Suppose we are given a language L over an alphabet X . A set of rewrite

rules R for L is a set of rules of the form a j3 for words a , (3 over X .

The basic idea is that, given a word w = W\aw2 in L, the rewrite rule

a —> (3 allows us to replace the subword a by j3, ‘reducing’ w to the word

w' = w\{3w2. We write u —> v to mean that there is a single application of a

rule in R reducing u to u, and we write u A v if there is a sequence of words

u = U\, U2 , , um = v where Ui —> Ui+1 for all 1 < i < m — 1.

A word may reduce to some normal form where no more reductions are

possible. This normal form may depend on the choice of rewrites at each stage

(there may be more than one possibility) and hence may not be unique, but

if every normal form is unique then we say that the system is confluent. A

rewriting system is said to be strongly normalising if there are no infinite

sequences of reductions. Hence if we have a confluent strongly-normalising

system, then every word has a unique normal form.

Our model of computation throughout will be the standard multitape

Turing machine as defined in [31]. Formally, a Turing machine is a quintuple

M = {K, E, S, s, F)

where A" is a finite set of states, s G K is the initial state and F C K is

the set of final (or halt) states, some of which are defined as accept states

and the others as reject (or non-accept) states. E is a finite set of symbols

called the alphabet of M, including symbols U (the blank) and □ (the start

symbol), and

(i : i f x S " - > l f x S n x {<-, -}

6

(for some n) is the transition function. We can, for convenience, consider the

states to be of the form S\ x x 5 m where the Si are the state components.

This is only a notational convenience, but can be useful in circumstances

where our transition we wish to define is dependent on some particular aspect

of our computation so far. For example, we will use this in Section 2.4.2.

The idea, of course, is that we have a read-only input tape and finitely

many worktapes, each with a cursor to indicate the cell on each tape that

we are currently scanning. The point of the start symbol is that it indicates

a point on each tape which we cannot move past, and we start at the cell

immediately following it, which effectively gives us one-way infinite tapes. At

each step of the computation, we read the symbol currently being scanned

on the input tape. Depending on this symbol, and our current state, we may

move our cursors left or right, or stay where we are, on each tape. We may

also rewrite the symbol now being scanned on each worktape (we do not

write on the input tape), and we may change state. We terminate when we

reach an accept or reject state, of course we may never terminate.

A non-deterministic Turing machine is defined in exactly the same way,

but at each step we have a finite choice of next moves, hence the non

determinism.

We are interested in finding algorithms to solve questions about our input

word. A language L is decided by a Turing machine if there exists an algo

rithm which, given any string in L, terminates in an accept state and, given

a string not in L , terminates in a reject state. If a Turing machine M decides

a language we may denote the language by L(M) and we say that L is recur

sive. If there is an algorithm which terminates in an accept state for a string

in L, but runs for ever for a string not in L, then L is said to be recursively

enumerable. Clearly a recursive language is recursively enumerable.

7

A (finite state) automaton is a Turing machine with a read-only input

tape on which we can only move right, and no worktapes. A language recog

nised by a finite state automaton is said to be regular.

We can formally describe the operation of a Turing machine during its

computation. A configuration (or instantaneous description) of a k-tape

Turing machine (that is, a Turing machine with an input tape and k — 1

worktapes) consists of a (2k + l)-tuple (q, U i,V \, ,Uk,Vh) where q is the

current state, and we currently have the word U{Vi written on the i ’th tape,

with our cursor pointing at the last symbol of Ui. Note that Ui and Vi may

contain blanks.

We can describe Turing machines using the standard description. Suppose

we are given a Turing machine M = (K, £, 6, s, F). We assume that the

alphabet and states are denoted by integers, where £ = {1,....,|E |} and

K = {|£ | + 1 , , |£ | + |A|}. We may then further assume that the numbers

|£|-t-|AT|+l, |£ | + |.A|-|-6 encode the special symbols of the Turing machine,

namely h, ‘yes’ and ‘no’, which are used to describe which way to

move on a tape, whether to halt, and whether a final state is an accept or

reject state. We encode these integers as binary, making all the symbols the

same length by introducing leading zeros if necessary to each binary encoding.

This idea allows us to write a description of a Turing machine, suitable

for use in some other machine. The basic idea is that we begin by writing

|E| and \K\ in binary (separated by some dividing symbol). We then write

a description of 5, defining the transitions for each possible state and set

of symbols on each tape read (again we use dividing symbols to separate

the different transitions). To simulate M, it is simply a matter of scrolling

through this description searching for the required transition. See [47] for

full details of this simulation.

8

We are interested not only in whether or not a language is decidable, but,

if it is, also in the constraints on time (the number of steps made until we

reach a final state) and space (the length of worktapes used in the computa

tion) required to decide it. Usually, of course, these will be a function of the

length of the input word n. So, for example, a language is decided in time

0 (n) if, given any word of length n, we can determine in 0 (n) steps whether

or not it lies in L.

We are particularly interested here in the context-sensitive languages,

which are defined as those languages decided by a nondeterministic Turing

machine with space bound 0(n). We have an obvious definition of a deter

ministic context-sensitive language where the Turing machine accepting the

language is deterministic. It is unknown whether these two classes of lan

guages coincide, but note that obviously the deterministic context-sensitive

languages are contained inside the context-sensitive languages.

Let us note a simple, but extremely useful, lemma with regard to context-

sensitive languages.

Lemma 2.1.1 Suppose we have a language L over a finite alphabet A. Then

there exists a context-sensitive algorithm to decide L if and only if (for an

input word of length n) the number of occurrences of any symbol of A, in any

word in the computation, is 0(n).

P roof Let A = {ai,a|^|}. If our algorithm is context-sensitive, then there

is a linear bound on the length of any word in the computation. Obviously

this is also a bound on the number of occurrences of a symbol that could

appear in any word. Conversely, suppose that for an input word of length n,

the number of occurrences of symbol a* in any word in the computation is

bounded by kin. Then the maximum total length of a word is bounded by

9

(ki + + k\A\)n, and hence we still have a linear bound for the length of

any word, and we have a context-sensitive procedure. □

2.1.2 G roups and generators

A semigroup S is simply a set closed under an associative binary operation

o, normally we abbreviate s o t as st. A monoid M is a semigroup with a

unique element 1, such that lm = m l = m for all m G M, and a group G

is a monoid with the additional property that for all g G G, there exists an

‘inverse’ element g~l G G with gg~l — g~lg — 1. Clearly the inverse of g~l

is g.

Let G be a group and A a set of symbols, and suppose </> is a map from

A to G. (j> extends naturally to a homomorphism </>: X* G where we have

4>{x 1 Xn) = <l>(xi)......<t>{xn).

If this homomorphism is surjective then we say X generates G as a monoid

and call X a monoid generating set for G. We can define X ~ l as a formal set

of symbols {a ;-1 : x G X } with cardinality |A |, and define 4>{x~l) = 4>{x) ~ l .

Then if A U A -1 is a monoid generating set for G, we call X a group generating

set for G and say X generates G as a group. Of course, a monoid generating

set is a group generating set, and any group generating set can be made into a

monoid generating set simply by adding the inverses, and so we can generally

blur the distinction between them, and simply refer to a ‘generating set’. We

shall usually assume we have a monoid generating set, since this is generally

notationally convenient, however we will be careful to specify if we have a

group or monoid generating set, if there is any possibility of confusion. We

use the notation G = (X) to mean that A is a generating set for G.

10

Effectively, of course, what we are doing is to associate an element of G to

each element of X - we can identify x G X with <j)(x) G G. We are therefore

simply considering X as a set of elements of G , and we will generally do this

without comment.

We may define a presentation of a group G by G = (X : R) , where X is a

set of generators for G and R is a set of relations which define the structure

of our group, where each relation is of the form U{ = for words Ui, Vi over

X . Here we introduce the notation u = v to mean that u and v represent the

same element of the group, and use u = v to mean that u and v are identical

as words. As an example, we have the group

B(1,2) = (a,b : b~1ab = a2),

so we have generators a and b, and we impose the constraint that b~1ab = a2

in our group. This group is called a Baumslag-Solitar group. The groups

given by G = (X : 0) are called the free groups.

Note that in a group presentation, we simply assume that the inverses are

present, and so our words in our relations are in fact words over X U X ~ l .

Given a relation u = v, we could write this as uv~l = 1, and hence we

may also consider our presentation to be given in the form G = (X : R)

where R now represents a set of relators, that is words over X equivalent

to the identity in G. Generally, however, we will consider relations rather

than relators (one reason being that this concept generalises naturally to

semigroups, where we may not have an identity element).

A more group-theoretic way of looking at all of this, is that a presentation

of a group G = (X : R) (where R is a set of relators) defines G as the quotient

of the free group F, generated by A, by the normal closure of R , so we may

write G = F /R .

We are concerned here only with groups where X is finite, in which case

11

we say that G is finitely generated, and we shall assume without comment

that all of our groups are finitely generated. If R is also finite then we say

that G is finitely presented.

Suppose we have a group with group generating set X = {aq, xm}. A

word u = U\ ur over X U X ~ l is said to be reduced if it does not contain

a substring aqaq-1 or Xi~lXi for any z, and we say that u is cyclically reduced

if, in addition, ur is not equal to the inverse of u\. We formally define the

inverse of the word u to be the word u~l = ur~l u\~ l .

2.1.3 D ecision problems

Suppose X is a monoid generating set for a group G. Let <j> \ X* G be

the natural homomorphism. The word problem of G with respect to X is

formally defined as

wx(G) = r 1(i) ,

that is the set of words over X* equivalent to the identity in G. Equivalently,

we can phrase the word problem as the question of whether a given word

represents the identity, which is the approach we will take.

In a group G, two elements <7i , # 2 £ G are defined to be conjugate if

there exists h G G with h~lg\h = #2 , in which case we write g\ ~ g2.

If we wish to stress the group under consideration then we write gi~G9 2 -

The idea of the conjugacy problem is that it is the question of whether

two given words are conjugate in G, or equivalently the set of all conjugate

pairs of words. The situation with regard to precisely defining the conjugacy

problem is somewhat more difficult, however, since we are now considering

pairs or words and we need to ensure that we do have monoid generating

sets for pairs of words over our group G. Probably the easiest way to achieve

this is via the following construction. Suppose X generates G. We have

12

the natural surjective homomorphism </>: X* G which extends naturally

to a surjective homomorphism <j>i : X* x X* —>■ G x G (where we define

(j>i(ui,u2) = ((j>(ui), 0(u2)) for wi,U2 € X*). Then X* x X* is naturally

generated by the set of pairs

Xi = {(z, A) : x E X} U {(A, x) : x E X}.

with the obvious homomorphism p : Xi* —>■ X* x X*, where

(^1— ^ 1—Vm)'

This gives us a monoid generating set for G x G, and we can formally define

the conjugacy problem of G with respect to X to be

C x (G) = p - l r x \ U)

where

U = {{91, 92) £ G x G : gi ~ <72}-

Having defined this formally, we shall, from now on, simply consider the

conjugacy problem as the question of whether or not two words of G are

conjugate.

Note that if we have an algorithm to solve the conjugacy problem (that

is, we can determine whether or not a pair of words are conjugate in G),

then this algorithm also allows us to solve the word problem, since we simply

test to see if a given word u is conjugate to 1 (if so, then there exists v such

that v~luv = 1, and hence u = vv~l = 1). Hence the conjugacy problem is

in some sense ‘at least as hard as’ the word problem in any group. In fact

it is strictly harder, since there are groups with solvable word problem but

unsolvable conjugacy problem. Note that we can also phrase the conjugacy

problem as the question of whether, given two words iq and u2, there exists

v such that uivu2~1v~1 = 1, which relates naturally to the word problem.

13

As a comment here, let us note that for any group G, any conjugate of

a word u lying in W x { G) also lies in W x (G) (since if u = 1 then v~luv =

v~1v = 1) and similarly for the conjugacy problem. This allows us to conju

gate a given word if we wish, to produce a word in some simpler form.

Note also, that in a group the word problem is essentially equivalent to

the alternative question of asking whether or not two words are equivalent in

the group, since we have u = v if and only if uv~l — 1. This is of particular

relevance with regard to semigroups, when we may not have an identity

element present, and in semigroups we define the word problem to be the set

of pairs of words (u, v) representing equivalent elements of the group, or the

question of whether two words represent equivalent elements. Similarly, the

conjugacy problem in semigroups can be defined as the set of words (u , v)

such that there exists a word w with uw = wv.

Another natural decision problem to consider is the generalised word prob

lem which we shall denote by G W x (G) . Essentially, this is the question of

whether, given a group G and some subgroup i f , we can determine whether

or not a word over the generators of G lies in if . The formal definition is

that we take a group G with generating set X . Then the generalised word

problem with respect to X is the set of all tuples of words (wl5 , um) where

u\ lies in the subgroup generated by U2 , , um. Again, we can consider this

as the question of whether a given word lies in the subgroup generated by a

finite set of given words.

However, we shall usually be interested in this thesis in the interpretation

of the generalised word problem as deciding membership of a specific sub

group. The generalised word problem with respect to if , that is the question

of whether a word lies in some specified subgroup if , will be denoted by

G W X (G , H) .

14

We should again note that the generalised word problem is intrinsically

harder than the word problem, since the word problem is the particular case

of the generalised word problem where our subgroup represents the trivial

subgroup, and there exist groups with solvable word problem but unsolvable

generalised word problem.

We may also wish to consider what we shall define as the effective gener

alised word problem, where not only do we wish to verify membership of the

given subgroup, but also determine which particular element of the subgroup

the word represents, and produce a representative in the generators of our

subgroup for the word in question, if it does indeed lie in the subgroup.

The generalised word problem with respect to a subgroup is a particular

example of what we shall call the occurrence problem1. Suppose S is merely

some subset of a group G, where G is generated by a finite set X . Then

along entirely similar lines, we can consider the question of whether or not a

given word in the generators of G lies in S, which is the occurrence problem

of G with respect to S and X . We will denote this by O x (G , S).

These are the decision problems we are particularly interested in, since we

consider them as the most fundamental questions to ask about a group. Of

course, there are other interesting decision problems one could ask. For ex

ample, we could consider the isomorphism problem (the question of whether

two presentations present the same group), the power problem (determining

whether or not a given word in a group is a power of another word) and the

order problem (determining the order of a given word), however clearly there

are many possible decision problems we could ask about a group and it is

1 Notation sometimes varies in the literature, and some authors use ‘occurrence problem’

and ‘generalised word problem’ interchangeably. However we feel the notation we use is

the most appropriate for our purpose.

15

Figure 2.1: The homomorphisms in Lemma 2.2.1

impossible to investigate them all.

2.2 Independence of generating sets

A great deal of work has been done on the solvability of these decision prob

lems in groups, that is whether there exist algorithms to decide the problems.

Our area of interest here is to investigate the resource bounds required to

solve such problems, if they are indeed solvable. It would be a problem if

the property of a decision problem (for example the word problem) lying in

a particular class of languages (for example the context-sensitive languages)

depended on the choice of generating set, since many of the proofs we will

provide depend on us choosing a ‘convenient’ generating set for the group in

question. Fortunately we have the following lemma and subsequent corollar

ies.

Lemma 2.2.1 Suppose that X and Y are alphabets, M is a monoid, and

(j) : X* —> M and ip : Y* M are surjective homomorphisms. Then there

exists a homomorphism 6 : X* —> Y* such that (p = ipO (see Figure 2.1).

Proof We follow the proof as in [25]. For each i G l w e have <j>(x) = m

for some m e M. Now, ip is surjective and hence ip~l (m) is non-empty. So

we may take some y G ip~l {m), and set 6(x) = y. This gives us a well-

defined map from X to Y which we can extend in the natural fashion to a

homomorphism from X* to Y*. Clearly we have <j> = ipO as required. □

16

With this lemma behind us, we can prove the results we require. Firstly

we consider the word problem.

Corollary 2.2.2 Let G = (X) = (Y), with X and Y finite, and suppose C

is a class of languages closed under inverse homomorphism. Then

WX {G) <e C< *W y (G) e C

where W x { G) denotes the word problem ofG with respect to X , and similarly

for Wy {G).

P roof There exist surjective homomorphisms </>: X* G and ip : Y* —>• G

since X and Y generate G, and hence there exists a homomorphism 6 such

that (f> = 'ipO as in Lemma 2.2.1. Suppose WY (G) G C. Then

wx (G) = ^ (l) = r V ' f i) = o ~ \w y {G)) e c

since W Y { G) G C , and C is closed under inverse homomorphism. Hence

W y (G) G C =>• W x (G) G C. Repeating the above argument with X and Y

interchanged, we have the reverse implication, and hence

Wy (G) e C ^ W x (G) g C

as required. □

Corollary 2.2.3 Let G = (X) = (Y) and suppose C is a class of languages

closed under inverse homomorphism. Then

Cx { G) e C & C Y { G) e C

where C x (G) denotes the conjugacy problem of G with respect to X , and

similarly for C Y (G) .

17

1 f
Y * -----------► y * x Y*

1 r

Figure 2.2: The homomorphisms in Corollary 2.2.3

P roof We have surjective homomorphisms

(j>: X* x X* ^ G x G

ip : Y* x Y* G x G

and we define X* and Y* as in the discussion of the definition of the conju-

gacy problem in Section 2.1.3. Let

p : X 1* - + X * x X *

t : F i* - > Y* x Y *

be the natural homomorphisms. Then the maps

<f)p : Xi* G x G

iI>t : Y i * - > G x G

are both surjective homomorphisms, as the composition of surjective homo

morphisms. Then, by Lemma 2.2.1, there exists a homomorphism 0 : X* —>

Yi such that <j)p = iprQ and we have the situation illustrated in Figure 2.2.

Suppose Cy{G) G C. Then by letting

^ = {(#i» 92) £ G x G : g\ ~ #2}

we have that

Cx(G) = p - ' r ' t u) = r v - = 0~1(Cy(G)) e C

18

since C y (G) £ C and C is closed under inverse homomorphism. Hence

C y (G) £ C => C x (G) £ C. Repeating the argument with X and Y in

terchanged, we have the reverse implication, and hence

Cy (G) e C ^ C x {G) e C

as required. □

It is worth noting in Corollary 2.2.2, that we could replace ‘1’ by any

element or subset of G, and the proof would follow entirely similarly. Thus

in particular, we have the following corollaries.

Corollary 2.2.4 Let G = {X) = (Y) and suppose C is a class of languages

closed under inverse homomorphism. Let H be a subgroup of G . Then

G W X (G, H) e C & GWy {G, H) e C

where G W x (G , H) denotes the generalised word problem of G with respect to

H and X , and similarly for G W y (G , H) .

Corollary 2.2.5 Let G = (X) = (Y) and suppose C is a class of languages

closed under inverse homomorphism. Let S be a subset of G. Then

Ox { G , S) e C ^ O Y { G , S) e C

where 0 * (G , S) denotes the occurrence problem of G with respect to S and

X , and similarly for O y (G , S).

Of course, the first of these follows anyway from the second, but we prefer

to keep the problems separate.

Almost all the classes of languages we would wish to consider (in par

ticular the (deterministic) context-sensitive languages) have the property of

19

being closed under inverse homomorphism, and hence these are crucial ob

servations. We need not worry about the generating set we choose, if we

can show that the problem under consideration (for example the word prob

lem) lies in a class of languages C for some generating set, then it does for

all generating sets, so we are at liberty to choose a particularly convenient

generating set. We will exploit this fact frequently without further mention.

In particular, we may omit reference to the particular generating set in

question and simply talk of the word problem W(G), the conjugacy problem

C(G), and so on.

We are often interested in subgroups of a given group. The following

lemma is extremely useful with regard to the word problem.

Lemma 2.2.6 Let C be a class of languages closed under inverse homo

morphism, and closed under intersection with regular languages. Let G and

H be finitely-generated groups, and suppose H < G. I f W (G) G C, then

W(H) e C.

P roof Suppose W (G) € C. We are at liberty to choose a convenient gener

ating set for G by Corollary 2.2.2. So let us choose a generating set

X {h\ , —, hm, gi ,, gn\

where Y = {hi ,, hm} is a generating set for the subgroup H. It is obvious

that W y (H) = W x { G) n Y*, since H is a subgroup of G . Since C is closed

under intersection with regular languages, and Y* is obviously regular, then

W { H) g C. □

This lemma can be a useful tool in showing that certain classes of groups

have word problem lying in a particular class of languages, by exhibiting

them as a subgroup of a group in that particular class.

20

In particular, we note that a finitely-generated subgroup of a group

with (deterministic) context-sensitive word problem also has (deterministic)

context-sensitive word problem, since the (deterministic) context-sensitive

languages satisfy this condition.

Unfortunately, this result does not carry over to the situation with regard

to the conjugacy problem. We cannot deduce, in the same way, that C y { H) =

C x{G)OF*, since words of H may be conjugate in the whole of G , but not in

H. In fact, it is known that there are groups with solvable conjugacy problem

(and hence the conjugacy problem lies in the class of recursive languages,

which is closed under inverse homomorphism and intersection with regular

languages), which have subgroups with unsolvable conjugacy problem (see

for example [15]). This illustrates the important point that the conjugacy

problem is intrinsically ‘harder’ than the word problem, and we will see

further illustrations of this later.

2.3 Some comments on complexity classes

We are interested particularly in the context-sensitive languages. Let us

make some comments on the position of these languages in the Chomsky,

and space-time, hierachies and make some useful observations.

2.3.1 The Chom sky hierarchy

We have considered so far the context-sensitive languages to be those de-

cidable in linear space, and we have taken this as our definition of context-

sensitive. This is the most natural approach to take in terms of solvability

and computation, and will be the approach we take throughout this thesis.

However, it is possible to view these languages from an alternative viewpoint.

21

The material here is all well-known and standard, and covered in a myriad

of textbooks - see for example [31] or [34].

Formally, a phrase-structured grammar is a quadtuple

G = (N, E, S, P)

where N is a finite set of nonterminals, E is a finite set of terminals with

7VnE = 0, S € N is the start symbol, and

P c (i V U E)+ x (N U £)*

is a finite set of productions (so P can be considered as a set of rewriting

rules OL—tfd).

The idea is that the language generated by a phrase-structured grammar

is the language of words that can be obtained, starting from the start symbol

5, by applying a sequence of rewrites in P , and ending with a string of

terminals.

Suppose we place some restrictions on the productions in P. A regular

grammar is a phrase-structure grammar where every production is of the

form A —> w or A —> w B , where A ,B € N and w 6 E*. A context-free

grammar is a phrase-structure grammar where every production is of the

form A —¥ [3 for A G N, so we have no restriction on the right-hand side.

Finally, a context-sensitive grammar is a phrase-structure grammar where

every production is of the form a —>• ft with |a | < \/3\. We should note

that, according to this definition, the empty word cannot lie in any language

generated by a context-sensitive grammar. However, it is easily shown that

given any language L generated by a context-sensitive grammar, L can also

be generated by a context-sensitive grammar where the start symbol S does

not appear on the right hand side of any production. Then we can allow

ourselves to add the exceptional production S A, and still consider this

22

as a context-sensitive grammar, and this is what is usually done. Hence we

assume that the empty word can lie in a language generated by a context-

sensitive grammar.

We note in passing at this point, that the terminology ‘context-sensitive’

comes from this approach via grammars. In the context-free grammars, our

productions have only a single non-terminal on the left-hand side, and so we

can always replace this symbol regardless of the ‘context’ in which it appears

in a word. Whereas, it is well-known that there exists a normal form of the

productions in a context-sensitive grammar, where each production is of the

form aiAct2 —> ot\Boi2 for A , B e N . Hence A can only be replaced in the

‘context’ of a\ and a 2 , and thus this grammar is ‘context-sensitive’.

The correspondence between the languages generated by these grammars,

and computational machines, is well-known. We can define regular languages

either as those languages generated by regular grammars, or (as we defined

earlier) as those accepted via finite-state automata. Similarly, context-free

languages can either be defined via context-free grammars, or via pushdown

automata, which are effectively non-deterministic finite-state automata with

an additional ‘stack’ - we shall not go into details here as it does not serve

our purpose. The context-sensitive languages are those generated by context-

sensitive grammars, or those recognised by a non-deterministic Turing ma

chine working in linear space, as we have already defined them. Finally,

those languages generated by phrase-structure grammars in general are the

recursively enumerable languages.

It is easily shown that the recursively enumerable languages strictly con

tain the context-sensitive languages, which strictly contain the context-free

languages, which strictly contain the regular languages. Thus, we have a

hierarchy of languages, each of which can be expressed via grammars or

23

computational machines. This hierarchy is known as the Chomsky hierarchy.

One of the reasons we have discussed this, is because the groups with word

problem lying in each level of the Chomsky hierarchy have been classified,

with the exception of the context-sensitive languages. As we noted in the

introduction, the groups with regular word problem are precisely the finite

groups (see [2]), those groups with context-free word problem are precisely the

virtually free groups (see [44]), and those with recursively enumerable word

problem are precisely those that can be embedded into finitely presented

groups (see [26]). Thus we are left only to classify the groups with context-

sensitive word problem in the Chomsky hierarchy.

2.3.2 The space-tim e hierarchy

Let us now return to considering the context-sensitive languages as those

solvable in linear space, and see how they fit into the general space-time

hierarchy.

To begin with, we define what we mean by a proper complexity function.

Suppose we have a function / from the non-negative integers to the non

negative integers which is non-decreasing, that is f (n + 1) > f (n) for all n.

Suppose further that there is a multitape Turing machine T such that, for

any integer n and any input word u of length n, T writes the string nAn) on

the last worktape, halting after 0(n + f{n)) steps and using 0(f (n)) space.

Then we call / a proper complexity function.

The class of proper complexity functions is extremely wide and includes

all the non-decreasing functions which one would class as ‘reasonable’ for the

study of complexity, that is it only excludes functions which, in some sense,

can be said to be ‘artificial’. Given a proper complexity function /(n), we

can then consider the languages that are decidable within the time or space

24

bounds specified by f (n). We use the standard notation D T IM E (/(n)),

N T IM E (/(n)), D SPA C E (/(n)) and N S P A C E (/(n)) for the determinis

tic and non-deterministic time and space complexity classes respectively. So,

for example, D T IM E (/(n)) contains precisely those languages which are de-

cidable in deterministic time f (n). It is well known that for any ‘reasonable5

complexity function /(n), we have that D T IM E (/(n))= D T IM E (c /(n)) for

any constant c > 0 , and similarly for the other classes, and so we generally

disregard constants and use the usual 0(f (n)) notation. Hence, in particular,

we have that the context-sensitive languages are denoted by NSPA CE(n).

At first thought, the fact that an algorithm operates in certain space

bounds does not necessarily say much about the time bounds in which it

operates, since we may continually re-use space despite requiring a huge

amount of steps. However, there is plenty that we can actually say.

First of all let us make the obvious comment that, since any determinis

tic algorithm is trivially non-deterministic with only one choice at each step,

D T IM E (/(n)) C N T IM E (/(n)) and D S P A C E (/(n)) C N SPA C E (/(n)).

It is also obvious that we have D T IM E (/(n)) C D S PA C E (/(n)) and

N T IM E (/(n)) C N SPA C E (/(n)) since we only write at most one sym

bol on each worktape at each step, so certainly if we have 0(f (n)) steps then

the length of our worktapes are 0(f (n)) .

In fact we have the following result, as proved in [47].

T heorem 2.3.1 For any proper complexity function f (n) and number k >

we have that

DT I ME(f (n)) C NT I ME (f (n)) C DSPACE{ f {n)) C

NSPACE(f (n)) C D T IM E (k l°zn+fW).

In particular, with regard to the context-sensitive languages, note that

any language which can be decided in (non-deterministic) linear time can

25

be decided by a (deterministic) context-sensitive algorithm, and hence if we

were able to show a group had decision problem solvable in non-deterministic

linear time, then this would immediately imply that it had a deterministic

context-sensitive decision problem.

Similarly, if we have a context-sensitive algorithm, then we know that we

can find a deterministic algorithm that will work in time 0 (klogn+n) for any

number k > 1.

In actual fact, we have the following further result courtesy of [30].

Theorem 2.3.2 For any proper complexity function f(n) , we have that

D T IM E (f(n) log/(n)) C D SP A C E {f{n)).

In particular, when applied to the context-sensitive languages, this gives

us the immediate corollary that D T IM E (nlogn) C D SPA CE(n). And

hence if we can show that a group has decision problem solvable with a

deterministic algorithm in O(nlogn) steps, then it must have deterministic

context-sensitive decision problem.

2.3.3 D eterm inism versus non-determ inism ?

Almost everything that we will discuss in the thesis with regard to decision

problems allows us to replace ‘context-sensitive’ by ‘deterministic context-

sensitive’, that is all of our algorithms are deterministic. The question of

whether ‘deterministic context-sensitive’ is equivalent to ‘context-sensitive’

in general is still unknown.

Open Question 2.3.3 Does D SP A C E (n) = N SP A C E (n)? That is, is

deterministic linear space equivalent to non-deterministic linear space?

26

This is still unknown, but note that we do know that non-deterministic

polynomial space is equivalent to deterministic polynomial space, see for

example [31].

It would be extremely interesting to see if, at least in the restricted class

of (say) word problems in groups, we do have the situation that a group with

context-sensitive word problem also has deterministic context-sensitive word

problem, even if this is not true for context-sensitive languages in general.

The motivation behind this is that groups with context-free word problem

also have deterministic context-free word problem as proved in [45].

O pen Q uestion 2.3.4 Does every group with context-sensitive word prob

lem also have deterministic context-sensitive word problem?

?
Of course, a positive solution to the D SPA CE(n) = N SPA CE(n) ques

tion would answer this question in the affirmative.

2.3.4 A brief note on groups w ithout context-sensitive

decision problems

In general, it is extremely difficult to prove that a group does not have a

context-sensitive decision problem (excepting the obvious cases where the

decision problem is known to be unsolvable). Of course, it is not enough to

exhibit an algorithm that requires more than linear space, since there is no

reason why some other algorithm, hitherto unthought of, would not solve the

problem. Occasionally one comes across problems where one can give a lower

bound on the amount of space required, of course if we found a group with

decision problem where, for example, there was a lower bound of O(nlogn)

on the space required then we could obviously immediately say that this

cannot be context-sensitive.

27

Sometimes it may be easier to consider the time required for a computa

tion. Note, as we commented before, that the time required may be much

greater than a linear bound, but this does not preclude the calculation from

being context-sensitive, since we may require very little storage space and

can continually write over the words currently being stored. We do have the

following interesting result though.

L em m a 2.3.5 Suppose that there is no algorithm to decide a language L in

deterministic time 0(cn) for some c > 1. Then L is not context-sensitive.

P ro o f This follows from the final inclusion in Theorem 2.3.1. We shall not

prove this inclusion, but essentially the idea of the proof is to note that given

any algorithm, we have a similar algorithm where every configuration occurs

at most once - a deterministic algorithm can never return to a configuration

or it would loop for ever, and if we have a non-deterministic algorithm then

we simply ignore the choice that leads us to loop. We can then count the

total possible number of configurations to give the required result. In this

particular case, f (n) = n, and so we have N SPA C E(n) C DTIME(A;logn+n)

for any constant k > 1. If the algorithm was context-sensitive then from this

we would know that it requires only

0 (k logn+n) = 0 (k lognkn) = 0 (n k n) = 0(cn)

steps (for some c), which contradicts the assumption of the lemma. □

Hence if we can show that a decision problem in a group has a lower

bound on the time required that exceeds this exponential bound, then we

can immediately prove it not to be context-sensitive. Of course, again it is

generally extremely difficult to prove lower bounds, but this could be a useful

observation.

28

2.4 Techniques used in context-sensitive Tur

ing machines

We will wish to use many similar techniques in our exposition when we con

sider using Turing machines to solve problems in groups. To save unnecessary

wordiness and repeated descriptions, let us describe some simple techniques

which can be exploited when dealing with context-sensitive computation of

problems in groups. We can then simply describe a particular action rather

than describing the mechanism of the Turing machine. We will use these

techniques withour further comment in our description of algorithms in the

text and we will simply talk of, for example, ‘check every subword’ or ‘delete

a particular subword’ without describing the actual technique in the Turing

machine.

2.4.1 R e-using space

To make an obvious observation, note that we are free to re-use space as

much as we like, since we can simply clear a worktape after we have finished

a computation. Hence, if we have a long series of computations to perform,

where we do not need to store the result of each, then we can easily perform

these over and over again on the same tape.

2.4.2 R ecognising sym bols

Suppose we have an input string w. We are often concerned with products

of groups, so first of all we certainly wish to know which group a given

symbol belongs to. To achieve this, we write the generators of each group in

turn on a tape separated by the blank symbol. For example, suppose we are

29

considering some string of words over X U Y U Z and we wish to know whether

a symbol t lies in X, Y or Z. We have the elements of X , followed by a blank,

followed by the elements of Y, followed by a blank, followed by the elements

of Z , all written on a tape. We have a state component S that can take three

values : Sx, Sy or Sz. We start in state component Sx and scroll along the

tape until we find the symbol that we are looking for, changing state to Sy

if we pass the first blank and then to Sz if we pass the second blank. Then

the state we finish in tells us which set t lies in. This idea involves a tape of

constant length and so certainly never affects our complexity results.

Also in groups, an elementary thing we may wish to do is, given a symbol,

to know its inverse symbol. There are various ways to do this, probably the

easiest is to assume that we have all the inverses contained in our generating

set (so we have a monoid generating set), and then write these generators

on a tape, in the form gi9i~1....gn9n~1- To find the inverse of an element we

have a state component S taking values si or s2, and we simply scroll along

the tape, changing state from Si to s2, or vice versa, at each step. If we are

in state Si when we find the required symbol, then we move one step forward

to find the inverse, if we are in state s2 then we move one step back.

2.4.3 M arking sym bols and subwords

We will often want to ‘mark’ a symbol in a word in order to return to it later

in the computation. To achieve this, we use a tape containing a single non

blank marker symbol. We always move along this tape simultaneously with

the input tape, that is both heads always move together. We start by always

moving the marker symbol along as we go (by deleting it and rewriting it

when we move). When we come to the symbol we wish to mark, we stop

moving the marker symbol and just move along the tape. When we wish to

30

return to our marked point we simply scroll along the tape until we find it

again and our input head is again pointing at our ‘marked’ symbol.

A crucial thing we will wish to do is mark out a particular subword. We

can achieve this by taking a tape with two markers, the left-hand one of

which can never pass the right-hand one. We define the subword marked

by defining it to start in the cell marked by the first marker and ending in

the cell preceding the last marker (we use the preceding cell to allow us to

consider subwords of length 1).

In particular, one thing we may wish to do is investigate every subword

of our input word. To do this, we start by keeping the first marker fixed,

marking the first symbol, and scroll the second marker along the tape, al

lowing us to mark, in turn, every subword starting from the first symbol (a

subword starting from the first symbol is called a prefix). Then, of course,

we scroll the second marker back until it adjoins the first marker, advance

them both one step and scroll the second marker forward again, allowing us

to mark every subword starting from the second symbol. We continue in this

vein and hence can investigate every possible subword.

The most important issue here is the advantage of context-sensitive algo

rithms in allowing us to investigate subwords. Algorithms bounded by, for

example, logspace do not have this advantage since the subwords may be of

linear length. This is a crucial point and one we will exploit many times.

2.4.4 A dding to and deleting from th e input word

One thing we often wish to do is to make alterations to the input word,

and keep changing it, for example by adding or deleting a subword. We

cannot write on the input tape, but our procedure is to copy the word onto

one of two worktapes. We have a state component S which takes one of two

31

values indicating which of the two worktapes our word under consideration is

written on. If we wish to, say, delete a subword, then we write the word with

the subword deleted onto the other worktape, clear our current worktape,

and switch states. So we can continue making changes to the word as often

as we like with these two tapes.

We have not yet defined how to add or delete a subword. To add a

subword to a particular point, we simply mark the point with a marker, copy

the word up to that point, write the subword we wish to add and then write

the rest of the word. To delete a subword, suppose we have the subword

marked. Then we read along the word from the start, copying up to the

beginning of the subword, then scrolling through without copying until we

reach the second marker, and then copying the remainder of the word.

These ideas can all be implemented in context-sensitive space with the

exception of adding a subword, since if there are no bounds on the length of

the subword to add then we may exceed a linear bound, so we must be very

careful when adding subwords that we stay within a linear bound.

Note as a final comment that this means when dealing with context-

sensitive languages, we are free to delete trivial strings in a word such as

aa~l .

2.4.5 Incorporating other Turing m achines

We should also note that we can incorporate any Turing machine 7\ into a

Turing machine T2. What we mean by this, is that suppose Ti consists of an

input tape and k worktapes. Then in T2 we use k + 1 worktapes to model

Ti, where the first tape models the input tape of Ti and the remaining k

tapes model the worktapes of 7 \ . If during our calculation we wish to run

the algorithm represented by T\ on some word, then we can simply use these

32

worktapes to model this algorithm. Clearly, if both of these machines operate

in linear space, then so does T2 with Ti incorporated.

2.4.6 Sequential algorithm s

We can also run one context-sensitive algorithm after another sequentially,

each operating on the word produced by the previous algorithm, provided

that the number of algorithms we wish to run is bounded by some constant

number k (that is, not a function of the length of the input word). Suppose

the z’th algorithm runs in space Qra on an input word of length m. Take

a word of length n. Then the first algorithm runs in space Cin, the second

in space c2 (cin), the third in space c3 (c2cin) and so on. Thus overall we

operate in space CfcĈ -i cin, which is clearly still a linear bound, and this

is therefore a context-sensitive procedure.

2.5 Some simple examples

Finally, let us briefly indicate by the way of one or two simple examples, ex

actly what we mean by a decision problem in a group being context-sensitive,

and the sort of approaches we can take.

Firstly we note some well-known results regarding free groups. Recall

that a word in a free group is reduced if there is no occurrence of 1 (the

symbol representing the identity), or xx~ l or x~lx (for some x), in the word.

Lemma 2.5.1 Given a word u, there is a deterministic context-sensitive

procedure to compute a reduced word equivalent to u.

P roof We simply remove all occurrences of 1 , and then successively remove

all substrings of the form xx~l or x~lx (for some x), and repeat this procedure

33

until no such substrings remain, which leaves us with a word in reduced

form. Any application of this decreases the length of the word, and so this

is obviously a deterministic context-sensitive procedure. □

We also have the following well-known result (see, for example, [37]).

Lemma 2.5.2 In a free group F, two reduced words are equivalent in F if

and only if they are identical as words.

Hence, the following result is almost immediate.

Lemma 2.5.3 Suppose G is a finitely-generated free group. Then G has

deterministic context-sensitive word problem.

P roof Given a word u, we can find a reduced word u' equivalent to u, by

Lemma 2.5.1. The reduced word equivalent to the identity element is clearly

the empty word. Hence, by Lemma 2.5.2, u is equivalent to the identity

element if and only if u' is empty, which is trivial to check. Clearly this is a

context-sensitive procedure since our word in question is never lengthened,

and it is clearly deterministic. □

We now turn to the conjugacy problem.

Lemma 2.5.4 Suppose G is a finitely-generated free group. Then G has

deterministic context-sensitive conjugacy problem.

Proof Given a word u, we can easily calculate a cyclically reduced word

representing a conjugate of u. We first freely reduce u , and then check to see

if the first symbol is the inverse of the last symbol. If so, we conjugate by

this symbol, which has the effect of removing them both. We continue doing

this until we are left with a cyclically reduced conjugate of u.

34

We noted earlier that if u ~ v, then any conjugate of u is also conjugate

to any conjugate of v. Hence, if we are given u and v as input words, we can

produce cyclically reduced conjugates of each word, and thus we can assume

that u and v are cyclically reduced.

Now, from [37], if u and v are cyclically reduced words, then they are

conjugate if and only if u is a cyclic permutation of v. But we can clearly

check this in linear space simply by comparing all possible cyclic permuta

tions of u with v. Note that this requires only one worktape to write the

permutations, since we can simply clear the tape and reuse the space every

time we check a new permutation. If we find a permutation of u equal to v,

then we accept the pair, otherwise if we exhaust all permutations, then we

reject the words.

This is clearly a deterministic context-sensitive procedure. □

Now, we consider finite groups.

Lemma 2.5.5 Suppose that G is a finite group. Then G has deterministic

context-sensitive word problem.

P roof By Lemma 2.2.2 we are free to choose any generating set we like for

G. So, since G is finite, let us choose a presentation where we take every

element of G to be a generator, and our relators are given simply by the

multiplication table for G. We can write this information on one tape of

our Turing machine - of course this tape is of constant length so does not

affect our complexity considerations. This tape acts as a ‘lookup table’, by

which we mean that given a pair of symbols, we can look up which symbol

we produce when we take their product.

Our algorithm to solve the word problem is then simple. Given an input

word w, we start from the left-hand end of u, and work our way through u.

35

We calculate the symbol produced by the product of the first two elements,

and then calculate the symbol produced by the product of this symbol with

the next element, and so on. Clearly the only storage space we ever need is

to store the current symbol, and so this is obviously a deterministic context-

sensitive procedure.

A word is accepted if and only the final symbol produced is the sym

bol representing the identity, and so our algorithm indeed solves the word

problem. □

L em m a 2.5.6 Suppose that G is a finite group. Then G has deterministic

context-sensitive conjugacy problem.

P ro o f The procedure is similar to the above. Again we calculate the single

symbols representing each word. Suppose these symbols are a and b. Then

we simply calculate, for each c in our group, whether or not c~lac = b. This is

a terminating procedure since our group is finite, and is clearly deterministic

context-sensitive and solves the conjugacy problem. □

Let us look next at the generalised word problem, and consider a simple

example.

L em m a 2.5.7 Suppose that F is a free group, and that u is a fixed word of

F. Then the generalised word problem of F with respect to the cyclic subgroup

(u) is a deterministic context-sensitive problem.

P ro o f Suppose we are given u and an input word v. We can of course start

by freely reducing u and v, so we simply assume that they are freely reduced.

If v is the empty word then of course we accept it (since it represents the

identity which lies in (u)). So let us assume that v is non-empty.

36

Firstly, suppose that u is cyclically irreducible. Thus there is no can

cellation when we consider words of the form un, and hence un is freely

reduced. Then v lies in (u) if and only if v is of the form un or u~n (for

n > 1), since freely reduced words represent unique elements of a free group,

by Lemma 2.5.2. Therefore, we simply scroll through v and see if it is of

precisely this form - if so we accept it, otherwise we reject it.

We are left with the case where u is cyclically reducible. We can then

determine w such that u = w~lU\W with U\ cyclically irreducible - this is

easy to do simply by determining the largest prefix w of u such that w~l is

a suffix of u. Then v lies in (u) if and only if v is of the form w~1u™w or

w~lu f nw (for n > 1), and again this is easy to verify.

It is clear that this procedure never increases the length of the input word

and thus the algorithm is deterministic context-sensitive as required. □

The following result is somewhat similar.

Lemma 2.5.8 Given a word u in a free group F, then there is a determin

istic context-sensitive procedure to produce a word Uo such that u = Uq where

c is maximal.

P roof We assume u is freely reduced. If u is cyclically reduced, then we

simply check each prefix of u in turn, until we find the smallest prefix uo for

which u is a concatenation of some number of Uo - of course u0 may be equal

to u. From Lemma 2.5.2, this must be the uq we seek.

Otherwise, if u is not cyclically reduced, we deduce the largest prefix a

of u such that u = a~lu 'a , and so u' is cyclically reduced. Finding the

appropriate vf0 as in the previous paragraph, then we take Uq = a~lu'Qa.

This procedure clearly operates in linear space since all the words in

question are shorter than the original word. □

37

The next result is a little less simple than the previous results, and may

appear somewhat convoluted as an illustrative example - however we choose

this example deliberately as the result will be of use later!

Lemma 2.5.9 Let g be a word of length n, and suppose that u, v, and f

are words in a free group F, all of length 0 (n). Then there is a procedure,

operating in space 0 (n), to determine the occurrence problem of g in the

set S = {ulf v 3 : i , j G Z}.2 Suppose u = (u0)Cl and v = (vq)°2, where C\

and C2 are maximal. Then the values of i and j can be uniquely determined,

and the appropriate words ul and v3 can be written in space 0 (n), unless

f ~ lUof = Vo±1, in which case there are infinitely many solutions.

P roof Obviously, we can start by freely reducing each of our words. Note

that, by Lemma 2.5.2, two reduced words are equivalent in F if and only if

they are identical as words.

We firstly compute the words u0 and v0 as in Lemma 2.5.8. If f ~ luQf =

v0±]-, then it is immediate that g lies in S if and only if g lies in the set

{{u0)lc'±jC2f : i , j G Z}, which is easy to verify in linear space, using

Lemma 2.5.7, and then the Euclidean algorithm. In this case, if there is

any solution, then there are obviously infinitely many solutions.

Otherwise, we proceed via a series of cases, and reductions of the problem.

Firstly, we show that we can assume that u and v are cyclically reduced.

Suppose u = a~lURa, and v = (3~1vr!3, where Ur and uR are cyclically

reduced. Then, for any i , j , we have

u%f v 3 = o r l {uR)%a f p - l (yR)3 ft.

Therefore, the problem is equivalent to deciding membership of agp~l in

{(uR)l(a f 0~1){vr)3 : i , j G Z}. Each of these words are obviously of length

2 Of course, S is considered as a set of elements of F.

38

0(n), and so we have reduced the problem to the case where u and v are

cyclically reduced. This does not affect the values of i and j.

Now, suppose that / begins with an occurrence of u. Then / = ufi ,

for some /i, and hence g is equal to upf v q (for some p, q) if and only if

g = up+1f iv q. Obviously, then, this question is equivalent to determining

membership of g inside the set {u%f\VJ : i , j G Z}. Hence, we can eliminate

any occurrences of u at the beginning of / . Similarly, of course, we can

eliminate occurrences of u~l at the beginning of / , or at the end of / .

Therefore, we can assume that / does not begin with u±l, or end with v*1.

We can easily store how many occurrences of or v±x we eliminate here,

and add them to the value of i and j we eventually determine, to give us the

total power of u and v we require.

We will assume that / is non-empty, since if / is empty then we are

testing membership of {uV : i , j G Z}, and this case will be covered as part

of our proof. The major problems occur when considering cancellation of the

/ with the powers of u and v. Suppose there was no cancellation at all. By

this, of course, we mean that the last symbol of u is not the inverse of the first

symbol of / , and similarly the first symbol of v is not the inverse of the last

symbol of / . But then, in writing any word ur f v s, there is no cancellation

anywhere in the word (since u and v are cyclically reduced). Hence, any

word urf v s is reduced. Therefore, by Lemma 2.5.2, we can merely check to

see if g is precisely of this form, which is trivial. It is obvious that the values

of i and j are uniquely given by this procedure, and ul and vJ are of length

no greater than the length of g, which is of length 0(n).

Otherwise, we can write / in the form / = f uf ' f v, where u = v!fu~l , and

v = f v~1v'. We choose / ' minimal, so that there is no cancellation between

v! and / ' , and no cancellation between / ' and v ' . Note that u' and v' cannot

39

be empty, by our assumption above that / does not begin with u±1, or end

with v±x.

Suppose / ' is non-empty. Then g lies in the set {u%f v J : i , j £ Z} if

and only g lies in the set {u%{u'}'v')v^ : i, j £ Z }. But then there is no

cancellation in any of the words in this set, and the procedure is exactly as

above, to simply check that g is of this precise form, and to determine i and

j -

Otherwise, / ' is empty. Hence, / must completely cancel, by which, of

course, we mean that our words must be of the form u — uiu2, v = v\v2

and / = U2~1V\~1. Let 7 be the reduced form of u\v2. Then g lies in the

set {u' f vi : i , j £ Z} if and only g lies in the set {u%7 ^ : i , j £ Z}. If 7 is

non-empty then, again, there is no cancellation in any of these words, and

we have a similar case to the above, and again we can determine i and j.

The only remaining case is where 7 is empty. In this case, we are simply

testing whether or not g is a member of the set {ulvJ : i , j £ Z}. Unless

^ 0 = M * 1, we do not get complete cancellation, and this is easily solved

exactly in the methods above. Otherwise, if u — (uo)Cl and v = (uq)°2,

then we have reduced to the condition above, where we are simply testing

membership of {{uq)%Ci±̂ C2 : i , j £ Z}. Hence we have considered every

possible case. Note than in all of the cases bar the exceptional case, we

are simply testing words for equivalence in a free group, and so i and j are

uniquely determined by Lemma 2.5.2. Finally considering the bounds on the

space required, note that the only time that we can ever lengthen a word is

in assuming that u and v are cyclically reduced at the start, which is still

linearly bounded, and is only done once. The remainder of the tests are

simple tests of equivalence of g to some word. Therefore, this is obviously a

linearly-bounded procedure. □

40

Sometimes in our work we will want to deduce some ‘given’ words from

some initial word. Suppose we are given an input word of length n, from

which other words are deducible. When considering context-sensitive proce

dures it is clearly then imperative that we can deduce these words from our

initial word with only a linear bound on their length, in order for our whole

procedure to be linearly bounded.

As a particular example, given some word w of length n in a free group

F, suppose we can deduce words g , u, w and / from w , which are of length

0(n) and lie in F. Then we can solve the above problem for these words.

This is the application of this result that we will see later, and we can then

consider this a context-sensitive procedure in the length of w.

The examples we have given above are relatively simple examples, but

they serve to illustrate the sort of problems we will wish to consider. We

will consider many more examples of groups with context-sensitive decision

problems later.

41

Chapter 3

Products of groups with

context-sensitive decision

problems

We now move on to consider some possible products of groups with (deter

ministic) context-sensitive decision problems, and exhibit a series of closure

properties that these classes of groups possess.

We should make a brief comment on the notation in these results. Clearly,

it is at least as strong a statement to say that an algorithm is ‘deterministic

context-sensitive’ as it is to say that it is ‘context-sensitive’, and hence when

we give explicit examples of algorithms for particular groups (for example

with the free, or finite, groups earlier) we simply refer to the algorithms as

being ‘deterministic context-sensitive’.

In the following results, however, we are concerned with closure proper

ties of groups with either context-sensitive, or deterministic context-sensitive,

decision problems. Thus, when we use the notation ‘(deterministic) context-

sensitive’ throughout a statement or proof, we mean that the result holds

42

whether we read the phrase as ‘context-sensitive’ throughout, or read it as

‘deterministic context-sensitive’ throughout. The bracketing of the word ‘de

terministic’ prevents unnecessary duplication by writing out each theorem or

result twice.

3.1 Products of groups

Suppose G = (X : R) and H = (Y : S) are groups with X n Y = 0. The free

product of G and H is defined as the group

G * H = (X U Y : R U S) .

In a similar vein, the direct product of G and H is defined as the group

G x H = (X U Y : RU S U {xy = yx : x € X , y € Y }) ,

that is we insist that every element of G commutes with every element of

H. Note that this is equivalent to saying that our group G x H consists of

ordered pairs (g, h), with g E G and h G H.

Suppose we have subgroups K < G and L < H, and that there exists an

isomorphism <j>: K L. We may assume that our generating sets X and Y

are given by

X —5 kpi g\t —5 9r}i Y — {b? —j —j ^s}

where

K — (k\i —j kjf), L — (Zi, —, Zp)

with each gi £ K , hj £ L, and (j)(ki) = Z;, for all i. Then the amalgamated

free product of G and H, with respect to K and L, is defined as the group

G*k ,lH = {X U Y : R U S U { h = h : 1 < i < p}).

43

If K and L are central in G and H respectively (that is, they commute with

the whole of their respective group), then we define the central product of G

and H , with respect to K and L, to be the group

G x r ,lH = (X U Y : R u S u {k i = h : 1 < i < p} u{ xy = yx : x G X, y £ y }).

Note that the notation G*k,4>H and G x k ^ H is sometimes used in preference

to the above notation, however usually we shall use the notation defined

above in order to make the identified subgroups explicit, and we assume that

the groups are given in a form to make the definition of 4> obvious (since we

have freedom to choose generating sets).

Note, also, that since we are free to choose any generating set we like, hav

ing done this amalgamation, we can omit the generators U and the relations

ki = l{, and substitute U for ki everywhere in our relations. This essentially

considers K as a common subgroup of G and H, and we can write G x KH

and G *kH • This viewpoint will often simplify our calculations somewhat.

Note, of course, that if K is the trivial subgroup, then G x KH = G x H

and G*k H ^ G * H .

3.2 Direct products

It is instructive, as an example of the use of a Turing machine to solve a

decision problem in a product of groups, to provide a direct, detailed analysis

of the solution of the word and conjugacy problem for the simple case of a

direct product, although these results will follow from our work on central

products later.

A fundamental tool that we shall use is being able to represent a word u

in some normal form , that is to produce a word u' (equivalent to u in G) in

some canonical form, which is easier to solve our problem for (and hence solve

44

the problem for u). We can then show that the entire procedure (that is,

producing the normal form, and then solving the problem for this equivalent

form) is context-sensitive. In the case of direct products the normal form

is particularly easy to define. Suppose the generators for G are ,<7*

and the generators for H are h i , ,hi (considered as monoid generating

sets). Any word u in G x H is equivalent to a word u' — ugUh, with ug £ G

and Uh £ H. We obtain ug by simply writing down the gi contained inside

u in turn, and similarly for Uh- For example, h2 <7i#3/11 #2 ^ 2 is equivalent to

9 i 9 3 9 2 h 2 h 1h 2 .

Theorem 3.2.1 Let G and H be groups, and suppose G and H both have

(deterministic) context-sensitive word problem. Then the direct product G xH

also has (deterministic) context-sensitive word problem.

Proof Let G = (:g\, ,gk) and H = (h i , , hi). We use a Turing machine

which incorporates the context-sensitive Turing machines for the word prob

lem of G and H (which we know exist since G and H have context-sensitive

word problem).

Now, any input word u is equivalent to a word ugUh as above. But

no relator (except the commutators) involves elements from both G and

H. Hence u is equivalent to the identity if and only if ug and Uh are both

equivalent to the identity.

To solve the word problem, we start by reading in the word, one symbol

by one, from left to right, looking up which group the symbol belongs to, and

then storing the gi in sequence on the tape representing the input tape for the

Turing machine for the word problem for G , and the hi on the corresponding

tape for H.

Suppose u is of length n. After reading all of u, we have the appropriate

words ug and Uh on the tapes representing the input tapes for the Turing

45

machines for the word problem of G and H. We can then simply use these

context-sensitive algorithms to determine whether or not ug and Uh do indeed

both equal the identity, and hence whether our input word equals the identity

as required.

The Turing machine for the word problem for G has tapes bounded in

length by k\n\ (where n\ is the length of the input) for some &i, since the word

problem is context-sensitive, and similarly the tapes for the word problem

solver for H are bounded in length by some /c2n2, for input of length n2.

But clearly n\ and n2 are no greater than n and hence all tapes are bounded

in length by max(&i, ft2)n, which is a linear bound, and so this procedure is

context-sensitive as required.

Note finally that if G and H have deterministic context-sensitive word

problem, then this algorithm is entirely deterministic. □

Let us now turn to the conjugacy problem.

Theorem 3.2.2 Let G and H be groups, and suppose G and H both have

(deterministic) context-sensitive conjugacy problem. Then the direct product

G x H also has (deterministic) context-sensitive conjugacy problem.

P roof Suppose u and v are our input words. Then u and v are equivalent in

G to words v! — ugUh and v' = vgVh as before. By definition, u is conjugate

to v if and only if there exists w e G x H such that w~luwv~l = 1 , and of

course we may restrict our search to a w of the form w = wgWh. Then w

conjugates u and v if and only if

Wh~ l W g ~ l UgUhWgWhVh ~ l Vg ~ l = 1,

which is equivalent to

W g ~ l U g W g Vg ~ l W h ~ l U h W h Vh ~ l = 1.

46

This word is equivalent to the identity if and only if both wg 1ugwgvg 1 = 1

and Wh~lUhWhVh~l = 1- Hence, u is conjugate to v if and only if ug ug

and uh ~ H vh.

So, our algorithm is actually very similar to the word problem algorithm.

Again we use a Turing machine incorporating the Turing machines for the

conjugacy problem of G and H. We have u followed by v (separated by a

blank) on the input tape, and as before, we read in these words symbol by

symbol, creating the ug and Uh on the tapes representing the input tapes for

the conjugacy problem solver for G and H respectively. When we read the

blank, we write a blank on both these tapes, and proceed similarly for vg

and vg. Then we simply apply the relevant algorithms to see if ug ug and

Uh ~ h Uh as required.

As before, this is clearly a context-sensitive procedure and so we are done.

Again note that if G and H have deterministic context-sensitive conjugacy

problem, then this algorithm is entirely deterministic. □

3.3 Free and amalgamated free products

Let us now consider amalgamated free products, which of course generalise

free products. Suppose we have groups G and H with isomorphic subgroups

K = (ki,. . . .i kr) and L — (Zl5...., Zr), where we have the obvious isomorphism

(/> : K —¥ L given by the natural extension of the map which sends each ki

to the respective Z*. Let us take monoid generating sets (k i ,, kr,gi,,gs)

and (Zi,...., Zr , h\ ,, ht) for G and H respectively, where the p* and hj do not

lie in K and L respectively (of course, products of these elements may lie in

K or L). We consider the amalgamated free product G * k ,l H . A s above, we

can eliminate the generators of L, and consider i f as a ‘common subgroup’

47

of G and H.

Following the ideas of [42] and [39], we define a word u £ G*k H to be

in reduced form if u = UKU\u2....un, where uk is a (possibly empty) string

in K, Ui ^ K for a l i i > 1, and Ui and u*+i do not lie in the same factor

for all i > 1. The Ui are said to be syllables of the word. The presence

of the subword Uk here allows us to consider words in K without changing

our definition, simply by having n = 0. However, if n > 1 then we can

incorporate uk into U\ and simply consider u = u\u2....un which is perhaps

more natural. We define a word u £ G*k H to be cyclically reduced if it is

in a reduced form, and u\ and un are not in the same factor (excepting the

case where n = 1).

Every word is equivalent to a reduced word, and it is well-known that

if UKUiu2....um and v^v\v2....vn are reduced words equivalent to the same

word u, then we must have m — n. Hence, we can talk of the syllable length

of a word, with respect to the amalgamated free product, as the number of

syllables in any reduced word equivalent to u (note that this will be 0 if u

lies in K). We say that a word is short with respect to the free product with

amalgamation if it has syllable length at most 1 , and that the word is long

otherwise.

We have the following important lemma and theorem, for proofs see, for

example, [39].

L em m a 3.3.1 Let G and H be as above. Suppose u £ G*k H is in reduced

form as above. I f n > then u does not represent the identity.

T heorem 3.3.2 (S o lita r’s T heorem) Every element of G*k H is conju

gate to a cyclically reduced element of G*k H- In addition, suppose that u is

a cyclically reduced element of G*k H- Then

48

• if u is conjugate to an element of K , then u lies in some factor,

• if u is conjugate to an element v in some factor, but not in a conjugate

of K , then u and v lie in the same factor and are conjugate therein,

• if u is conjugate to a cyclically reduced element v = v\....vm, with m > 2

and Vi in a different factor to Vi+\ for all i, then u can be obtained by

cyclically permuting and conjugating by an element of K .

Let G, H and K be as above. We cannot come up with such a wide-

ranging statement for the amalgamated free product as we did for the direct

product. The problem is that we need to be able to determine whether or not

a string of symbols actually represents an element of K , that is, determine

the effective generalised word problem for G and H with respect to K. For

example, suppose we had a word u = ugUh where ug is a string of symbols

in the gi and Uh is a string of symbols in the hi. We may have a situation

where neither ug nor Uh represents the identity, but ug is equivalent to some

element k € K and Uh is equivalent to A;-1 , and hence u is equivalent to the

identity. Therefore, we cannot use the ideas from above. However, we can

produce at least a partial result. Firstly, of course, we need to be able to

reduce words.

Lemma 3.3.3 Suppose G and H are groups with isomorphic subgroups K

and L respectively, and suppose that there exists a (deterministic) context-

sensitive procedure to decide the effective generalised word problem for K

in G, and similarly for L in H. Then, for any word u in G*k ,lH, there

exists a (deterministic) context-sensitive procedure to produce a reduced word

equivalent to u.

P roof As usual, we may eliminate L and consider K as a common subgroup

of G and H. Let G = (ki,, kr, gi,, gs) and H = (k\ ,, kr, h i ,, ht)

49

as usual, where the ki generate K. Of course, we incorporate the Turing

machines to solve the word problem for G and H , and the effective generalised

word problem for K in G and H, into our Turing machine.

Let our input word be u = v\....vn, where each V{ is a string in no more

than one of either the ki, the ^ or the hi, and Vi is not a string in the same

symbols as Vi+i for all i. We can consider each of these v*.

If some Vj is a string in the ki, then we test it in the word problem solver

for G, say, and if it is indeed equivalent to the identity, then we delete it and

continue our algorithm on the shorter word thus obtained (redefining the Vi

if necessary).

If Vj is a string in the gi or hi, then we use our algorithm for the effective

generalised word problem in the appropriate group, to see if it lies in K.

If so, then we produce a representative in the ki, and replace Vj by this

representative, and continue our algorithm on this word, again redefining

the Vi if necessary.

We continue in this fashion until we either terminate with the empty

word (which is obviously the reduced form corresponding to the identity), or

a word in K (in which case the word is of the form Uk and is therefore of

reduced form), or we cannot make any more deletions or substitutions. In

this case, we are left with a word in reduced form (any subwords in the ki

can be incorporated into a factor to give us a reduced form).

Hence, this procedure has produced a reduced form for u. However, the

word is not always being made shorter in length, since when we replace a

subword by a representative in K, then this may increase the length of the

subword by a linear factor C (since the procedures for the effective generalised

word problem are context-sensitive). However, in our algorithm, we never

replace a string of ki by a non-empty word, so in particular, we certainly

50

never replace it by a string containing any gi or hi, and so the number of

‘replacements’ we may ever have to make for a given word is finite, bounded

by the number of gi and hi in the original word. Hence, the length of any

word under consideration can never exceed Cn where n is the length of the

input word.

So we will indeed eventually terminate, since there are only finitely many

‘replacements’ to make, and deletions of subwords strictly reduce the length

of the word, and our algorithm is clearly therefore a context-sensitive proce

dure.

Note, finally, that if G and H have deterministic context-sensitive effective

generalised word problem with respect to K and L, then this algorithm is

entirely deterministic. □

We then have the following result as a simple corollary.

Theorem 3.3.4 Let G, H , K and L be groups as above. Suppose G and

H both have (deterministic) context-sensitive word problem, and suppose in

addition that there exists a (deterministic) context-sensitive algorithm to de

cide the effective generalised word problem for G with respect to K , and for

H with respect to L. Then the amalgamated free product G*k ,lH also has

(deterministic) context-sensitive word problem.

Proof We produce the reduced form, u', of our input word u, via the linearly

bounded algorithm of Lemma 3.3.3. By Lemma 3.3.1, u cannot represent the

identity unless u' lies in one of the factors. If it does, then we check to see

if it is indeed equivalent to the identity in the appropriate group, using the

(deterministic) context-sensitive algorithm for that group. □

As a corollary to Theorem 3.3.4 we have the following.

51

C orollary 3.3.5 Let G and H be groups, and suppose G and H have (de

terministic) context-sensitive word problem. Then the free product G *H also

has (deterministic) context-sensitive word problem.

P ro o f This follows immediately from the previous result, taking K = 1, our

(deterministic) context-sensitive algorithm for determining if a word u lies in

K is simply to run the word problem solver on u. □

In general, it is a difficult question to ask which groups with (deter

ministic) context-sensitive word problem also have (deterministic) context-

sensitive effective generalised word problem with respect to the appropriate

amalgamated subgroup. However, we certainly have the following lemma.

L em m a 3.3.6 Let G be a group with (deterministic) context-sensitive word

problem, and suppose K is a finite subgroup ofG. Then G has (deterministic)

context-sensitive effective generalised word problem with respect to K .

P ro o f Let us enumerate the elements of K as words k i , , kn, each repre

senting an element of K . Suppose we are given a word u. We systematically

test the words u~lki in the word problem solver for G. If we accept any of

these words, say u~lkp = 1, then u lies in K with representative kp. If none

of the words u~lki are accepted by the word problem solver then u cannot

equal any of the k% and hence does not lie in K.

Since the enumeration of the elements of K merely gives us finitely many

fixed representatives, which do not affect our complexity considerations, then

this algorithm clearly operates in linear space. If the word problem for G is

deterministic context-sensitive then this procedure is also deterministic. □

Given this, we can immediately deduce the following corollary.

52

Corollary 3.3.7 Suppose G and H are groups with isomorphic subgroups K

and L respectively, where K andL are finite. I fG and H have (deterministic)

context-sensitive word problem, then the amalgamated free product G * k , lH

also has (deterministic) context-sensitive word problem.

P roof Immediate from Lemma 3.3.4 and Lemma 3.3.6. □

Let us now move on to the conjugacy problem. Unfortunately, the sit

uation here is somewhat more restrictive, in that it is possible to have two

groups with (deterministic) context-sensitive conjugacy problem and (deter

ministic) context-sensitive effective generalised word problem with respect to

an amalgamated subgroup, yet the amalgamated free product with respect

to this subgroup does not have (deterministic) context-sensitive conjugacy

problem. An example of this occurs in the second half of the proof of the

main theorem of [15]. However, we do have the following result.

Theorem 3.3.8 Let G, H, K and L be groups as before. Suppose G and H

both have (deterministic) context-sensitive conjugacy problem, and suppose

the amalgamated subgroups K and L are finite. Then the amalgamated free

product G*k ,lH also has (deterministic) context-sensitive conjugacy problem.

P roof As usual, we start by eliminating the f and considering K as a com

mon subgroup.

Suppose u and v are our input words, written on the input tape separated

by a blank. We can cyclically reduce u and v, firstly by putting them in re

duced form (as in Lemma 3.3.3) and then conjugating if necessary (replacing

u or v by a conjugate does not, of course, affect the property of conjugacy

between them). Hence we can assume u and v are cyclically reduced and

appeal to Theorem 3.3.2.

53

Suppose u is empty. Then if v is empty, we accept u and v as conjugate

and if v is non-empty we reject them, and of course similarly if v is empty.

Alternatively, suppose u lies in one of the factors. Then, by Theorem 3.3.2,

v must also lie in the same factor. So we check to see if this is true, and

if not then we reject u and v. If it is true, then we use the (deterministic)

context-sensitive algorithm for the conjugacy problem in the appropriate

group to determine whether or not they are conjugate, and accept and reject

accordingly. Of course, we have an entirely similar procedure if v lies in one

of the factors.

Finally, we are left with the case where u = X\ xn and v = y \ ym,

where n, m > 2. By Theorem 3.3.2 we must have m = n, so if this is not the

case, then we reject the words. If m = n, then we know, by Theorem 3.3.2,

that u and v are conjugate if and only if we can obtain a word equivalent to u

by first of all taking some cyclic permutation of the yi, and then conjugating

by an element of K . Enumerating the finite number of elements of K , we

consider each permutation of the and each possible conjugation by an

element of K , and see if we obtain a word equivalent to u. Clearly there are

only a finite number of words to check.

This algorithm is clearly context-sensitive and, as usual, if our routines

are deterministic then this procedure is entirely deterministic. □

In general, it seems to be a difficult question to decide whether or not

this sort of result holds for given groups.

As a corollary to Theorem 3.3.8 we have the following.

Corollary 3.3.9 Let G and H be groups, and suppose G and H have (deter

ministic) context-sensitive conjugacy problem. Then the free product G * H

also has (deterministic) context-sensitive conjugacy problem.

54

Proof This follows immediately from the previous result, taking K = 1. □

3.4 Central products

Let us now move on to look at central products. Suppose we have groups

G and H with central subgroups K = {k \,....,k r) and L = (li,, /r),

where K and L are isomorphic via the obvious isomorphism which sends

each ki to the corresponding li. Again, let us take monoid generating sets

(k i,, kr, p i,...., gs) and (l \ ,, lr, h i ,, ht) for G and H respectively, where

the gi and hj do not lie in K and L respectively.

Theorem 3.4.1 Let G, H, K and L be groups with generating sets as above.

Suppose G and H both have (deterministic) context-sensitive word problem,

and suppose that G has (deterministic) context-sensitive effective generalised

word problem with respect to K , and similarly for H with respect to L. Then

the central product G x KyLH also has (deterministic) context-sensitive word

problem.

P roof As usual, we begin by eliminating the li and considering K as a

common subgroup of our two words.

The algorithm is extremely similar to the algorithm we gave for direct

products (Theorem 3.2.2). An input word u is equivalent to a word u^UgUh,

where Uk is a string in the ki, and similarly for ug and u^. As usual, we read

through our input word and build up the Uk,ug and Uh as we read in the

symbols.

This word can only be equivalent to the identity if ug and Uh both lie

in K , since there are no relators involving the gi and hi apart from the

commutators. Hence, we test ug and Uh for membership of K , and if either

55

does not lie in K we reject the word. If both lie in K , then we replace them

by their representatives and test the resulting word (which is a word in the

ki) in the word problem solver for G, say.

This procedure is clearly context-sensitive, and if the algorithms in the

hypothesis are deterministic, then this procedure is determinstic. □

Let us now move on to look at the conjugacy problem. As we might

expect we have a similar result to the case in amalgamated free products.

Theorem 3.4.2 Let G, H, K and L be groups with generating sets as above.

Suppose G and H both have (deterministic) context-sensitive conjugacy prob

lem and suppose K and L are finite. Then the central product G x KyLH also

has (deterministic) context-sensitive conjugacy problem.

P roof As usual, we eliminate the li and consider i f as a common subgroup.

Suppose our input words are u and v, which we write in the equivalent forms

UkUgUh and VkVgVh• We seek a conjugating element w such that w ~ l uw = v.

It is enough to search for w of the form w gWh, since any component Wk would

be central, and hence cancel in w ~ l uw. Then, u and v are conjugate via w

if and only if

W ~ l U W V ~ l = W h ~ l W g ~ l U k U g U h W g W h Vh ~ l V g ~ l Vk ~ l = 1,

and hence we have

UkVkWg~l UgWgVg~l W h~l UhWhVh~l = L

This word certainly can not equal the identity unless both w g ~ l u gWgVg~l

and Wh~lUhWhVh~l lie in K . Enumerate the elements of K by n i,....,/cn.

Now, Wg~lugWgVg~l = if and only if w g~l ugw g = KiVg. So, if such a w g

56

exists it conjugates ug and KiVg, for some i. Similarly, if such a Wh exists, it

conjugates Uh and KjVh, for some j .

Hence, our algorithm is as follows. We systematically run through each

pair of elements («*, k,j) in K. We test the words ug and KiVg in the conjugacy

problem algorithm for G, and the words Uh and KjVh in the conjugacy problem

algorithm for H. If both of these accept for some pair («», «j), then we

have a possible solution, and we test the word UkVf-KiKj for equivalence to

the identity (using Lemma 2.5.5, since K is finite). If this word is indeed

equivalent to the identity, then we have found a conjugating element, and

we accept the words. Otherwise, we continue the algorithm until we have

considered all possible pairs. If we terminate without acceptance, then we

reject u and v.

This algorithm is context-sensitive, and if the algorithms in the hypothesis

are deterministic then this procedure is determinstic. □

57

Chapter 4

Subgroups and extensions of

groups with context-sensitive

decision problems

The discussion in the previous chapter involved the situation where we had

two groups with context-sensitive decision problem, and we tried to combine

them together in some way. Perhaps even more fundamentally, we could ask

what happens if we tried to extend a single group with context-sensitive deci

sion problem, in some way. Let us begin with the fundamental idea of HNN

and Britton extensions, which have a close association with amalmagated

free products.

4.1 HNN extensions and Britton extensions

We consider a common, and extremely important, extension of a group, which

was first defined by Higman, Neumann and Neumann (hence the name HNN

extension) in [27].

58

Suppose we have a group G, and suppose that G has isomorphic sub

groups H = (h i, , hn) and K = (k \ , , kn). These need not be distinct,

but let us take our set of generators for G to be

X — { h \ , , hn, k \ , kn, Q\,.... 9m}'

Then if G = (X : R), we define the HNN extension of G with respect to H

and K to be

G*H,K,t = (X U {t} : R U { t^ h i t — ki : 1 < i < n})

where t ^ X , so t essentially conjugates H and K . We call t a stable letter

for this group.

We can use the notation {G, t : t~lH t = K } as shorthand for a presenta

tion of the HNN extension of G with respect to t, and associated subgroups

H and K.

More generally we could consider the case where we have more than one

stable letter. The exposition in the coming section here is courtesy of [42].

We say that a group G*h,k ,t is a Britton extension of G with respect to the

subgroups H and K , and stable letters T = {^} (where 1 < i < r for some

r), if it is of the form

G*h,k ,t = (X U {^} : R U {tj~lhitk = h : 1 < i < n, some tj,tk E T}).

We use the term T-symbols to refer to the set {̂ *±1}. If tj = tf~ in the free

group obtained by setting all the letters of X equal to 1 , then we say that tj

and tk are equivalent.

Note that the terminology used here varies from author to author. The

terms ‘HNN extension’ and ‘Britton extension’ are generally interchangeable.

We use the terms in the way we do here, simply to distinguish between

59

the case with a single stable letter (which is perhaps the more widely-used

meaning of ‘HNN extension’) and the case with several stable letters.

It is not immediately obvious that these constructions do not collapse

the group. However, as was proved in [27], for any group G with subgroups

H and K , G embeds in its HNN extension with respect to H and K , and

similarly for more general Britton extensions.

We define a word u E G*h,k,t to be T-reduced if it is not equivalent

in the group to any word with fewer T-symbols. The important concept

here is the idea of ‘pinching’ subwords to produce a word in T-reduced form.

Suppose we have a subword tj~ lutk where tj is equivalent to tk , and suppose

we can deduce the fact that tj~lutk = v. Then we can replace tj~lutk by v,

thus producing a word with two fewer T-symbols. This procedure is called a

‘pinch’ of the T-symbols. We have the following lemma, for a proof see, for

example, [42].

Lemma 4.1.1 Suppose w is a word in G * h ,k , t■ Then w is T-reduced if and

only if no T-symbols can be pinched out of w.

We stressed here the need to be able to ‘deduce’ a relation tj~lutk = v.

This is actually extremely simple. Following the exposition in Chapter II

of [42], if tj and tk are distinct then we only have such a relation if u is

equivalent to some u\ where we have the relation tj~lu\tk = v in our set of

defining relations. If tj = tk = t, then we have t~lut = v if and only if u is

equivalent to a word u \ um, and v is equivalent to a word v\ vm, where

we have t~lUit = for all 1 < i < m, since then we have

t ~ l u t = t ~ l U \ Um t = t ~ l U i t t ~ l t t ~ l Um t = V \ V m = v .

A subword in G to which a pinching may be applied is called pinchable.

60

So provided we are able to determine for an arbitrary string of symbols

whether or not they represent an appropriate word, we always have an effec

tive procedure to reduce a given word.

We have the following fundamental lemma, for a proof see for example

[37].

Lemma 4.1.2 (B ritton’s Lemma) Suppose G*h ,k ,t is & Britton exten

sion of G with respect to subgroups H and K . I f u E G*h ,k ,t is a T-reduced

word UQtjx±nu i tjn±%nun (where each tj{ is a T-symbol, and each Ui does

not contain a t-symbol), and n > 1, then u is not equivalent to the identity.

We note that an essentially equivalent formulation of Britton’s Lemma

asserts that a T-reduced word cannot lie in G if it contains a T-symbol, and

we shall use the notation Britton’s Lemma for either formulation.

4.1.1 T he word problem

If G has solvable word problem, and we have a procedure to determine

whether or not a word of G would allow pinching, we have a procedure to

solve the word problem, since we just perform pinches until we have reduced

the word, and apply Britton’s Lemma - if the word contains a T-symbol then

we can conclude that the word cannot represent the identity, otherwise we

just solve the word problem in G. Of course, there is no reason at all why

this need be a context-sensitive procedure, even if G has context-sensitive

word problem.

To give an indication of the sort of problems we may encounter, consider

the Baumslag-Solitar group B(1,2) = (t, a : t~lat = a2). This is an HNN-

extension of the group G = (a) with respect to the subgroups H = (a),

and K = (a2). But in this group, t~la f = a2* and we have an exponential

61

increase in the length of the word. Hence, we need to be very careful when

dealing with these sort of relations (although this group does actually have

deterministic context-sensitive word problem, as we shall note later).

The problem in this sort of situation is that the subgroups H and K have

non-trivial intersection. In the case where H n K — {1 }, then the situation

is more favourable.

Lemma 4.1.3 Suppose G is a group with isomorphic subgroups H and K ,

where H PI K = {1}, and suppose G has (deterministic) context-sensitive

word problem, and (deterministic) context-sensitive effective generalised word

problem with respect to H and K . Let T be a set of stable letters. Then there

is a (deterministic) context-sensitive procedure to produce a T -reduced form

of any word in a Britton extension G*H K T of G.

P roof Let us take generators {h \ , ,h r} and {&i, ,k r} for H and K

respectively, and extend in the natural way to a generating set

X

.

5 hr, k \ , , kr, g i , , gfy

for G. Hence, if G is given by the presentation (X : R), then we have the

usual presentation

G*h,k,t = (X U {T} : R U { t f lhitk = h : 1 < i < r, some t j , t k 6 T})

for a Britton extension of G with respect to H and K and stable letters T.

In this presentation, since H n K = {1}, we can assume that the hi and

ki are distinct symbols.

Suppose we are given some input word u, which we can assume is freely

reduced. If u contains no T-symbol, then it is obviously T-reduced. So,

suppose we have a word containing an occurrence of a T-symbol.

62

Now, by assumption, G has (deterministic) context-sensitive word prob

lem, and so we can certainly test all substrings not containing a T-symbol,

and remove them if they are equivalent to the identity. Also, we know by as

sumption that we have (deterministic) context-sensitive procedures to reduce

any subword in G to a word in the hi or ki if it lies in H or K respectively

(of course, by assumption, it cannot lie in both, unless it is equivalent to the

identity).

We can perform these procedures in turn, repeating as many times as

necessary, until we can perform no more such operations. Note that this

is a terminating procedure, since deletions shorten the word, and we only

‘reduce’ words containing at least one gi, and so every reduction to H or K

reduces the number of gi in the word. Hence, we have a new word v! which is

certainly linear in the length of the original word u (because our procedures

are linearly bounded), and contains no trivial strings of G , or strings of words

of G containing at least one gi which lie in K or H.

We can now test to see whether this word is T-reduced. We simply check

to see if, anywhere in the word, we have a pinchable subword (that is, a

subword of the form t f lUhU, or tiUkU~l , for some ti, or a subword that is

just a relator involving a T-symbol). If not, then the word is T-reduced, by

definition.

Otherwise, we have such a subword, and we perform the pinching. In this

pinching, each ki is replaced by the corresponding hi, or vice versa, and we

remove a pair of T-symbols. Hence the word has been shortened.

We then repeat this whole procedure with our new word, until eventually

we must reach a reduced word (note that this procedure must eventually

terminate, since we have not added any extra ^ with any pinching, and so

we can only repeat a finite number of times).

63

Clearly, the entire procedure is terminating, and operates in linear space,

and hence is (deterministic) context-sensitive. □

Hence we have the following as a simple corollary.

Theorem 4.1.4 Suppose G is a group with isomorphic subgroups H and K ,

where H n K = { 1}, and suppose G has (deterministic) context-sensitive

word problem and (deterministic) context-sensitive effective generalised word

problem with respect to H and K . Let T be a set of stable letters. Then a

Britton extension G*H K T ofG also has (deterministic) context-sensitive word

problem.

P roof Simply produce the T-reduced form of a word as in Lemma 4.1.3. If

this contains a T-symbol, then we reject it, otherwise we test it for equivalence

to the identity in G. □

This technique does not extend to the case where H and K have non

trivial intersection, since we cannot necessarily take our generating set to

consist of distinct symbols, without being forced to consider additional re

lations. However, it is certainly possible in some circumstances that we can

deduce a similar result when H ft K ^ {1}. For example, consider again the

Baumslag-Solitar group B(1,2). As we have commented, it is an HNN ex

tension of the group G = (a) with respect to the subgroups (a) and (a2), and

we will note later that it has deterministic context-sensitive word problem.

Now, G is a free group, so it has (deterministic) context-sensitive word

problem by Lemma 2.5.3. Hence, we have an example of an HNN extension

of a group preserving the property of having (deterministic) context-sensitive

word problem, even though the specified subgroups have non-trivial intersec

tion.

64

Note that in this instance we have (deterministic) context-sensitive pro

cedures to decide the effective generalised word problem with respect to the

subgroups in question (calculating whether a given word is equivalent to an

even power of a is a simple question of binary arithmetic).

4.1.2 A brief note on the conjugacy problem

In general, the conjugacy problem appears to be a difficult area. It is shown

in [36] that it is possible to have a group G with solvable conjugacy problem,

but some HNN extension of G has unsolvable conjugacy problem (although

the group given there is not finitely presented, and the question is left open

for finitely presented groups).

Let G*h k t be a Britton extension of a group G with respect to the stable

letters T. Suppose w £ G*H KT. Then we say that w is T-cyclically reduced

if every cyclic permutation of w is T-reduced. It is obvious that any word

is conjugate to a T-cyclically reduced word, and in particular, is conjugate

to a T-cyclically reduced word beginning with a T -symbol (since we simply

conjugate to permute the word around).

Given a word w in G*H KT , the T -projection of w is simply the word

obtained by removing all symbols not in T. Two words are said to be T-

parallel if their T-projections are identical up to symbols being equivalent

(that is, their T-projections are of the same length and symbols in corre

sponding positions are equivalent). We can also say that two words u and v

are T -circumparallel if u and v' are parallel for some cyclic permutation v'

of v.

We have the following result courtesy of [42].

Lemma 4.1.5 (C ollins’ Lemma) Let G*H KT be a Britton extension of a

group G with respect to the stable letters T. Suppose u and v are T-cyclically

65

reduced words, and suppose that u begins with t je where c = ±1. Then u and

v are conjugate in G*HKT if and only if there exists some cyclic permutation

v' of v satisfying the following conditions.

• u is T -parallel to v ',

• v' begins with tke (where tj and tk are equivalent),

• there exists some word x in G such that u = x~lv’x, where x is a

pinchable element of H if e — 1, and x is a pinchable element of K if

e = —1.

Note that we have an entirely equivalent form of this lemma when u ends

with some t je. Of course, since we are considering the conjugacy problem,

we can always conjugate a given word u to ensure that it either begins or

ends with a suitable t je.

This lemma, on its own, says nothing about the possibilities for context-

sensitive algorithms since we have no bound on the possible conjugating

element x. However, in certain cases, it may be possible to bound the length

of x and thus exhibit an argument for a Britton extension having context-

sensitive conjugacy problem.

4.1.3 Som e sim ple pinching lem m as

As a brief point, let us note a couple of very simple lemmas with regard to

HNN extensions and pinchings. Given a presentation for an HNN extension,

it is generally extremely difficult to determine if the process of performing

pinchings to produce a reduced word is linearly bounded. Often in many

cases where it intuitively might appear to be so, there is actually a quadratic

or even steeper increase in the length of the word. For example, consider the

66

following presentation:

G = {a,b,t : t~lat = a&, t~ 16t = b)

which forms an HNN extension of the free group on two generators, with the

associated subgroups being the whole group. Thus, the effective generalised

word problem for the associated subgroups is trivial - we simply freely reduce

a word.

Intuitively, these sort of relations might appear to be amenable to a linear

space algorithm, but consider a word such as t~nantn. Applying the pinchings

gives us successively tn_1 (a&)ntn, tn~2(ab2)ntn~2, and so on up to (abn)n,

which is of length (n + l)n and hence is of length quadratic in the length of

the original word, which is 3n.

An obvious example of when things work out satisfactorily is when none

of the pinchings alter the length of a word.

Lemma 4.1.6 Suppose we have a group G*, which is a Britton extension

of a group G with stable letters T , with respect to the subgroups H and K .

Suppose further that every pinching relation is of the form tjx~lutj2 — v,

where both t j ^ t j 2 E T, u and v are words in G, and |tt| = |u|, and suppose

there is a non-length-increasing procedure to decide the effective generalised

word problem for H and K (with the given set of generators in the pinching

relations) in G. Then there is a deterministic context-sensitive procedure to

T-reduce a word in G*.

P roof We simply apply Britton’s Lemma and perform the required pinch

ings, reducing any word to an appropriate word in the subgroups if necessary.

No procedure ever increases the length of the word and so we are done. □

The insistence that the procedure for the effective generalised word prob

lem is non-length increasing (rather than just being linear) is important -

67

note that if (for example) the procedure doubled the length of a subword,

then applying it many times could lead to a superlinear blow-up in the length

of the word. However, provided we choose our generating sets carefully, this

should not be a problem.

This lemma covers the particular case where every non-T symbol appears

the same number of times on both sides of every relation. In general, if this

is not the case, then we have to be very careful to track the number of

occurrences of a symbol. However, there is one useful, non-obvious, case in

which things do work out satisfactorily. Although the following statement

looks rather lengthy, the important point is that a symbol only appears on

one side, and in only finitely many, of the defining relations.

Lemma 4.1.7 Suppose we have a group G* which is a Britton extension

of a group G with stable letters T, with respect to the subgroups H and K .

Suppose further that every pinching relation is of the form tjx~lUitj2 = Vi,

where both tjr, t j2 G T, and the symbol x either never appears inside a Ui, or

never appears inside a Vi, and also appears in only finitely many relations.

Suppose, in addition, that there is a linearly bounded procedure to decide

the effective generalised word problem for H and K (with the given set of

generators in the pinching relations) in G which never increases the number

of x in any word already containing an x. Then there is a linear bound on

the number of x that can appear in any word of the computation to reduce

any a word.

P roof Without loss of generality, assume that all of our relations are of the

form tjl~1Uitj2 = Vi, where both t ^ , t j 2 G T, and no Ui contains an occurrence

of the symbol x (so x only appears on the right-hand side of our relations).

Suppose the maximum number of occurrences of x in any of the Vi is k.

Given a word u of length n, the maximum number of x that can be added to

68

u in the reduction process via pinchings is bounded by kn (since any pinching

on a word containing an x eliminates this x, and there are no more than n

pinchings that could be done).

Similarly, the procedure for the effective generalised word problem can

add at most cn extra occurrences of x (for some c) by our assumptions that

this procedure is context-sensitive, and does not increase the number of x in

a word already containing an x.

Finally, there are at most n occurrences of x in the original word, and thus

the total number of x in any step of the calculation is bounded by (k + c+ l)n

and we are done. □

Clearly, used in combination with Lemma 2 .1 .1 , this can be a useful

observation, and we will see this later.

4.2 The word problem and extensions of fi

nite index

Suppose we have a group H, contained inside a subgroup G , where [G : H] is

finite, that is H is of finite index in G. We wish to show that the property of

having (deterministic) context-sensitive word problem is closed under taking

such an extension. Firstly, let us consider this situation with a restriction on

the subgroup H.

Lemma 4.2.1 Suppose G and H are groups where H < G (that is, H is a

normal subgroup of G), and [G : H] = s for some integer s. Then G has

(deterministic) context-sensitive word problem if and only if H has (deter

ministic) context-sensitive word problem.

69

P roof Firstly, if G has (deterministic) context-sensitive word problem, then

so does H by Lemma 2.2.6.

Conversely, take a generating set Y = {h i ,, hr} for H, and extend this

to a generating set Z = { /q ,....,/ ir , #i,gs} for G, where X = { < ? i , < 7S}

is a set of coset representatives for G with respect to H. The informal idea

is that, since H < G, we can form the quotient group G /H (which is finite

by assumption), and then we find a coset representative for our word u. If

this representative is the identity, then u lies in i7, and so we can check u for

equivalence to the identity, since H has (deterministic) context-sensitive word

problem. If the representative is not the identity, then u cannot represent

the identity and we are done.

So, let us spell out the details of this procedure. There are only finitely

many elements of X and Y, and so there are only finitely many elements

9i~l hjgi. Since H <3 G, each of these elements lies in H. Hence, we can take

a fixed list of words E Y* representing each of these elements, and we fix

K\ — max \vi\. Similarly, there are only finitely many elements gigj. Each of

these is a word of G, and so can be written in the form gw , where g E X ,

and w g T , since we chose X to be a set of coset representatives for G with

respect to H. So, again, we can take a fixed list of words gkWi representing

each of these elements, and we fix K 2 = max \ wi\.

Suppose a,b E X and a, /3 E Y*. Let u = aabf3 be of length n. Suppose

a = h \ hp. Then

b~lab = b~1hibb~1h2....b~1hpb =

for some ij. Therefore,

u = ab(b~lotb)P = gkWivil....vipP

70

for some gk,wi, Vik. Now, the length of this equivalent word is clearly bounded

by l + K 2 + K\\a\ + \ff\ which is certainly no more than (2 + Ki + K 2)n and so

this is a deterministic context-sensitive procedure to produce the equivalent

word.

Inductively, it is then clear that we can write any word u = aiaq amam

(with cii G XjQti G y *) in the form 0*7, with and 7 G Y*, with the

length of this equivalent word bounded by

(m — 1) + K 2(m — 1) + iifi(|ai| ++ |am_i|) + \am\

which is again certainly less than (2 + K i + K 2)n, where u is of length n.

Hence, given any input word u , we first check to see if it contains any

occurrences of the <fc, since if not then it lies in H and we check to see if it

equals the identity.

Otherwise, we have that u is of the form (conjugating if

necessary to bring g^ to the front). From the above result, this is equivalent

to a word u' = grr) for some gr G X and 77 G Y*, where the length of this

word is linearly bounded in the length of u.

And hence u is equivalent to the identity if and only if gj = 1 and 77 is

equivalent to the identity in H , which we can check using the (deterministic)

context-sensitive procedure for the word problem in H. This procedure is

clearly (deterministic) context-sensitive and hence we are done. □

From this result we can deduce the required result for general subgroups

of finite index.

Theorem 4.2.2 Let G and H be groups, where H < G, and [G : H] = s for

some integer s. Then G has (deterministic) context-sensitive word problem

if and only if H has (deterministic) context-sensitive word problem.

71

P roof If G has (deterministic) context-sensitive word problem, then so does

H by Lemma 2.2.6.

Conversely, from standard group theory (see for example [52]), given a

group G with a subgroup H of finite index, there exists a finitely generated

normal subgroup N of G, with N < H < G and [G : N] finite. Then N has

(deterministic) context-sensitive word problem (since it is a subgroup of H)

by Lemma 2.2.6, and hence we can use Lemma 4.2.1 to conclude that G has

context-sensitive word problem. □

4.3 The conjugacy problem and extensions of

finite index

We have shown in the previous section that the property of a group having

context-sensitive word problem is preserved under taking extensions of finite

index. The obvious next step is to ask about the conjugacy problem. It is

already known that, in contrast to the situation for the word problem, the

property of having solvable conjugacy problem is not preserved under taking

extensions of finite index (see [15]), indeed the extension given there is of

index 2. Here we strengthen this result, and show the somewhat remarkable

result that there exists a group with deterministic context-sensitive conjugacy

problem which is a subgroup of index 2 of a group with unsolvable conjugacy

problem.

The group that we will use to demonstrate this result is that of [23], and

our proof is essentially the proof there. However, we take a rather different

slant, choosing to use a set-theoretic approach rather than the approach in

terms of ideals used therein, since this fits more naturally with our work here,

72

and we consider that it is much easier to consider sets of words, rather than

ideals, for the approach we wish to take. The majority of the work is done in

showing that the preliminary work in producing a canonical form of a word,

and the preliminary lemmas, can all be performed in linear space, since the

approach in [23] most certainly does not use linear space. We do not choose

to give proofs of some results from [23], where they have no bearing on the

complexity of the procedure. Although these results can relatively easily be

adapted to our approach here, we feel that this makes our proof unnecessarily

long.

4.3.1 D efining the groups

Let us define the groups that will form the basis of our result. The groups are

precisely those of [23], but we need to analyse the structure slightly further.

It is well known (originally proved in [41]) that, given two free groups X

and Y of rank N , (where N > 2) there exists a finitely generated subgroup

R of X x Y such that the generalised word problem of X x Y with respect to

R is unsolvable. Suppose N = 2 , and consider a suitable subgroup R. Let M

be the rank of R (that is, the number of generators in a minimal generating

set for R - we will assume this a monoid generating set for convenience).

Throughout this section, the notation G c s will refer to the following

group (the abbreviation CS refers to context-sensitive conjugacy problem).

We take as generators of G c s the symbols

a, 6 , Xi, Xi\ yi, yi, zj, t : 1 < i < 2,1 < j < M

which are subject to the relations

a2 = b2 = 1 , ab = ba,

3'i%k = îVk ~ îVk Vk îf îUk Vk îi %iUk Vk̂ î ViVk VkVii

73

bx’i = x'fb, by' = y'b,

Xi~1aXi = (x'i)~1ax'i , y t~'ay, = { y ' i f l ay't,

Zjd = a z j , Zjb = bzj,

Zjx'i = x'iZj, Zjy[= y-Zj,

tXi = Xit, tzj = Zjt,tb = bt

t ~ l at = ab.

At first glance, this may seem a complicated group presentation, but in

fact most of the relations are simple commuting relations. The initial cause

for concern appears from the relation t~1at = ab, a similar relation to which

we have already noted (at the start of Section 4.1.3) can cause problems with

quadracity. However, we can overcome this problem.

Let X be the free group on the X{, and similarly we can define Y , X ',

Y ’, Z and T to be the free groups on the yi, x\, y[, Zj and t respectively.

Exactly as in [23], we can define A to be the (non finitely-presented) group

which is generated by the free product of the cyclic groups of order 2 , which

are of the form (w~law), for every w which is a word of 1 x 7 . Similarly

we define B to be the (non finitely-presented) group which is generated by

the direct product of the cyclic groups of order 2 , which are of the form

(w~1bw), again for every w which is a word of X x Y . Let C be the group

((A x Y) * Z) x ((A ' x Y') *T). Then we have the following lemma, courtesy

of [23]. We do not feel the need to replicate the proof here.

L em m a 4.3.1 Gcs is isomorphic to a semidirect product (A x B) x C.

P ro o f See [23]. □

This helps us to understand the structure of G cs , but let us look at this

in more detail. Usually, we will use notation such as w to denote a word in

74

X x Y , and the dashed notation w' to denote a word in X ' x Y ' . For a word

w', let w' denote the word obtained by replacing each x\ by X{, each y[by

yi, and then reversing the word. We define w for a word w in the X{ and yi

similarly. Note that w' = w', and that for a single symbol x\, x\ is simply

the symbol X{, and similarly for the other symbols. Also note that for any

two words w\, w2, then W\W2 = w2wi. We will also use notation such as uz

for a word in Z, and similarly for other symbols. This sort of notation will

be used without comment unless it is explicitly stated otherwise. Note that

since a2 = 1 , we do not need to consider words in the a, since such words

must be either empty, or equivalent to a, and similarly for b.

Lemma 4.3.2 In G c s , the following relations are satisfied for any words w

and w ':

(i) (ww,)~1a(wwJ) = (w'w)~1a(w'w),

(i i) (ww')~1b(ww') = w~lbw,

(U i) (ww')~1uz(w w r) = w~luzw,

(i v) (w w ') ~ 1u t (w w ') = (w ') ~ 1u t (w ') .

P roof Let w' = w,ilw,i . Thenl\ is

(ww')~1a(wwl) = (w'il. . . .w l) - lw ~law('wi1- - w'i,)

= w - 1(w'ilw'tJ - 1a(w'il....w l)w = w - 1{w'iX 1....{w'h) - 1aw'hw'i w

by applying either the relation x Y laXi = (x'^^ax^, or the relation y Y layi =

(?/')_1ay'. We can now use the commuting relations of our group G c s to

show immediately that this is equivalent to

and, continuing in this vein, we obtain the word

w ‘(u^) 1aw'is....w'ilw = w 1(ui'hw l) 1a{w'ilw'it)w

= (w 'w)~ l a(w'w)

which gives us (z).

The remaining relations (i i) , (Hi) and (i v) follow trivially from the com

muting relations in G cs • 1=1

L e m m a 4 .3.3 In Gcs> the following relations are satisfied for any words

W\, W2, w ' , U z , a,nd any integer k:

(i) (w 1 1bwi) (w 2 1aw2) = (w 2 1aw2)(w 1 l bw\),

(i i) (w f 1u z w 1) (w 2 1aw 2) = (w2 1aw 2)(wi luz w i) ,

(H i) (w f 1bw i) (w 2 l bw2) = (w2 1bw2) (w (l bw{),

(i v) (w ^ l u z w i) (w 2 l bw2) = (w2 l bw2) (w (1uz w i) ,

(v) ((w')~1t kw ') (w 2 1bw2) = (w 2 1bw2)((w')~l t kw '),

(v i) ((w ,) ~ 1t k W ,) (w 2 1U Z W 2) = (w 2 l U Z W 2) ((w ') ~ l t k w ') ,

(v i i) ((w ') ~ l t k w ') (w 2 l a w 2) =

• (w2 1aw2)((w ,)~1t kw r) (f o r k even),

• (w 2 1a w 2) ((w ,)~1t kw ,) (((w ,) ''1w2)~1b((w,)~1w2)) (for k odd).

P ro o f We will use Lemma 4.3.2 and the commuting relations of Gcs• We

have

(w f lbwi)(w2 law2) = w (lb(wiw2 1aw2,w (l)wi

76

= wx 1b(w2w 1 x) 1a(w2w1 = w 1 1b(w2w1 *) 1a(w2w11)wi

by Lemma 4.3.2(z). But then, since b commutes with the x\, the y\, and a,

this is equivalent to

w ^ 1 (w2w l l)~l a(w2w ^ 1)bw\.

Again using Lemma 4.3.2(z), this is equivalent to

w ^ 1 (w2w^ 1)~1a(w2W i1)bwi = (w2 1aw2) (w i 1bwi)

which gives us the required result for (i). The result for (ii) follows in exactly

the same way, since the Zi also commute with the x[, the y[, and a.

For (Hi), we consider the word t~1 (w i 1awi)(w2 1bw2)t. On the one hand

we have the following.

t~ 1 (w^ 1awi)(w2 1bw2)t = (w i 1abwi)t~1 (w2 1bw2)t

= (w i1aw i)(w i1bwi)(w2 lbw2).

But on the other hand,

t~1 (w i 1awi)(w2 1bw2)t = t~1 (w2 1bw2)(w^1awi)t

from (z), and this is equivalent to

(w2 1bw2) (w i labwi) = (w^law\)(w2 lbw2) (w i lbwi)

again using (i). And hence,

(w^1awi)(w^lbwi)(w2lbw2) = (w^lawi)(w2lbw2)(w^lbwi)

which gives us

(w'[1bwi)(w2 1bw2) = (w2 lbw2) (w i lbwi)

77

as required for (in). An entirely similar approach, instead considering the

word t ' 1 (w2 1CLW2)(w^1uzWi)t and using part (ii), gives us (iv).

Both (?;) and (vi) are trivial using the commuting relations in G c s , which

leaves only (vii). Consider the word ((w,)~1tkw,)(w2 1aw2)- Rearranging, and

using Lemma 4.3.2(i), we have

((w')~1tkw')(W2 1aW2) = (w,)~1tk(w2 (w')~1)~1a(w2 (w')~1)wf

= (w’)~l tk((w')~lW2)~l (l((w')~lW2)'w'.

Using the relation t~lat = ab, and the commuting relations, this word is

equivalent to

(w') ~ 1 ((wf) - 1 w2) ~~1 abk ((w') ~1W2)tkw'

= (w')~1 ((w')~lW2)~1a((w,)~lW2)((w,)~1W2)~1bk ((w,)~1W2)tkWl.

We can now use Lemma 4.3.2(z) to simplify this word to

(w')~l (w2 (w')~l)~la(w2 (w')~l)((w')~lW2)~lbk((w,) ' lW2)tkw'

and then applying the commuting relations, and part (v), we obtain

(w2 1aw2)((w,)~ltkw,)(((w,)~1w2)~1bk((w')~1w2)).

But since b2 = 1, if k is even then the whole of the final factor cancels, and

if k is odd, then bk = b, which gives us the two cases in (vii). □

Given G c s , we can now define our second group, G u . Recall that we

chose M to be the rank of a subgroup R of X x Y such that the generalised

word problem of X x Y with respect to R is undecidable. Suppose R is

generated by r i , t m - We can now consider the group Gu (where U refers

to an unsolvable conjugacy problem), where G u is the group given by the

generators and relations of G c s , together with the generator and relations

78

if) 1Zi'ip = Zibri 1bri for 1 < i < M, the relations ip 1K'ip = k for all other

symbols k, and the relation ip2 = 1 .

L em m a 4.3.4 Gcs is a subgroup of index 2 of Gy.

P ro o f See [23]. □

The fact that Gu has unsolvable conjugacy problem is courtesy of [23],

and we again see no reason to replicate the proof here.

T h eo rem 4.3.5 Gu has unsolvable conjugacy problem.

P ro o f See [23]. □

4.3.2 T he set-theoretic approach and prelim inary lem

m as

Having defined the groups that will form the basis of our result, let us now set

down the set-theoretic approach that we will take, and give some preliminary

lemmas. It is here that the majority of the work is done, in order to emphasise

the linearly bounded nature of our procedure.

Suppose B = {A ••••An} is a finite set of words of X x Y. In the standard

way, we can then denote the word j3flb(3i....f3 l̂1bf3m by

n p~iw -

For any word g of X x Y, we will use the notation Bg to denote the set of

words { ^ g : 1 < i < m}.

We will assume that any word is freely reduced, and any word in the

direct product X x Y is of the form wx wy with wx € X , wy € Y , since this

can always be done, simply by rearranging the symbols.

79

Given two sets B\ and B2 , the symmetric difference B 1A B 2 is defined as

the set (Bi U B2) — (#1 n B2).

We note a few simple points with regard to the symmetric difference.

Obviously, for any set B , we have

B A B = 0,

£A 0 = B.

Also, we note the commutativity and associativity of the symmetric differ

ence. For example, for any word u , and sets B\ and B2> we have that

BlUA B 2u = {B1A B 2)u = (B2A B 1)u .

In our exposition in this chapter, we will often consider sets such as the set

Bp = {ul : 0 < i < (p — 1)}.

Note that then, in this sort of case, we have

BpABpU = {1 , up}

since all other elements are repeated, and hence cancel in the symmetric

difference.

There are many occasions when some sort of reformulation, using the

symmetric difference, can help us towards a result. We will generally make

such reformulations without further explanation, where it is clear that we

are just using the symmetric difference to rewrite the set.

Now, with regard to our group G cs , note that we have

n K ' t f o n = n
PiGBi /?2£ # 2 /?3e#3

80

where B3 = B 1A B 2 , since the conjugates all commute by Lemma 4.3.3, and

simply cancel, and can be ignored.

We will use this set-theoretic notation only for conjugates of b, since this

stresses that the conjugates of b commute, and hence our conjugating words

can be given in any order.

We wish to be able to consider any element of Gcs in some equivalent

canonical form.

L em m a 4.3.6 Any word w of Gcs is essentially uniquely equivalent (by

which we mean that ai ^ eti+i for any i) to a word of the form

where each a* is a word of X x Y , B is a set of words of X x Y , v\ is a

word of (I x f) * Z, and V2 is a word of (X ' x Y') * T. In addition, each a*,

each element of B, v\ and 1/2 are all of length no greater than \w\, and can

be explicitly determined from the original word.

P ro o f The existence, and the essential uniqueness, of an equivalent word

in the given form follows immediately from Lemma 4.3.1. Hence, we merely

need to ensure that we can determine each ‘component’ of the word in space

bounded by |u;|. We will produce explicity an appropriate word.

We start of course by freely reducing w. Hence, we can assume that

where each & is either the symbol a, the symbol 6 , a word of Z , or a word

of T, and each Wi is a word of (X x Y) x (X ' x Y'). We can rearrange the

symbols of w to ensure that each Wi is a word of the form w xWy Wx ’Wy ', with

since b2 = 1 , any ‘duplicated’ conjugates which occur in both B\ and B2

W = W i £ i W r £ r

81

wx in X , and similarly for the other words. This word is clearly equivalent

to

and hence we can express w as a product of conjugates, followed by some

word. Note that we cannot write this word down in linear space, but we

can obviously deduce each of the strings since each one is obtained

by taking the prefix of w which consists of the symbols of w up to and

then projecting this word onto (X x Y) x (X ' x Y ’) - that is, we just write

down in sequence all the occurrences of X{, yi, x\ and y[until we reach and

then rearrange these symbols. Note that, by our definition of a conjugating

element, the actual conjugating element in each case is then obtained by

inverting the word Wi....Wj thus obtained.

Using Lemma 4.3.2, we can now reduce each of the conjugating elements

to words in X ' x Y f (if the corresponding is a word in T), or words in

1 x 7 otherwise. Note that this procedure never increases the length of any

of the conjugates.

We can now use Lemma 4.3.3 to rearrange all these conjugates, so that

the conjugates of a come first, followed by the conjugates of b, followed by

the conjugates of Z , followed by the conjugates of T. In doing this, note that

this adds additional conjugates of b to our word.

It is clear that the conjugates of a remain unchanged. Hence, if fn ,..., £rm

are the & which consist of a , then the conjugates of a are precisely the words

a m, where each a* is obtained by writing down the word Wi...wTi,

rearranging the symbols, inverting the word, and then performing the trans

formation in Lemma 4.3.2 (which does not change the length of the word).

Hence, each of these is of length no greater than |u/|, and can be explicitly

determined.

82

The conjugates of T and Z are also unchanged. For any word u, let ux,y

be the word obtained by projecting onto X x Y , that is simply writing the

X-symbols and F-symbols of u in order, and similarly for ux>,y '-

Suppose f Sl, are the which consist of Z-symbols. Then the con

jugating elements of these & are precisely the words 7 1 , ...,7 /, where each 7 *

is obtained by writing down the word W\...wSi, eliminating the x[and and

then inverting. It is clear that this gives us that the word zq is equivalent to

(7 r 1Ssi7i)(7^1^ 27 2)--(7 r1?siT'i)(“ 'i--« 'r)x ,y

which in turn gives us

(Wi....WSl)x,Y^sl - ‘-('WSl_1+i...WSl)x,Y^si('^si+l--^r)x,Y

and so zq is obtained simply by writing the X-symbols, F-symbols, and

Z-symbols of w in order, and so is obviously of length no greater than \w\.

An entirely similar argument applies to z/2, which can be obtained by

writing the X'-symbols, F'-symbols, and T-symbols of w in order, and so is

also obviously of length no greater than |iu|.

We are left, finally, to consider the b, and to form our set B. Obviously, we

have the conjugating words that already exist. If f t l , are the & which

consist of 6 , then the conjugating words of b already present are precisely

the words /A,...,/3m, where each ft is obtained by writing down the word

wi. . .wti, and removing the x\ and y[, and inverting. We are left to consider

the additional conjugates of b which can be obtained in our rearrangement

of the word.

To find these, we simply need to consider, in turn, every conjugate of T

which appears earlier in the word than a conjugate of a. It is easy to consider

every such pair of conjugates in turn, simply by examing every possible pair

83

of The number of such additional terms is certainly bounded by \w\2 as

a crude upper bound, which can be stored in linear space in binary

If the power of t in some f* is even, then we need do nothing. Otherwise,

suppose £p is an odd power of t , and we have the corresponding conjugate

fi~lt 2lp+lnP, where fLp 6 X ' x Y ' . For every conjugate a~laaq appearing later

in the word, we obtain, from Lemma 4.3.3, an additional term

Suppose that W \ W p is given by the word (£i)x,y(£i)x',y ' 5 in the usual

way. Then /ip = ((£i)x',y')- \ by Lemma 4.3.2 (remember that we need to

invert our word to gain the conjugating word). Since q > p, we can write

w\....wq = Then, by Lemma 4.3.2,

&q = ((^1^2)x/,Y/)_1 ((^1^2)x,y)_1-

Hence, using Lemma 4.3.3, the additional conjugating word of b that we

obtain is given by

But since W1W2 = W2W1 for any two words, then we have that

and hence this leaves us simply with the conjugating word

((^2)x',Y')_1 ((^1^2)x,y)_1-

Hence, we can write down the additional conjugate / v ^ ” 1 of b simply by

writing the occurrences of X f and Y ' in wp+i....wq, inverting the word, and

performing the usual transformation. Finally, we then write down the X and

84

Y symbols in wi....wq, and invert the word. It is obvious that the number

of symbols here is no greater than the length of the word, since each symbol

is considered at most once. Hence, each additional conjugate is of length no

greater than |iu|, and can be explicitly given. Note that the total number

of occurrences of b in our equivalent word can be explicitly given, and is

certainly bounded by |iu| + \w\2 (counting the original occurrences, plus any

additional ones) which can be stored, using binary, in linear space. It is clear

that we can then determine, and write down, every element of B in turn in

linear space, which concludes the proof. □

The important point of all this is that, although we cannot write down the

canonical form of a given word in linear space, we can encode the canonical

form in such a way that we can store it, since we can deduce all the properties

of the word from our original word in linear space. By this, essentially,

we mean that given w, we can determine any particular component of the

canonical form in linear space. For example, if we wish to consider the set

B , then we can consider every element of it in turn in linear space, simply

by deleting a word once it has been considered, and reusing the space, over

and over again. We will now use this fact without comment in the following

exposition.

In actual fact, when considering general sets of words, there are also

instances where even a word which is not linearly bounded in length can

still be considered. For example, we can ‘store’ the word wm, where w is of

length O(n), and m is an integer of size 0 (2 n), by storing w on one tape,

and storing m in binary on another tape, even though the word wm may be

much longer than linear in length. Provided we are careful, we can then do

simple operations on such words too.

W ith this in mind we define the concept of a linearly expressible set.

85

Suppose that u is some input word, of length n, and suppose that B is a

finite set of words of size 0 (2 n), deducible in turn from our input word u.

Suppose further that there exists a constant c (that is, independent of the

length of our input word), such that every element of B can be formed by the

concatenation of no more than c words, where each word is of the form wm,

where w is of length 0 (n) and m is an integer of size 0 (2 n) (of course, if m = 1

then the word is linearly bounded anyway). Then we say that B is linearly

expressible with respect to u. The bound on the number of elements of our

set is necessary since we will wish to enumerate the elements in linear space.

Often, our input word will be obvious (in the main proof which follows, the

input is always the two words we take as our initial input, which we wish to

test for conjugacy), and so in this case we can omit reference to u. The idea

behind this, obviously, is that we can store any linearly expressible word in

linear space. The constant c is crucial, as without this, there is no bound on

the number of tapes possibly needed to store the components of our words.

Note the following simple lemma.

L em m a 4.3.7 Suppose we are given any two linearly expressible words u, v

of X x Y, with length bounded by n. Then there is a procedure, operating in

space 0 (n) , to determine whether or not u — v in X x Y .

P ro o f By assumption, u and v are words over 1 x 7 . Hence, to test for

equivalence, we merely need to freely reduce each component of u and v, and

then by Lemma 2.5.2, we need to test only that the words remaining in each

component are identical.

To prove that we can freely reduce a word in linear space, we proceed

inductively. Suppose we have a linearly expressible word w^w™ 2, where we

assume each Wi is cyclically reduced. We wish to simulate the usual free

86

cancellation in X x F . We begin by projecting Wi and W2 onto X . We

then freely reduce the word thus obtained. If (for example) the whole of W2

completely cancels in this reduction, then we reduce the value of m2 by one,

and repeat our procedure on this new word. We continue until either no

more cancellation can be performed (that is, there is either no cancellation,

or only part of a word cancels), or one of the ra* reaches zero, in which case

we stop. We then have an equivalent word stored in the form w\w'w32 where

no more cancellation can occur. This word in X is clearly freely reduced

and still linearly expressible. Inductively we can then freely reduce the X -

component of any linearly expressible word, and the resulting word is still

linearly expressible.

We can then verify whether or not the resulting X-components of u and

v are identical, and similarly for the F-components, and we are done. □

The following lemma is now a simple corollary.

L em m a 4.3.8 Suppose u is a word of X x Y of length n, and suppose A

and B are linearly expressible sets of words of X x Y with respect to u. Then

the set A A B u is linearly expressible.

P ro o f If B is linearly expressible, then so is Bu. Hence we simply write down

each element of A , and then each element of Bu , all of which are linearly

expressible. For every word v we write down, we consider in turn every other

element, and use Lemma 4.3.7 to check if a word equivalent to v appears

elsewhere in A or Bu - if it does then we ignore it. □

Now, given any word g of X x F , we will wish to choose a transversal (a

set of coset representatives) for X x F with respect to the cyclic subgroup {g).

From this, for any word w, we can associate with w a word wg, which satisfies

87

w = w9gk for some k. The actual choice of transversal is not particuarly

important - all that is important is that we do have a transversal, and that

the word thus obtained is linearly expressible.

First of all let us consider how to do this in the free group X . The

intuitive idea is simply to cancel powers of g from the end of any word w,

but we need to take into account a slight ambiguity if we merely follow this

simple procedure.

L em m a 4.3.9 Given a word g of X , of length n, and a word w of X which

is linearly expressible with respect to g, then there is a procedure, operating in

space 0 {n), to determine a linearly expressible word wg such that w = wggk

for some k. Furthermore, if W\ and W2 lie in the same coset with respect to

(g), and (w{)g and (w2)g are the words thus obtained, then (w\)g = (w2)g.

P ro o f We assume that w is freely reduced, and we begin by removing any

occurrences of g or g~x from the end of w, using the method of Lemma 4.3.8

to perform this elimination. Suppose this leaves us with the word w, which

does not end in an occurrence of g or g~l , but still lies in the same coset as

w, and is still linearly expressible.

This does not necessarily give us a unique coset representative, since if

9 = 9 i92 (as freely reduced words), and w is equivalent to the word w g i 1gk,

where no further powers of g can be extracted from w g f1, then w is also

equivalent to wg2gk-1, and no further powers of g can be extracted from

wg2. In this situation we will simply decide to choose wg2gk~1.

Hence, we reduce our word w by eliminating powers of g from the end, and

we are left with a word w. We then check to see if w ends in an occurrence

of g f 1 for some proper prefix g\ of g. If so, then we replace w by wg2 , where

g2 is the suffix of g obtained by eliminating g\.

88

We then set w9 to be the word thus obtained. By forcing one choice in

the only case where there can be any ambiguity, it is quite clear from this

definition that if w\ and W2 lie in the same coset with respect to (g), then

{wi) 9 = iw2)g, and we are done. Finally, it is immediately obvious that the

word wg that remains is linearly expressible. □

We can now move on to the direct product X x Y . The idea is similar

to the result for free groups, but there is an additional problem with the

direct product, since there can be conflict between the requirements for the

components in X and Y when we come to decide which possibility to choose

in the case of any ambiguity. For example, if w = x~xy and g = xy , should

we multiply by g to eliminate the x, or multiply by g~l to eliminate the y ,

or simply leave the word alone? We resolve this problem by always giving

priority to X . Remembering that all we need is some transversal that can

be constructively determined, we can therefore define an appropriate word

wg in this case too.

Lemma 4.3.10 Given a word g of X x Y, of length n, and a word w of

X x Y which is linearly expressible with respect to g, then there is a procedure,

operating in space 0 (n), to determine a linearly expressible word wg such

that w = wggk for some k. Furthermore, if w\ and W2 lie in the same coset

with respect to (g), and (wi)g = (w2)g are the words thus obtained, then

(W l) g = (w 2) g .

P ro o f Suppose w = wx wY and g = gx gY in the obvious way. Using

Lemma 4.3.9, we determine a word (wx)gx such that wx = (wx)9x (gx)kx.

Note that the value of kx can be explicitly determined by our algorithm, and

is certainly of length no greater than the length of wx . Then, we take our

word to be wg = {wx)9x wY (gY)~kx (so that w = w9gkx), which we freely

89

reduce if necessary. This is obviously linearly expressible, and since the Y-

component is determined explicitly from the A'-component, which is uniquely

determined, it is clear that this word satisfies the required conditions. □

Given a set B , let Bg be the list of elements (3g, for {3 £ B. Note that this

list may contain repeated elements. The following lemma and its subsequent

corollary will be crucial.

L em m a 4.3.11 Suppose that g is a word of X x Y , of length n, and suppose

that B is a linearly expressible set, with respect to g. Then B is equivalent

to the set A A A g (for some A) if and only if any word wg in Bg appears an

even number of times in Bg.

P ro o f Firstly, suppose that {wggn ,...., wggZr} are the words of B correspond

ing to some wg, and suppose r is even. We assume, without loss of generality,

that i\ < %2 < < ir. Consider the set

•Awg = {wg9 n , wggll+1...., wggt2~l , wgg%z, wggli+1,, w9g^ ' 1,

...., wgglT- l ,wgglr~xJrl,, wggZr~1}

which we note is well-defined, since r is even. Then

A WgX A Wgg = {w9gl\ w ggl\ , wgglr}

since all other elements are repeated in the union, and hence do not lie in

the symmetric difference. Taking

A — A Wg
Wge&g

gives us the required result in one direction.

Conversely, suppose that B = A A A g for some A. It is obvious, by

definition, that wggz 6 A if and only if wggt+1 £ Ag. Hence, for any wg,

every time wg appears in A g, wg also appears in {Ag)g. Thus, it appears an

even number of times when we take the two sets together. Any removal of

identical elements when considering A A A g removes two occurrences of wg,

and so, however many removals we make, we still have an even number of

occurrences of wg in (A A A g)g. Since Bg = (A A A g) g, wg occurs an even

number of times in Bg, and the claim is proved. □

Corollary 4.3.12 Suppose that g is a word of X x Y, of length n, and

suppose that B is a linearly expressible set, with respect to g. Then we can

determine, in space 0(n), whether or not B is equivalent to the set A A A g

for some set A of words of X x Y .

P ro o f We use Lemma 4.3.11. We consider each element of B in turn. For

each element w , we find the word wg by Lemma 4.3.10. Having found wg,

we then set a counter to an initial value of 1. We then consider every other

element Wi of B in turn, finding the corresponding (wi)g, and alternating our

counter between 0 and 1 every time we determine that (wi)g = wg.

We accept the set if and only if, for every word in B , the corresponding

counter gives 0. Since every word is linearly expressible, and this algorithm

considers at most two words at any given time, it clearly operates in linear

space, and is obviously deterministic. □

Note the following simple lemma with regard to this sort of expression of

sets, which will be extremely useful in our main proof.

Lemma 4.3.13 Given a word g, suppose a set A can be expressed as CACgk

for some C, and k > 1 . Then A can be expressed as C'AC'g for some C .

P ro o f Simply note that CACgk is equal to

CACgACgA....ACgk~lACgk~lACgk

91

= {CACgA....ACgk~l)A(CACgA....ACgk~l)g

which, taking C = CACgA....ACgk~l , gives the required result. □

The following lemmas are technical, but will prove to be useful.

Lemma 4.3.14 Let B be a set of words of X x Y , and suppose g and h are

some words of X x Y , where gh = hg and (g) n (h) = 1 . Then B = A A A g

for some set A if and only if B A B h = CACg for some set C.

P ro o f Suppose B = A A A g for some set A. Then

B A B h = (A A A g)A { A A A g)h = {A A A h)A (A A A h)g

since gh = hg. Setting C = (A A Ah) gives us the required result in one

direction.

Conversely, suppose that B A B h = CACg for some set C. We will proceed

by contradiction, so suppose that B ^ A A A g for any set A.

By Lemma 4.3.11, Bg must contain a member which appears an odd

number of times in Bg. In fact, we may assume that every member of Bg

appears an odd number of times in Bg, since if some member pg appears an

even number of times, then we can consider the set Br obtained by removing

every 7 in B such that j g = fdg. We must still have B'AB'h = C A C g for

some set C', by Lemma 4.3.11 (since every transversal representative still

appears an even number of times). However, we still also have B' ^ A A A g

for any set A, again by Lemma 4.3.11. Hence, progressively removing all such

members, we can assume that every member of Bg appears an odd number

of times in Bg, simply by considering B' instead.

Hence, every member /3g appears an odd number of times in Bg, but must

appear an even number of times in B A B h , since B A B h = CACg. Hence

92

(3g must also appear in (Bh)g. Considering every such pgi we must have

that (counting each element only once), the (Bh)g can be obtained simply by

permuting the Bg in some way. Repeating this permutation obviously gives

us the (Bh2)g, and so on. If m is the order of this permutation, then applying

it m times means that Bg = (Bhm)g, and so we have hm = gq for some q,

which is impossible by the assumption that (g) n (h) ^ 1 .

Hence, we must have B = A A A g for some set A , which concludes the

proof. □

The reason for the hypotheses in the following seemingly rather technical

lemma, will be apparent later.

Lemma 4.3.15 Suppose that g is a word of X x Y , of length n, and suppose

that M is a subset of the centraliser of g in X x Y , where there exists an

effective procedure to determine, for a linearly expressible word w, whether w

is a member of the set {mgk : m G M ,k G Z}, where this procedure operates

in space 0 (n) , and suppose that mi (m2) - 1 ^ {g) for any mi / m2 in M.

Suppose further that A and B are linearly expressible sets of words of X x Y

with respect to g. Then there exists a procedure, operating in space 0(n), to

decide whether or not there exists a word u of M such that A A B u = CACg

for some set of words C of X x Y.

P ro o f Firstly, use Corollary 4.3.12 to test whether or not B = V A V g for

some V. If so, then we claim that for any u in M, A A B u = CACg for some

C if and only if A = S A S g for some S. To prove this claim, suppose firstly

that A = S A Sg . Then for any u in M,

A A B u = {S A S g)A (V A V g)u

= (S A V u)A {S A V u)g

93

since g commutes with u by definition. Setting C = S A V u gives us the

required result in one direction.

Conversely, suppose A A B u = CACg for some u in M. Then

AA(T>AT>g)u = CACg

which gives us immediately

A = (iCACg)A(VAVg)u = (C A V u)A (C A V u)g

and, setting S = CAVu, the claim is proved.

So, if B — V A V g for some V, then we simply have to test whether or

not A = S A S g for some £, again using Corollary 4.3.12. If so, then any u

lying in M can be taken.

Hence, we are left only with the case where B cannot be written in the

form V A V g for any V. In this case, using Lemma 4.3.11, some (3g in Bg

appears an odd number of times in Bg. We can assume without loss of

generality that A in B is such that (A)$ appears an odd number of times in

B,.

Consider the equation ((A)^)-1^ ') ^ = ugk for any in A. By assump

tion, since clearly ((A)®)-1!0-;)̂ is linearly expressible, we can determine u

and k such that this equation holds. Also, these values must be unique, since

if ((A)<,)- 1 (<*j)g = uigkl and ((A)9)_1 («j)g = u29k2, then ui(u2)~l = gk'~k\

which contradicts our assumption on M, unless u\ = u2 and k\ — k2 .

Hence, from this, we can determine a unique Uj (if it exists) satisfying

((P i) g) ~ l {a j) g — u j 9 k f°r each Oij. We now claim that, for any word ur G M,

then A A B u r cannot be equivalent to CACg unless ur is equal to one of the

Uj that we can determine above. To prove this, consider the set A A B u r.

Included in this set is the set of elements lying in Bur of the form (f3i)gglur,

each of which is equivalent to the word (Pi)gurgl. This subset contains an odd

94

number of elements, by our definition of /3\. But there can be no element

of this form (/3i)gurgl lying in A, since if there was, then we would have

(iotj)ggh = (Pi)gurgl, which gives us ((A)g)-1(a j)g = urgl~l\ contradicting

our assumption that ur is not one of the Uj determined above. Hence, if

ur is not one of the Uj determined above, then there is an odd number of

occurrences of (/3i)5 in (A A B (u r))g, and so by Lemma 4.3.11, it cannot be

of the form CACg , as required. Hence, our algorithm works as follows. We

first of all determine a suitable (/3i)g simply by checking each of the (Pi)g

in turn until one is found. For each aj in A , we then solve the equation

((Pi)g)~laj = uj 9 k f°r uji which gives us a unique solution, where Uj is

linearly expressible, by assumption. For each aj, we then need to check

whether or not this particular A A B u j can be written in the form CACg,

which we can do in linear space by Lemma 4.3.8 and Corollary 4.3.12, and

this concludes the proof □

We obviously need to consider under what conditions on M the hypothe

ses of Lemma 4.3.15 hold. We certainly have the following cases.

C o r o l l a r y 4 . 3 . 1 6 Suppose that g is a word of X x Y , of length n, and

suppose that M is a cyclic subset of the centraliser of g in X x Y , where

M = (ho), and M fl (g) = 1. Suppose further that A and B are linearly

expressible sets of words of X x Y , with respect to g. Then there exists a

procedure, operating in space 0 (n), to decide whether or not there exists an

integer q such that AAB(ho)Q = CACg for some set of words C of X x Y .

P r o o f Any word of M is of the form (h0)q. It is immediate that, for any

qi 7 ̂ q2, the element (h0)qi((h0)q2)~l = (h0) q i ~ q2 cannot lie in (g) by our

assumption on M. If we wish to solve the equation u = (ho)lg then this

has a unique solution by applying Lemma 2.5.9 to each component of u in X

95

and Y (since the case where there are infinitely many solutions cannot arise

in both cases, since (ho) D (g) = 1), and this solution is linearly bounded,

and hence we have the conditions of Lemma 4.3.15. □

C o r o l l a r y 4 . 3 . 1 7 Suppose that g is a word of X x Y, of length n, and

suppose that M is the centraliser of g in X x Y . Suppose further that A and

B are linearly expressible sets of words of X x Y , with respect to g. Then

there exists a procedure, operating in space 0 (n), to decide whether or not

there exists m g in Mg such that A A B m g = CACg for some set of words C

o f X x Y.

P r o o f Given any linearly expressible word w, we can both find wg, and deter

mine k such that w = wggk, from Lemma 4.3.10. Also, if (mi)5((m2)5)_1 =

gl, for some non-zero I, then we have (m j)s = (mfjgg1, which is an obvi

ous contradiction, or we could eliminate more occurrences of g from (mi)s.

Hence we have the conditions of Lemma 4.3.15. □

By Lemma 4.3.11, if m g satisfies the equation A A B m g — CACg for some

set of words C of X x Y , then so does m ggk for any k, since m g — (m ggk)g, and

any solution must be of this form. Hence, if this equation is solvable, then

from Lemma 4.3.15, either any word in the centraliser of g is a solution, or

every solution is of the form m ggk (for some k), for a finite set of possibilities

7Tig.

In a similar vein to Lemma 4.3.15, we have the following.

L e m m a 4 . 3 . 1 8 Suppose that v is a word of X x Y , where v is of the form

gq, and is of length n. Suppose further that A and B are linearly expressible

sets of words of X x Y , with respect to v. Then there exists a procedure,

96

operating in space 0 (n), to decide whether or not there exists an integer p

such that A A B g p = CACgq for some set of words C of X x Y ,

P r o o f We claim that A A B g p = CtSCgq for some set C, if and only if it is

also the case that A A B g p±q = T>AT)gq, for some set T>. To prove this, we

firstly note that

BgpABgp+q = BgpA(Bgp)gq,

and also that

BgpA B gp~q = (Bgp- q)gq A B gp~q = Bgp~q A(Bgp- q)gq.

Hence, in either case, BgpABg p ± 9 = £ A £ g q for some £. Given this, we

simply note that if A A B g p = CACgq, then

A A B g p±q = A A (B g pA B gp)ABgp±q

(where the notation p ± q is assumed to mean either p + q throughout, or

p — q throughout)

= (A A B g p)A(BgpA B gp±q)

= (CACgq)A (£ A £ g q)

= (CA£)A{CA£)gq

as required, taking T> = CA£. Entirely similarly, in the converse direction,

if A A B g p±q = T>AVgq, then

A A B g ” = A A (B g p±qA B gp±q)ABgp

= (A A B f iq)A{BgpA B gpiq)

= (V A V g q)A (£ A £ g q)

= { V A £)A (V A £)g q,

97

and the claim is proved,taking C = V A S . Hence, if the equality holds for

some p, then it also holds for p ± iq for any integer i. It is therefore enough

to simply test whether or not the equation A A B g p = CACgq holds for those

p satisfying 0 < p < q, which we can do in linear space by Lemma 4.3.8 and

Corollary 4.3.12, since \gp\ < \gq\ = O(n). □

We give a brief lemma regarding products of free groups. It is well-known,

see for example [39], that the centraliser of a word in a free group is a cyclic

subgroup (unless the word is empty, in which case the whole group is the

centraliser). If / = (/ o) c for c maximal, then the centraliser of / is simply

(/ o) . Given this, we have the following.

L e m m a 4 . 3 . 1 9 Suppose w is a freely-reduced word of (1 x 7) * Z. Then

the centraliser of w is cyclic if and only if w contains a Z-symbol. Similarly,

if w is a freely-reduced word of (.X ' x Y') * T , then the centraliser of w is

cyclic if and only if w contains a T-symbol.

P roof This is a well-known result (again see [39] for example), and so we

simply sketch the proof. If w contains a Z-symbol, then let w = Wq for q

maximal. Then the centraliser of w is simply the set {wq1 : i e Z} which is

obviously cyclic. Otherwise, suppose w = ((wo)x)9l((iCo)r)92 with qx and q2

maximal. Then the centraliser of w is the set {((wo)x)*((^o)y)J : i , j E Z j

which is obviously non-cyclic. The second part follows entirely similarly. □

The following lemma will also be useful.

L e m m a 4 . 3 . 2 0 Suppose F is a free group, and let f be a word of F of length

n. Suppose h, g\ and g2 are words of F of length 0(n). Then the equation

hqg\w = g2, for w some word such that w f = fw , has either zero or one

98

solutions for q, or any q satisfies the equation. I f there is a unique solution,

then the word hq can be written in space 0 (n).

P r o o f Suppose that hqig\W\ = # 2, and hq2 g\W2 = 9 2 are two such solutions,

where q\ ^ 9 2 - Then {gi)~lhqi~Q2gi = W2 (wi)~1, which commutes with /

since W\ and W2 both commute with / . Since we are in a free group, and

hence the centraliser of / is either cyclic or the whole group, we must have

that (gi)~1hgi also commutes with / . Let w0 = (gi)~lhgi. Then, for any q,

we have

hq9\ = 9 \ (w 0)q = 92(g2) ' l g i (w 0)q,

simply by inserting a trivial word. But

(.92)~19 i = ((^ i) _1t e i) _1^ _9l)^i = (^ i) _1(^ o) ' 91

which commutes with / , since both terms commute with / . Hence, we have

the equation

^ l ((^ o) ~ 9 (^l)_1^2) = 92,

where (wo)~q{gi) ~ l 92 commutes with / , which means that any value of q can

also solve this equation. Hence if there is more than one solution, then any

value of q is a solution.

Now, if / is empty, then the centraliser of / is the whole of F, and obvi

ously we can then have infinitely many solutions. Otherwise, the centraliser of

/ is cyclic, equal to (/0), say, and we can solve whether or not hqgi(f0)p = g2

by Lemma 2.5.9. If there is a unique solution, then by Lemma 2.5.9, hq can

be written in space 0 (n). □

99

4.3.3 R educing the conjugacy problem

Having established these lemmas, we can now move on to consider the con

jugacy problem in G cs • The majority of the work has now been done. The

remainder of this chapter is now essentially the main proof of [23], adapted

to suit our approach here, and stressing the linearly bounded nature of our

adapted procedure. We begin by reducing the problem somewhat.

Suppose that u\ and u2 are words of G cs • By Lemma 4.3.6, suppose that

L e m m a 4.3.21 I f u\ and it2 are conjugate in G cs , then P1H2 and v\v2 are

conjugate in {{X x Y) * Z) x ((.X ' x Y ') * T).

P roof Suppose (u3)- 1wiU3 = U2 for some word 7/3 . Suppose that uq is

the projection of onto (X x Y) * Z, and cj2 is the projection of U3 onto

(X ' x Y') * T. Considering the projections of both sides of the equation

(u3)- 1UiU3 = U2 -, by the uniqueness of the canonical form of Lemma 4.3.6,

we must have fiiUJi = v\ and (o; 2) _ 1 ̂ 2 ^ 2 = ^ 2 as required. □

L e m m a 4.3.22 ((X x Y) * Z) x ((X ' x Y 1) * T) has deterministic context-

sensitive conjugacy problem. In addition, if two words aq and a 2 are con

jugate, then there exists a conjugating element of length no greater than

max(|aq|, |a 2|).

P roof By using repeated applications of Lemma 2.5.4, Lemma 3.2.2, and

Lemma 3.3.9, it is immediate that ((X x Y) * Z) x ((X ' x Y ') * T) has

ui = (uj 1avi)....(vii1avi1) I f t ^ f t I

and

100

deterministic context-sensitive conjugacy problem. Suppose / = f x V 2 / 1

reduced. Then, by Lemma 2.5.4, a conjugating element of / and h must be of

/ 2), which is obviously of length no greater than the length of the larger of

the two words. In a free product, we have a similar result by Theorem 3.3.2

(where the amalgamated subgroup is obviously the trivial subgroup), since

again we must cyclically reduce and permute the words. Finally, in a direct

product, the conjugating word is obtained by taking a conjugating word in

each factor, and hence if these are no larger than the words in the factors,

then they are no larger than the words in the direct product. Repeatedly

applying these results gives us the required result. □

Hence, we can test to see whether or not fiifi2 and viv2 are conjugate in

((X x Y) * Z) x ((X ' xY ')*T). If so, we can immediately write down an element

u where u ~ lfii/j2uj = ^1 ^ 2 from Lemma 4.3.22 (if not, of course we can

immediately reject the words). Therefore, given u\ and u2, we can conjugate

U i by u j . This resulting word is of length no greater than 3max(|wi|, |w2|)

(since uj is bounded in length by max(|?/i|, |w2|), and so we are still working

in linear space. Hence we can still find an equivalent form for this word in

the usual way. We can assume, therefore, that we have done this if necessary,

and so we may assume that our words u\ and u2 are of the form

The following two lemmas are technical lemmas with regard to conjugacy

and h = hl l h2 h\ are words in a free group, where f 2 and h2 are cyclically

the form f x 1h \ 1 where fs is a prefix of f 2 (so its conjugacy action permutes

and

101

in G cs • Since they do not in any way affect our complexity considerations,

then we choose to omit the proofs, and refer to [23].

L e m m a 4 . 3 . 2 3 Given u\ and U2 in the above form, if U\ and U2 are conju

gate in Gcs, then i\ = 1 2 .

P r o o f See [23]. □

We can also simplify our potential conjugating words by assuming that

there are no conjugates of a present.

L e m m a 4 . 3 . 2 4 Given u\ and U2 in the above form, if u\ and U2 are conju

gate in Gcs, then they are conjugate via an element of the form

where 771/^1 = 7x1771 and 7/2 ^ 2 = ^ 2 ^ 2 •

P r o o f See [23]. □

Given this, then the path we must follow towards determining the conju

gacy of our two elements, depends on the elements that could commute with

the (ii. Obviously, Lemma 4.3.19 will be useful here.

4.3 .4 Solving th e conjugacy problem

We can now move on to the proof that the conjugacy problem of Gcs is a

deterministic context-sensitive problem. Again, this is essentially the main

proof of [23], adapted to suit our approach here, and stressing the linearly

bounded nature of our adapted procedure. Recall that we are given words

102

u2 = {wx 1aw1)....(willawil) I lb(32 1 pifi2,
\/32GS2 /

and we are looking for a conjugating word u3 (and so UiU ̂= u3u2), which is

of the form

(n) viV2 -

We have a series of cases to consider, depending on whether the centralis-

ers of ii\ and fi2 are cyclic, and the value of i\. Firstly suppose that i\ is

zero.

L e m m a 4 . 3 . 2 5 If i\ is zero, then there is a deterministic context-sensitive

procedure to determine whether or not u\ and u2 are conjugate in Gcs-

P roof In this case, there are no instances of a, and hence we do not need

to worry about any additional conjugates of b that could be obtained in

rewriting a word. Writing U\U ̂ = u$u2, we obtain

) AHAfc (Y l
JiGBi / V/?1 <EB3 /

= (n f c ibPz) ^ (n) 1^1
VfoeEs / \P2eB2 /

Suppose firstly that does not contain an occurrence of a Z-symbol, that

is, it consists only of symbols in X x Y. Then, by Lemma 4.3.19, 771 does

not consist of any Z-symbol either. Hence, we obtain

tt p ^ b P i) (Y l (/W r^/W
J \Pi €B3 /

= (E [# r l6&) (n (^ r 1)" 1̂ ! - 1) v m m m -
\p3eB3 / /

103

Considering the conjugates of 6 , and rearranging slightly, we are left with the

equation

B 1 A f t i y f 1 =

But, by Lemma 4.3.11, if r]i = r](pi) 1 satisfies this equation, then so does

r) (since the tranversal representatives are the same). Hence, if M. is the

centraliser of /xi, we can assume that r)i lies in and we can solve this

equation in linear space by Corollary 4.3.17.

Now suppose that p,\ contains an occurrence of a Z-symbol, and that

AH — (7iCi"--7mCm)fel> where each 7 * is a word in X x Y, each Q is a word in

Z, and ki is maximal. By Lemma 4.3.19, we must have 771 = (7 1 C1 —*7mCm)p

for some p. Let 7 0 = 7 i.---7 m- Then, obviously,

mi (n) = (n mi,
\ P3 EB3 / \ p 3 e B 3 J

vi (n f c ' b f o) = (II (027op)~1i>02'ro) m-
VftseBs / \B2eB2 /

Hence, we have to solve the equation B \A B 2̂ V = B3 A B 3jQkl, which can

be solved in linear space by Lemma 4.3.18, and we are done. □

This has covered the case where i\ is equal to zero, and so we had no

occurrences of a anywhere in our words. We now assume that i\ > 1. There

fore, when writing U\U3 = u3u2, we are looking to solve the equation

(v^lav l). . . .{v~l avil) (]^[Af^Ai J /H/H (
\ 0 i € B i J \ 0 3 EB3

= I Y l A T ^ A a) m V2(w~1awi) (wYl1a w h) I A ^ 1 ^ j A H A H -
\ 0 3 e B 3 / \ P 2 e B 2 J

There are four cases to consider. We begin with the simplest two cases,

where there are no T-symbols to consider. In this situation, again, there are

104

no additional conjugates of b to consider in any rearrangement of our words.

However, when considering equality, we must take into account conjugates

of a, as well as conjugates of b.

Lemma 4.3.26 Suppose that p\ is a word in X x Y , and that p2 is a word

in X ' x Y ' . Then there is a deterministic context-sensitive procedure to de

termine whether or not U\ and u2 are conjugate in Gcs-

P r o o f Exactly as in Lemma 4.3.25, we need to solve the equation

= B3 A B 3̂ \

which can again be done by Corollary 4.3.17, assuming that a solution lies

in A4m , where A4 is the centraliser of However, previously we were only

concerned with the solvability of this equation. We now need to consider the

impact of any solution on the conjugates of a as well.

From Corollary 4.3.17, the equation above is either unsolvable, solvable

for only a finite number of words of M/X1 (which are linearly expressible), or

solvable for every 771. Obviously, we can immediately reject the words if the

equation is unsolvable.

Otherwise, using Lemma 4.3.6 to consider the conjugates of a that appear,

and equating, we obtain Vi = (r}i)~1Wi(Tfe) ~ 1 for every 1 < i < ix. Now,

we can consider rji = (r?i)x(r?i)y, m = Vi = (Vi)x{vi)Y and

Wi = (Wi)x(wi)y in the usual way. Then, splitting our equation into two,

and rearranging, we obtain

((r]2)x>){vi)x{r}i)x = K)x,
((^2)y/)(v»)vr(^?i)y = (wi)y -

If the equation A B 2r]i1 = B^AB^p ^ 1 had been determined to be solvable

for every 771, then of course we can forget about it, and we simply need

105

to solve these two equations. But, in this case, if = (<*i)Cl, for ci

maximal, then by Lemma 4.3.19, (rii)x = (£i)p for some p. Similarly, if

(^2)X1 = (<yc2? for c2 maximal, then (7 7 2)x f = (S2)q for some q. Hence, the

equation {{r}2)x>)(vi)x(r}i)x = (wi)x becomes

® 9(^M<*i)P = (Wi)X

which is solvable in linear space by Lemma 2.5.9. An entirely similar argu

ment for the equation in Y gives us the required result.

Finally, we consider the case where B iA B 2r)i1 = B \A B 2p { 1 is only solv

able for a finite number of elements of Mm, which are linearly expressible.

Take each of these elements, mj, say, in turn. Then any solution involving

rrij must be of the form m,j((pi)x)r for some r. Hence, we are searching for

an integer r such that

((V2)x')(vi)x { m j) x (U n) x) r = (v>i)x,

and similarly for Y. These equations can be solved in linear space by

Lemma 4.3.20. If the same solution satisfies both of these equations for

all z, then we are done, otherwise we repeat our algorithm with the next rrij.

If we cannot solve the equations for any rrij, then we reject the words. □

We now consider what happens when pi contains a Z-symbol.

Lemma 4.3.27 Suppose p\ contains a Z -symbol, but that p2 is a word in

X ' x Y ' . Then there is a deterministic context-sensitive procedure to deter

mine whether or not u\ and u2 are conjugate in Gcs-

P r o o f Exactly as in Lemma 4.3.25, we take p i = (7 iC i--- -7m Cm)kl, where

ki is maximal, and then note that 771 must be of the form (7 iC i----7m C m)p-

Again, letting 7 0 = 7 1 - ..7m, we obtain, equating conjugates of b,

B1AB270_p = BsA ^ T o- *1-

106

Consider next the conjugates of a. We must have — {rj2)~1wiryo~p,

or, rearranging, P2 ^i7 op = v)i, for every 1 < i < i\. Splitting these equa

tions into equations in X and Y in the usual way, where 7 0 = (7 o) x (7 o) y ?

m = (r)2)x ’(r)2)y', Vi = {vi)x(vi)Y and = (wi)x (wi)Y , we obtain the two

equations

M x ' (v i) x ((7 o) x) p = (Wi)x

(in)Y'(Vi)Y{(lo)Y)r = (Wi)y-

Note that the powers p must be equal here.

From Lemma 4 . 3 . 2 0 , each of these two sets of equations each have either

zero or one solution, or are satisfied for every p. If there exists a single value

satisfying one set of equations (which can be determined in linear space), then

we check that this value also satisfies the other set of equations. If so, then

the lengths of ((7 o) x) p and ((7 o) y) p are linearly bounded by Lemma 4.3 .2 0 ,

and hence so is the length of 7 J. Therefore, we can verify whether or not

B iA B 2JqP = B3 A B 3 'Yokl for this particular p , by Lemma 4 .3 . 8 and Corol

lary 4 . 3 . 1 2 .

If the two equations hold for any p, then we can immediately apply

Lemma 4.3.18 to determine if there is a solution to B iA B 2% p = B3A B 3jQkl

in linear space, and we are done. □

The remaining two cases are a little more complicated, due to the fact

that if contains a T-symbol, then there are additional conjugates of b to

consider when we try to form our canonical form for a word. Let us first look

at the case where pi lies in X x Y. Firstly let us note a simple lemma.

Lemma 4.3.28 There is a deterministic context-sensitive procedure to de

termine, given two words a\ and 0 2 of X x Y , whether or not (<7 1) 0 (0 2) = 1.

107

P r o o f Writing a x = ((Pi)x)Ci((Pi)y) c2 and a 2 = ((p2)x)dl (t e) y) d2, where

Ci, c2, di, and d2 are maximal, then (cri) n (cr2) ^ 1 if and only if ((pi)x) =

and ((pi)y) = ((/^ y)* 1, and C\d2 = d\C2 (we omit this standard

proof, see for example [39]). Clearly, the size of both c\d2 and d\C2 is at

most quadratic in the length of the input, which can be stored in linear

space using binary. Note that this means that we have a word a such that

0 — (<7 i)fcl — (0 2) * 2 j and that a is linearly expressible. □

Lemma 4.3.29 Suppose pi is a word in X x Y , but p2 contains a T-

symbol. Then there is a deterministic context-sensitive procedure to deter

mine whether or not u\ and u2 are conjugate in Gcs-

P r o o f This time, rj2 is a word of (X ' x Y') *T, but 771 is a word of (X x Y) . In

the usual way, by Lemma 4.3.19, if p 2 = (S1P15sPa)c, where |c| is maximal,

then t}2 must be of the form (SiPlS8Pa)g. We use |c| here, so that we can

assume that q > 0 , since we can take the inverse of 5\Px....5aPa if necessary.

Given this, let <5q = Si....6 s.

Considering u\Us = Usu2, it is clear from Lemma 4.3.6 that, equating

conjugates of a in this equation, we must have Vi = {S0)~qWi(r}i) ~ 1 for every

1 < i < ii, or equivalently, SoqViT]i = W{.

Now, we can consider S0 = (^0)x(^o)v, Vi = vi = M x M y

and Wi = {wi)x{wi)Y in the usual way. Then this equation gives us the two

sets of equations, for every 1

((So)x)q(vi)x(m)x = (Wi)X ,

((^o)y)9(^z)y(^i)y =

By Lemma 4.3.20, we can determine in linear space whether each of these

equations either have zero solutions, one solution, or are satisfied for any q.

108

Hence, the whole system of equations has either zero solutions, one solution,

or are satisfied for any q, since if any two of the equations are determined

to have unique solutions, then we check that these two solutions are in fact

identical. If they have no solution then obviously we reject the words.

Otherwise, we now consider the conjugates of b. Rearranging our conju

gating equation, using the commutativity of the conjugates of a and 6 , we

have

Y l P i lb(31 j | Y l {P2'ni1)~1b/32'nil J {'nlrl2) - l (v^lavl)..(v-lavil)iilfi2 =
<PieBi J \ 02eB2 J

n f c lb f c j (Y l (/W r^/W) (w~lawi) . . {w~lawh)fj,1fi2(r]iT]2) - 1.

We choose this slightly unusual formulation, involving (771772)-1, simply to

avoid having to work with inverses later on.

We now have to consider the additional conjugates of b obtained when

rearranging the left hand side. Recall that 772 = (S1P15sPs)q, (for some

q). We are concerned only with those ji such that ji is odd. Suppose that

ifcn • • • • 5 3km are those ji in question. Then it is clear from Lemma 4.3.6 that

we obtain an additional conjugating element of 6 ,

for any 1 < / < m, 0 < qi < (q — 1), 1 < k < i\. Let C be this set of words.

Since we defined £ 0 = <51 <5S, then we have that

C = {(Si....Skl)(S0)qivk : 1 < / < 7 7 7 ,0 < Qi < {q - 1), 1 < k < i j .

Hence, we are looking for a set B3 satisfying

109

Of course, we need to know the value of q to be able to form C, and we note

that this is a linearly expressible set, provided that q = 0 (2 n).

Suppose we decided that the two sets of equations

((<$0)x)q{vi)x(r]i)x = (w*)x,

((<^o)y)9 (^)y(m)y = (wi)y

are solvable for only one q, which we have found. Note that we have that

(S0)q is linearly expressible from Lemma 4.3.20. We can then test the equation

B\ A # 2 (77i) -1AC = for this particular q, using Corollary 4.3.12,

since all the sets in question are linearly expressible.

Otherwise, they are solvable for any q, and thus we need concern ourselves

only with the equation B iA B 2 (rft)~1AC = B3 A B 3 (fi\)~l . Note that since

they are solvable for any </, we can therefore combine the equations, and we

can conclude that

(S0)qViV i = wi

is also solvable for any value of q. Specifically, if q = 0, then we obtain

(V i) ~ l W i = (V i) ~ 1W \

for any value of i, since both sides are equal to 771. Similarly, using this result,

and taking q = 1 , we obtain

for any value of i.

Hence, we can assign to a word u0, which is obviously still

linearly bounded. Then, any word of C, which by definition is of the form

(^S j^ o) 91̂ , can be written in the form (5i5&/)^A:(^o)91- Hence we can

consider the equation

110

where we define the sets C and Uq as

C' = {(Si....8kl)vk : 1 < ra, 1 < k < zi},

Uq = (woJ : 0 < j < q - 1}.

We let uj = (itfi)-1Vi, and hence we wish to solve the equation

B1A B 2(uj(u0)q)&C,Uq = B sA B s ifu)-1

(since (/7i)_1 = (uq)_1Ui(wo)~9). This may seem a strange thing to do, since

it appears to complicate our equation, but our intention is either to be able

to reduce the problem to a small number of possible solutions, or to be able

to apply Lemma 4.3.15.

We now use Lemma 4.3.28 to test whether or not (u0) H (/.q) = 1. There

are two possible cases.

Suppose, firstly, that we determine that (uq) Pi (/ii) ^ 1 . In this case,

using Lemma 4.3.28, we can write a number s (in binary) in linear space

such that (uq)s G (/ii). Note that this obviously implies that the word u0So

is linearly expressible for any 0 < So < s. We now claim that the equation

B1AB2(o;(«o)‘,)AC,W, =

is solvable for q if and only if it is also solvable for q — 2s. To prove this

claim, suppose firstly that the equation is solvable for q, that is we have

S 1A S2(o;(«o),)AC;«g =

Now, it is trivial that we have

B2 (cj(u0 y - 2s) = B2(a;(«o),)AB2(w(«o)<,- 2s)(«o)2sAB2(a;(«o),_2s)

and also, by the definition of Ui, it is immediately clear that

U„-2s = M,AM2s(u„)(' - 2s

111

= u qA {u sA u s{u0 y){u 0 y - 2s.

Putting all of this together, and using our assumption on the equation

for q, we obtain the fact that B iA B 2 (u)(uo)q~2s)AC'Uq- 2s is equal to

(B3A B 3̂ 1) A (B 2u(u0y - 2sA B 2u(u 0y - 2s(u0)2s) AC'(«o),_24(W.A«,(u0)*).

But since by assumption, (^o)s is a power of fii, then we are left with

three terms, each of which is of the form QAQfiik, and hence the whole term

is of this form. But then, by Lemma 4.3.13, it must also be expressible in

the form which shows that the equation is also solvable for q — 2 s.

The converse argument (where the equation is solvable for q — 2s) is entirely

similar, and this proves our claim. Given this, we therefore need to test only

the cases where 0 < q < 2s, which we can do by Corollary 4.3.12, since all

the words in our sets are clearly linearly expressible.

The only remaining case is where we determine, from Lemma 4.3.28, that

(u0) n (fii) = 1. If so, then we can apply Lemma 4.3.14 to deduce that the

equation B iA B 2 {w(uo)q)AC,Uq = B$ABz(n\)~l holds if and only if

(HiA B lUo)A (B2 {u(uo)q)A B 2 (u{u0)q)uo) A{C'UqACUqu^)

= B4AB4(/il) - 1

for some set B±. It is clear that UqAUqUQ = {1, (u0)9}, since all other terms

appear in both sets, and hence cancel. Hence,

C'UqAC'UquQ = C'AC'{uQ)q.

Therefore, our equation reduces to

(B1&B1u0&C')A(B2uAB2(uu(̂)AC')(uo),, = S4AB4(/n)‘ 1

and this equation can be solved in linear space by Corollary 4.3.16, since all

the sets in question are clearly linearly expressible by Lemma 4.3.8. □

112

The only remaining case is when pi contains Z-symbols, and P2 contains

T-symbols.

Lemma 4.3.30 Suppose that p\ contains a Z-symbol, and /x2 contains a

T-symbol. Then there is a deterministic context-sensitive procedure to deter

mine whether or not u\ and U2 are conjugate in Gcs-

P r o o f This time, in the conjugating word we are looking for, 772 is a word of

(X ' x T ')*T , and 771 is a word of (X x Y)* Z . As usual, if p 2 = (5\Vl8SVS)C,

where |c| is maximal, then 772 must be of the form (Si# 15SP3)9, and we let

Similarly, if pi = (eiCi----£rCr)di with d maximal, then 771 must

be of the form (eiCi---erCr) P 5 and we let eo = ei....er . As in Lemma 4.3.29,

we can assume that q > 0 .

In a similar vein to the previous cases, equating conjugates of a in our

conjugacy equation, we must have (8o)qVi(eo)p = W{. As usual, we consider

<̂o = (£o)x(^o)y, co = (eo)x(eo)y> rji = {rj^x iv^Y , Vi = (vi)x(vi)v and

Wi — (Wi)x{wi)Y- Then, splitting in the usual way, this equation gives us the

two sets of equations, for every 1 < i < z‘i ,

(^o)x(^i)*(eo)x =

(^o)y (^i)y (eo)y = (^i)y-

We can solve these equations by Lemma 2.5.9, and hence there are either

zero or exactly one common solution, or infinitely many solutions. From

Lemma 2.5.9, there are only infinitely many solutions if

(v i) y M y (u i) y = (e y) ± 1 ,

where <50 = (£x)mi (^y) m2 and eo = (ex)m3 (ey)m4, where every mi is maximal.

113

If they have no solution then obviously we reject the words. Otherwise,

we now consider the conjugates of b. Proceeding similarly to Lemma 4.3.29,

we obtain the equation

BIAB2(<:orpAC = B3 A B 3 (e0)~d,

where C is defined exactly as in Lemma 4.3.29, namely

C = {{8 i....8 kl)(S0)qivk : 1 < / < 771,0 < qi < (q — 1), 1 < k < ii}.

Suppose we decided that the two sets of equations

(^o)x(^)*(6o)x = (Wi)x,

(^o)y(^)v(eo)y = (^z)y

are solvable for a unique p and g, which we note that we can determine in

linear space by Lemma 2 .5 .9 . We can then test the equation

B1A B 2eoPAC = B3 A B 3€od

for this particular p and q, using Corollary 4 . 3 . 1 2 , since all the terms involved

are obviously linearly expressible.

The only remaining case is where, for every z,

(vi)x18x{vi)x — (ex)Alj

(Vt)p1<5y(Vj)y' = (ey)Aa,

where Ai = ±1, A2 = ±1. Then the equation (8o)qx (vi)x (eo)Px = (™i)x can

be rewritten as

(8 x)mig(vi)x(ex)m3P = (w jx ,

or, using the equation above,

114

Similarly, we obtain

(e y) m4P+A2m2, = („ .) - !

But we can solve these equations for m3p + Ximiq and ra4p + A2ra2</ in

linear space by Lemma 2.5.7. If we have no solution, then we reject the

words. Otherwise, suppose we have determined that we have the solutions

m3p + Xirriiq = r\ and ra4p + A2 m 2q = r2, where we note that the size of

r\ and r 2 are certainly of size no greater than the length of (Vi)~lWi, from

Lemma 2.5.7, and so are obviously linearly bounded. Provided Aiming ^

X2 m 2 ra3, then these equations have exactly one real solution, namely

p = (A2 m2 r! - Aimir2)/(A 2m 2m 3 - Aimira4)

q = (r2m 3 - r 1m4)/(A2m 2m 3 - Airaira4).

But it is simple to determine whether these are integers, and indeed can be

done in linear space, using simple binary arithmetic, since all the terms are

at most quadratic in the length of the input. If we find integral p and <7, then

we can check to see if the equation

B1AB2(£o)^AC = B3A B 3{ea)~d

holds by Corollary 4.3.12, since all the terms are linearly expressible.

Hence, the only remaining case we have to consider, is the situation where

Airai?n4 = A2 m 2 m3. We claim that if p and q satisfy our equations, where

q > 2 m 3d, then so do the values p + 2 Aimid and q — 2 m3d (recall that d is

the maximal value such that p,\ = (ciCi----CrCr)d)- Note that we chose m3 and

d to be maximal,so they are certainly positive, and hence 2 m3d is positive.

If this is true, then we need only check our equations for 0 < q < 2m3d, and

the corresponding value of p (which, given q, can be determined from either

115

the equation m3p + Aim\q = r 1} or the equation m4p + A2ra2g = r2), which

we can do by Corollary 4.3.12, since every term will obviously be linearly

expressible, and we are done.

To prove the claim, we firstly consider the equation

(^ o) x (u*)a - (co) a - = (v>i)x-

Note, that since we have (■Vi)x 16x (vi)x — (cy)Ai} (^o)x = (Sx)m\ and

(^o)x = (tx)m3, then this equation gives us

(v i)x(ex)Ximiq+m3P = (Wi)x .

Now, we can deduce that

(̂ 0) r 2m3d(^)x(60)? 2Aimid

— fe)x (6x)Aimi(9" 2m3d)+m3(P+2Aimid)

= (^)x (ex)Aimi<7+m3P = (Wi)x

and hence if this equation holds for p and g, it also holds for p + 2 Ximid and

q — 2 msd.

Secondly, consider the equation

((^o)y)9(^i)y((^o)r)p = (w*)y -

Similarly to the above, noting that (v^ ^ S y ^ ^ y = (ey)A2, (^o)y = (<̂ y)m2>

and (e0)y = (fy)™4, we obtain

(vi)Y (tY)X2m2q+m,p = K)y-
But then, we have

((5o)y), ‘ 2m3d(^)y((fo)y)p+2Aimi‘i = (^)y(ey)A2"‘2(,_2m3<i)+m4(p+2Aimi<i)-

116

But since Aim \ = A2 m2m3 by assumption, this gives us simply

{Vi) y (t Y f ™ q+m'V = (Wi)y

and hence, again, if this equation holds for p and q, it also holds for p + 2 Aimid

and q — 2 m^d.

We are left therefore, only to consider the equation

B1A B 2((0)~PAC = B3A B 3{t0)~d,

which we assume holds (for some B3) for some p and q. Since we have written

£0 = ($x)mi (dy) 1712 and eo = (^x)m3 (ey)m4, we can follow a similar approach

to Lemma 4.3.29, to rewrite this equation as

B1A £ 2(ex)-pm3(fy)-,’m4AC',£, = B3A B 3{tx y dm̂ e Y) - imi,

where we define C' exactly as in Lemma 4.3.29, and we define

£q = { (ex)x,miqi(eY)X2mm ■ 0 < i < q — 1}.

Assuming this holds for p and q, now consider the expression

Bi A B 2 (£jf) (£y)-m3(p+2X1m1d) &C'£q- 2m3d.

To complete the proof, we need to show that this can be written in the form

S A S (e x)~ drn3 {^y) ~ dTn4 for some <5. For notational convenience, let us define

n , = (B2(ex) ~pmz (ey)~pm4) •

Then, clearly,
^2(e^.)~m3(P+2̂ imid)(ey)-m4(P+2^imid)

= Hi A7li A H i (ex) - 2>,imim3‘i(ey

117

including some triviality. Again, for notational convenience, let us now define

7£2 — Q1 ̂ £X j^mi (q—2m$d) ̂A2TTI2(g—2m3d)

Then, we clearly have

C £q—2mzd — C £q&R,<2.£'cimzd'

Combining all of this, we obtain three terms, namely

71 = B iA 7liA C '£q,

T2 = A 7l1 (cx)"2Aimim3d(cy)"2Aim4mid,

73 = '1Z2S2 m3d,

where these terms combine to give us

Bl A B 2 (ex)-Tn3{p+2XlTnid\ e Y) - Tn3{p+2Ximid)AC,£q. 2m ^ = TiAT2A%.

But, 71, is by assumption, equal to B$A13z(ex)~dTnz{tY)~dm*• It is obvious

that T2 can be written in the required form by Lemma 4.3.13. Finally, since

Aimi77i4 = A2 m 2 m3 , we clearly have

s 2mid = £m3i& £mA (t x) >"mim3d(tY)Mm>m3d)

= £m3dA £ m3d((ex)x'm'm*d(6Y) * m'm<d),

and hence the final term is also of the required form, by Lemma 4.3.13, and

thus so is the whole word when we combine them together, and we have

proved the claim, and hence we are done. □

118

4.3.5 T he m ain theorem

We can now put all these results together to give us the required result for

Gcs-

L em m a 4.3.31 Gcs has deterministic context-sensitive conjugacy problem.

P ro o f We have considered every possibility for /q and f.12 in Lemma 4.3.25,

Lemma 4.3.26, Lemma 4.3.27, Lemma 4.3.29, and Lemma 4.3.30, and hence

we can always determine whether or not a conjugating element exists. In

every case, our procedure is deterministic, and linearly bounded. □

Finally, then, we have the main result.

T h eo rem 4.3.32 There exists a group with deterministic context-sensitive

conjugacy problem, which is a subgroup of index 2 of a group with unsolvable

conjugacy problem.

P ro o f Take the groups Gcs and Gu as defined above. □

This result serves to demonstrate just how difficult the conjugacy problem

can be. Even by taking a relatively small extension of a group, of index 2, and

even if the group has the comparatively strong condition of having context-

sensitive conjugacy problem, there is no bound on the complexity of the

conjugacy problem in the larger group, and indeed can be unsolvable, as we

have shown. This is in sharp contrast to the situation for the word problem,

and shows again the difficulty of the conjugacy problem.

119

Chapter 5

Em bedding a group with

context-sensitive word problem

In this brief chapter, let us consider possibilities for embedding groups with

context-sensitive word problem into other groups. An embedding of a group

H into a group G is simply an injection from H to G, and so if H embeds

into G, then we may consider H to be a subgroup of G.

5.1 Embedding into two-generator groups

Let us show that we can embed any finitely generated group with (determin

istic) context-sensitive word problem into a group with only two generators

with (deterministic) context-sensitive word problem. The basis of the con

struction is the one used on p l 8 8 of [37], but we require some substantial

expansion, and additional techniques to illustrate the context-sensitive na

ture of our procedure. Given a word u, we define the a-exponent sum of u

to be |u |Q — H a - 1 5 that is the sum of the exponents of all the occurrences of

a in the word. We also define the k ’th partial a-exponent sum of u to be the

120

a-exponent sum of the prefix of u of length k (where, for a word of length n,

a prefix of length m for m > n is defined simply to be the whole word). We

will give a sequence of lemmas, from which the final result will then follow

easily.

We start with a free group F = (a, 6 : 0). Consider the subgroup K x of

F generated by the elements Y = {b~labl : i > 0}.

Now take a group H = (X : R), where X = { h i , h d}, and suppose H

has context-sensitive word problem. We form the direct product L = H x F.

By Lemma 3.2.1 and Lemma 2.5.3, L also has context-sensitive word problem.

Consider the subgroup K 2 of H x F generated by the elements Z =

{cia~lbal : i > 0}, where q = hi for 1 < i < d and q = A otherwise. We

do not feel the need to prove the following result, since it does not affect our

complexity considerations.

Lemma 5.1.1 K i and K 2 are freely generated by their generators, and hence

K\ and K 2 are isomorphic.

P ro o f See page 188 of [37]. □

Lemma 5.1.2 There is a deterministic context-sensitive procedure to solve

the generalised word problem of F with respect to K\.

P ro o f We claim that a freely-reduced word in F lies in K\ if and only if the

6-exponent sum is zero, and all the partial 6-exponent sums are non-positive.

In one direction, suppose u is a word in K\. Since there are no relations

between a and 6 , apart from the trivial ones, u must be formed by a con

catenation of words of the form b~labl or 6 _ta_16 l , possibly followed by some

free reduction. But it is then immediately evident that any word in Ki has

6-exponent sum zero, and all the partial 6-exponent sums are non-positive

121

(since any concatenation of these words has both of these properties, and

free reduction does not affect either of these properties).

Conversely, suppose we have a word u such that the 6-exponent sum of u

is zero, and all the partial 6-exponent sums are non-positive. We can write

u in the form 6*1aJ'16*2aJ'2 6 tma-7m6 lm+1 (where i\ and/or im+i may be zero).

This is equivalent to the word

6ilaJ1 6 - i l 6*1+*2a:726 ~^1+i2).... 5*i+...+*ma jm ^ -(* i+ . . .+ tm)

(since «i + + im+i = 0)- However, the partial 6-exponent sums are necessar

ily non-positive, and so this consists of a product of terms of the form b~paqlf

with p > 0, which are products of generators of Ki, since b~paqlf = {b~palf)q.

Hence u must be an element of K\.

Thus, to determine membership of Ki, we simply need to check the asso

ciated 6-exponent sums, and this procedure can obviously be done in linear

space. □

L em m a 5.1.3 There is a context-sensitive procedure to solve the generalised

word problem of L with respect to K 2.

P ro o f Suppose we have an input word u. Firstly, since u is a word in L ,

we rearrange the symbols in u so that it is of the form u = UnUp, with Uh

containing only symbols in the hi, and up containing only a and 6 (and of

course their inverses).

There are two parts to the checking of u. Firstly, we need to check whether

up lies in the subgroup generated by {a_z6 az : i > 0}. We can achieve this

simply by following the proof of Lemma 5.1.2, interchanging a and 6 . Hence

we merely need to check the appropriate a-exponent sums. If it does not lie

in this subgroup, then we reject u immediately.

122

So, suppose up does indeed lie in this subgroup. We can write up in

the form a~%lbila~l2bi2 (where i\ and/or im+\ may be zero).

This is equivalent to the word

a-Û?1ana-(il+*2)̂ 72a(ii+i2).. a (ii+...+im)

(since ii + + zm+1 = 0), where each of the sums i\ + + ik must be

positive.

Hence, if u lies in K 2, then ujj must be equivalent to the word

We can easily calculate each %i + -f ?*, and thus write down 7 , which is

of length no greater than l(up). Hence, we can test UhJ ' 1 in the context-

sensitive word problem solver for H. Note that the length of this word is

certainly no greater than the length of u , and hence we have a context-

sensitive procedure and we are done. □

We can form the HNN extension of L,

G — { L , t : t~lb~%ablt = c*a~z&a*}.

G will be the group we are looking for. Note that K\ fi K 2 7 ̂ {1}. For

example, the element b~2a~(d+1^bad+1b lies in both subgroups, since it is

equivalent to (b~2 ab2)~^d+l\b ~ lanJrlb), which lies in ifi, and equivalent to

b~2 (a~^d+1'}bad+1)b, which lies in K 2. Hence we cannot use Theorem 4.1.4

here to determine that G has a context-sensitive word problem. Thus, we

will give a direct algorithm.

L em m a 5.1.4 G has context-sensitive word problem.

123

P ro o f Suppose we are given an input word u of length n. If u contains no

occurrence of tf*1, then we test u for equivalence to the identity in L (which

we know from above is a context-sensitive procedure) and we are done.

Otherwise, we search for a subword of the form t~lk\t or tk2t ~ 1 for ki in Ki

(we know that testing membership of these subgroups is a context-sensitive

procedure from above). If no such subword exists, then, by Britton’s Lemma,

the word cannot be equivalent to the identity and we are done. Otherwise,

we can use the relations t~lb~lablt = Cia~lbal. If we find a subword t~lk \t ,

with k\ in then we replace this with the word obtained by interchanging

the a and b, and adding in the appropriate hi, as above. Similarly, if we find

a subword t~ lk2t, with k2 in K 2, then we replace this with the word obtained

by interchanging the a and b, and removing any hi that occur.

We continue in this vein until we either eliminate all occurrences of t±l

(in which case we are left with a word in L and we simply test this word for

equivalence to the identity in L), or we can perform no more pinchings, and

then the word cannot possibly be equivalent to the identity, and so we reject

it.

It is clear that this algorithm performs the required task. Finally, we need

to demonstrate that it is indeed a context-sensitive procedure. We will use

Lemma 2.1.1 to demonstrate that the length of the word in question as we

perform pinches is linearly bounded, then since all computations on the word

(for example testing the word problem in L, or calculating the appropriate

Ci, are (deterministic) context-sensitive procedures, we are done.

Let us take an input word u of length n, and suppose that we are some way

through the algorithm on the word, and we have a word v. Let T represent

the t* 1, and similarly for A and B , representing the a±l and 6 ± 1 respectively.

The number of T-symbols in the word clearly cannot increase, since any

124

pinching removes two occurrences of T-symbols, and hence \ v \ t < M r < n .

Also, no operation - apart from free reduction which obviously decreases

the number of A-symbols or 12-symbols - ever alters the total number of

A-symbols and J5-symbols (since we just interchange them) in a word, and

hence M a + M b < M a + M b < n -

Finally, then, we need to consider the hi±x. However, the hj±1 appear

only on the right hand side of finitely many of our pinching relations, and

since our procedures to decide the effective generalised word problem are

linearly bounded, and do not increase the number of hi in any word already

containing an hi, we can use Lemma 4.1.7 to linearly bound the number of

occurrences of the hi±l in any word.

Hence, by Lemma 2.1.1, this is a context-sensitive procedure, since there

is a linear bound on the number of occurrences of any symbol. □

We can now deduce the required result.

T heorem 5.1.5 Suppose H is a group with (deterministic) context-sensitive

word problem. Then H can be embedded into a two-generator group with

(deterministic) context-sensitive word problem.

P ro o f We embed H into the group G as in the construction above, where

G has context-sensitive word problem. Since we have the relations

t~lb~lablt = hia~lbal

for 1 < i < d, we can eliminate the hi from this generating set. Also, we

have the relation b = t~lat, and so we can also eliminate b. Hence, G can

be given by a presentation involving only two generators a and t, which still

has context-sensitive word problem by Lemma 2.2.2.

125

Finally note that all the procedures above are deterministic, provided

that H has deterministic context-sensitive word problem. □

5.2 Higman’s result

Without doubt, the most famous and remarkable result concerning embed

dings of groups is the result of Higman from [26].

Let G = (X : R) be a finitely generated group, and suppose that the

set of relations R is a recursively enumerable set. Then we say that G is

recursively presented. The famous result of [26] asserts the following.

T heo rem 5.2.1 A finitely generated group G can be embedded in a finitely

presented group if and only if G is recursively presented.

The obvious question to ask, is what can one say about embeddings

of groups with context-sensitive word problem? Clearly, any group with

context-sensitive word problem is recursively presented (for example, take

as our relators every word equivalent to the identity, since this a context-

sensitive set, it is clearly recursively enumerable), and hence any group

with context-sensitive word problem can be embedded in a finitely presented

group. But there is no reason why this group need also have context-sensitive

word problem. However, we have the following conjecture.

C o n jec tu re 5.2.2 Given any finitely generated group G with (deterministic)

context-sensitive word problem, G can be embedded in a finitely presented

group with (deterministic) context-sensitive word problem.

One of the reasons behind us making this conjecture, is that the result

is true in semigroups, that is any finitely generated semigroup S with (de

terministic) context-sensitive word problem can be embedded in a finitely

126

presented semigroup H with (deterministic) context-sensitive word problem.

This follows from the following result of Birget in [7].

T heorem 5.2.3 Suppose S is a finitely generated semigroup with solvable

word problem. Then S can be embedded in a finitely presented semigroup H

such that there is a length-contracting, deterministic linear time reduction

from the word problem of H to the word problem of S.

In particular, then, since any procedure operating in linear time cer

tainly operates in linear space, and since the reduction procedure is length-

contracting, we certainly have an algorithm operating in linear space for the

word problem of H , since we just apply the reduction and then solve the

word problem in S.

The situation for groups is much more difficult. There is no reason, even

if the semigroup in question is actually a group, that the finitely presented

semigroup in which it embeds need be a group. Some work on the embedding

for groups has been done in [8] and [53]. These papers are extremely long

and technical, however they do seem to imply (personal communication with

the authors) that the situation holds for polynomial space, that is that every

group with polynomial space word problem embeds in a finitely presented

group with polynomial space word problem. However, for now, the linear

space issue remains an open question.

127

Chapter 6

The word problem of

subgroups of autom atic groups

We now consider the concept of automatic groups, which have attracted a

great deal of attention.

6.1 Autom atic groups

Automatic groups have been studied in some detail in recent years, and an

algorithm for solving the word problem in time 0 (n 2) was given in [18]. Here

we make this algorithm precise, in the sense that we give the details of its

implementation on a Turing machine. It is worth noting that, with time

bounds, we may be dependent on the number of worktapes in our Turing

machine. For example, it may be possible to implement an algorithm in time

0 (n2) using two worktapes, but not using just one tape.

6.1.1 D efin ition

Let us first define an automatic group.

128

D efin ition 6.1.1 Suppose G is a group. Then an automatic structure for

G consists of an alphabet A representing a monoid generating set for G, a

finite state automaton W over A, and a collection of finite state automata

Mx over (A, A) (for x £ A U {A}) which satisfy

• The map 7r : L(W) —> G is surjective (so every element of G has at

least one representative in L (W)), where L{W) represents the language

accepted by the automaton W.

• For all x £ A U {A}, we have (wi,w2) £ L(M X) if and only if the group

elements represented by W\X and w2 are equal, and W\ and w2 are both

in the language L(W).

If these conditions are satisfied then we say that G is automatic.

It should be noted that to read in pairs of words over A on an automaton

we introduce a padding symbol $ to the alphabet. Suppose we wish to read

in the pair (a,/3), with a = an and (3 = b\b2 bm with ai,bi £ A ,

and suppose n > m. Then we read in pairs

{au b1),(a2,b2),... • (Q'm') brn)'> $)>..... 5 (®ri5 $)

and obviously we have a similar definition for the case when m > n. Of

course, we need no padding symbol when m = n. This construction enables

us to consider pairs of words over the alphabet A.

The basic idea behind all this is simple. We merely, given a word over

A , wish to check if it is in our acceptable language L(W), and given a pair

of words in L(W), wish to be able to check with a finite state automaton

whether the words they represent as elements of G either represent the same

element of G, or differ only by the multiplication of a generator. We call the

129

automaton W the word acceptor, the automaton M \ the equality checker,

and the remaining automata Mx the multipliers.

We may assume, by [18], that this is an automatic structure with unique

ness (that is each element of the group has precisely one representative in

the accepted language L), and that all of the automata in our structure are

normalised, that is we have no dead states (states that can never be reached

from the initial state).

The Cayley graph for a group (with respect to a group generating set X)

is a graph where each element of the group is represented by a vertex and

two vertices V\,V2 are joined by an edge from -iq to V2 if V\ = V2X for some

x £ X . We have the notion of the distance between two elements, gi and

#2 , in G, which we define as the length of the shortest path between them

in the Cayley graph, denoted by d(g\,g2)- We can then define the length of

an element g to be 1(g) = d(l,g). For a word w, we let w denote the path

labelled by w in the Cayley graph of G.

The following lemma characterises automatic groups.

L em m a 6.1.2 Let G be a group with monoid generating set A, and W a

finite state automaton over A with the natural map tt : L(W) —> G surjective.

Then G is automatic with automatic structure (A, W) if and only if there

exists a number d such that, for any two words wx and w2 accepted by W

such that W\X represents the same element of G as W2 for some x £ A U {A}

(ie the vertices of the Cayley graph are of distance of no more than 1 apart),

then the paths w{ and W2 are a uniform distance less than d apart in the

Cayley graph.

P ro o f See for example [18]. □

130

6.1.2 T he word problem o f autom atic groups

Let us now consider the word problem of automatic groups.

T heorem 6.1.3 Let G be an automatic group. Then G has word problem

solvable in time 0 (n 2) on a deterministic Turing machine with three work

tapes.

P ro o f We expand on the proof of [18].

Suppose G has an automatic structure (A ,W), which we may assume

is a normalised automatic structure with uniqueness, and with multiplier

automaton Mx for x in A (note that we do not require an equality checker,

since we have an automatic structure with uniqueness).

We will begin by writing a description of all the automata in our auto

matic structure. We use a similar approach to the standard description of

Turing machines to write a description of all these automata on a tape. For

a given group, obviously, this tape is of constant length, and hence does not

affect our complexity considerations. Suppose the length of this tape is D.

We can then give an algorithm purely in terms of the automata in our struc

ture, then using this tape to simulate the methods in the automata when we

consider the complexity of our algorithm. Let C be a bound on the number

of steps required to simulate one move in any of our automata, or write down

a state description. The actual value of C (and, in some sense, a precise defi

nition of what we mean by simulating a move) is of course irrelevant, all that

really matters is that it is some constant value.

Having written the description of the automata, we can now proceed to

the description of our main algorithm. What we wish to do is, given an input

word w, find a word in our accepted language L(W) equivalent in G to u;.

Then, since we have an automatic structure with uniqueness, we merely need

131

to check if this is the word in L(W) representing the identity (which we will

denote by e E A*).

Suppose w = cl\ an. We start by reading in a\ on our input tape.

The aim is to follow a path in Mai, where the first components of our pairs

of words labelling the edges are e$$$....., until we reach an accept state.

Reading the second components of this path as we follow it gives us a word

W\ in L representing eai = a\. We can then repeat this process in Ma2 to

find a word w<i in L with u;2 = W\a^ = a ^ - We continue like this until we

find wn = a \ an = w.

Given this informal idea, it remains to determine exactly how to find this

path in each case. We will use the remaining two worktapes to perform this

procedure, one of which will be used to store the word in question, and one

of which will be used to determine an appropriate path.

Suppose we have a word Wi-i written on the second worktape. We write

on the third tape a sequence of sets of states in Mai that could possibly

be reached if we read in this word. To do this, we start by writing down

the list of all states that can be reached from the start state (that is, those

states that are connected to the start state via an edge with first component

labelled as the first symbol of Wi-1). Note that we only need to include each

state once in the set. Once we have written all possible states, we write the

symbol we are considering (so that we have it for reference later once we have

deleted our old word) and then some marker symbol. We then consider each

of these states, and write down all the states that can then be reached from

these states when reading in the second symbol of Wi-\ (again recording each

state only once), and continue in this vein, until we have read all of iCj-i.

We then continue, writing all the states that can be reached by reading a

$ in the first component, until we reach an accept state, at which point we

132

stop. This procedure must terminate, the reason being that there are no

dead states since the automaton is normalised, and once we have read in

all of the first word and are reading the $ in the first component, then we

can have no more loops (or this loop would represent the identity which we

could follow as many times as we liked and would contradict the uniqueness

of the automatic structure). And hence we are certain to reach an accept

state eventually.

To determine our word, informally all we have to do is work ‘backwards’

through this tape to write the word. However, we have to be slightly careful

in how we go about writing the word to ensure our complexity bounds are

met. There are several ways to do this, and we will give one method here.

We firstly clear the second worktape since we have no further need for the

old word, and move to the start of this tape. We scroll backwards through

the third tape, advancing the head on the second tape every time we pass a

marker symbol indicating the end of the description of a new set of states.

This positions the head on the second worktape at the end of where our word

should be written. We then scroll back to the end of the third worktape,

and work backwards through the states. We find a state that can lead to the

accept state, with the appropriate first component on the corresponding edge

(recall that we noted this first component at the end of our set of states),

and write down the appropriate symbol, and continue in this vein until we

reach the start of both tapes. Note that it does not matter which choice of

‘previous’ state we make - the point is that, considering the i ’th state, no

matter which previous state we choose, we know we can reach the (% — l) ’th

state and there is a path from the this state to the z’th state, and so we can

choose any preceding state we like (as long as it is connected to the current

state, which we of course check). Hence we simply choose the first state we

133

encounter which satisfies our requirements. Finally we simply clear the third

worktape, ready to continue our whole algorithm on the new word.

There are, of course, many other ways of calculating the required word

but this seems to be one of the more efficient ways since it leaves the word

in the correct form on our second worktape, without any need to reverse it

or alter it in any other way.

Given this algorithm, it merely remains to show that it has time complex

ity 0 (n 2). We define N to be a number greater than the number of states in

any of our automata in the automatic structure.

To find Wi from any word Wi-i cannot take more than |ry*_i | + N steps in

an automaton, since we have to read in all of i, and then we can have no

further loops, and hence we can have no more than TV $’s to read before we

reach an accept state. Recall that we defined C a s a bound on the number of

steps in our Turing machine to simulate any one move, where C is a constant.

Here, we wish to simulate up to N N moves at once (since there could be up

to N states in any set of ‘possible’ states, which could have edges to up to N

other states), and write down all the corresponding states. Although this is a

large amount of calculations to consider, the number of steps is still bounded

by a constant value. The precise value of this constant is unimportant so we

choose to omit the technicalities of the calculation, and simply let C' be a

bound for this number of steps. Then, to write the set of ‘possible’ states on

the third worktape takes no more than C'(\wi-\\ + N) + 2 steps (since we

have to write the symbol in question, and the marker symbol).

We then scroll backwards and forward through this tape, then backwards

again, to write the appropriate word, and then forward and backwards again

to clear the tape - it is quite clear that this whole process therefore takes no

more than 6 (C '(|^ _ i | + N) + 2) steps, taking into account the six times we

134

pass along the tape.

Therefore, to find W\ takes no more than 6(C"(1 + N) + 2) steps, finding

w2 takes no more than 6 (C'(\wi\ + N) + 2) < 6 (C ' (1 + 2 N) + 2) steps,

and similarly all of the W{ can be found from w ^ i in no more than than

6(C'(1 + iN) + 2) steps on our Turing machine. At the conclusion of our

algorithm, we test to see if we have the outcome e, in \e\ steps.

Thus the total number of steps to find our equivalent word to w is bounded

by n
\e\ + 'y ̂6 (C ' (1 + iN) + 2)

6 C "iV n(n+ l) 2,
Z=1

= \e\ + 6 (C' + 2)n + ^ — 0 (n2)

as required. □

C oro llary 6.1.4 Let G be an automatic group. Then G has (deterministic)

context-sensitive word problem.

P ro o f The algorithm as given above is entirely context-sensitive, since the

tape storing the state information is of constant length, and the longest

word Wi that we use is bounded in length by 1 + nN , and hence both of the

other worktapes are linearly bounded, as required. Finally, this procedure is

entirely deterministic. □

Note that this result will also follow directly from the results in [54], which

we will discuss later.

An important point to note with regard to this algorithm is that the time

and space bounds are satisfied at the same time.

135

Corollary 6.1.5 The word problem for automatic groups is solvable with

an algorithm working (with three worktapes) in space 0 (n) and time 0 (n2)

simultaneously.

P roof Immediate from the above algorithm. □

We have considered here the word problem. The situation with regard to

the conjugacy problem is still unclear.

Open Q uestion 6.1.6 Is the conjugacy problem for automatic groups solv

able? I f so, what complexity bounds can be put on it?

Note that we are able to say that the conjugacy problem in the (possibly)

smaller class of biautomatic groups is solvable (though the algorithm given

is multiply exponential in space), for a discussion of biautomatic groups and

a proof of this result see [18].

At this point it would be an natural question to ask whether or not

the automatic groups characterise the class of groups with word problem

solvable in time 0 (n 2) on a deterministic Turing machine, and especially

from our point of view, to ask about characterising the class of groups with

context-sensitive word problem. As we will show, the answer to both of these

questions is negative.

6.2 The Heisenberg group

The Heisenberg group is given by the group presentation

H = {a, b,c : abc = ba, ac = ca, be = cb}.

The following lemma is well known.

136

L em m a 6.2.1 The Heisenberg group H is not automatic.

P roof See for example [18]. □

However, as the following result shows, this group has word problem

solvable in time 0 (n2), and hence the automatic groups do not categorise

the class of groups with word problem solvable in time 0 (n2).

L em m a 6 .2 . 2 The Heisenberg group H has word problem solvable in deter

ministic time 0 (n2).

P roof Firstly note that from the relation ba = abc, we can deduce the

following relations:

ba = abc, b~la — ab~1c~1, ba- 1 = a_1&c_1, b~1a~ 1 = a~lb~lc.

Given these relations, it is clear that any word u in the Heisenberg group can

be written in the form u = alWck where

• a1 is equivalent to the word obtained by projecting u onto (a) (that is,

the word obtained by simply writing down each occurrence of a or a - 1

in it),

• & is equivalent to the word obtained by projecting u onto (b),

• ck is equivalent to the word 7 o7 i----7 m, where m is given by \u\b, 7 o is

equivalent to the word obtained by projecting u onto (c), and each 7 f

(for i > 1) is equivalent to the word obtained by projecting the suffix of

it, starting from the i ’th occurrence of 6 ±1, onto (a), and then replacing

each a by c, and each a - 1 by c_1, if the i ’th occurrence of b̂ is 6 , and

replacing each a by c-1, and each a~l by c otherwise.

137

This equivalent form of u is immediately evident when one considers

rearranging u by ‘pushing’ all the b and c to the end of u. Whenever a b±l

‘passes’ an a±l it adds in an extra c±x.

Thus, our algorithm works by first of all writing down on three worktapes

(one for each symbol) the projections onto (a), (b) and (c). For example, to

get the projection onto (a) we simply read through the input word. Every

time we read an a we consider the word on our first worktape, and add an

a to it if the word consists of a ’s so far (or is empty), and remove an a~l if

it consists of a -1’s (since we have cancellation between a and a-1), and of

course similarly when we read an a-1 , and similarly for the other symbols.

This allows us to store efficiently the equivalent word to each projection.

We then return to the start of each tape, and now add in the additional

c±1. To do this, we simply scroll through the input word, and every time we

read a 6 ±1, we mark the position on the word, scroll to the end and add the

appropriate c±x to the third worktape (simply by adding the appropriate c±l

every time we read an a*1, and similarly for a -1), and then return to our

marked position.

At the conclusion of this procedure, we have the appropriate equivalent

form to u written on the three worktapes, and then to solve the word problem

we merely check to see whether or not these tapes are empty.

The number of steps needed for this algorithm is clearly bounded by

n
1 -t- 2 n H- 2 ^ ̂i

i—1

(where the 2 n occurs due to forming the initial projections and returning

to the start of the word, the sum occurs due to considering each suffix and

returning to the marked point, and the 1 is the final step checking if the

tapes are empty). This is obviously a quadratic bound and we are done.

138

Note that this algorithm is entirely deterministic. □

The algorithm as given above is not linearly bounded, since the number

of c that we wish to store may be 0 (n2) which is obviously not linear in

space. However we can easily modify the algorithm to show that the word

problem for the Heisenberg group is indeed deterministic context-sensitive1.

Corollary 6.2.3 The Heisenberg group has deterministic context-sensitive

word problem.

P roof Simply use the above technique, but store the appropriate word on

the third worktape as a binary number representing the power of c that we

are currently working with. □

Of course, the reason that we did not implement this binary method of

storage in the original algorithm, is due to the fact that the computation of

adding or subtracting one to a binary word of length m is of order 0 (m)

(whereas just adding or removing a symbol takes just one step) and so we

no longer have an 0 (n2) algorithm.

6.3 Subgroups of automatic groups

6.3.1 T he word problem of subgroups of autom atic

groups

The Heisenberg group gives an example of a non-automatic group with word

problem solvable in time 0 (n2) and also a non-automatic group with (deter-

Hn fact, the word problem for the Heisenberg group is real-tim e, and we shall comment

on this class of languages later.

139

ministic) context-sensitive word problem. Let us now move on a stage and

ask about subgroups of automatic groups.

Lemma 6.3.1 Suppose G is an automatic group, and H < G. Then the

word problem of H is solvable by a deterministic algorithm operating simul

taneously in space 0 (n) and time 0 (n2), with three worktapes.

P r o o f The class of languages decidable by an deterministic algorithm op

erating in both space 0 (n) and time 0 (n2) with three worktapes is closed

under inverse homomorphism and intersection with regular languages (this is

a simple observation), and hence this result follows directly from Lemma 2.2.6

and Lemma 6.1.5. □

This opens up our field of view somewhat, in lieu of the fact that sub

groups of automatic groups need not themselves be automatic. It has been

an open question as to whether or not subgroups of automatic groups may

provide the classification of groups with context-sensitive word problem that

we seek. We will proceed to eliminate this possibility.

6.3.2 Sm all cancellation theory

The idea of small cancellation theory will play an important part in our

approach. We start with a free group F , which has group generating set

X = { x i , £m}. Let R be a subset of F , that is a set of words over

X U X ~ l . Suppose R satisfies the following conditions.

• Every element of R is cyclically reduced,

• For every u in R , u~l also lies in R ,

• For every u in R , every cyclic permutation of u also lies in R.

140

Such an R is said to be symmetrised.

Suppose that U\ = st\ and u2 = st2 are distinct elements of R. Then s

is said to be a piece (relative to R). Note that since s is cancelled in the

product ui~ 1u2, and R is symmetrised, a piece is simply a subword of an

element of R which is cancelled in the product of two (non-inverse) elements

of R. The fundamental idea of small cancellation theory is that pieces are

small parts of elements of R. Formally, we define this as follows.

Definition 6.3.2 Suppose R is a symmetrised subset of a free group F as

above. Then R satisfies the small cancellation condition C'(r) if, for any

u = st in R where s is a piece, we have |s| < t \u \.

We will be particularly interested in groups given by a presentation G =

(X : R) where R satisfies C'(^), which are known as sixth-groups.

6.3.3 Som e prelim inary lem m as

Let us set up the necessary preliminary lemmas for our result, from which

our final conclusion will follow easily.

Suppose T is a class of proper complexity functions. We use the nota

tion NSPACE(^r) and DSPACE(^r) to denote complexity classes, where

a language L lies in NSPACE(^r) if and only if L lies in NSPA CE(/(n))

for some f (n) G T . We will assume that T satisfies the following condition.

Condition 6.3.3 T is a class of complexity functions satisfying the proper

ties that

• /(^) > cn (some constant c) for every f(n) G T ,

• if f (n) € F) then g(n) G T , where g(n) = /(2n).

141

For example, the class of non-constant polynomial functions satisfies this

condition, as does the class of linear functions f(n) = C\n + c2 (ci,c2 con

stants).

L em m a 6.3.4 Let £ = {a \, ,ar} be a finite alphabet, and suppose that 6

is a permutation of'L such that 92 = 1 . For a word u = a^ aim, we define,

in the natural way, 6 (u) = 0(ai).... 9(am). Suppose further that K C £*

where K € N S P A C E (F) , for some class of functions satisfying Condi

tion 6.3.3. Then defining S to be the set of rewrite rules

S = {a9(a) —»■ A, 0(a)a —> A : a G £} U {u —>• 9(v) : uv G K, |w| > |v|},

we have that

L = { a e Z * :a A A} G N S P A C E (T) .

P ro o f Take some word u € £*. If u G L then some sequence of reductions

leads to the empty word. Hence, we begin with u and our non-deterministic

algorithm works as follows. At each stage, we choose some reduction to make

- we either remove a substring of the form a9(a) or 9(a)a, or we perform the

following:

• Choose some subword a of u ,

• Choose some word ft with \fi\ < |a |,

• Verify that the word a/3 G K ,

• Replace a by 9((3).

We continue performing reductions until we either reduce to the empty

word, or there are no more possible reductions to be made. Note that this

algorithm is clearly terminating since every reduction strictly reduces the

142

length of the word and hence the number of possible steps is bounded by

the length of the original word. Also note that there only a finite number

of choices at any point, since there are a finite number of subwords of any

word, and a finite number of possible words of length strictly less than a

given word.

It is clear from the definition that if u G L then some sequence of choices

leads to the empty word, and hence we accept u, and if u L then no such

sequence of choices leads to the empty word and we reject u. Hence this

algorithm certainly decides L. It remains to consider the space bounds of

this algorithm.

Now, K G NSPACE(^r), and so K is decidable in non-deterministic

space f(n) for some f(n) G T . Since clearly \a/3\ < 2\n\ (a has length

at most n and \{3\ < |a |) then verifying membership of K can be done in

space at most f(2n) G T . Every possible rewrite strictly reduces the length

of the word, and so it is clear that we can perform any rewrite in linear

space. Choosing a subword and some shorter word can also obviously be

done in linear space. Hence, since T satisfies Condition 6.3.3, and therefore

contains no sublinear functions, it is immediate that L lies in NSPACE(^7)

as required. □

This result concerns non-deterministic languages. In fact, with a con

dition on the rewrite rules, we can prove a similar result for deterministic

languages, which will enable us to produce a stronger final result.

Corollary 6.3.5 Suppose we have the situation in Lemma 6.3.4, but suppose

that K G D S P A C E (T) , and the set of rewrite rules S is confluent on L.

Then L G D S P A C E { T) .

P roof The basis of the algorithm is as before, but we need to make it deter

143

ministic. The crucial point to notice is that since our rewriting system is con

fluent on L, and clearly terminates, we have a confluent strongly-normalising

system on L and hence every word has the unique normal form A. Thus if a

word reduces to the empty word under some choice of sequences of rewrites,

it does under every possible sequence of rewrites. The system need not be

confluent on words not in L - the point being that a word not in L must

rewrite to some normal form (since the algorithm is terminating) that can

not be the empty word (or it would lie in L), and since all words in L have

the unique normal form A, once we reach some non-empty normal form then

we know that the word cannot lie in L.

Hence we can use some deterministic procedure to choose which rewrite

to perform at each stage on a word u. Thus our algorithm works as follows.

At each stage, we remove all substrings of the form a6 (a) or 0(a)a, and then:

• Consider every possible subword a of u in turn,

• For each subword, consider every possible word p with \(3\ < |a |,

• If we find a , ft such that a(3 E K , replace a by Q(/3) and start the

algorithm again.

So this algorithm allows us to continue performing deterministic rewrites

until we terminate either with the empty word (in which case u E L), or with

some non-empty word (in which case u £ L), so it clearly recognises L. Also,

exactly as above, it is clear that L lies in DSPACE(^r). □

The crux behind our construction will be small cancellation theory. Sup

pose, as usual, we have a free group F with generating set X , and we have

R as a symmetrised subset of F. For u a word of F, we use the notation

u > cR to mean that there is some r E R with r = uv and \u\ > c\r\.

144

The following well-known result is of fundamental importance.

T heorem 6.3.6 (G reend linger) Let F be a free group with generating set

X , and R a symmetrised subset of F, and suppose G = F /N where N is

the normal closure of R in F. Let u G N be a non-trivial, cyclically reduced

word, and suppose R satisfies C"(|). Then either

• u G R,

or some cyclic permutation of u contains one of the following:

• two disjoint subwords, each > | R,

• three disjoint subwords, each > | R,

• four disjoint subwords, two > |R and two > \R ,

• five disjoint subwords, four > \R and one > | R,

• six disjoint subwords, each > ^ R .

P ro o f See [37]. □

This has the following corollary, convenient for our purposes here.

C oro llary 6.3.7 We take F, R and N as above, with R satisfying

Suppose u G N . Then we can reduce u to X with a finite sequence of steps of

the form

• removing a substring of the form x~lx or xx~ l ,

• replacing a substring a by (3~l where |/?| < |a | and af3 G R.

145

P roof Take u G N. We can assume that u is cyclically reduced. Hence, from

Greendlinger’s Theorem, we either have u G R (in which case we replace u by

A as an application of the third rule and we are done), or u contains more than

half of a relator in R (this follows from each of the cases in Greendlinger’s

Theorem, since there are at least two disjoint subwords in every case, then

even without any cyclic permutation of the word, there must exist at least

one suitable subword in our word), in which case we again apply the third

rule. This reduced word still lies in N (since it still represents the same

element of the group, namely the identity) and is strictly shorter than u, and

hence proceeding inductively we must eventually terminate with A.

It is clear that this algorithm need take only a finite number of steps since

it is length-reducing. □

Now, suppose that we have an alphabet X = { ^ i, , x^} (in fact, we can

take k = 2 , but we consider general k for ease of construction) and suppose

L C X * , where L G DSPACE(^r), for some T satisfying Condition 6.3.3.

Let A = { ^ i, ,Xk,CL\, ,^ 1 2}, and define R' = {a ia a 12a : a G L}.

Then we may define R to be the set of cyclically reduced words formed from

R' by taking closure under inverses and cyclic permutations. Let E = AuA-1.

Then we may define a permutation 0 : E —» E where 9 sends each symbol to

its corresponding inverse symbol. Obviously, 6 2 = 1 .

L em m a 6.3.8 R is symmetrised and satisfies C"(|).

P roof It is clear from the definition that R is symmetrised. Note that a

maximal piece p of R is of the form j3oi7 or where 1 < i < 1 2 ,

is a suffix to a word a in L and 7 a prefix to the same a. Hence for any

piece p, we certainly have |p| < 1 + 2 |a |.

146

So, suppose a piece p occurs in a cyclic permutation of a word u =

a \a ai2a, or its inverse. Then we have

\p\ < l + 2|a|

= i(6 + 12|a|)
< | (1 2 + 12|a|)

= J (N) .

Hence any piece of R is of length strictly less than a sixth of any word of

which it is a part, and hence R satisfies C'Q) as required. □

Now consider the group G = (A \ R), and let W be the word problem of

this group.

Lemma 6.3.9 W G D S P A C E (T) .

P ro o f By Corollary 6.3.7, a word in W can be reduced to the empty word by

a sequence of rewrites either of the form xx~ l —>■ A, x~lx —> A, or a —>• f3~l

where \f}\ < |o| and a {3 G R. But these rewrites are precisely the rewrites

in Lemma 6.3.4 and Corollary 6.3.5 (note that since R is symmetrised the

rewrite rules specified there are sufficient) and hence W is equivalent to the

language L defined therein. The only issue we need to resolve is the question

of whether these rewrite rules are confluent on W. But this is a simple matter

of induction. There are no rewrites to perform on the empty word, and so

our base step is trivial. Take some word u G W . Whichever rewrite we

choose, we either remove a word equivalent to the identity, or replace a word

by a shorter word representing the same element of the group. And hence

our reduced word v! represents the same element of the group and therefore

lies in W . By induction, v! has a unique normal form A, and hence whichever

147

sequence of choices of rewrites we make on u , we always terminate with A

and thus our rewrite system is confluent on W . Hence, by Corollary 6.3.5,

we immediately deduce that W G DSPACE(^r) as required. □

Lemma 6.3.10 I f u is some word over A, then

u e L o- a iu a\2u G W.

P roof Suppose firstly that u G L. Then by the definition of R , we have

a iu di2u G R C W . Conversely, suppose v = d\U ai2u G W . From

Corollary 6.3.7, we note again that we can reduce any word in W to the empty

word by a sequence of moves whereby we either remove trivial substrings like

xx~ l and x~lx to freely reduce v, or we replace a substring a by /3_1, where

|/31 < |a | and a {3 G R. The important point to notice is that when we

perform a replacement like this, |a | > !|a;/3|. And hence, if v is reduced,

then it must contain at least half of some element of R , which immediately

forces u G L. □

Corollary 6.3.11 Suppose there is an algorithm to decide membership o fW

in time/space bound g{n). Then there is an algorithm to decide membership

of L in time/space bound g(l2n + 1 2).

P roof This follows immediately from the previous result, since to check

whether or not a word u of length n lies in L, we simply test the word

aiu....ai2W for membership of W , and this word is of length 1 2 n + 1 2 . □

6.3.4 T he m ain theorem

Having set up these preliminary lemmas, we can now proceed towards the

main result. We wish to produce a suitable language L.

148

We begin with a simple observation.

L em m a 6.3.12 Suppose s(n) and t(n) are proper complexity functions and

t(n) satisfies the condition that i n t ^ o o ^ = oo. Suppose that there exists a

language L, decidable on a deterministic multitape Turing machine M\ with

k worktapes, operating in space s(n) and time t(n). Then for any constants

C\ and C2 (with Ci,C2 > 0), there exists a deterministic multitape Turing

machine M 2 with k worktapes to decide L, working in space cis(n) and time

c2t(n).

P ro o f (Sketch). This is essentially the standard tape compression theorem,

as given in for example [31], where we encode m symbols of Mi into one. We

merely need to note that this technique compresses both the time and space

required, and hence choosing m sufficiently large enough will allow us to

satisfy both bounds. □

Hence, in particular, if we have a Turing machine that decides a language

in space 0 (n) and time 0 (n 2), then there exists a Turing machine that

decides the same language in space n and time n2. With this in mind, let us

define a language L to be the set of words {M \x }, where M is the standard

description of a deterministic Turing machine, with at most three worktapes,

accepting x in space n and time n2.

L em m a 6.3.13 L is a deterministic context-sensitive language.

P ro o f We will demonstrate a deterministic Turing machine with linear space

bound to decide L. Suppose we are given an input M; x where M is written

in the standard description. We firstly of course check that M is indeed the

description of a Turing machine with at most three worktapes. Assuming

this, the idea is that we wish to add an extra tape to M which effectively

149

acts as an ‘alarm clock’. Given input x of length n, this tape starts by writing

n2 in binary on this extra tape, and decrements this value by one every time a

move is performed on the remaining worktapes. The idea of this tape is that

if it reaches 0 without us having accepted x , then we have used n2 steps in M

and hence it cannot possibly accept x in the required bounds. The language

accepted by this Turing machine is clearly the same as the language accepted

by M. Also note that the length of this tape never exceeds 21ogn, which is

still a linear bound.

So we will construct a Turing machine with five worktapes to decide L.

This machine begins by reading in M; x and then writing on its first worktape

the standard description of the Turing machine M ' obtained by adding the

extra ‘alarm clock’ tape to M. Suppose M has an alphabet A of size \A\,

which we assume does not contain the symbols 0 and 1 used for the binary

arithmetic. Then the alphabet of M ' has size \A\ + 2 , which when written

in binary is clearly of length no greater than log|A| + 1 < 21og|A|. This

is a bound on the length of the encoding of each symbol in M'. It is well

known that binary arithmetic can be performed using a fixed, finite number

of states, say B , and hence the number of states increases only by B , and so

the length of the encoding of a state certainly increases by no more than a

factor of B.

Each description of a transition in M' consists of a transition in M with

an extra symbol added to represent the symbol on the extra worktape (and

so could at most double the number of symbols read), and so, since the

length of the encoding of the symbols is at most doubled, and the length of

the encoding of the states is at most multiplied by B , then the length of a

transition is increased by at most 4B. Thus, given a Turing machine with

standard description of length rii, we can write the standard description of

150

the Turing machine obtained by adding an alarm clock tape in length no

greater than ABrii + Z n i where Z is the length of the usual encoding of

binary arithmetic (the factor of ri\ comes from a very crude upper bound on

the length of a symbol or state). Clearly this is a linear bound in n i, and

hence if we have an input M; x of length n , we certainly can write this new

Turing machine in space linear in n.

Having got this far our algorithm is simple to describe. We write this

description of our new Turing machine M 1 on the first tape. It is then a

simple matter to simulate the running of M ' on x on the four remaining

worktapes (clearly M' has at most four worktapes). If this simulation rejects

x, or exceeds space |x|, or the alarm clock runs out, then we reject M; x, else

otherwise we accept it.

It is clear that this Turing machine decides L. Finally note that the

description of M ' is linear in n as we have shown, and the simulation of M '

uses space no greater than |x| < n, and so this is certainly a context-sensitive

procedure. □

L em m a 6.3.14 There is no deterministic Turing machine with at most three

worktapes to decide L in space 0 (n) and time 0 (n 2).

P ro o f Suppose, on the contrary, that there exists such a machine. From

Lemma 6.3.12, it follows that there exists a deterministic Turing machine M l
2

deciding L, working in space | and time with at most three worktapes.

Let us define a diagonalising machine D as follows. D takes as input a

string M purporting to represent a Turing machine, and accepts M if ML

rejects M; M, and rejects M if ML accepts M; M. Suppose we have an input

M of length n. Then D simply simulates the running of ML on M; M, which

is of length no greater than 3n (we assume that M is non-empty as we can

151

immediately reject an empty input). Hence D runs in space no greater than

= n and time no greater than = n2, and also has no more than three

worktapes.

Consider the computation of D given input D. D clearly terminates on

all inputs. Suppose D accepts D. Then, by definition, M l rejects D\ D and

hence D ;D £ L. Hence, by the definition of L, and since D has at most

three worktapes, D does not accept itself in space n and time n2. But D

certainly runs within these bounds and always terminates, and hence since

it does not accept itself, it must reject itself, that is D rejects D and we have

a contradiction.

Similarly, suppose that D rejects D. Then we have that D ,D 6 L. Thus,

by definition, D accepts D and hence cannot ever reject D , and again we

have a contradiction.

Hence our original assumption that M l exists must have been false, and

hence there is no deterministic machine with at most three worktapes to

decide L in space 0 (n) and time 0 (n 2), as required. □

Putting these two results together we have the following immediate corol

lary.

C oro llary 6.3.15 There exists a deterministic context-sensitive language L

which cannot be decided on a deterministic Turing machine with at most

three worktapes, operating in space 0 (n) and time 0 (n 2).

P ro o f The language L above satisfies precisely these conditions. □

Finally we can put everything together to produce our result. We take

T to be the class of linear functions /(n) = cin + C2 , so that D SPA CE(^r)

is simply D SPA C E(n), the complexity class containing the deterministic

152

context-sensitive languages.

T heorem 6.3.16 There exists a finitely-generated group G with determin

istic context-sensitive word problem which is not a subgroup of an automatic

group.

P ro o f We simply take our language L of Corollary 6.3.15 (which is a de

terministic context-sensitive language and therefore lies in DSPA CE(n) by

definition) and form the group G = (A : R) as above. By Lemma 6.3.9 the

word problem W of G lies in D SPA C E(n). Suppose that there exists an al

gorithm to decide W in space 0 (n) and time 0 (n 2). Then by Corollary 6.3.11

we have L decidable by an algorithm operating in space 0{l2 n + 12) = 0(n)

and time 0((12n + 12)2) = 0 (n 2), contradicting the definition of L. Hence

G has deterministic context-sensitive word problem, but does not have word

problem solvable simultaneously in time 0 (n2) and space 0 (n) on a deter

ministic Turing machine with three worktapes, and so cannot be a subgroup

of an automatic group by Corollary 6.3.1. □

We have shown that there exists a group with (deterministic) context-

sensitive word problem which is not a subgroup of an automatic group. The

group constructed is infinitely presented, since we have an infinite set of

relations. This leads to the obvious question of whether we can produce a

finitely presented group with context-sensitive word problem which is not a

subgroup of an automatic group, and we conjecture the following (which we

note is certainly true if Conjecture 5.2.2 is true).

C o n jec tu re 6.3.17 There exists a finitely presented group with (determin

istic) context-sensitive word problem which is not a subgroup of an automatic

group.

153

6.4 Further issues

Let us finally consider a couple of other issues related to this result and the

technique we have used.

6.4.1 R eal-tim e and context-sensitive word problems

A real-time Turing machine is one which reads in a word from left to right,

and makes only a bounded number of steps for each input symbol read.

Groups with real-time word problem are the subject of much current inves

tigation, for example it is known that word-hyperbolic groups have real-time

word problem, see [28]. Clearly, any group with real-time word problem has

linear time word problem, and hence must be context-sensitive.

The converse of this question was posed by Claas Roever (personal com

munication), that is, is it possible to have a group with context-sensitive

word problem that does not have real-time word problem? The construction

we have allows us to answer this question.

T heorem 6.4.1 There is a group with deterministic context-sensitive word

problem, which does not have real-time word problem.

P ro o f By the results of [51], there exists a deterministic context-sensitive

language which is not real-time. Embed this into a group exactly as in the

proof of Theorem 6.3.16. □

6.4.2 G eneralising the technique

The technique we used in the proof of this main result could be generalised

somewhat. We were particularly interested in groups which have a context-

sensitive word problem but not a quadratic-time word problem. We can

154

easily extend this to a much more general result regarding word problems of

groups. Let us take any proper class of complexity functions T satisfying

Condition 6.3.3. First of all note that our procedure was entirely determin

istic (we used Corollary 6.3.5 to show this).

Now, suppose Q is any class of proper complexity functions, where for

some g{n) E Q, g(n) = 0 (2^n)) for every f (n) E T . This bound is necessary

so that we can apply the ‘alarm clock’ technique of Lemma 6.3.13, where we

need to write g(n) in binary.

Then it is clear that the procedure we followed to prove the main theorem,

will also work with these complexity bounds, giving us the following result.

T heo rem 6.4.2 Suppose that T is a class of proper complexity functions

satisfying Condition 6.3.3, and that Q is a class of proper complexity func

tions, where for some g(n) E Q, g{n) = 0(2-^”)) for every f (n) E T . Then

there exists a group with word problem solvable in D S P A C E (F) , but not

solvable in D T IM E (Q) on any given number of worktapes.

P ro o f Similarly to the proof of Theorem 6.3.16. □

Note that this includes classes Q with Q ‘smaller’ than T , this is obvious

when one considers that the functions in T are merely an upper bound.

As a specific instance of Theorem 6.4.2, this provides us with a series

of groups with deterministic context-sensitive word problem, but with word

problem unsolvable in deterministic time 0 (nk), any any given number of

tapes, for any given k.

We can also extend the result in another way. Suppose L is a language

decidable in D S P A C E ^) , but not decidable in D SPA C E(£), where T

satisfies Condition 6.3.3. We can follow the proof of Theorem 6.3.16 to

construct a group with word problem solvable in D SPA C E(^r). Then, from

155

Lemma 6.3.11, this group cannot have word problem lying in DSPA CE (Q),

otherwise L would be decidable in this space bound too. Hence we have the

following.

Theorem 6.4.3 Suppose there exists a language decidable in D S P A C E (T) ,

but not decidable in D S P A C E (g) , where F satisfies Condition 6.3.3. Then

there exists a group with word problem contained in D S P A C E (T) , but not

decidable in DSPACE{Q), on this fixed number of worktapes.

P roof Construct a group exactly as in the proof of Theorem 6.3.16. □

Since there is a ‘hierarchy’ of space complexity classes, we have a similar

‘hierarchy’ of groups. In particular, it is well-known that DSPACE(n2)

strictly contains DSPACE(n), and hence there exists a language decidable

in deterministic quadratic space, but not in deterministic linear space. This

allows us to deduce the following obvious corollary.

Corollary 6.4.4 There exists a group with solvable word problem which does

not have deterministic context-sensitive word problem.

P roof Take any language L contained in DSPACE(n2), but not contained

in DSPACE(n), and construct a group exactly as in the proof of Theo

rem 6.3.16. □

Of course, we can combine these two ‘extensions’ together to produce a

whole series of groups with word problem solvable in some space bound, but

not solvable in some other time/space bound, which illustrates the power of

our technique.

156

Chapter 7

The reduced and irreducible

word problem

In this thesis, we have considered the word and conjugacy problems in detail,

and we have also touched upon the generalised word problem. Of course,

there are many decision problems that it is possible to consider in a group.

As an example, let us look at the reduced and irreducible word problems.

7.1 Reduced and irreducible word problems

The reduced and irreducible word problems were introduced in [24], and

discussed at length in [48].

Suppose G = {X), and let W x { G), as usual, denote the word problem of

G with respect to X . Then the reduced word problem R x (G) is defined to

be the set of non-empty words a in W x (G) such that no proper prefix of a

lies in W x (G) . Similarly, we define the irreducible word problem I x { G) to

be the set of non-empty words a in W x (G) such that no proper subword of

a lies in W x { G) .

157

We need the idea of insertion closure as discussed in [32]. For words a

and P we let

a <— (3 = {u(3v : a = uv},

denote the set of possible ‘insertions’ of ft into a. For languages Li and L2

we define L\ L2 in the obvious fashion, namely

L\ 4— L2 = —̂ /? : O' € L\, P G L 2} .

Then for a language L we may naturally define

L\ — Li L2 — L i— L, Z/3 — (L i— I p 4— L ,....

and define the insertion closure of L to be

I (L) = L x U L 2 U L 3 U

We have the following result, which was proved in [48], but we give for

completeness.

L em m a 7.1.1 Let G — (X). Then,

(a) W x (G) = R x (G) * where L* represents the Kleene star of L,

(b) W x (G) = I (I x (G)) where I (L) represents the insertion closure of L.

P roof It is clear that any word in R x (G)* represents the identity since it

is merely a concatenation of words representing the identity, and hence we

have R x { G) * C W x (G) . In the opposite direction, we proceed by induction.

Any word of length 1 in W x { G) must lie in R x (G) since it has no proper

prefixes, and hence we have our initial step. Let a be a word in W x (G) of

length n. If a has no proper prefix representing the identity then it lies in

R x { G) C R x { G) * , and we are done. Otherwise it has some proper prefix

representing the identity, which we denote by p. Then we can write a = P j

158

where both (3 and 7 represent the identity (since 7 = (3~la). Both ft and 7

have length shorter than n and hence by induction lie in R X (G)*, and hence

so does a as their concatenation. Therefore WX (G) C R X (G)* and so we

have WX (G) = RX (G)* as required.

The second part is similar. It is clear that I (I X (G)) C W X (G) since all

we do is insert elements representing the identity into words representing the

identity, so we clearly always remain with a word representing the identity.

In the other direction, again we proceed by induction, and the initial case

is again trivial. Given some word a of length n in W X (G) then either it

does not contain a proper subword equivalent to the identity, in which case

it lies in I (I X (G)) immediately, or it does contain a proper subword 7 such

that a = {3j5 and 7 G W X (G). Then the word (35 is still in W X (G), since

all we have done is remove a substring representing the identity from a,

and has length less than n. Hence, by induction, f3S G I (I X (G)) and hence

a G I (I X (G)) as it is formed as the insertion of 7 G W X {G) into a string in

I { I x { G)) . Thus WX (G) C I (I X (G)) and hence we have W X {G) = / (/ * (< ?))

as required. □

We then have the following lemma.

L em m a 7.1.2 Let G be a group generated by a finite set X . Then the fol

lowing are equivalent:

(a) G has (deterministic) context-sensitive word problem with respect to

X ,

(b) G has (deterministic) context-sensitive reduced word problem with re

spect to X ,

(c) G has (deterministic) context-sensitive irreducible word problem with

respect to X .

159

P ro o f Suppose G has (deterministic) context-sensitive word problem. Let

u be some word over X . Let us consider the reduced word problem. Firstly,

of course, we test that u does indeed represent the identity, using the (de

terministic) context-sensitive algorithm for the word problem for G. If it

does not, then it certainly cannot lie in the reduced word problem and we

reject it immediately. If it does, then we then simply test all possible proper

prefixes of u. If any of them are equivalent to the identity, then we reject

u. Otherwise, if we have tested all possible proper prefixes without finding

one equivalent to the identity, then we accept u. The algorithm for the irre

ducible word problem is entirely similar, but instead of testing every proper

prefix we test every possible subword.

These two algorithms are clearly (deterministic) context-sensitive proce

dures and so we have shown (a) =>• (b) and (a) (c).

Conversely, suppose G has (deterministic) context-sensitive reduced word

problem, and we are given a word u over X . From Lemma 7.1.1, we have

that W x (G) — R x (G) * . So if u represents the identity, then some prefix of

u (including possibly u itself) must lie in R x { G) . So we simply test each

prefix, in turn, with our (deterministic) context-sensitive algorithm for the

reduced word problem to see if they lie in R x { G) . If we find no prefix in

R x (G) , then we reject the word. If we find a prefix in R x (G) , then we delete

this prefix and start our algorithm again on this shorter word. We must

eventually terminate either with rejection, or by reducing u to the empty

word, in which case we accept u.

The algorithm for the word problem, when we know we have a (deter

ministic) context-sensitive irreducible word problem is similar, noting that

W x { G) is the insertion closure of the irreducible word problem I x { G) . We

simply search through all possible subwords and delete a subword if we find

160

one in I x { G) , and continue our algorithm on this shorter word. If we cannot

find one then it cannot lie in the insertion closure of I x (G) and we must

reject the word, and we accept the word if we eventually terminate with the

empty word.

Again these algorithms are clearly (deterministic) context-sensitive and

thus this proves (b) =>> (a) and (c) => (a), and shows the equivalence of the

three conditions. □

In the above, we were careful to specify a particular generating set, since

we needed this to be able to use the results of Lemma 7.1.1. However,

this result allows us to deduce that the property of having a (deterministic)

context-sensitive reduced or irreducible word problem is independent of the

choice of generating set.

C oro llary 7.1.3 Suppose G = {X) = (Y). Then,

• if G has (deterministic) context-sensitive reduced word problem with

respect to X , then G also has (deterministic) context-sensitive reduced

word problem with respect to Y .

• if G has (deterministic) context-sensitive irreducible word problem with

respect to X , then G also has (deterministic) context-sensitive irre

ducible word problem with respect to Y .

P ro o f Suppose G has (deterministic) context-sensitive reduced word prob

lem with respect to X . Then, by Lemma 7.1.2, G has (deterministic) context-

sensitive word problem with respect to X , and thus, by Lemma 2 .2 .2 , G has

(deterministic) context-sensitive word problem with respect to Y . Hence,

again using Lemma 7.1.2, G has (deterministic) context-sensitive reduced

word problem with respect to Y.

161

The situation with regard to the irreducible word problem is proved sim

ilarly. □

Hence we are able to talk about the reduced word problem, or irre

ducible word problem, being (deterministic) context-sensitive, without wor

rying about the generating set being taken. Note, however, that this proof

does require Lemma 7.1.2, which requires linear space, and hence we cannot

deduce a similar result for arbitrary languages closed under inverse homo

morphism.

7.2 Other decision problems

We have considered, in the above, the reduced and irreducible word problems

as examples of problems that we had not considered as the ‘main’ problems

that occupy the majority of the thesis, and we were able to show some in

teresting results. We will now make some very brief comments about some

other well-known decision problems, which if nothing else, perhaps show why

we have focussed on the problems that we have!

The power problem for a group presentation is the problem of determining,

for two words u and v, whether or not u is a power of v (including the

O’th power, where v° = 1 for all v). However, this is really just another

formulation of the generalised word problem for cyclic subgroups, and so

this problem is equivalent to one of the problems which we considered as our

‘main’ problems.

There are also other sorts of decision problems. A closely related problem

to the power problem is the order problem. Given a presentation of a group

G , this is the problem of computing ord(iy), where for a given word w we

define ord(w) to be the order of w if w has finite order, or 0 otherwise.

162

This is a different type of decision problem to those that we have previously

considered, since we are actually trying to compute the value of a function

rather than a straightforward yes/no algorithm. Because of this, it is more

difficult to have a context-sensitive algorithm, since unless our answer is

linearly bounded in terms of the original word, of course it cannot be a

context-sensitive procedure (somewhat similarly to our idea of an effective

generalised word problem). For many problems like this, having to impose

strong conditions to ensure such a bound exists, makes the value of detailed

study rather prohibitive.

One could also ask questions about presentations of groups, not just the

groups themselves. For example, one could consider the question of whether a

given presentation represents the trivial group, or the isomorphism problem,

the question of whether two presentations represent the same group. How

ever, it seems unlikely that these sort of questions are really of any interest

with regard to context-sensitive algorithms.

There are a huge number of questions that could be asked about a group

and, of course, many of these would be potentially interesting with regard

to context-sensitive algorithms. However, the number of possible questions

is virtually limitless, and it is quite clear that the decision problems we have

considered in this thesis seem to be the most important ones to ask.

163

Chapter 8

Groups with context-sensitive

decision problems

As a final issue, it seems sensible to give a collection of classes of groups that

have (deterministic) context-sensitive decision problems. From the results

obtained earlier in the thesis, we can then combine these groups together, or

extend them, in a variety of ways to create further groups with (deterministic)

context-sensitive decision problems.

8.1 Some groups with context-sensitive deci

sion problems

In this section we are interested in producing a comprehensive list of appro

priate groups, and make no special effort to precisely define the groups given.

Readers interested in a particular group should consult the appropriate ref

erence. Note, also, that there exist overlaps between the classes of groups

discussed, but again we are interested in compiling an extensive list of groups

to be of interest to a wide range of mathematical interests and we feel that it

164

is worthwhile incorporating groups if they are of special interest even if they

are a subset of (or closely connected to) another set of groups in our list. We

concentrate mainly on the word problem.

Firstly, we make the observation that we showed in Theorem 4.2.1 that

if H is a subgroup of finite index of a group G , then G has (deterministic)

context-sensitive word problem if and only if H has (deterministic) context-

sensitive word problem. Given a group-theoretic property P , a group G is

said to be virtually P if it has a subgroup of finite index with property P.

So, for example, G is a virtually abelian group if it has an abelian subgroup

H , of finite index in G.

Given this, for any of our groups given below defined by a particular

property P (for example the free groups) we can also deduce that the virtually

P groups (for example the virtually free groups) also have (deterministic)

context-sensitive word problem1.

Therefore, to avoid tedious repetition in our list of groups, we state here

that this property holds and omit the word ‘virtually’ in our lists.

In addition, we know from Lemma 2.2.6 that if G has (deterministic)

context-sensitive word problem, then so do all of its subgroups. Therefore,

we can also add to our collection, any subgroups of the listed groups. Hence,

again, to avoid tedious repetition, we omit the words ‘subgroups of’ from our

list.

8.1.1 Linear groups

A group is said to be linear if it is isomorphic to a group of matrices over

some field. In [35] the following crucial result is proved.

*Of course, this does not hold for the conjugacy problem

165

Theorem 8.1.1 The word problem for a finitely generated linear group over

a field of characteristic zero is solvable in logspace.

This result was extended in [55] to groups of matrices over an arbitrary

field.

Since, obviously, the class of groups with deterministic context-sensitive

word problem contains the class of groups with word problem solvable in

logspace then any group which we can exhibit as linear immediately has

deterministic context-sensitive word problem.

Some examples of classes of groups known to be linear include :

• Matrix groups (obviously!),

• Free groups,

• Polycyclic groups,

• Metabelian groups,

• Abelian groups such that the maximal periodic normal subgroup has

finite rank,

• Torsion-free nilpotent groups,

• Many groups from Lie algebra theory,

• Many automorphism groups, in particular the automorphism groups of

certain abelian and soluble groups,

• The Baumslag-Solitar groups £?(1, q), B(p, 1), or B(p,p).

References for the above results can be found in [5], [18], [35], [50], and

[61]. In particular, [61] provides an excellent survey of some of the automor

phism groups that arise.

166

It is worth making the comment that not all groups with word problem

solvable in logspace are linear. A group G is said to be residually finite if,

for every non-trivial element g G G, there exists a homomorphism </> from G

into a finite group K , such that <j>(g) ^ 1. It is known that linear groups are

residually finite. In [60], the group

(a, 6 , c : b~lab = a2, c_1ac = a2)

is shown to have word problem solvable in logspace.

However, it is also shown that this group is not residually finite, and

therefore not linear. Hence this gives a non-linear group with word problem

solvable in logspace. We also note for reference that this group gives us the

following lemma.

Lem m a 8.1.2 There exists a group with deterministic context-sensitive word

problem which is not residually finite.

8.1.2 A utom atic groups

In Theorem 6.1.3, we demonstrated that automatic groups have deterministic

context-sensitive word problem. So let us give some examples of automatic

groups as another list of groups with deterministic context-sensitive word

problem.

• Finite groups,

• Biautomatic groups,

• Euclidean groups,

• Braid groups,

167

• Negatively curved groups,

• Geometrically finite groups,

• Hyperbolic groups,

• Coxeter groups,

• Lattices in the Lie groups SO (n, 1),

• Artin groups associated with the finite Coxeter groups,

• Mapping class groups of finite (punctured) surfaces,

• The fundamental group of a geometrically finite hyperbolic group,

• Fundamental groups of compact manifolds with negative curvature,

• Aut(F2),

• Amalgamated free products of finitely generated abelian groups,

• Amalgamated free products of negatively curved subgroups with a

cyclic amalgamated subgroups,

• Amalgamated free products of finitely generated free groups with a

finitely generated amalgamated subgroups,

• Certain small cancellation groups,

• Certain Fibonnacci groups,

• Fundamental groups of thick doodles,

• An extension of F2 by Z which is not virtually a direct product,

168

• Torsion-free groups admitting a discrete cocompact action on a locally

finite building of specified types.

For proofs that these classes of groups are automatic see [5], [6], [9], [11],

[18], [19], and [20].

8.1.3 Combable groups

As another example, we discuss briefly the issue of combings in groups.

Let G be a group with generating set A, and suppose that L is a language

over A such that the natural homorphism <f : L —> G is surjective, in which

case we call L a normal form for G. As before, we define the length of an

element g E G to be 1(g) = d(l,g) (recall our definition of distance of words

via the Cayley graph).

Then we say that L is an asynchronous combing for G if there exists

K G K such that for all u ,v G L with d(</)(u), </>(v)) < 1 we can find monotone

reparametrisations of [0 , oo)

'ipi ; 11—y t1, ip2 • t 1—̂ ^

such that for all t , we have that d(u(t'), v(t")) < K . The informal idea is

that the paths of u and v in some sense stay ‘close’ to each other. Let us

also define a language L to be short if there exist /z, e satisfying

w e L => l(w) < nl(<j)(w)) + e.

Also, we define a function D to be a departure function for L if, for any word

u, we have l((j)(v)) > n for l(v) > D (n), where v is any subword of u.

The first result in this area was the following result, as proved in [54].

Theorem 8.1.3 Let H be a finitely generated subgroup of a group G.

169

• I f G has a short asynchronous combing, then the word problem of H is

context-sensitive.

• I f G has a short asynchronous combing with a departure function, and

this combing is deterministic context-sensitive, then the word problem

of H is deterministic context-sensitive.

Since automatic groups satisfy these hypotheses, from Lemma 2 .2 . 6 we

have the following corollary which gives an alternative proof that subgroups

of automatic groups have deterministic context-sensitive word problem.

C orollary 8.1.4 Any finitely generated subgroup of an automatic group has

deterministic context-sensitive word problem.

An extension to these results can be obtained from the results of Gersten

in the paper [2 1], where the linearly-bounded nature of the procedures used

lead to the following, stronger, result.

T heorem 8.1.5 Any combable group has context-sensitive word problem.

Note that there is no requirement of determinism in this result.

8.1.4 R eal-tim e algorithm s

The concept of real-time word problems was discussed in [28] and developed

further in [29]. An algorithm is real-time if we only move right on the input

tape, and terminate when we reach the end of the word, and for each step

on the input tape, we only make a bounded number of moves on each of our

worktapes. An informal interpretation of this, is that a language is real-time

if it is accepted by a computer reading in at a constant rate. Clearly, a

real-time algorithm is context-sensitive - suppose the number of operations

170

we can make for each step right on the input tape is bounded by m. Then,

since we terminate upon reaching the end of our input word, the length of

the tapes are bounded by mn for an input word of length n , and hence the

procedure is context-sensitive.

In [28] and [29] the following groups are given as examples of groups with

real-time, and hence context-sensitive, word problem.

• Nilpotent groups,

• Word hyperbolic groups,

• Geometrically finite hyperbolic groups.

8.1.5 Other groups

Let us make the obvious comment that any group with decision problem

solvable in a subset of the context-sensitive languages has context-sensitive

decision problem. This may seem obvious but it is worth bearing in mind.

For example, we gave above a list of groups which are linear and hence

have word problem solvable in logspace, and therefore have context-sensitive

word problem. Similarly groups with regular or context-free word problem

would have context-sensitive word problem - however these have already been

classified as the finite and virtually free groups respectively.

As a specific example, we gave the example earlier courtesy of [60] of the

group

(a, b, c : b~lab = a2, c~lac = a2),

which is not linear but has word problem solvable in logspace and hence

certainly has (deterministic) context-sensitive word problem.

We also mentioned, as a corollary to Theorem 2.3.2, that any group with

word problem solvable in deterministic time 0 (n log n) has deterministic

171

context-sensitive word problem. Clearly, there are many groups for which

specific algorithms can be given, but we hope that the above list summarises

some of the important classes of groups that are within our scope of interest.

8.1.6 The conjugacy problem

The situation with regard to the conjugacy problem being context-sensitive is

much more difficult, and comparatively little is known about such groups. In

many cases even where algorithms are known to solve the conjugacy problem,

they are highly exponential. Of course, we made the comment earlier that

an algorithm may be exponential in terms of time, but need not be in terms

of space since we may require little storage space.

There are some simple examples of groups where the conjugacy problem is

solvable in linear space. As we have noted in Lemma 2.5.6 and Lemma 2.5.4,

finite groups and free groups have deterministic context-sensitive conjugacy

problem. Also, those abelian groups with (deterministic) context-sensitive

word problem are a trivial example, since if u ~ v then there exists w such

that w~luw = v, and hence u = v (since the group is abelian and w cancels

with u;-1). Hence, this reduces to the word problem.

We have given some examples in the thesis of specific groups with (de

terministic) context-sensitive conjugacy problem, but actually categorising

specific classes of groups appears to be a very difficult problem.

8.2 One-relator groups

One of the first classes of groups shown to have solvable word problem was the

class of groups which, for obvious reasons, are known as one-relator groups.

Let us now look at these groups in a little more detail.

172

8.2.1 D efinition

We consider the one-relator groups, that is those groups G that may be

given by a presentation G = (X : R) where R consists of a single relation

u = v. The word problem for one-relator groups has been known for some

time to be solvable (see [39]), although the complexity may be very high.

However, the question of the solvability of the conjugacy problem remains

open. Juhasz claimed a proof in [33] but it is generally believed (even now by

Juhasz himself!) that this proof is not watertight, and to the mathematical

community the question remains open. However, since many constructions

involving one-relator groups are built up through small cancellation theory

and HNN extensions, it seems that a significant number of these groups may

be amenable to context-sensitive algorithms.

8.2.2 Certain one relator-groups

Let us show that with a fairly weak condition on the single relation in a

one-relator group, then we have a deterministic context-sensitive procedure

to solve the word problem. Suppose we can write a presentation for a group

in the form

G == (flij — 3 um, —bn . ua — Ub)

where ua is a word in the a* and Ub is a word in the 6*. All this condition

really says, is that there is some presentation with one relator, where we

may split the relator into two parts such that no symbols from one part is

contained in the other. For example, a relator where some symbol x appears

only once can obviously be decomposed like this, since we cyclically permute

the relator until x appears at the start of the word, and then take ua = x -1,

and Uf, to be the remainder of the word.

173

Let us now show that any group of this form has deterministic context-

sensitive word problem.

Lem m a 8 .2 . 1 Any one-relator group G which has a presentation of the form

G = (ai,bn : ua = Ub), where ua is a word in the and Ub is a

word in the bi, has deterministic context-sensitive word problem.

P ro o f Suppose we are given a group G satisfying the hypotheses of the

lemma. Let FA and Fb be the free groups on the and bi respectively.

Note that G is the amalgamated free product of FA and FB with respect

to the cyclic subgroups CUA = (uA) and CUB = (uB). To determine the

effective generalised word problem of FA with respect to CUA, we can simply

apply Lemma 2.5.7, and of course, similarly for the effective generalised word

problem of FB with respect to CUB.

And hence the result follows from Lemma 3.3.4 and Lemma 2.5.3. □

We conjecture that a similar result holds for the conjugacy problem.

C onjectu re 8 .2 . 2 Any one-relator group G which has a presentation of the

form G = (o i,...., am, b\, ...,bn : ua = Ub), where ua is a word in the a* and Ub

is a word in the bi, has deterministic context-sensitive conjugacy problem.

8.2.3 Surface groups

Let us now give an important class of groups satisfying the above condition

- namely the class of surface groups, which we will hence show to have de

terministic context-sensitive word problem. This class of groups occurs as a

strong connection between the ideas of topology and surfaces, and combina

torial group theory, which we touched upon in the introduction. We shall not

give any details here of the topological construction (for further information

174

see [57]), but the important point is that there is a basic classification of all

closed finite surfaces - either as an orientable surface (of some genus n), a

non-orientable surface (of some genus n), or a sphere. We are interested in

the fundamental groups of these surfaces, the so-called surface groups. We

have the following presentations of the surface groups :

orientable, genus n : (ai, 6 1 , an, bn : a i6 ia i- 1 6 i - 1an6nan“ 16 n - 1 = 1),

non-orientable, genus n : (ai,,an : a i2....an2 = 1),

sphere : {1 }.

Lem m a 8.2.3 All surface groups have deterministic context-sensitive word

problem.

P ro o f Any surface group is either isomorphic to the fundamental group of a

sphere - in which case the group is trivial and the word problem is trivially

solved - or it is a one-relator group satisying the conditions of Lemma 8.2.1.

□

If Conjecture 8 .2 . 2 is true, then all surface groups have deterministic

context-sensitive conjugacy problem.

8.3 The relative difficulty of the word, con

jugacy and generalised word problems

Finally, let us emphasise again the difficulty of the conjugacy problem and

the generalised word problem.

We mentioned previously that the word problem is a specific case of the

conjugacy problem (where one of the words is the identity) and generalised

175

word problem (where the subgroup is the trivial subgroup). Thus, any group

with deterministic context-sensitive conjugacy problem (or generalised word

problem) also has deterministic context-sensitive word problem. Let us show

via a series of examples how the converse is untrue and how the solvability

of these problems can, in many cases, be independent of each other.

Lem m a 8.3.1 There exists a group G\ with deterministic context-sensitive

word problem, conjugacy problem, and generalised word problem.

P ro o f The trivial group {1 } suffices. □

It is also possible for none of the problems to be decidable via context-

sensitive algorithms.

Lem m a 8.3.2 There exists a group G2 with unsolvable word, conjugacy, and

generalised word problem.

P ro o f It is well known that there are groups with unsolvable word problem

(see for example pl46 of [14] for a finitely-presented example), and since as

we have noted, the word problem is a special case of the conjugacy problem

and generalised word problem, then they must be unsolvable too. □

It is more interesting to consider groups where some of the problems are

deterministic context-sensitive, and some are unsolvable.

Lem m a 8.3.3 There exists a group G3 with deterministic context-sensitive

word problem, and unsolvable generalised word problem and conjugacy prob

lem.

P ro o f From Theorem 5.2 of [43], the conjugacy and generalised word prob

lem are unsolvable for some finitely generated subgroups of the matrix group

176

5L(4, Z), since the direct product Fn x Fn of two free groups of rank n has a

faithful representation in 5L(4, Z), and so the result follows from [41]. How

ever, from Theorem 8.1.1, linear groups have deterministic context-sensitive

word problem, and thus so do their subgroups from Lemma 2.2.6. □

Lem m a 8.3.4 There exists a group with deterministic context-sensitive

word problem and conjugacy problem, and unsolvable generalised word prob

lem.

P ro o f Let F be a free group on at least two generators, and form the group

G4 = F x F. From [41], G± has a finitely generated subgroup L such that

the generalised word problem for L in G4 is unsolvable. However, F has de

terministic context-sensitive word and conjugacy problem from Lemma 2.5.3

and Lemma 2.5.4, and thus so does G4 from Lemma 3.2.1 and Lemma 3.2.2.

□

It is worth noting purely for interest’s sake that L in the above lemma has

unsolvable conjugacy problem (and is not finitely presented), we shall not give

the proof here but my thanks go to Chuck Miller (private communication)

for pointing this out.

We have not considered in this exposition, the existence of a group with

deterministic context-sensitive generalised word problem (and hence word

problem), but unsolvable conjugacy problem. As far as we are aware, it is

still open whether there even exists a group with solvable generalised word

problem, but unsolvable conjugacy problem. Hence we pose this final possi

bility merely as an open question.

O pen Q uestion 8.3.5 Does there exist a group with solvable generalised

word problem but unsolvable conjugacy problem? I f so, does there exist a

177

group with deterministic context-sensitive generalised word problem but un

solvable conjugacy problem?

178

Chapter 9

Conclusions

The intention of this thesis has been to provide a coherent study of the issue

of groups with context-sensitive decision problems. We have tried to keep in

mind, throughout, the desire to increase understanding of these groups. Al

though the word problem is perhaps the most fundamental decision problem

one could ask about a group, and hence makes a substantial contribution to

this study, we have also endeavoured to provide a detailed insight into the

conjugacy problem, and also consider other decision problems, such as the

generalised word problem, and the reduced and irreducible word problems.

In the course of the thesis, we have given several examples of groups with

context-sensitive decision problems, and hope that the proof techniques em

ployed for some of these will be useful for other groups. With this in mind,

we have given conditions under which we can combine or extend these groups

to form new groups which still have a context-sensitive decision problem.

We stressed almost from the start that the conjugacy problem is a much

more difficult problem than the word problem. This is illustrated in our result

that taking an extension of finite index of a group with context-sensitive

word problem preserves the context-sensitive nature of the word problem,

179

but, remarkably, if the group has context-sensitive conjugacy problem, this

extension need not even preserve the solvability of the conjugacy problem,

even if it is only of index 2 .

Despite the fact that one might think that linear space would be a fairly

prohibitive bound on calculations in groups, the class of groups that we have

studied appears to be very wide. We have exhibited a large number of seem

ingly different ‘types’ of groups that have context-sensitive decision problems

(in particular the word problem), including both specific groups, and general

classes of groups such as the surface groups. We have also eliminated the

possibility that the groups with context-sensitive word problem may all come

under the banner of being subgroups of automatic groups, by illustrating a

group with context-sensitive word problem which is not a subgroup of an

automatic group. Given the wide nature of automatic groups (and hence

even more so their subgroups!) this only serves to strengthen what a wide

range of groups we are dealing with.

We have touched throughout the thesis on issues that remain to be re

solved, and questions still to be answered, and clearly these are difficult

questions. For example, we touched very briefly on the issue of the gen

eralisation of these results to semigroups, when we considered embeddings.

How much of the work here can be transferred to results about semigroups?

We have not addressed this question in this thesis, since it requires a de

tailed study on its own. We can also generalise many of the results to other

space complexity classes. We also have the question of determinism. All

of our algorithms are deterministic, but it is still unknown whether or not

deterministic linear space is equivalent to non-deterministic linear space, and

even if this is not true, if it is true in the restricted case of word problems in

groups (along the same lines as context-free and deterministic context-free

180

word problems). We have also considered issues of finite presentability and

effectiveness, amongst others, and we have indicated via open questions or

conjectures in the text where we feel that there are important questions to

be answered.

This all suggests that classifying such groups is not going to be an easy

task, and there is still a great deal of work to be done. However, the first

step towards any sort of classification, or for that matter any result at all, is

to increase the understanding of the subject we are dealing with, and this is

what we hope we have achieved in this thesis.

181

Bibliography

[1] S. I. Adian The unsolvability of certain algorithmic problems in the the

ory of groups Trudy Moscov. Mat. Obsc. 6 p231-298 (1957)

[2] A. V. Anisimov Group languages Kibernetika No.4 pl8-24 (1971)

[3] M. Anshel and P. Stebe The solvability of the conjugacy problem for

certain HNN groups Bull. Amer. Math. Soc. 80 p266-270 (1974)

[4] E. Artin Theorie der Zdpfe Abh. Math. Sem. Univ. Hamburg 4 p47-72

(1926)

[5] G. Baumslag Some open problems Summer school in group theory in

Banff (Editor O. Kharlampovich) American Mathematical Society pl-9

(1996)

[6] G. Baumslag, S. M. Gersten, M. Shapiro and H. Short Automatic groups

and amalgams J. Pure Appl. Algebra 76, No. 3, p229-316 (1991)

[7] J.-C. Birget Time-complexity of the word problem for semigroups and

the Higman embedding theorem Internat. J. Algebra Comput. 8 , No. 2 ,

p 2 3 5 -2 9 4 (1 9 9 8)

182

[8] J.-C. Birget, A. Yu. Ol’shanskii, E. Rips, M. V. Sapir Isoperimetric func

tions of groups and the computational complexity of the word problem

(preprint)

[9] T. Brady Complexes of nonpositive curvature for extensions of F2 by Z

Topology Appl. 63, No. 3, p267-275. (1995)

[10] C. M. Campbell, E. F. Robertson, N. Ruskuc and R. M. Thomas Auto

matic semigroups Theoret. Comp. Sci. 250, No. 1-2, p365-391 (2001)

[1 1] D. I. Cartwright and M. Shapiro Hyperbolic buildings, affine buildings

and automatic groups Michigan Math. J. 42, No. 3, p511-523 (1995)

[12] D. J. Collins Recursively enumerable degrees and the conjugacy problem

Acta. Math. 1 2 2 pll5-60 (1969)

[13] D. J. Collins The word, power and order problems in finitely presented

groups Decision problems and the Burnside problem in group theory

(Editors W. W. Boone, F. B. Cannonito and R. C. Lyndon) North-

Holland Publishing Company (Amsterdam-London) p401-420 (1973)

[14] D. J. Collins, R. I. Grigorchuk, P. F Kurchanov and H. Zieschang Com

binatorial Group Theory and Applications to Geometry Springer-Verlag

Berlin Heidelberg (1998)

[15] D. J. Collins and C. F. Miller III The conjugacy problem and subgroups

of finite index Proc. London Math. Soc. (3) 34 , No. 3, p535-556 (1977)

[16] M. Dehn tfber die Topologie des dreidimensional Raumes Math. Ann.

69 pl37-168 (1910)

[17] M. J. Dunwoody The accessibility of finitely presented groups Inven-

tiones Math. 81 p449-457 (1985)

183

[18] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S.

Paterson and W. P. Thurston Word processing in groups Jones and

Bartlett (1991)

[19] B. Farb Automatic groups: a guided tour Enseign. Math. (2) 38, No.

3-4, p291-313 (1991)

[20] S. M. Gersten and H. B. Short Small cancellation theory and automatic

groups Invent. Math. 1 0 2 , No. 2, p305-334 (1991)

[2 1] S. M. Gersten Finiteness properties of asynchronously automatic groups

Geometric Group Theory (Editors R. Charney, M. Davis, M. Shapiro)

Ohio State Univ. Math. Research Institute Publ, vol. 3, Walter de

Gruyter, Berlin-New York, pl21-133 (1995)

[22] K. Godel Uber formal unentscheidbare Satze der Principia Mathemat-

ica und verwandter Systeme I Monatsh. f. Math. u. Phys. 38 pl73-198

(1931)

[23] A. V. Goryaga and A. S. Kirkinskii The decidability of the conjugacy

problem does not carry over to finite extensions of groups Algebra i

Logika 14, No. 4, p393-406 (Russian) (1975). English translation in Al

gebra and Logic 14 (1975), No. 4, p240-248 (1976)

[24] R. H. Haring-Smith Groups and simple languages Trans. Amer. Math.

Soc. 279 p337-356 (1983)

[25] T. Herbst and R. M. Thomas Group presentations, formal languages

and characterizations of one-counter groups Theoret. Comp. Sci. 112

pl87-213 (1993)

184

[26] G. Higman Subgroups of finitely presented groups Proc. Roy. Soc. Ser.

A 262 p455-475 (1961)

[27] G. Higman, B. H. Neumann and H. Neumann Embedding theorems for

groups Jour. London Math. Soc. No.24 p246-254 (1949)

[28] D. F. Holt Word-hyperbolic groups have real-time word problem Internat.

J. Algebra Comput. Vol. 10, No. 2 p221-228 (2000)

[29] D. F. Holt and S. Rees Solving the word problem in real-time J. London.

Math. Soc. (2) 63, No. 3, p623-639 (2001)

[30] J. E. Hopcroft, W. J. Paul and L. G. Valiant On time versus space J.

Assoc. Comput. Mach. 24, No. 2 , p332-337 (1977)

[31] J. E. Hopcroft and J. D. Ullman Introduction to automata theory, lan

guages and computation Addison-Wesley (1979)

[32] M. Ito, L. Kari and G. Thierrin Insertion and deletion closure of lan

guages Theoret. Comp. Sci. 183, No. 1 , p3-19 (1997)

[33] A. Juhasz Solution of the conjugacy problem in one-relator groups Algo

rithms and classification in combinatorial group theory (Berkeley, CA,

1989), Math. Sci. Res. Inst. Publ., 23, Springer, New York, p69-81 (1992)

[34] D. Kelley Automata and formal languages - an introduction Prentice-

Hall (1995)

[35] R. J. Lipton and Y. Zalcstein Word problems solvable in logspace J.

Assoc. Comput. Mach. 24 p522-526(1977)

185

[36] J. M. Lockhart An HNN-extension with cyclic associated subgroups and

with unsolvable conjugacy problem Trans. Amer. Math. Soc 313, No.l

p331-345 (1989)

[37] R. C. Lyndon and P. E. Schupp Combinatorial group theory Springer

Berlin (1977)

[38] W. Magnus Das Identitatsproblem fur Gruppen mit einer definierenden

Relation (der Freiheitsatz Math. Ann. 106 p295-307 (1932)

[39] W. Magnus, A. Karrass and D. Solitar Combinatorial group theory Dover

Publishing New York (1976)

[40] A. A. Markov Insolubility of the problem of homeomorphy Proc. Internat.

Congr. Math p200-306 (1958)

[41] K. A. Mihailova The occurrence problem for direct products of groups

Dokl. Akad. Nauk SSSR 119 pll03-1105 (1958)

[42] C. F. Miller III On group-theoretic decision problems and their classifi

cation Princeton University Press (1971)

[43] C. F. Miller III Decision Problems In Groups - Surveys and Reflections

Algorithms and classification in combinatorial group theory (Berkeley,

CA, 1989), p 1-59, Math. Sci. Res. Inst. Publ., 23, Springer, New York

(1992)

[44] D. E. Muller and P. E. Schupp Groups, the theory of ends, and context-

free languages J. Comp. System Sci. 26 p295-310 (1983)

[45] D. E. Muller and P. E. Schupp The theory of ends, pushdown automata

and second-order logic J. Comp. System Sci. 37 p51-75 (1985)

186

[46] P. S. Novikov On the algorithmic unsolvability of the word problem in

group theory Trudy Mat. Inst. Steklov 44, pl43-286 (1955)

[47] C. H. Papadimitriou Computational Complexity Addison-Wesley (1995)

[48] D. W. Parkes and R. M. Thomas Reduced and irreducible word problems

of groups University of Leicester Technical Report No. 1999/4 (1999)

[49] M. O. Rabin Recursive unsolvability of group theoretic problems Ann. of

Math. (2) No. 67 p 172-194 (1958)

[50] V. N. Remeslennikov Representation of finitely generated metabelian

groups by matrices Algebra i Logika 8 p72-75 (1969)

[51] A. L. Rosenberg Real-time definable languages, Jour. Assoc. Comp.

Mach. Vol 14, No. 4 p645-662 (1967)

[52] J. J. Rotman An introduction to the theory of groups, Fourth Edition,

Springer-Verlag (New York) (1995)

[53] M. V. Sapir, J.-C. Birget, E. Rips Isoperimetric and isodiametric func

tions of groups (preprint)

[54] M. Shapiro A note on context-sensitive languages and word problems

Internat. J. Algebra Comput. Vol.4, No.4 p493-497 (1994)

[55] H.-U. Simon Word problems for groups and context-free recognition Fun

damentals of computation theory (Proc. Conf. Algebraic, Arith. and

Categorical Methods in Comput. Theory, Berlin/Wendisch-Rietz) p417-

422 (1979)

[56] J. C. Stillwell The word problem and the isomorphism problem for groups

Bull. Amer. Math. Soc. Vol 6 , No. 1, p33-56 (1982)

[57] J. C. Stillwell Classical topology and combinatorial group theory, Second

Edition, Springer-Verlag (New York) (1993)

[58] H. Tietze Uber die topologischen Invarienten mehrdimensionaler Man-

nigfaltigkeiten Monatsh. f. Math. u. Phys. 19 pl-188 (1908)

[59] A. M. Turing On computable numbers, with an application to the

Entscheidungsproblem Proc. London Math. Soc. (2) No. 42 p230-265

(1936)

[60] S. Waack Tape complexity of word problems Fundamentals of computa

tion theory (Szeged, 1981), Lecture Notes in Comput. Sci., 117, Springer

Berlin-New York, p467-471 (1981)

[61] B. A. F. Wehrfritz Infinite linear groups - an account of the group-

theoretic properties of infinite groups of matrices Springer-Verlag, New

York-Heidelberg (1973)

188

