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Abstract—Local methods for detecting community structure
are necessary when a graph’s size or node-expansion cost
make global community-detection methods infeasible. Various
algorithms for local community detection have been proposed,
but there has been little analysis of the circumstances under
which one approach is preferable to another. This paper de-
scribes an evaluation comparing the accuracy of five alternative
local community-detection algorithms in detecting two distinct
types of community structures—vertex partitions that maximize
modularity, and link clusters that maximize partition density—in
a variety of graphs. In this evaluation, the algorithm that most ac-
curately identified modularity-maximizing community structure
in a given graph depended on how closely the graph’s degree
distribution approximated a power-law distribution. When the
target community structure was partition-density maximization,
however, an algorithm based on spreading activation generally
performed best, regardless of degree distribution.

I. I NTRODUCTION

Many complex systems—such as power grids, nervous sys-
tems, sports leagues, collaborating researchers and musicians,
and the World Wide Web—are amenable to representation as
a graph consisting of vertices (representing entities) and edges
(representing relationships or events). Communities within
such graphs, consisting of subgraphs whose vertices are more
highly connected to each other than to vertices outside the
subgraph, often correspond to meaningful components of the
systems represented by the graphs. Detection of such com-
munities can therefore be a powerful tool for understanding
complex systems.

Numerous algorithms of varying complexity have been
developed to identify communities in graphs. One popular
approach is to search for a partition of the vertices of a
graph that optimizes a global utility function, such asmod-
ularity [New04]. A related approach searches for an edge
partition that maximizes globalpartition density[YYA10]. The
partition-density maximizing edge partition typically induces
overlapping vertex communities.

In many cases it is not feasible to determine theglobally
optimal community structure, either because the entire graph is
too large to fit in memory or because the cost in time or other
resources of accessing the entire graph is prohibitive. Under
these circumstances, the search for community structure must
be limited to to the neighborhood of the graphlocal to a given
query vertex.

The process of local community search typically consists
of incrementally adding individual vertices to a community
initialized with a query vertex, sometimes followed by, or
interleaved with, a winnowing step that removes vertices
that detract from the community structure [Cla05], [LWP08],
[Bag08], [CZR09], [Bra10a]. Any implementation of this
process requires policies for (1) selection (how to choose the
next vertex to add to the community), (2) termination (when
to stop adding vertices), and (3) filtering (which vertices, if
any, to remove from the community).

The focus of this work is on improving vertex selection, in-
dependent of choice of termination or filtering policies. There
are two justifications for this focus. First, it is typically easier
to optimize individual design elements separately than to try to
optimize all simultaneously. Second, termination and filtering
policies are necessarily dependent on the characteristics of the
selection policy. The more accurate the selection policy, the
fewer the vertices that must be selected to obtain all vertices
in a given community and the fewer the vertices that must be
filtered to remove all nodes not in that community.

The selection policies of alternative local community de-
tection algorithms differ in their policies regarding links from
a candidate for selection to vertices outside of the current
community. Some algorithms arexenophobic in that they
penalize candidates in proportion to the number of their edges
to non-community vertices.Non-xenophobicalgorithms ignore
or reward such edges.

Section II sets forth a schema common to many local algo-
rithms and shows that these algorithms can be distinguished
in terms of this schema based on whether their candidate
selection criteria are xenophobic. A new evaluation criterion
for local community detection algorithms that takes account of
the relative centrality of vertices within the target community
is proposed in Section III. Section IV describes a comparative
evaluation on a set of standard natural and artificial graphs.
This evaluation shows that the relative performance of xeno-
phobic and non-xenophobic algorithms depends on (1) the
edge distribution of the graph to which they are applied, (2)
the target community structure, and (3) the centrality criterion
for vertices within the target community.
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II. A LGORITHMS FORLOCAL COMMUNITY DETECTION

Many local community detection algorithms can be viewed
as implementing a common schema that assigns each vertex
in the graph to one of three sets at each processing step:

• C, the Community under construction, which is typically
initialized with the query vertex.

• N , Neighboring vertices not inC but sharing an edge
with at least one element ofC.

• U , Unexplored vertices,i.e., those not adjacent to any
element ofC.

Optionally, C can be further partitioned into a boundary,
Cboundary, consisting of every node inC that has at least one
edge to a node inN , andCcore, which consists of the vertices
in C that have no edges toN , i.e.,Ccore = C−Cboundary. The
local community detection algorithm schema is as follows:

Algorithm 1: Local-community structure algorithm
schema
C ← {queryV ertex}
N ← neighbors(queryV ertex)
while (!terminationCriterion)do

select the ‘best’ vertexn ∈ N
C ← C ∪ {n}
N ← (N − n) ∪ neighbors(n)− C

end
return filter(C)

Local community detection algorithms differ in their cri-
terion for selecting the ‘best’ vertexn ∈ N . Note that in
this schema, all neighbors of each vertexn ∈ N are known,
whereas neighbors of vertices inU are in general not known.
Edges are assumed to be undirected.

A. Xenophobic Vertex Selection

The vertices in a community typically have more edges
to vertices in the same community (internal edges) than to
vertices outside the community (external edges). Conversely,
vertices outside the community typically have more external
than internal edges. Most local community detection algo-
rithms use heuristics to try to estimate the relative number
of internal and external edges for the actual community
based on the current partial community under construction by
the algorithm. Unfortunately, such estimates are necessarily
approximate if the partial community is incomplete.

Clauset [Cla05] proposed a vertex selection criterion under
which the vertex is selected that makes the largest increase
(or smallest decrease) inlocal modularity,R = I

T
, whereT

represents the number of edges incident toCboundary (i.e.,
including both edges between pairs of nodes inC and those
connecting a node inC to a node inN ), andI represents the
number of edges incident toCboundary that are internal toC
(i.e., that connect pairs of nodes inC). The intuition behind
maximizingR is thatR “is directly proportional to sharpness
of the boundary given byCboundary.” The procedure “avoids

Fig. 1. Verticesv1, v2, andv3 are candidates for addition toC.

crossing a community boundary until absolutely necessary”
[Cla05].

A second selection criterion, termed outwardness, was pro-
posed in [Bag08]. The outwardness of a vertexv, Ωv, is:

Ωv =
(koutv − kinv )

kv
(1)

wherekv is the degree of vertexv, koutv is the number of edges
from v to vertices outside of the communityC, (i.e., toN or
U ), andkinv is the number of edges fromv to vertices inC.
At each stage, the vertexv ∈ N with the lowest outwardness
is selected to be moved toC, breaking ties at random.

A third selection criterion, based on [LWP08] is to choose
the vertex that maximizesM = ind(C)

outd(C) , the ratio ofind(C),
the number of edges connecting pairs of nodes inC, to
outd(C), the number of edges connecting nodes inC to nodes
outside ofC.1

These three selection policies—(l) maximizing local mod-
ularity (L), (2) minimizing outwardness (Ωv), and (3) maxi-
mizingM—share a common implicit assumption that, for any
noden ∈ N , both edges fromn to nodes inU and edges from
n to other nodes inN maken less likely to be in the target
community. Thisxenophobicassumption can sometimes lead
a node that is very likely to be of low centrality to be selected
before a node that might be of higher centrality.

Consider, for example, verticesv1, v2, and v3 shown in
Figure 1. Vertexv2 may have higher centrality in the actual
community thanv1 or v3 because there are multiple paths
from v2 into C through edges tovi andvj , whereas no such
alternative paths toC are possible forv1, and no equally
short alternative paths exist forv3. However,v2’s outwardness
( 2−2

4 = 0) is higher than the outwardness ofv1 ( 0−2
2 = −1)

and is the same as the outwardness ofv3 ( 2−2
4 = 0). Moreover,

1The algorithm of [LWP08] considers eachn ∈ N in ascending order
of degree, adding to the community eachn whose addition toC would
increaseM . Each element ofC whose removal would increaseM without
disconnectingC is then removed. These two steps are repeated until no new
vertices are added. The procedure described here differs from the algorithm of
[LWP08] in that it selects the node that maximizesM , rather than the lowest
degree node for which∆M > O, and in that it is purely a node-selection
policy, with no node filtering.
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local modularity would be higher after addingv1 ( I+2
T+0 ) than

after addingv2 or v3 ( I+2
T+2 ). Finally, addingv1 would make

M = ind(C)+2
outd(C)−2 , which is higher thanM after addingv2

or v3, ind(C)+2
outd(C)+0 . Thus, under all three selection policies,v1

would be selected beforev2, andv2 andv3 would be treated
identically even thoughv2 is more strongly connected toC
than isv3.

B. Non-Xenophobic Vertex Selection

The observation that there are scenarios in which maxi-
mizing local modularity, minimizing outwardness, and max-
imizing M all can lead low-centrality vertices to be selected
before potentially higher-centrality vertices suggests that better
performance might sometimes be obtained by selection criteria
that distinguish edges internal toN from those between
vertices inN and vertices inU , rewarding the former and
ignoring the latter. Two such approaches to such selection
criteria are described below.

The first is spreading activation, in which excitation is
propagated along links from the query vertex to each node
that has been expanded. The noden ∈ N having the highest
activation is selected to be added toC. This procedure rests on
an implicit assumption that activation represents the strength
of the connections through the graph from the query vertex to
n. A second approach is density-based selection, in which the
noden ∈ N that contributes to the most highly interconnected
community is selected at each step, regardless of the number
of links from n to U . These two approaches ignore links from
a candidate noden ∈ N to U , and both reward edges fromn
to other nodes inN .
Spreading Activation
Numerous approaches to spreading activation have been ex-
plored in the history of computer science,e.g., [CL75],
[Cre97]. MaxActivation is a particularly simple form of
spreading activation appropriate for local community detection
[Bra10a].

In MaxActivation, activation is propagated outward from the
query vertex. Each node’s activation is the sum of activations
received along each edge from a node of equal or lesser
distance to the query vertex. The activation received along
an edge is the sender’s activation multiplied by a global
edge-attenuation factor. To avoid ordering effects, updates of
all vertices at a given distance from the query vertex are
performed concurrently.

In the MaxActivation algorithm for selecting the highest-
activation vertex, set forth below in Algorithm 2, the symbol
δ represents the attenuation factor,0.0 < δ ≤ 1.0. Activation
of vertices can be calculated incrementally after each update
to C, but for simplicity of presentation the algorithm is shown
below as applied in batch mode to all the vertices inC ∪N .

If δ < 1
argmax

v∈G
(deg(v)) , then the activation of each

vertex v is guaranteed to be a monotonically decreasing
function of the path length fromv to the query vertex.
MaxActivation doesn’t permit any activation to flow from
vertices farther from the query vertex to vertices closer to

Algorithm 2: MaxActivation Node Selection Algorithm
queryVertex.activation← 1.0
currentPly← {queryVertex}
previousPly← φ
while (currentPly 6= φ) do

nextPly← {v | v ∈ (C ∪ N) ∧ ∃ edge(v,w)∧ w ∈
currentPly∧ v /∈ currentPly∧ v /∈ previousPly}
foreach v ∈ nextPlydo

v.activation← 0.0
v.tmp← 0.0

end
spread activation from current to
next ply
foreach {edge(w,v)|w ∈ currentPly∧ v ∈ nextPly}
do

v.activation += w.activation∗δ
end
spread activation between members of
nextPly
foreach {edge(w,v)|w, v ∈ nextPly }do

v.tmp += w.activation∗δ
w.tmp += v.activation∗δ

end
sum activation from both sources
foreach v ∈ nextPlydo

v.activation += v.tmp
end
update plies
previousPly← currentPly
currentPly← nextPly

end
return argmaxn∈N (n.activation)

the query vertex and permits activation between vertices at
the same distance from the query vertex to propagate only
one step. MaxActivation is thusnon-xenophobic, since edges
from v to vertices inU are ignored (having no effect onv’s
activation) and edges fromv to vertices inN increasev’s
activation (since activation flows tov from each such vertex).2

Density-Based Selection
An alternative non-xenophobic selection criterion is to select
the n ∈ N that makes the community as interconnected as
possible. MaxDensity [Bra10a], shown below in Algorithm 3,
is an approach to density-based selection that uses a simple
criterion for this selection: choosing then ∈ N that has the
most edges to vertices inC. Ties are broken by choosing the
n ∈ N with the most edges to other vertices inN , and any

2An alternative approach to spreading activation based on the Katz index

[Kat53] assigns activation to noden ∈ N equal to=

∞∑

l=1

δl · |{wl(q, n)}|,

where {wl(q, n)} is the set of all walks of lengthl from query vertexq
to vertexn and δ is an attenuation factor. This approach exhibited behavior
very similar to that of MaxActivation in the evaluation set forth below and
for brevity is omitted.
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remaining ties are broken by selecting then ∈ N with the
shortest path to the query vertex.

Like MaxActivation, MaxDensity ignores edges fromv to
vertices inU , and rewards edges fromv to vertices inN , since
ties are broken by selecting the vertex with largest number of
such edges.

Algorithm 3: MaxDensity Node Selection Algorithm

D ← { n | argmaxn∈C(|{edge(v,n), v∈ C }|) }
if (|D| > 1) then

D ← { n | argmaxn∈D(|{edge(v,n), v∈ N }|)}
if (|D| > 1) then

D ← { n | argminn∈D pathlength(n, query)}
end

end
return random member of D

III. E VALUATION CRITERIA FOR LOCAL COMMUNITY

DETECTION

Ideally, a local community-detection algorithm would be
evaluated by comparing itsreturn set, i.e., the community
that it finds, to the optimal community under some global
criterion. In practice, this approach to evaluation is possible
only on graphs whose size and accessibility make global
optimization tractable. However, comparative evaluations on
tractable graphs may generalize to graphs for which global
optimization is intractable. Accordingly, the evaluation set
forth below is based on graphs small enough to be amenable
to global optimization.

Evaluation relative to a global criterion depends on the
choice of both the community-structure criterion to be op-
timized (e.g., modularity or partition density) and the utility
function for vertices in the optimal communitye.g., weighing
vertices by degree or betweenness centrality within the target
community.

The evaluation described below compares alternative lo-
cal community-structure algorithms relative to two distinct
global criterion: the vertex partition that maximizesmodu-
larity [New04]; and the edge partition that maximizespar-
tition density[YYA10]. Modularity is the best-known global
community-structure criterion and is widely used despite its
known limitations, such as a resolution limit and a bias
toward equal sized communities [FB07]. The partition-density
criterion for link clustering is not subject to a resolution limit
and permits overlapping communities, but produces commu-
nities somewhat different from those produced by maximizing
modularity.

For a given seed vertex,s, and global community criterion,
a target communityis a community containings that would be
optimal under the criterion. For example, if the criterion were
maximal modularity, then the target community fors would
be the community containings in highest-modularity level of
the dendrogram created by the algorithm of [New04].

Given a target communityT , the quality of a local
community-detection algorithm can be calculated by means of

a utility function,utilT , defined over the vertices ofT . For ex-
ample, the quality of ak-element return setC can be measured
as the sum of the utilities ofC ’s vertices,

∑
v∈C utilT (v).

This sum can be normalized onto the [0.0 .. 1.0] interval
by dividing it by the sum of thek highest utility vertices
of the community. The resulting measure of solution quality
is termedNormalized Utility-Weighted Recall(NUWR). The
Normalized Utility-Weighted Recall of communityC with
respect to target communityT , NUWR, is shown in equation
2:

NUWRT =

∑
v∈C utilT (v)

argmaxS⊆T,|S|=min(|C|,|T |)

∑
v∈S utilT (v)

(2)
NUWR formalizes the intuition that if two return sets differ
only in a single pair of vertices with different utilities, the
return set with the higher utility vertex is preferable to the
return set with the lower utility vertex. Similarly, if every
vertex in the target community has identical utility, then all
return sets consisting ofk community vertices will have
identical NUWR, consistent with the intuition that all such
return sets are equally good. Local community extraction
algorithms can be ranked by comparing the NUWRs of the
return sets of each algorithm when search is terminated,e.g.,
whenk vertices have been expanded.

The evaluation below used three different vertex utility
functions:

1) Degree centrality, the proportion of edges inT that are
incident to a given vertexn.

2) Betweenness centrality, the proportion of geodesics be-
tween pairs of vertices in the target community that
traversen [WF94].

3) Membership, assigning the same value, 1.0, for every
n ∈ T and 0.0 for all other vertices.

For all three vertex utility functions,util(n) = 0 for n /∈ T .
Note that if k = |T | and the vertex utility function is
‘membership,’ then NUWRT is equivalent to recall, since
under these circumstancesNUWRT = |truePositives|

|T | =
|truePositives|

|truePositives|+|falsePositives| .

IV. EXPERIMENTAL DATA

The behaviors of the local community detection algorithms
described in Section II were compared on natural (social, cul-
tural, and biological) graphs described in previous community
detection research and on artificial graphs. Each of the graphs
was small enough to permit calculation of the globally optimal
community structure.

A. Natural Graphs

A number of standard social, cultural, and biological graphs
have been described in the community-detection literature. The
following data sets were used in the experiments:

• The Western US Power Grid (power). [4941 vertices,
6594 edges] [WS98].

• Network Science (netsci). A co-authorship network of
scientists working on network theory and experiments
[1589 vertices, 2742 edges] [New06].
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Fig. 2. Degree distribution for the Western US power grid network.

• Word Adjacencies (adjnoun). Adjacency network of
common adjectives and nouns in the Novel David Cop-
perfield by Charles Dickens.[112 vertices, 425 edges]
[New06].

• Les Miserables. Co-appearance network of characters
in the Victor Hugo novel Les Miserables (lesmis).[77
vertices, 254 edges] [Knu93].

• The neural network of the nematode C. Elegans
(c.elegans). [297 vertices, 2359 edges] [WS98].

• Zachary’s karate club (zachary). [34 vertices, 78 edges]
[Zac77].

• Dolphin social network (dolphin). A social network of
frequent associations among 62 dolphins in a community
living off Doubtful Sound, New Zealand [62 vertices, 159
edges] [LSB+03].

• Jazz. A network of jazz musicians who have performed
together (jazz). [198 vertices, 2742 edges] [GD03].

• American college football (football). A network of Amer-
ica football games between Division IA colleges during
the regular Fall 2000 season [115 vertices, 616 edges]
[GN02].

B. Artificial Graphs

A common data set for testing community-extraction algo-
rithms consists of random networks of 128 vertices divided
into 4 equal-sized communities with average vertex degree of
16 [NG04], [RB07], [Bag08]. In experiment 2, the average
proportion of edges connected to other vertices in the same
community (internal edge proportion) was 0.67 (weak commu-
nity structure), 0.83 (moderate community structure), and 0.9
(strong community structure). All communities were of size
32; thus,k was equal to 32 in each trial. The three artificial
graphs are referred to asr.67, r.83, andr.90, respectively, in
the discussion below.
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Fig. 3. Degree distribution for a network of jazz musicians.

C. Network Degree Distributions

The degree distributions of the nine natural and three artifi-
cial graphs described above differ widely. For example, Figure
2 shows vertex frequency as a function of vertex degree for the
Western US Power Grid network. This distribution has a heavy
tail suggesting a power-law or exponential distribution. The
degree distributions of the Network Science, Les Miserables,
and Word Adjacencies networks display a similar heavy tail.

By contrast, the degree distribution of the random graphs
is more symmetric, suggestive of the normal distribution to
be expected of a random graph. The degree distributions of
the remaining graphs, typified by the Jazz network shown in
Figure 3, are harder to characterize, with little resemblance
either to normal or heavy-tailed distributions.

One way to characterize the differences among these graphs
is suggested by the convention of plotting degree distributions
on log-log graphs. Graphs whose degree distributions are
heavy-tailed,i.e., that are well-approximated by power-law
or exponential functions, typically appear to be linear when
displayed in this fashion. If linear regression is performed on
the log of the distribution values, a good fit will be obtained
if the distribution is exponential or power-law, but the fit will
be poor for other distributions, such as linear or normal. For
example, the log-log plot of the degree distribution for the
Western US Power Grid network, shown in Figure 4, is nearly
linear, withR2 = 0.881.

Figure 5 shows the least-squares linear fit of the log-log
degree distributions of the 9 natural and 3 artificial graphs.
R2 is from 0.881 to 0.646 for the four heavy-tailed networks,
but is less than 0.04 for two of the random graphs and is in
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Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90
R2 0.881 0.821 0.669 0.646 0.5154 0.478 0.291 0.153 0.116

MaxM 0.636 0.846 0.445 0.706 0.776 0.837 0.890 0.818 0.738 0.789 0.892 0.936
MaxR 0.324 0.800 0.380 0.708 0.660 0.614 0.606 0.722 0.292 0.413 0.345 0.355
MinOmega 0.492 0.830 0.290 0.539 0.359 0.545 0.527 0.349 0.331 0.300 0.300 0.322
MaxDensity 0.647 0.856 0.419 0.635 0.576 0.768 0.766 0.807 0.826
MaxActivation 0.702 0.885 0.538 0.727 0.669 0.824 0.826 0.803 0.733 0.769 0.912 0.942

TABLE I
MEAN NUWR IN 1000TRIALS FOR 5 SELECTION POLICIES APPLIED TO9 SOCIAL, CULTURAL , AND BIOLOGICAL GRAPHS NETWORKS.
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Fig. 4. Degree distribution of the Western US power grid plotted with log-log
axes. The fit of this curve to a linear regression line hasR2 = 0.881.

Fig. 5. R2 statistic for linear regression of log-log degree distribution.

between for the remaining networks.3

3Clauset et al. [CSN09] describe a procedure for fitting degree distributions
to a power-law function and provide code for this procedure at http://www.
santafe.edu/~aaronc/powerlaws/. Under this procedure, none of the 12 graphs
has a statistically significant fit to a power-law distribution.

V. EXPERIMENTAL PROCEDURE

To facilitate comparison of the behaviors of the local
community detection algorithms under alternative criteria,
two distinct global community structures were calculated for
each graph: the modularity-maximizing structure, determined
by the agglomerative clustering algorithm of [New04] (the
modularity structure4); and the community structure induced
by the partition-density maximizing edge partition [YYA10]
(the edge-partition structure).

The modularity structure is a vertex partition, so a single
vertex can belong to only a single community. The partition-
density structure, in contrast, permits vertices to belong to
multiple communities.

For each community, the betweenness and degree centrality
of each vertex in that community was precomputed. Each ver-
tex that belonged to two or more edge-partition communities
was assigned its highest betweenness and degree centrality
value in any of the containing communities.

The evaluation consisted of a series of trials, each of which
started with the random selection of a query vertex,s, from
the graph. For each global optimization criterion (modular-
ity structure and edge-partition structure) in turn, the target
community T under that criterion structure was retrieved,
and each algorithm was then invoked on the graph withs
as the query vertex and maximum return set size|T | = k
as a termination condition.5 The NUWR was calculated for
the k-element set of vertices returned by the algorithm using
each of the three utility functions: betweenness centrality,
degree centrality, and membership. For each of the three utility
functions, an NUWR of 1.0 would mean that every community
vertex, and no non-community vertex, was returned by the
algorithm, whereas an NUWR of 0.0 would mean that no
community vertices were found. The three utility functions
differ in that betweenness centrality and degree centrality
assign a higher weight to vertices that play a more central role
in T , whereas membership treats all elements ofT identically.

One thousand trials were performed for each algorithm on
each graph. In MaxActivation, the attenuation factor,δ, was

4The highest modularity partition of a graph does not necessarily cor-
respond to the actual community structure [FB07], and alternative metrics
sometimes lead to better community structure ([RB07], [Bra10b], [KER08].
However, modularity is the best-known community-structure criterion, so
for reproducibility of the results described here, the partition that globally
optimizes modularity was chosen as the first target community structure.

5For edge-partition communities,k was the size of the largest community
containings.
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set to 0.05.
MaxM, MaxR, and MinOmega are instantiations of the local

community structure schema (shown in Algorithm 1, above)
that maximize M, maximize R, and minimizeΩ (outwardness),
respectively, with no filtering. MaxR and MinOmega are
equivalent to the algorithms of [Cla05] and [Bag08], respec-
tively, whereas MaxM differs from the algorithm [LWP08] in
that (1) MaxM selects the node that maximizesM , breaking
ties in favor of the lowest degree node, rather than the lowest
degree node for which∆M > O and (2) MaxM performs no
node filtering.

The first experiment evaluated the ability of each algorithm
to find the same community as would be found through
globally maximizing modularity. Tables I, II, and III show the
NUWR of each algorithm on each graph, where utility within
each target community was measured by betweenness central-
ity, degree centrality, and membership, respectively. In all three
tables, MaxDensity had the highest NUWR for the artificial
graphs (MaxM tied MaxDensity on R0.90 for betweenness
centrality with an NUWR of 1.0), MaxActivation had the
highest NUWR for the graphs whose degree distribution most
closely matches a power law distribution, and MaxM had
the highest NUWR for the remaining graphs. The choice of
vertex utility functions affected the relative performance of
MaxM and MaxActivation only on the adjnoun and lesmis
graphs (MaxActivation had higher NUWR on both when the
utility function was betweenness centrality, MaxM had higher
NUWR on both when the utility function was membership, and
when the utility function was degree centrality, MaxActivation
was better for adjnoun and MaxM better for lesmis), but in all
three cases every graph in which MaxActivation performed
better than MaxM had a higher R2 (i.e., closer match to
a power-law distribution) than any graph for which MaxM
performed better.

The second experiment followed the same procedure as the
first but used edge-partition structure as the target community
structure for evaluation of the algorithms. Thus, the second
experiment evaluated the extent to which each algorithm found
the same community structure as would have been found by
link clustering algorithm of [YYA10]. Tables IV, V, and VI
show the NUMW of each algorithm on the same 12 graphs
as above, where once again the utility within each target
community is measured by betweenness centrality, degree
centrality, and membership, respectively.

In the second experiment, MaxActivation had the highest
NUWR, regardless of vertex utility function, for all but 2
graphs (MaxDensity was best onr.67 under betweenness
centrality, and MaxM was best on zachary for membership).

A. Discussion

The relative accuracy of the alternative vertex selection
criteria in identifying a globally optimal community, starting
from a random member of that community, depended on the
character of the graph and the nature of the target community.
When the target community structure was globally maximal
modularity, MaxActivation performed best in heavy-tailed

graphs (which have high R2), and MaxDensity was most
accurate (with one tie from MaxM) in random graphs (which
had very low R2). In the remaining graphs, MaxM was the
most accurate. The choice of vertex utility functions (between
centrality, degree centrality, or membership) merely shifted the
R2 value where the relative ranking of MaxActivation and
MaxM switch.

When the target community structure was produced by
partition-density maximizing link-clustering, MaxActivation
had higher NUWR values for all but two cases, regardless
of vertex utility function. This suggests that local spreading
activation is a proxy for the link distance metric of [YYA10].

It may seem counterintuitive that non-xenophobic algo-
rithms, such as MaxActivation and MaxDensity, could ever
have higher NUWR than xenophobic algorithms, such as
MaxM, that use information (edges to vertices inU ) that
is ignored by the former. However, the empirical analysis
suggests that in heavy-tailed networks the number of edges
from a candidate vertexn ∈ N to vertices inU is simply not
an informative indicator ofn’s centrality in the target com-
munity. In these networks,n’s centrality seems best modeled
by the number and length of known paths fromn to into the
community, as expressed by activation, irrespective of links
from n to U .

VI. CONCLUSION

This paper has shown that local community detection al-
gorithms can be distinguished based on whether their vertex
selection criterion is xenophobic. In an empirical evaluation
on 12 natural and artificial graphs, the relative performance
of xenophobic and non-xenophobic algorithms depended on
three factors: (1) the degree distribution of the graph, (2) the
target community structure, and (3) the centrality criterion for
vertices within the target community.

To evaluate the relative accuracy of alternative vertex se-
lection policies, a criterion was proposed, Normalized Utility-
Weighted Recall (NUWR), that measures, relative to a target
community structure and centrality measure, how closely a
return set ofk nodes matches thek most central nodes of the
community.

These results suggest that there is no one-size-fits-all local
community detection algorithm, but instead algorithms should
be selected based on the characteristics of the graph and the
nature of the community to be detected.

This work does not address the challenging problem of
devising a termination policy that maximizes the likelihood
of getting most or all of a community (i.e., maximizing
recall) while minimizing the proportion of non-community
nodes (i.e., maximizing precision). However, identifying better
policies that optimize vertex-selection order will set the stage
for development of such techniques. As better vertex-selection
policies are devised, it may become easier to improve termi-
nation policies as well, leading to much more accurate local
community detection techniques. The work described here is
intended to be a step on this road.

© The MITRE Corporation. All rights reserved



Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90
R2 0.881 0.821 0.669 0.646 0.5154 0.478 0.291 0.153 0.116 0.030 0.184 0.018

MaxM 0.612 0.858 0.456 0.739 0.773 0.892 0.865 0.829 0.766 0.818 0.908 0.927
MaxR 0.338 0.809 0.366 0.659 0.635 0.471 0.714 0.749 0.327 0.388 0.358 0.398
MinOmega 0.478 0.822 0.328 0.434 0.381 0.525 0.480 0.378 0.308 0.295 0.297 0.323
MaxDensity 0.660 0.867 0.434 0.611 0.564 0.766 0.771 0.820 0.816 0.929 0.989 1.000
MaxActivation 0.710 0.894 0.549 0.716 0.659 0.811 0.837 0.800 0.731 0.771 0.914 0.942

TABLE II
MODULARITY, DEGREE.

Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90
R2 0.881 0.821 0.669 0.646 0.5154 0.478 0.291 0.153 0.116 0.030 0.184 0.018

MaxM 0.604 0.930 0.426 0.724 0.717 0.865 0.819 0.798 0.755 0.811 0.906 0.926
MaxR 0.332 0.876 0.340 0.663 0.588 0.476 0.680 0.719 0.329 0.378 0.349 0.392
MinOmega 0.432 0.881 0.257 0.371 0.351 0.459 0.442 0.352 0.308 0.288 0.293 0.324
MaxDensity 0.565 0.907 0.271 0.418 0.402 0.596 0.584 0.636 0.804 0.902 0.989 1.000
MaxActivation 0.650 0.947 0.391 0.522 0.506 0.700 0.715 0.616 0.716 0.717 0.886 0.922

TABLE III
MODULARITY /RECALL.

Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90
R2 0.881 0.821 0.669 0.646 0.5154 0.478 0.291 0.153 0.116 0.030 0.184 0.018

MaxM 0.138 0.099 0.705 0.237 0.561 0.470 0.501 0.698 0.580 0.781 0.871 0.871
MaxR 0.140 0.123 0.649 0.265 0.533 0.381 0.456 0.701 0.319 0.486 0.395 0.417
MinOmega 0.142 0.108 0.548 0.205 0.329 0.379 0.416 0.395 0.366 0.386 0.313 0.348
MaxDensity 0.175 0.169 0.760 0.397 0.694 0.581 0.777 0.806 0.724 0.924 0.925 0.950
MaxActivation 0.171 0.170 0.743 0.403 0.740 0.610 0.799 0.835 0.677 0.879 0.931 0.954

TABLE IV
L INK-CLUSTERING, BETWEENNESS CENTRALITY.

Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90
R2 0.881 0.821 0.669 0.646 0.5154 0.478 0.291 0.153 0.116 0.030 0.184 0.018

MaxM 0.805 0.469 0.854 0.862 0.627 0.790 0.873 0.782 0.667 0.693 0.823 0.864
MaxR 0.763 0.463 0.813 0.834 0.592 0.683 0.708 0.778 0.408 0.504 0.472 0.443
MinOmega 0.726 0.381 0.646 0.622 0.342 0.569 0.512 0.400 0.363 0.395 0.355 0.373
MaxDensity 0.903 0.474 0.797 0.873 0.563 0.756 0.796 0.790 0.786 0.740 0.867 0.916
MaxActivation 0.976 0.483 0.957 0.947 0.894 0.962 0.894 0.899 0.994 0.912 0.967 0.982

TABLE V
L INK CLUSTERING, DEGREE CENTRALITY.

Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90
R2 0.881 0.821 0.669 0.646 0.5154 0.478 0.291 0.153 0.116 0.030 0.184 0.018

MaxM 0.814 0.484 0.742 0.786 0.600 0.762 0.855 0.683 0.649 0.711 0.838 0.854
MaxR 0.742 0.476 0.695 0.772 0.523 0.650 0.683 0.682 0.367 0.454 0.429 0.434
MinOmega 0.706 0.389 0.606 0.588 0.280 0.543 0.490 0.363 0.339 0.360 0.330 0.367
MaxDensity 0.893 0.489 0.728 0.849 0.453 0.761 0.692 0.785 0.775 0.780 0.880 0.910
MaxActivation 0.964 0.493 0.870 0.910 0.753 0.937 0.821 0.844 0.981 0.846 0.934 0.956

TABLE VI
LINK CLUSTERING, MEMBERSHIP.
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