
Context-Sensitive Interprocedural Points-to Analysis in the Presence of

Function Pointers

Maryam Emami Rakesh Ghiya Laurie J. Hendren

School of Computer Science

McGill University, Montreal, Quebec

Canada H3A 2A7

{emami ,ghiya,hendren}@cs .mcgill. ca

Abstract

This paper reports on the design, implementation,

and empirical results of a new method for dealing with

the aliasing problem in C. The method is based on ap-

proximating the points-to relationships between acces-

sible stack locations, and can be used to generate alias

pairs, or used directly for other analyses and transfor-

mations.

Our method provides context-sensitive interproce-

dural information based on analysis over invocation

graphs that capture all calling contexts including re-

cursive and mutually-recursive calling contexts. Fur-

thermore, the method allows the smooth integration

for handling general function pointers in C.

We illustrate the effectiveness of the method with

empirical results from an implementation in the Mc-

CAT optimizing/p araHelizing C compiler.

1 Introduction and Motivation

Alias and dependence analysis are fundamental com-

ponents of optimizing and parallelizing compilers. Al-

though traditionally studied in the context of For-

tran or block-structured languages [1, 2, 8, 9], there

has been increasing interest in providing accurate alias

and side-effect analysis for C programs [7, 31]. Solv-

ing these problems for C rather than Fortran leads to

many interesting and difficult problems including the

treatment of the address-of operator (i.e. &a) which

can create new pointer relationships at any program

point, multi-level pointer references (i.e. **a) which en-

able the called function to modify alias relationships in

the calling function, the integration of pointer analysis

for stack-allocated variables and dynamically-allocated

variables, and the proper interprocedural handling of

recursion and function point ers.

Permission to cc y vvithout fee all or part of this material is
Jgranted provid that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
anct/or specific permission.

SIGPIAN 94-6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -662-xKWO006..$3.5O

This paper reports on the design, implementation,

and results of a new method for dealing with the alias-

ing problem in C. Our method, called points-to analy-

sis, estimates the relationships between abstract stack

locations. This method has been developed over the

last two years within the framework of the McCAT

optimizing/p arallelizing C compiler, and is currently

operational. The import ant facets of our approach in-

clude:

The points-to abstraction: Rather than compute

sets of alias pairs, our method computes a different ab-

straction: the points-to relationships between stack lo-

cations. We say that a stack location x points-to stack

location y at program point p if x contains the ad-

dress of y. 1 In addition to providing a more compact

abstraction as compared to alias pairs, the points-to

information is well suited for immediate use by other

analyses.

Unlike most approaches that compute may aliases,

our analysis computes both possible and definite points-

to relationships. Using the points-to abstraction, the

additional overhead of providing the definite informa-

tion is minimal, while at the same time providing

several advantages. The first advantage is that defi-

nite points-to information can be used to sharpen the

points-to analysis itself, by providing accurate killing

information. For example, given the statement *p =

x, and the information that p definitely points to y,

we can kill all points-to relationships from y. The sec-

ond major advantage is that definite relationships can

be used to direct transformations like pointer replace-

ment. For example, given the statement x = *q, and

the information that q definitely points-to y, we can

replace the statement x = *q with x = y. This trans-

formation can then lead to better results in later phases

of the compiler such as reducing the number of loads

and stores [12].

We present the points-to abstraction and the basic

flow analysis rules in Section 3 and we compare our

approach to similar approaches in Section 7.

A context-sensitive interprocedural analysis:

1In more conventional alias analysis, the notion that x points-

to y would be captured by an alias pair (*x, y).

242

The points-to abstraction and basic flow analysis rules

could be implemented in many different analysis frame-

works. However, our particular approach is a struc-

tured or compositional analysis that uses invocation

graphs to provide a context-sensitive analysis. This ap-

proach allows us to get accurate results and to correctly

handle recursion.

Function pointers provide a big challenge for inter-

procedural analysis of C programs. In this paper we

give a natural extension of the points-to analysis that

gracefully includes the general problem of single and

multi-level pointers to functions. In fact, as we demon-

strate, the problem of instantiating function pointers

in C must be done at the same time as points-to anal-

ysis in order to get a reasonably general and accurate

solution.

We discuss the basic interprocedural strategy in Sec-

tion 4 and then we show how to extend this to handle

function pointers in Section 5. Related interprocedural

approaches are compared in Sections 4 and 7.

Experimental results and applications: It is our

viewpoint that any alias analysis must be implemented

and tested in order to measure the actual costs and ben-

efits of the analysis. We have completely implemented

the analysis described in this paper, and in Section 6 we

provide empirical evidence that our approach gives ac-

curate and useful results. We also provide a summary

of how the results of points-to analysis are used as a

building block for other analyses and transformations.

Separating stack-based aliasing from array and

heap-based aliasing: The problem of aliasing really

comes in three varieties: (1) aliases between variable

references to the stack, (2) aliases between references

to dynamically-allocated storage on the heap, and (3)

aliases between two references to the same array. It

has become accepted that the last problem, aliases be-

tween references to the same array, requires special de-

pendence testing methods based on analyzing the index

expressions. We claim that one must also consider to-

tally different analysis methods for stack-based aliases

and heap-based aliases, and that the two problems can

safely be decoupled. In the case of stack-based aliases

a name exists for each stack location of interest, and

one may compute some approximation of the relation-

ships between these locations. In the case of heap-

based aliases, there are no natural names for each lo-

cation. In fact, one does not know statically how many

locations will be allocated. Thus, a completely differ-

ent approach is likely to be required. For example,

Deutsch argues that a store~ess model is more appro-

priate for the heap-based problems [11]. We discuss

this issue further in Section 7.

2 Setting - the McCAT compiler

Our points-to analysis is implemented in the Mc-

CAT (McGill Compiler Architecture Testbed) opti-

mizing/parallelizing C compiler. In order to pro-

vide the correct intermediate language, we designed

a structured intermediate representation called SIM-

PLE [22, 43]. On one hand, we need to analyze real C

programs (not just programs written in a toy subset of

C), and therefore our SIMPLE representation faithfully

represents these programs. On the other hand, we re-

quire as compact and clean a representation as possible,

so that new and powerful analyses can be implemented

in a straightforward and compositional fashion.

In designing the SIMPLE intermediate representa-

tion there were three major design criteria: (1) basing

our analysis framework on structured (compositional)

analyses, and thus using a structured intermediate rep-

resent ation, (2) retaining high-level variable references

and type casting information, and (3) designing a com-

pact representation for statements and expressions that

includes 15 basic statements, plus explicit simplified

representations of the while, do, for, if, switch,

break, continue and return statements.2 Typical

simplifications include: compiling complex statements

into a series of basic statements, simplifying all condi-

tional expressions in if and while statements to sim-

ple expressions with no side-effects, simplifying proce-

dure arguments to either constants or variable names,

and moving variable initializations from declarations

to statements in the body of the appropriate proce-

dure. After simplification, points-to analysis rules need

to be developed only for the 15 basic statements and

the compositional control statements. The design of

these rules is further simplified by the fact that each of

the basic statements can have only one level of pointer

indirection for a variable reference. Further details are

given in [13, 22].

3 Abstract Stack Locations and Basic

Analysis Rules

Traditionally, alias analysis methods have approxi-

mated aliases by sets of alias pairs. With this approxi-

mation, two variable references are said to be aliased if

they refer to the same location. Typical alias pairs are

of the form (*x, y), (**p, **q), (*u, *v) and so on.

3.1 Points-to Abstraction

We have chosen a different abstraction that approxi-

mates the points-to relationships between stack loca-

tions at each program point. The basic idea is to

abstract the set of all accessible stack locations with

a finite set of named abstract stack locations. Based

on this abstraction, the approximation of interest con-

sists of a set of points-to relationships between the ab-

stract stack locations. For example, after the statement

p = &y, we would say that abstract stack location p

points-to abstract stack location y.

The key to our approach is to guarantee that each

real stack location involved in a points-to relationship

2 It should be noted that the unrestricted use ~f got. is not

compositional and cannot be supported directly. Thus, our Mc-

CAT compiler provides a strnctnring phase that converts pro-

grams with unstructured control flow to equivalent programs

with structured control flow [14].

243

is properly abstracted with an abstract stack location

with an appropriate name. More specifically, the ab-

straction must obey the following two properties.

Property 3.1 Every real stack iocation that is either

a source or target of a pointer reference at a program

point p is represented by exactly one named abstract

stack location.

Property 3.2 Each named abstract stack location at

program point p represents one or more real stack lo-

cations.

An important part of our abstraction is the fact that

we guarantee to provide all points-to relationships us-

ing the names of abstract stack locations that are inde-

pendent of calling context. Thus, each abstract stack

location corresponds to: (1) the name of a local vari-

able, global variable or parameter; or (2) a symbolic

name that corresponds to locations indirectly accessi-

ble through a parameter or global variable (of pointer

type), when these locations correspond to variables not

in the scope of the procedure under analysis; or (3) the

symbolic name heap. Given that all stack locations

have the appropriate names, we can define the rela-

tionships definitely points-to and possibly points-to as

follows ,

Definition 3.1 Abstract stack location x definitely

points-to abstract stack !ocation y, with respect to a

particular invocation context, if x and y each represent

exactly one real stack location in that contezt, and the

real stack location corresponding to x contains the ad-

dress of the real stack location corresponding to y. This

is denoted by the triple (x, y, D).

Definition 3.2 Abstract stack location x possibly

points-to abstract stack location y, with respect to a

parttcuiar invocation context, if it is’ possible that one

of the real stack locattons corresponding to x contains

the address of one of the real stack locations correspond-

ing to y in that context. This is denoted by the triple

(x, y, P).

Based on these relationships, we can define what is

meant by a safe approximation.

Definition 3.3 A points-to set S at program point p

is a safe approximation if for all pairs of real stack

locations loci and locj, with x as the name associated

with 10Ci and y with locj:

1.

2.

if loci points-to loci on all valid execution paths to

p, then the points-to set S contains either (x, y,D)

or (x, y, P).

if loci points-to Iocj on some, but not all, ezecu -

tion paths to p, then the points-to set S contains

(x, y, P).

3. if S contains (x, y, D), then loci must point to locj

along all execution paths to program point p.

Thus, there are two basic ways in which an approx-

imation may not be safe: (1) a real points-to relation-

ship is not included in S, or (2) a spurious definite

points-to relationship is included in S. Of course, it is

easy to find safe approximations that are not precise.

For example, it would be safe to say that every abstract

stack location possibly points-to every other abstract

stack location. The goal is to find approximations that

are as precise as possible. In our abstraction impre-

cision can be introduced by: (1) introducing spurious

possible relationships, or (2) using a possible relation-

ship in the place of a definite relationship.

3.2 L-locations and R-locations

Given that a points-to set S has been calculated for

a program point p, we can define the set of abstract lo-

cations referred to by each kind of variable reference in

the statement at p. L-locations are those abstract loca-

tions referred to by a variable reference on the left-hand

side of an assignment statement, while R-locations are

those abstract locations referred to by a variable refer-

ence on the right-hand side of an assignment statement.

L-locations and R-locations are represented as pairs of

the form (z, D), (z, P) where x is an abstract location

name, and D and P indicate definite and possible loca-

tions respectively. Table 1 summarizes the L-location

and R-location set for each type of variable reference

allowed in the SIMPLE intermediate representation.

Note that an L-location refers to the stack location of

the variable reference itself, while an R-location refers

to the stack locations pointed to by the variable refer-

ence. Thus, the L-location set for a is simply {(a, D)},

while the R-location set is the set of all locations (z, d)

such that a points-to x with the relationship of d (i.e.

(a,x,d) is in the points-to set). The L-location set for

*a is the set of stack locations pointed to by a, while

the R-location set has one more level of indirection.

That is, the R-location set includes all locations (y, d)

such that a points-to some location x and x points-to

y. In this case, the R-location is definite (d= D) only

if a definitely points-to x and x definitely points-to y.

The treatment of structure references is similar, ex-

cept that the field name is appended to the location

names. For array references we use the notation a [i]

to refer to an ordinary array reference, and (*a) [i]

to refer to an array reference via a pointer. In the c

source program these would both appear as a [i], but

in the first case a would have an array type, while in

the second case a would have a pointer type. There are

a variety of ways of dealing with arrays. One method

is to associate an entire array with one stack location.

The method presented in Table 1 uses 2 abstract stack

locations for each array a: ahead is used for the location

a [0] and aiail is used for all other locations a [1 . . n] .

This use of two abstract stack locations per array allows

us to determine when two array pointers are aligned to

244

Var Ref L-lot Set I R-lot Set

&a N/A {(a, D)}

&a. f N/A {(a.f, D)}

&a [0] N/A {(a&acz, D)}

&aCi] (2 > O) N/A {(a,ae~, D)}

&a[i] (i ~ O) N/A {(ahead, P), (wad,F’)}

a {(cL, D)}— ~

a.f {(a. f, D)} {(z, d)l(a.f, z,(t) G s}

a [0] {(wt.a~, D)} {(z, ~)l(wead,Z,O Cs}
a[i] (2’ > O) {(atG,~, D)} {(z, Ol(atad,x,d)es}

a[i] (z’ ~ O) {(a~.a~, P), (atat~, P)} {(~, ~)l(ahead,~,~) ~s v (atatt, x,~) 6s}

*a {(z, f.i)l(a, z,d) C S} {(y, dl Ad2)l(a,x,dl) c SA (z, v,dz) e S}

(*a) .f {(x. f,(t) l(a, z,d) E s} {(w d A dz)l(%z, dl) c s A (x. f,?/, dz) c S}

(*a) [01 {(x, d)l(ahead, x, d) E S} {(!/, al A az)l(ahead,x, al) C S A (z, Y, dz) 6 s}

(*a) [i] (i> O) {(x, d)l(at~tt,x,d) ES} {(v, dl Ad2)l(at~it,z,dl)c SA (Z,v,dz)G s}

(*a) [i] (2> O) {(x, p)l(ahe-d, x,d) G S {(v, p)l((~head, X, dl) Cs v (m~tt,~,dl) C s)A

v(at~;l, z, d) c S} (z, y, d2) C S}
—–...-/. XT/A (/l.-–– n\l

Table 1: L-location and R-location sets relative to points-to set S.

the beginning of the same array. This information is the problem of restricting the propagation of informa-

useful For arr~y dependence test_ing [28].

3.3 Basic Analysis Rules

The basic analysis rules are presented in Figure 1.

Note that for pointer assignment statements we have

a general rule that uses the L-locations for the lhs and

R-locations for the rhs to compute the returned flow

information. There are three basic changes to the in-

put flow information: (1) the set of relationships killed,

(2) the set of relationships that should be changed from

definite to possible, and (3) the set of relationships gen-

erated. Note that any assignment bet ween structures

can be handled by breaking down the assignment into

assignments between corresponding fields and then ap-

plying the basic rules.

After defining the basic assignment rule, we have

defined structured or compositional rules for each of

the loop and conditional constructs. We give simple

versions of the if and while rules in Figure 1. The

complete set of compositional rules that handle break,

cent inue and return in a straightforward manner can

be found elsewhere [13].

4 Interprocedural Analysis

To accurately estimate the effects of procedure calls

on points-to information, we perform context-sensitive

interprocedural points-to analysis. That is, when mea-

suring the effect of a procedure call we estimate it

within a specific calling context and not just summa-

rize the information for all calling contexts. In general,

a calling context depends on the chain of procedure in-

vocations starting with main and ending with the par-

ticular procedure call under analysis.

The problem of ensuring that the analysis of a pro-

cedure call is specific to a particular calling context has

been termed the calling context problem by Horwitz et

al. [25], while Landi and Ryder [30] consider this to be

tion- along realizable interprocedural execution paths.

One traditional solution to this problem has been to

include some context information in the abstraction

being calculated [27]. Typical examples of this ap-

proach include: memory components [34], procedure

strings [18, 19], assumed alias sets [30] and source alias

sets with the last call-site [7].

Rather than embedding the context in the abstrac-

tion being estimated, we have chosen to follow a dif-

ferent strategy where we explicitly represent all in-

vocation paths in an invocation graph. In the case of

programs without recursion, the invocation graph is

built by a simple depth-first traversal of the call struc-

ture of the program, starting with main.3 Consider for

example, the invocation graph for the program in Fig-

ure 2(a). An important characteristic of the invocation

graph is that each procedure invocation chain is rep-

resented by a unique path in it, and vice versa. Using

the invocation graph we can distinguish not only calls

from two different call-sites of a procedure (calls to go

in Figure 2(a)), but we can also distinguish two differ-

ent invocations of a procedure from the same call-site

when reached along different invocation chains (call to

fo in Figure 2(a)).

In the presence of recursion the exact invocation

structure of the program is not known statically, and we

must approximate all possible unrolling of the recur-

sion. Figure 2(b) illustrates a program with simple re-

cursion and the set of all possible invocation unrolling

for this program. To build the graph in the case of

recursion one terminates the depth-first traversal each

time a function name is the same se that of one of the

ancestors on the call chain from main. The leaf node

(representing the repeated function name) is labeled as

an approximate node, and its matching ancestor node

3The treatment of function pointers is given in Section 5.

245

fe Given a strnt S, an input points–to set, and an invocation graph node ign

fun process_stmt (S, Input,ign) =

, return the output points—to set */

if basic_stmt(S)

return(process_basic_stmt (S, Input));

else

case S of

< SEQ(S1, S2) > => return (proc.ss_stmt (S2,process_stmt (Sl,Input,ign) ,ign));

< IF(cond,th.nS,elseS) > => return(process_if(cond,thenS,elseS, Input ,ign));

< WHILE(cond,bodyS) > => return(process_while(cond,bodyS,Input, ign));

...

fun process=basic_stmt(S, Input) =

if (! is_pomter_type(S)) /* not a pointer assignment */

return(Input);

else /* assignment to a pointer variatde */

kill_set = {(p,x,d) I (p,D) 6 L–locations(lhs(S))}; /* kill all relationships oj definite L–iocations of lhs(S) */

J* change from definite to possible, ailrelationships from possible L-locations oflhs(S)*/

change_set = {(p,x,D) I (P,P) 6 L–locations(lhs(S)) A (P,x,D) C Input};

/* Genera teallpossible relationships between L-locations oflhs(S) and R-locationsof rhs(S).

* The generated relationship is definite only if the L–1ocation and R–1ocation are both definite *I

gen_set = {(p,x,dl A d2) I (p,dl) c L–locations(lhs(S)) A (x,d2) c R–locations(rhs(S))};

changed_input = (Input – change_set) U {(p,x,p) I (P,x, D) C change–set};

ret urn((changed_input – kill_set) U gen_set);

fun process_if(cond, thenS,elseS,Input ,ign) =

thenOutput = process_stmt (thenS ,Input ,ign);

if (elseS != {})

elseOutput = process_stmt(elseS, Input, ign);

else

else Out put = Input;

return(Merge(thenOutput ,elseOutput));

fun process_while(cond, bodyS ,Input ,ign) =

/* fixed point calculation */

do

lastIn = Input; Output = process_stmt(body S, Input, ign); Input = Merge(Input ,Output);

while(lastIn != Input);

return(lastIn);

Figure 1: Basic Analysis Rule for Points-to Analysis

is labeled as a recursive node. We indicate the pair- computation can be avoided at analysis time), and (4)

ings of these nodes with a special back-edge from the

approximate node to the recursive node. It should be

noted that these back-edges are used only to match the

approximate node with its appropriate recursive node,

and they are therefore quite different from the other

tree edges which correspond to procedure calls. This

scheme is completely general. Consider, for example,

the invocation graph for a program with both simple

and mutual recursion displayed in Figure 2(c).

Our approach of explicitly building the invocation

graph has the following advantages: (1) it cleanly sep-

arates the abstraction for any interprocedural analy-

sis from the abstraction required to encode the calling

cent ext, (2) it allows us to deposit cent ext-sensit ive

information computed from one analysis that can be

useful for the next analysis, (3) it provides a place to

store (memoize) IN/OUT pairs previously computed to

summarize the effect of the function call (so that extra

it provides a simple framework for implementing simple

compositional fixed-point computations for recursion.

Our overall strategy for interprocedural analysis is

depicted in Figure 3, and the complete rules are given

in Figure 4. The general idea is that, first, the points-

to information at the call-site is mapped to prepare

the points-to input set for the called procedure. This

has to take into account the association of formal and

actual parameters, the global variables, and the ac-

cessibility of non-local stack-locations through indirect

references. Next, the body of the function is analyzed

with this input points-to set and the output obtained

is unmapped and returned to the call-site. Note, that

by using this strategy points-to information induced by

one call-site is never returned to another call-site, and

similarly points-to information arriving from different

call-sites is never simultaneously used to generate new

points-to information. With the overall strategy being

246

~aino go

.. . { . . .

.!30; fo;

go; ...

} }

(a)

maino fo

{ . . . { if #

fo; 9

.

} }

(b)

maino fo go

{ . . . { go; { if$;

fo; if (y) .

} fo; }

}

main main main

ii+

‘i i...
‘i

f

main

+

:’”7-RR
:9 f-A’

“1+
‘ f-A

(c)

Figure 2: Invocation Contexts

clear, we now explain the strategies for mapping and

unmapping points-to information, the use of invoca-

tion graph to store context-sensitive map information

and the handling of recursive calls through fixed-point

computations guided by the invocation graph,

4.1

~f-jr
Unmap Process

Figure 3: The Interprocedural Strategy

Mapping and Unmapping Points-to

Information

When preparing the input points-to set for the called

procedure from the points-to information at the call-

site, the formal parameters inherit the points-to rela-

tionships from the corresponding actuals, global vari-

ables retain the same points-to relationships, while lo-

cal variables are initialized to point to NULL . However,

there are two important points to be considered:

● If a formal parameter or a global variable is a

multi-level pointer, another pointer variable can be ac-

cessed by dereferencing it. The points-to relationships

for all such indirectly accessible pointers also need to

be mapped to the called procedure.

● Formals and globals can point to variables not in

the scope of the procedure, which in turn can point

to variables within/outside the scope of the procedure.

Henceforth, we refer to variables outside the scope of

the called procedure as invisible variables.4

The first problem is resolved by applying the map-

ping process recursively to all levels of pointer type.

For the second problem, we generate special symbolic

names to represent each level of indirection of pointer

variables. For example, for a variable x with type

int **, we would generate symbolic names l_x and 2X

with types int * and int. Now, if an indirect refer-

ence, say *x, can lead to an invisible variable, say b,

the corresponding symbolic name I_x is used to rep-

resent b in the points-to pairs. So a points-to pair

like (x ,b, P) at the call-site would be mapped to the

pair (x, I-x, P). Further, a points-to pair like (b, c ,P),

where c is again an invisible variable, would be mapped

aa (IX, 2-x, P). Simultaneously, the association of in-

visible variables b and c with symbolic names 1-x and

2X is recorded in the invocation graph node currently

under investigation, as map information. This context-

sensitive information is used while unmapping and also

by other interprocedural analyses (20]. Note that only

the map information is context-sensit_ive; the symbolic

names themselves are used in a context-free manner

inside the procedures, by all analyses.

However, any scheme to map invisible variables to

symbolic names, should take into account the following

observations:

● An invisible variable should be represented by at

most one symbolic name. For example if both x and y

definitely point to the invisible variable b, it should be

mapped to either I-y or i-x and not to both. Other-

wise, we would have two abstract stack locations rep-

resenting one real stack location, which would violate

Property 3.1. So, if b is mapped to I-y, we would have

the following points-to pairs: (x, l_y, D), (y, l-y, D)

and the map information would be: (l.y, b), (I-x, {}).

● A symbolic name can represent more than one in-

visible variable, For example, consider the case where

x possibly points to invisible variables a and b. Now,

both a and b need to be mapped to IX. Next, sup-

pose a global variable, say y also definitely points to

b. Now, either both a and b can be mapped to the

symbolic name l-x or a can be mapped to l-x and b

to I.y. However, with the first choice we would have

the points-to pairs (x, l_x, P), (y, Ix, P), which on

unmapping would generate the spurious points-to pair

(y, a, p), and the inaccurate pair (y ,b, P) (instead of

(y, b, D)). 5 So, a good mapping scheme should min-

imize the number of invisible variables mapped to a

symbolic name to improve the accuracy of information.

Our experience shows that mapping invisibles involved

4A similar notion of non-visible variables is given in [30].

5Note that the information provided is still safe, but less

precise.

247

fun process_cd(Input, actudList,formdList,ign, funcBody) =

(funcInput,mapInfo) = map_process(Input ,formalList ,act ualList)

case ign of

< Ordinary > =>

if (funcInput == ign.storedInput) /* already computed */

return(unmap_process(Input ,ign.storedOutput ,mapInfo));

else /* compute output, store input and output */

funcOutput = process_stmt(funcBody, funcInput,ign);

ign.storedInput = funcInput; ign.storedOutput = funcOutput;

return (unmap_process(Input, funcOutput,mapInfo));

< Approximate > =>

recIgn = ign.recEdge; /* get partner recursive node in inu. graph *I

if isSubsetOf(funcInput, recIgn.storedInput) /* if thisinput is contained in stored input, use stored ouput */

ret urn(unmap_process(Input ,recIgn.storedOutput ,mapInfo));

else 1* put this input in the pending list, and return Bottom */

addToPendingList (funcInput ,recIgn.pendingList);

return (Bottom);

< Recursive > =>

if (funcInput == ign.storedInput) /* already computed */

return (unmap_processs (Input, ign.storedOutput ,mapInfo));

else

I* imtial input estimate */ /+ initial output estimate */

ign.st oredInput = funcInput; ign.storedOutput = Bottom;

ign. pendingList = {}; done = false;

/* no unresolved inputs pending *I

do

I* process the body *I

funcOutput = process_stmt (funcBody,ign.storedInput,ign);

/* if there are unresolved inputs, merge inputs and restart *I

if (ign.pendingList != {})

ign.storedInput = Merge(ign.storedInput, pendingListInputs);

ign.pendingList = {}; ign. storedOutput = Bottom;

else if isSubsetOf(funcOutput, ign.storedOutput) /* check if the new output is included in old output */

done = true;

else [e merge outputs and try again +/

ign.storedOutput = Merge(ign.storedOutput, funcOutput);

while (not done);

ign.storedInput = funcInput; j+ reset stored znput to irutial input for future memorization *I

return(unmap_process(Input, ign.storedOutput, mapInfo)); /* return the fi~ed-point afler ~nrnapping */

Figure 4: Compositional Interprocedural Rules for Points-to Analysis

in definite relationships before the ones involved in pos-

sible relationships, gives more accurate mapping infor-

mation.

Once the function is analyzed with the mapped in-

put, the output points-to set of the function needs to be

mapped back to obtain the output points-to informa-

tion at the call-site. The unmap algorithm essentially

consists of mapping the points-to information of sym-

bolic names to that of invisible variables represented

by them, besides that of globals. Complete details of

our map and unmap algorithms are described in [13].

4.2 Recursive Procedure Calls

The cases of approximate and recursive procedure

calls shown in Figure 4 work together to implement

a safe and accurate fixed-point computation for recur-

sion. As we have explained previously, all possible un-

rolling for call-chains involving recursion are approx-

imated by introducing matched pairs of recursive and

approximate nodes in the invocation graph. Each re-

cursive node marks a place where a fixed-point com-

putation must be performed, while each approximate

node marks a place where the current stored approxi-

mation for the function should be used (instead of eval-

uating the call, the stored output is used directly).

At each recursive node we store an input, an output,

and a list of pending inputs. The input and output

pairs can be thought of as approximating the effect of

the call associated with the recursive function (let us

call it f). The fixed-point computation generalizes the

stored input until it finds an input that summarizes all

invocations off in any unrolled call tree starting at the

recursive node for f. Similarly, the output is general-

248

ized to find a summary for the output for any unrolling

of the call tree starting in the recursive node for f. The

generalizations of the input and output may alternate,

with a new generalization of the output causing the

input to change.

Let us consider the rule for the approximate node in

Figure 4. In this case, the current input is compared

to the stored input of the matching recursive node. If

the current input is contained in the stored input, then

we use the stored output as the result. Otherwise, the

result is not yet known for this input, so the input is put

on the pending list, and BOTTOM is returned as the

result. Note that an approximate node never evaluates

the body of a function, it either uses the stored result,

or returns BOTTOM.

Now consider the recursive rule. In this case we have

an iteration that only terminates when the input is

sufficiently generalized (the pending list of inputs is

empty) and the output is sufficiently generalized (the

result of evaluating the call doesn’t add any new infor-

mation to the stored output).

5 Handling Punction Pointers

In the presence of function pointers, the invocation

graph cannot be constructed by a simple textual pass

over the program, because a function pointer call-site

cannot be bound to a unique function at compile time.

A set of functions can be invoked from such a call-site,

depending on the address contained in the function

pointer when program execution reaches that point.

Thus, proper handling of a function pointer call re-

quires a precise estimate of this set. The simplest safe

approximation for this set is the set of all functions in

the program. Another possible strategy is to collect

the set of all functions which have had their addresses

taken, and use this set to instantiate each function

pointer reference. The number and types of parame-

ters passed cannot be safely used to refine this set, as C

permits passing variable number of arguments to func-

tions, and type casting. Either of the above methods

is likely to be overly conservative and can substantially

reduce the quality of flow information being collected,

even if there is only one indirect call in the program.

Further, these simple strategies could incur consider-

able cost, as each function has to be analyzed in the

context of the call.

A more precise estimate can be obtained by observ-

ing the fact that the set of functions invocable from a

function pointer call-site is identical to the set of func-

tions that the function pointer can point to at that

program point. To compute the points-to set of’ the

function pointer, we need to perform points-to analy-

sis. Points-to analysis itself needs the invocation graph

of the program, as it is a context-sensitive interproce-

dural analysis. How do we get the invocation graph for

points-to analysis? The solution lies in constructing

the invocation graph while performing points-to anal-

ysis, as described below.

First, we build the invocation graph of the program

following the strategy described in section 4, leaving

it incomplete at the points a function pointer call is

encountered. Next, we perform points-to analysis us-

ing this incomplete invocation graph. On encounter-

ing an indirect call through a function pointer, we find

all the functions it can point to, according to the cur-

rent points-to information. The invocation graph is

updated to indicate that the indirect call can lead to

invocation of any of these functions. Simultaneously,

each pointed to function is analyzed in the context of

the call. When analyzing an invocable function, say f,

we consider the function pointer to be definitely point-

ing to f, as this would be the case whenever execution

reaches function f from the given indirect call-site. Fi-

nally, the output points-to information for the indirect

call is obtained by merging the output points-to sets

obtained by analyzing each of the invocable functions.

A more formal description of the algorithm is provided

in Figure 5. The detailed description is given in [15].

fun process_call_indirect(Input ,actualList ,ign) =

/* Get the function pointer used to make the

indirect call */

fptr = getFnPtr(ign)

/* Get the set of functions pointed–to by

fptr from current points–to information +/

pointedToFns = pointsToSetOf(Input, fptr)

/+ Initialize output of the indirect call */

Calloutput = {}

foreach fn in pointedToFns

I* Indicate function fn to be

invocable by the indirect call */

updateInvocGraph(ign, fn)

/* Get Invocation Graph node for fn */

igNode = getIgNode(fn)

J* make fptr dejiniteiy point to fn *f

igNodeInput = makeDefinitePointsTo(Input,

fptrjfn)

J* Get output for each invocable function *f

igNodeOutput = process_ +(igNodeInput,

actualLlst ,fn.formalList,

igNode,fn.funcBody)

I* Merae all outputs */

&llOut&t = M&ge(c~Output,igNodeOutput)

return(callOutput)

Figure 5: Algorithm for Handling Function Pointers

It should be noted that this algorithm does not add

any extra cost to the analysis phase of the compiler.

It simply extends the points-to analysis by using the

points-to information available at indirect call-sites at

the appropriate time.

We provide an example to demonstrate how this

algorithm works. Consider the program given in

Figure 6. Its initial incomplete invocation graph

is shown in Figure 7(a). During points-to anal-

ysis, when the function pointer call f p () is en-

countered at program point A, the points-to set

249

int a,b, c;

int *pa, *pb, *pc;

int (*fp)();

maino fooo baro

{ . . . { . . . { .
pc = &c; pa = &a; pb = &b;

if (cond) if (cond) /* Point D ~/

fp = foo; fpo;

else /* Point c ./ ‘

fp = bar; }

/* Point A ~~

fpo;

/* Point B ~/

}

A: (fp,foo,P) (fp,bar,P) (pc,c,D)

B: (fp,foo,P) (fp,bar,P) (pc,c,D) (pa,a,P) (pb,b,P)

C: (fp,foo,D) (pc,c,D) (pa,a,D)

D: (fp,bar,D) (pc,c,D) (pb,b,D)

Figure 6: Example Program with Function Pointers

of fp is {(fp, foo, P), (fp, bar, P)}. The invoca-

tion graph is updated accordingly, as shown in Fig-

ure 7(b).6 Next, function f oo is analyzed with

the input points-to set as {(fp, foo,D) , (pc, c, D)}

and function bar with the input points-to set

{(fp,bar,D), (pc, c,D)}. Note that this set is not

{(fp,foo, P), (fp,bar, P), (pc, c, D)} for both the

functions, for reasons mentioned in the above para-

graph. While analyzing the function f oo, another func-

tion pointer call f p () is encountered. The invocation

graph is again updated according to the current points-

to set off p : {(f p,f oo ,D) }, and consequently the po-

tential call to foo in main (which is currently being

considered) becomes a recursive call and is handled

specially as explained in the previous section. Finally,

the points-to information at program point B is ob-

tained by merging the output points-to sets from the

two potential function calls. The final points-to sets

at important program points are given at the bottom

of Figure 6. The final invocation graph is shown in

Figure 7(c).

6 Experimental Results and Applica-

tions of Points-to Analysis

In this section we present our experimental results

obtained by analyzing a set of 17 C programs. Ta-

ble 2 summarizes the following characteristics of each

benchmark: source lines including comments, number

of statements in the SIMPLE intermediate representa-

tion, and the minimum and maximum number of vari-

ables in the abstract stacks of its functions (including

symbolic variables, and all the fields of structures rele-

vant to points-to analysis).

Our empirical results are given in tables 3, 4, 5, and

6. These results are based on our implementation in the

6The double-Lined edges in the figure are used just for clarity

of presentation. They are not treated differently from other edges

in the graph.

main main main

fp fp fp

/\ /“\
foo bar foo-R bar

+

#
/

f
1 J

fp I fp
I

‘ foo-A

(a) (b) (c)

Figure 7: Invocation Graph Construction with Func-

tion Pointers

McCAT compiler. For pointer arithmetic we assume

that pointers to arrays do not cross array boundaries.

For non-array pointer arithmetic our analysis supports

a flag that indicates that either: (1) the pointer target

stays within the presently pointed-to data structure, or

(2) the pointer target can be any memory location. For

the first case a warning message is issued so that the

programmer can determine if t his is a safe assumption.

Our experiments were done with this setting.

The accuracy of points-to information collected, is

best reflected in how precisely it helps in resolving

indirect references in programs. We present data on

points-to characteristics of indirect references in ta-

ble 3. Columns 2 to 6 give the number of indirect refer-

ences with the dereferenced pointer definitely pointing

to a single stack location, possibly pointing to a sin-

gle stack location (the other being NULL), and then

to two, three and four or more stack locations. The

next two columns give the total number of indirect ref-

erences in the program, and the number of indirect ref-

erences that can be replaced by a direct reference, by

using definite points-to information. 7 Columns 9 and

10 give the number of points-to pairs used by indirect

references, with the pointer target being on the stack

and in the heap respectively. The Tot column gives

their sum. The last column gives the average number

of points-to pairs used in resolving an indirect reference

in the program, which is the same as the average num-

ber of stack locations pointed to by the dereferenced

pointer. For each multiple entry column, the first en-

try provides statistics for indirect references of the form

*x and (*x) . y. z, and the second for indirect references

of the form x [i] [j], where x is a pointer to an array.

Note that in our analysis we initialize all pointers to

NULL. Since this initialization is not necessarily done

by the user, points-to relationships contributed by it

are not counted in the statistics.

7Note that this replacement cannot be done when the deref-

erenced pointer definitely points-to an invisible variable.

250

Benchmark

genetic

dry

clinpack

Config

toplev

compress

mway

hash

misr

xref

stanford

fixoutput

sim

travel

csuite

msc

lWS

SIMPLE

506

826

1231

2279

1637

1923

700
256
276

146
885
400

1422
862
872
148

2239

479

212

920

4549

1096

1342

869

110

235

140

889

391

1768

543

781

226

6671

Min

#of

var

33

21

11

19

92

41

51

15

10

26

31

17

99

28

34

20

64

Max

#of

Var

61

43

109

188

164

186

125

30

43

61

67

31

137

55

55

73

527

Description

Implementation of a genetic algorithm for sorting.

Dbrystone benchmark.

The C version of Linpack.

Checks all the features of the C-language.

The top level of GNU C compiler.

UNIX utility program.

A unified version of the best algorithms for m-way partitionhg.

An implementation of a hash table.

‘This program creates two MISR’S. Their values are compared to see

if the introduced errors have caqcelled them~elves.
A cross-reference program to bmld a tree of Items.

Stanford baby benchmark.

A simple translator,

Finds local similarities with &e weights.

Implements Traveling Salesman Problem with greedy heuristics.

Part of test suite for Vectorizing C compilers.

Calulates the ruin spanning circle of a set of n points in the plane.

Implements dynamic simulation of flexible water molecule.

Table 2: Characteristics of Benchmark Programs

Bench- 1 1 2 3 >4 ind scalar To To Tot Avg

mark D rel P rel P rel P rel P rel refs Rep Stack Heap

genetic 25 14 27 02 02 20 54 7 38 30 68 1.26

dry 2 11 37 0 80 00 00 58 9 21 45 66 1.14

clinpack 7 98 02 0 39 04 00 150 101 197 0 197 1.31

Contlg 83 34 0 00 00 00 45 3 45 0 45 1.00

toplev 50 110 0 00 00 20 117 5 171 0 171 1.46

compress 00 40 10 00 00 00 50 0 43 7 50 1.00
mway 31 38 00 05 00 00 74 0 79 0 79 1.07
hash 20 12 0 00 00 00 14 0 7 7 14 1.00

misr 13 80 27 0 00 00 39 0 31 35 66 1.69

xref 00 20 2 9 0 00 00 31 0 9 31 40 1.29

stanford 6 61 74 0 02 0 0 00 143 51 119 26 145 1.01

fixoutput 50 12 00 00 00 8 5 5 3 8 1.00

sim 00 122 231 00 00 00 353 0 34 319 353 1.00

travel o 20 30 32 17 41 00 77 20 125 11 136 1.77

csuite 8 13 36 9 00 0 0 00 66 21 64 2 66 1.00

msc 60 35 0 00 00 00 41 6 6 35 41 1.00

lWS 77 90 54 197 50 00 00 423 110 428 0 428 1.01

Table 3: Points-to Statistics for Indirect References

The results in this table are very encouraging. The

following important observations can be made:

● The average number of stack locations pointed to

by the dereferenced pointer in an indirect reference, is

quite close to one for most programs, where one in-

dicates the best possible case. The overall average is

equal to ~, while the maximum average for a pro-

gram is only 1.77. This indicates that the informa-

tion collected by our points-to analysis is highly pre-

cise. The overall average is quite close to that reported

by Landi et al. [31], which is 1.2.

. Overall, 28.80% of indirect references in the pro-

grams have the dereferenced pointer definitely pointing

to a single stack location. Using the definite informa-

tion, 19.39% of indirect references, can be replaced by

direct references (when the dereferenced pointer does

not point to an invisible variable). For this replace-

ment, 67.33’%o of definite relationships applicable to in-

direct references, are useful. These are very important

results, which support our strategy of collecting both

possible and definite information.

● A pointer should not be pointing to NULL when

being dereferenced during program execution. With

this assumption, 90.76% of indirect references, have the

dereferenced pointer definitely/possibly pointing to a

single stack location.

● For certain benchmarks, in particular ‘clinpack’,

‘st anford’, ‘sire’ and ‘lws’, the majority of definite

relationships are for indirect references of the form

x [i] [j], (where x is a pointer to an array). This in-

formation is very useful for array dependence analysis,

as it reduces the number of array pairs to be collected

for subscript analysis [28].

o Overall, 27.92~0 of points-to relationships used,

have heap locations as the pointer target. This under-

lines the need for a powerful companion heap analysis

to identify disjoint accesses to heap locations [16].

● There are very few cases with three or more pOS-

251

sible points-to relationships for an indirect reference.

One of these cases (with more than 4 points-to relation-

ships), occurs when an array of pointers is initialized

(in ‘toplev’).

Table 4 further categorizes the points-to relation-

ships with the pointer target on stack (column ‘To

Stack’ of table 3), into relationships arising/directed

from/to abstract stack locations representing local

variables (lo), global variables (gl), formal parameters

(fp) and symbolic names (sy). The statistics in the ta-

ble show that most of the relationships arise from for-

mal parameters> and are directed to symbolic names

or global variables. This indicates that procedure calls

generate the majority of points-to relationships, and

that points-to analysis needs to be a context-sensitive

interprocedural analysis to collect precise information.

Table 5 contains statistics about the total number of

points-to pairs collected, obtained by summing up the

number of pairs valid at each statement in the simpli-

fied program. Columns 2 to 4 give a classification of

the points-to pairs based on their origin and target in

the memory organization. The last two columns give

the average and maximum number of pairs valid at a

statement.

The major observation from this table, is the ab-

sence of points-to relationships from heap to locations

on stack, implying that pointers in heap objects only

point to other heap objects, for the given benchmark

set. This supports our strategy of separating stack and

heap points-to analyses. However, we need to analyze

a larger set of benchmarks to further strengthen this

claim, and to measure the inaccuracy introduced by our

approach for those benchmarks that do have pointers

from the heap to the stack.

Bench- From To

mark 10 gllfplsy lolgllfplsy

gem-tie 010 I 3810 01381010,------- 11 1 I

IT-” Ilnlo 21 0 0 9 0 12

0 197 0 0 193 0 4

0 42 0 3 33 0 9

.- r-- II 1 0 171 0 0 171 0 0

compress 11 3 29 0 0 40 0 3

nwav II 010 79 0 0 5 0 74

hash” 7 0 0 0 OIO1OI7

misr 23 0 8 0 01010131

xref o 0 9 0

st ati~rd o 0 1

cl,1+,n,, t n n

o 9 0 0

--- 119 0 0 103 0 16

fixc-.=-. - -5 0 0 5 0 0

sim 15 0 19 0 0 26 0 8

travel 2 0 123 0 14 57 0 54

csuite 12 0 52 0 8 56 0 0

msc 0 0 6 0 0 6 0 0

lWS 0 0 428 0 1 350 0 77

Table 4: Categorization of Points-to Information Used

by Indirect References

Landi and Ryder [30] also present empirical data on

the total number of program-point-specific alias pairs

collected. However, it is difficult to meaningfully com-

Bench-

11
Stack Stack Heap Heap A Max

mark To To To To v per

Stack Heap Heap Stack g stint-

genetic 3901 1066 0 0 10 38

dry 512 S83 198 0 7 24

clinpack 18987 0 0 0 20 91

Config 136315 18 0 0 29 120

toplev 41539 6 0 0 37 100

compress 30502 1070 0 0 23 82

mway 16399 0 0 0 18 76

hash 577 207 34 0 7 Is

misr 1314 706 9 0 8 25

xref 46 506 17 0 4 16

7 0 3 30

n n 9 14

st anford 3137 364

fixoutput 3111 794 I II 1
sim 7048 31174 143; I G 2i ii

travel 3581 1174 42
1 ,,

010 8

010 II 5 I 26csuit e 4527 14

msc 221 907 8810 II 5 I 22 1

lWS 241291 0I 010 II 35 I 366

Table 5: General Points-to Statistics

Bench- ig call #of R A Avgc Avgf

mark nodes sites fns

genetic 45 32 17 0 0 1.38 2.65

dry 19 17 :

clinpack 92 42

cOPfi . 1OR? 493 ~ I
TF.- .

1 !,

II
.- 29 181010 1.80 2.94

compress 45 23 121010 II 1.91 I 3.75

row.. II 44 42 ‘

.-. = 11 ----

nl +“ 53

ha~., II . I “ I
micr 8 7

,.-, 11 .- 1 1
21 0 0 1.02 2.10

-1. 0 Q 5 0 0 1.0 1.80

----- 11 1 1 5 0 0 1.0 1.60
.- . .

8 2 4 1.0 1.88xret 15 14 1 I ,,
stanford 64 61 37 I6I1O 1.03 I 1.73

fixoutput 23 12

sim 120 47

travel 39 22.. ----
II

. .
1 1

c<,lit, e 37 36-- —..
II

-.
1 1

36 0 0 1.00 1.00

msc 6 5 5 2 2 1.00 1.00

lWS 33 29 I 17 0 0 1.10 1.94

Table 6: Invocation Graph Statistics

pare their numbers with ours, because they greatly de-

pend on the intermediate program representation. We

do provide simple examples in Section 7 which illus-

trate when one method is superior to the other.

Finally, Table 6 gives the following measurements

for invocation graphs: nodes in the invocation graph,

call-sit es in the program, functions actually called in

the program, recursive and approximate nodes in the

invocation graph, and the average number of nodes in

the invocation graph per call-site, and per called func-

tion.

The overall average for the number of invocation

graph nodes per call-site is 1.45. Thus each call-site

appears on an average on two call-chains for our bench-

mark set. This indicates that our approach of explic-

itly following call-chains is practical for real programs

of moderate size, though it is theoretically exponential

252

in cost. However, to fully support this claim, we need

to do further experimentation on larger benchmarks.

If the size of the invocation graph becomes unreason-

able on such benchmarks, we plan to reduce its size by

sharing sub-trees that have the same or similar invoca-

tion contexts. This can be implemented by caching or

memoizing the input and output points-to information

for each function, and by recognizing when a particular

input has already occurred. If the output has already

been computed, then the sub-trees can be shared and

the stored output can be used to continue the analysis.

To estimate the benefits of our technique to han-

dle function pointers, we studied the benchmark ‘live’,

which is a collection of Iivermore loops. It has three

global arrays of function pointers, each initialized to

a set of 24 functions. There are three indirect call-

sites in the program (each inside a loop), one involving

each function pointer array. Each indirect call is made

through a scalar local function pointer, which is first as-

signed the appropriate function pointer array element.

Our algorithm constructs the precise invocation graph,

instantiating each function pointer call with the cor-

responding 24 functions, giving a total of 203 nodes.

The naive approach mentioned in section 5 would in-

stantiate each indirect call with 82 functions (the pro-

gram has total 82 functions), leading to an invocation

graph with 619 nodes. An approach considering only

the functions whose address has been taken, would still

instantiate each indirect call to 72 functions, and con-

struct an invocation graph with 589 nodes. Thus, both

the approximations would yield very imprecise invoca-

tion graphs, as compared to our algorithm.

6.1 Applications of Points-to Analysis

The measure of success of an analysis like points-

to or alias analysis is not just in measuring the num-

ber of pointed-to locations. One must also show how

the results of such an analysis can be used as a build-

ing block for other interprocedural analyses and opti-

mizing/parallelizing transformations. In our compiler

framework, the points-to analysis provides: (1) point-

specific points-to information and (2) a complete invo-

cation graph with mapping information that encodes

how one maps variables from a calling context to a

called context.

The point-specific points-to information is very use-

ful to compute read/write sets such as those used

in constructing the ALPHA intermediate representa-

tion [21]. In these approaches one can directly compute

the read and write sets based on the names of variables

and the symbolic names used for invisibles. The points-

to results are also critical to the support analyses re-

quired for dependence testing for array references [28].

In this context, points-to results are used to: increase

the number of admissible loop-nests, decrease the num-

ber of array pairs that require testing, and allow the

analysis of array subscripts that involve pointer vari-

ables. One example of an optimizing transformation is

the use of definite points-to information to reduce the

number of loads required in the low-level program rep-

resentation [12]. In the context of fine-grain paralleliz-

ing transformations, we are currently studying the use

of points-to information for providing more accurate

dependence information for instruction scheduling.

The complete invocation graph and mapping infor-

mation provides a convenient basis for implementing

other interprocedural analyses such as generalized con-

stant propagation [20], and practical heap analysis

[16]. The important point here is that after points-

to analysis is completed one does not need to worry

about function pointers or the correspondence between

invisible variables and the calling context. All of this

information has been stored by the points-to analysis

and need not be recalculated.

7 Related Work

7.1 Alias Analysis

The most closely related work is that of Landi and

Ryder [30], and Choi et al. [7]. In the following para-

graphs, we compare our approach with this and other

related work, under different points of import ante:

Alias Representation Our points-to abstraction

provides alias information in a more compact and

informative manner than the exhaustive alias pairs

used by Landi and Ryder. This abstraction is par-

ticularly suited for calculating stack-based aliasing, as

each stack location can be given a compile-time name.

It also eliminates the generation of extraneous alias .

pairs in certain cases. Consider the example in Fig-

ure 8. Figure 8(a) gives the points-to information,

while Figure 8(b) gives the alias pairs computed by the

Landi/Ryder may-alias algorithm. We can compare

the two results by calculating the set of alias pairs im-

plied by the points-to set using transitive closure. For

this example, the spurious alias pair (**x, z) at pro-

gram point S3, would not be generated by our method.

However, for the example in Figure 9, the transitive

closure of points-to pairs at S3 would generate spurious

alias pair (**a, c), which won’t be reported by Landi

and Ryder. The transitive reduction scheme proposed

in [7] is similar to our points-to abstraction in this con-

text.

maino { Sl: (*x,y) (**x, *y)
int **x, *y, z, w;

S1: x = &y; /* (x,y, D) */

S2: (*x,y) (**x, *y)

(*y,z) (**X,Z)
S2: y = &z; /* (x, y,D) S3: (*x)y) (**x, *y)

* (Y, z,D) *I (*y,w) (**X,Z)

S3: y = &w; /* (z, y,D) (**X,W)

* (Y, w,D) *I

}
(a) Original Program (b) Alias Information

Figure 8: Points-to Pairs vs. Alias Pairs

Must Aliases: The points-to abstraction enables

the simultaneous calculation of both possible and def-

253

inite points-to relationships without any extra over-

head. The empirical results presented in section 6 show

the existence of a substantial number of definite points-

to relationships, which forms very valuable informa-

tion. Landi and Ryder give an algorithm only for cal-

culation of may-aliases. An algorithm for calculating

must-aliases is presented in [32]. However, it handles

only single level pointers and considers the problem in

isolation from may-alias computation.

Choi et al. give an example of how must-alias infor-

mation can improve the precision of alias analysis. But

they do not describe how to calculate must-aliases and

how to integrate this calculation with the may-alias

calculation.

Sagiv et al. [38] propose simultaneous collection of

both universal and existential properties of programs,

in their logic-based formulation of data flow analysis

problems. In particular, they show how universal as-

sertions can be used to improve the accuracy of exis-

tential assertions, using the pointer equality problem

as an example. This is similar to our approach where

the definite points-t o information gives more precise

killing information and reduces the number of spurious

possible points-to pairs.

maino {

int **a, *b, c;

...
S1: (*a,b) (**a, *b)

if(c)

S1: ~:~: &b; /* (a, b,D) */
S2: (*bjc)

S3: (*a,b) (**a, *b)

s2: b = &C; /+ (b, c,D) */
(*b,c)

S3: 1* (a, b,P) (blc, P) */

}

(a) Original Program (b) Alias Information

Figure 9: Points-to Pairs vs. Alias Pairs

Interprocedural Analysis: Landi and Ryder pro-

pose a conditional approach for context-sensitive inter-

procedural alias analysis. They associate an assumed-

alias pair with every alias pair, where the validity of the

alias pair at a program point is condtttonal on the va-

lidity of the assumed-alias pair at the entry node of the

procedure containing the program point. They recover

the calling context by determining the call-sites which

can propagate the assumed-alias pair to the entry node

of the procedure under analysis. Their scheme is pre-

cise for single-level pointers. However, in the presence

of multi-level pointers, it can simultaneously use infor-

mation arriving from different call-sites and also prop-

agate information to extraneous call-sites. In contrast,

as illustrated in our discussion of mapping/unmapping,

our method can be imprecise even for single-level point-

ers. However, in some instances, our interprocedural

scheme can avoid combining information arriving from

different calls sites and will thus give more accurate

results for multi-level pointers.

Choi et al. associate the last call-site C encountered

with each alias pair. They use this information to re-

cover cent ext, and to avoid simultaneously using alias

information arriving from different call-sites. However,

they cannot distinguish information propagated by two

different invocations of a procedure from the same call-

site. Further, they cannot properly handle information

propagated along call-chains of size greater than one.

They also propose using a source alias set abstraction,

but its role is not clear from their paper [33].

We do not introduce these approximations, as we ex-

plicitly propagate information along invocation paths

in the program, using the invocation graph represen-

tation. Several other advantages of using invocation

graphs are mentioned in section 4. Our empirical

results also support the feasibility of this approach,

though it is theoretically exponential in cost. FinalIy,

none of the above techniques handle function pointers,

which oft en occur in C programs. We gracefully inte-

grate them in our points-to analysis framework, with-

out incurring any extra overhead.

Dynamically-allocated objects: Landi and Ry-

der use the access paths as names for anonymous heap

objects. They k-limit the access paths to have a fi-

nite set of object names, in the presence of recursive

structures. Choi et al. name the heap objects by us-

ing the place in the program where they are created,

as in [24]. They use procedure-strings and k-limiting

of recursive structures [26] to improve their naming

scheme. These names are then used in alias calcula-

tion. We differ from these approaches in that we claim

that the stack and heap problems can and should be

separated. The fact that the analyses can be separated

is substantiated by our empirical evidence that heap-

directed pointers do not in general, point back to the

stack in real programs. Thus, we use a single location

called heap in our abstract stack for the points-to anal-

ysis. All heap-directed pointers point to this location.

We have designed a separate family of abstractions to

capture meaningful relationships between these heap-

directed pointers [16], based on the path-matrix model

proposed in [23]. Both the original path matrix analy-

sis [23] and the heap-based method proposed by Chase

et al. [6] also assume that pointer fields in heap nodes

only point to heap nodes, and do not point to vari-

ables (which are locations on stack). It is important

to note that our points-to method provides a safe ap-

proximation even in the presence of pointers from the

heap to the stack. However, there maybe some loss of

precision due to the abstraction of all heap locations

with one abstract stack location, To date, our exper-

iments show that this is not a problem, and that it is

reasonable to decouple the stack and heap analyses.

7.2 Function Pointers

The problem of constructing the call graph of a pro-

gram in the presence of procedure variables has been

254

previously studied [3, 17, 29, 37, 42, 44]. However, the

above techniques cannot handle function pointers, be-

cause in C they are considered no different from data

pointers. One can have function pointers of multiple

level, as fields of structures, and as arrays. They can

also be type-cast into data pointers and vice versa.

Hence the full power of a points-to analysis is needed

to correctly and precisely accommodate them in an in-

terprocedural analysis.

An analogous problem of control flow analysis [40],

has been studied in the domain of higher order lan-

guages. Here, the possibility y of creating functions dy-

namically (for example, using lsmbda in Scheme) poses

additional complexity. Different approaches to solve

this problem have been proposed [10, 18,35,39,40, 41].

In object-oriented languages, call graph analysis be-

comes non-t rivial due to inherit ante and function over-

loading. The method invoked from a call-site depends

on the type of the receiver, and static type determi-

nation is used to estimate control flow. Type analy-

sis techniques have been developed for C++ [36] and

SELF [4, 5].

8 Conclusions and Further Work

In this paper we have presented a new method

for computing the points-to information for stack-

allocated data structures. This method uses the con-

cept of abstract stack locations to capture all possible

and definite relationships between accessible stack lo-

cations. The method provides context-sensitive inter-

procedural information, and it handles general func-

tion pointers in an integrated fashion. The points-to

information can be used to generate traditional alias

pairs, or it can be used directly for numerous other op-

timization and transformations including pointer re-

placement and array dependence testing.

We have provided substantial empirical results that

demonstrate that the method provides accurate and

useful approximations, These results also show that it

is safe and accurate to separate the stack-based points-

to analysis from the structure-based approximations

for heap-allocated objects. Furthermore, the metlhod

has been used as a foundation for a general purpose

interprocedural analysis method [20].

The next steps in our work will be to add further

optimizations to the method itself, and to measure the

effect of accurate points-to analysis on other optimiza-

tion and transformations. We are also working on the

companion analyses to approximate the heap. These

analyses are based on a series of practical approxima-

tions of the relationships between directly-accessible

heap-allocated nodes. These approximations vary from

simple connection matrices that approximate the con-

nectivity of nodes, to complete path matrices that give

complete approximations of connectivity and paths be-

t ween nodes.

9 Acknowledgments

A special thanks to Bill Landi for numerous e-mail

discussions and his willingness to share with us output

from his analysis and some of his benchmarks. We

would also like to thank the PLDI program committee

for their careful reviews and helpful comments. Last,

but not the least, we thank all the people who have

participated in developing the McCAT compiler.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

J. P. Banning. An efficient way to find the side ef-

fects of procedure calls and the aliases of variables. In
Conference Record of the Sixth A ranual ACM Sympos-
ium on Principles of Programming Languages. pages
29-41, January 1979.

J. M. Barth. An interprocedural data flow anaJysis

algorithm. In Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages,
pages 119–131, January 1977.

D. Callahan, A. Carle, M. W. Hall, and K. Kennedy.

Constructing the procedure call Multigraph. IEEE
Transactions on So&ware Engineering 16,4, pages 483-
487, April 1990.

C. Chambers and D. Ungar. Customization: Opti-

mizing compileq technology for SELF, a dynamically-
typed object-oriented programming language. In Pro-
ceedings of the SIGPLAN ’89 S rnposium on Program-

Yming Lan uage Design and mplernentation, pages
146-160, ?une 1989.

C. Chambers and D. Ungar. Iterative t ype analysis and

extended .messa~e splitting: Optimizing dynamicrdly-
t ped ob ect-oriented pro~rams. In Proceedings of
tie SIG~LAN ’90 S mposmm on Programming Lan-

ua e Design and implementation, pages 150-164,
Yunz 1990.

D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis

of ointers and structures. In Proceedings of the SIG-
P~AN ’90 Conference on Programming Language De-
si n and Im lamentation, pages 296–310, June 1990.
Sl?GPLAN $otices, Vol 25, No 6.

J. D. Choi, M. G. Burke, and P. Carini. Efficient

flow-sensitive inter rocedural computation of pointer-
$“induced aliases an side effects. In Conference Record

of the Twentieth Annual ACM Symposmna on Princi-
ples of Programming Languages, pages 232–245, Jan-

uary 1993.

K. Cooper and K. Kennedy. Efficient computation

of flow insensitive interprocedural summar informa-
tion. In Proceedings of the SIGPLAN ’84 ~ymposium
on Compiler Construction, a~~ 247-258 , June 1984.

SIGPLAN Notices, Vol 19, .

K. D. Cooper and K. Kennedy. Fast interprocedural

alias analysis. In Conference Record of the Sixteenth
Annual ACM Symposium on Principles of Program-
ming Languages, pages 49–59, January 1989.

A. Deutsch. On determining lifetime and alissing of

dynamically allocated data in higher-order functional

~nnua! ACM Symposium on Principles of Program-
s edifications. In Conference Record of the Seventeenth

ming Languages, pages 157–168, January 1990.

A. Deutsch. A storeless model of aliasing and its ab-

stractions using finite re resentations of ri ht-regular
equivalence relations. In ?h-oceedings of the ?EEE 199.2
International Conference on Computer Languages,
pages 2–13, April 1992.

C. M. Donawa. The design and implementation of a

structured backend for the McCAT C com tier. Mas-
ter’s thesis, School of Computer Science, ficGill Uni-

versity, expected July 1994.

255

[13] M. Emami. A practical interprocedural alias analysis

for an optimizing/ parallelizing C compiler. Master’s

thesis, School of Computer Science, McGill University,
August 1993.

[14] A. M. Erosa and L. J. Hendren. Taming control flow:

A structured approach to eliminating goto statements.
In Proceedings of the IEEE 1994 Internatzoncd Confer-
ence on Computer Languages, May 1994.

[15] R. Ghiya. Interprocedural analysis inthe presence of

function pointers. ACAPSTechnical Memo 62. School
of Computer Science, McGill University, December
1992.

[16] R. Ghiya. Practical techniques for heap analysis.

ACAPS Technical Note 46, School of Computer Sci-
ence, McGill University, May 1993.

[17] M. W. Hall and K. Kennedy. Efficient call graph anal-

ysis. ACM Letters on Programming Languages and

Systems, 1(3), pages 227-242, September 1992.

[18] W. L. Harrison III. The interprocedural analysis and

automatic F
arallelization of Scheme programs. Lis

Yand Symbo tc Computation: an International Journa ,

1989. 2(3/4):179-396.

[19] W. L. Harrison III and Z. Ammarguellat. A program’s

eye view of Miprac. In Conference Record of Fifth

International Workshop on Languages and Compilers
for Parallel Computing, August 1992. Volume 757 of
Lecture Notes in Computer Science, pages 512-537.
Springer Verlag, 1993.

[20] L. J. Hendren, M. Emami, R. Ghiya, and C. Ver-

bru ge. A practical context-sensitive inter rocedural
3 {an ysis framework for C compilers. ACAP Technical

Memo 72, School of Computer Science, McGill Univer-
sity, July 1993.

[21] L. J. Hendren, G. R. Gao, and V. C. Sreedhar. AL-

PHA: A family of.structured intermediate re resenta-
$tions for a arallehzmg C compd~r. ACAPS. ethnical

8Memo 49, chool of Computer Science, McGdl Univer-
sity, Nov 1992.

[22] L. J. Hendren, C. Donawa, M. Emami, G. R. Gao,

Justiani, and B. Sridharan. Designin the McCAT
~ intermediatecompiler based on a family of structure

representations. In Conference Record of Fifth Interna-
tional Workshop on Languages and Compilers for Par-
allel Computing, August 1992. Volume 757 of Lecture
Notes in Computer Science, pages 406–420. Springer
Verlag, 1993.

[23] L. J. Hendren and A. Nicolau. Parallelizing programs

with recursive data structures. IEEE Trarzsactiom on
Parallel and Distributed Systems, 1(1):35- 47, January
1990.

[24] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence anal-

ysis for pointer variables. In Proceedings of the SIG-
PLAN ’89 Symposium on Programming Language 13e-
sign and Implementation, pages 28–40, June 1989.

[25] S. Horwitz, T. Reps, and D. Birddey. Interprocedural
slicing using dependence graphs. ACM Transactions

on Programming Languages and Systems, 12(1):26–60,

January 1990.

[26] N. D. Jones and S. Muchnick. Flow analysis and op-

timization of LISP-like structures. In Program Flow
Analysis, Theory, and Applications, pages 102–131.
Prentice-Hall, 1981. Chapter 4.

[27] N. D. Jones and S. Muchnick. A flexible approach to

interprocedural data flow anal sis and programs with
recursive data structures. In Conference Record of the
Ninth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 66-74, January 1982.

[28] Justiani and L. J. Hendren. Supporting array depen-

dence testing for an optimizing/parallelizing C com-

piler. In Proceedings of 199ij International Conference
on Compiler Construction., A ril 1994. Volume 749 of
Lecture Notes in Computer .S&ence. Springer Verlag,
1993.

[29] A. Lakhotia. Constructing call multigraphs using de-

pendence graphs. In Conference Record of the Twen-
tieth Annual ACM Symposium on Principles of Pro-
grammmg Languages, pages 273–284, January 1993.

[30] W. Landi and B. G. Ryder. A safe approximate algo-

rithm for interprocedural pointer aliasing. In Proceed-
ings of the 1992 SIGPLAN Symposium on Program-
ming Language Design and Implementation, pages
235-248, June 1992.

[31] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural

modification side effect analysis with ointer aJiasing.
In Proceedings of the 1993 SIGPLA$ Symposium on
Programmz’ n Language Design and Implementation,
pages 56-67, $une 1993.

[32] W. A. Landi. Interprocedzmal Aiiasirag in the Presence

of Potnters. PhD thesis, Rutgers University, 1992.

[33] T. J. Marlowe, W. A. Landi, B. G. Ryder, J. D. Choi,

M. G. Burke, and P. Carini. Pointer-induced aliasing:

A clarification. ACM SIGPLAN Notices, 28(9), pages

67-70, September 1993.

[34] E. W. Myers. A precise inter-procedural data flow al-

gorithm. In Conference Record of the Eighth Annual
ACM Symposium on Principles of Programming Lan-
guages. pages 219–230, January 1981.

[35] A. Neirynck, P. Panangaden, and A. J. Demers. Ef-

fect analysis in higher-order languages. International

Journal of Parallel Programming, 18(1):1-37, 1989.

[36] H. D. Pande and B. G. Ryder. Static type determina-

tion for C++. In Proceedin s of the Sizth Usenix C++
1Technical Conference, Apr 1994.

[37] B. G. Ryder. Constructing the call graph of a pro-

gram. IEEE Transactions on Software Engineering,

SE-5(3):216-226, May 1979.

[38] S. Sagiv, N. Francez, M. Rodeh, and R. Wilhem. A

logic-based approach to data flow anaJysis. Iu Proceed-
ings of Second International Worksho on Program-
ming Language Implementation and f$c Promcl;
ming, Volume 456 of Lecture Notes in
ence, pages 277–292. Springer Verlag, Au~~<t”1990.

[39] P. Sestoft. Replacing function parameters by global

variables. In Conference on Function at Programming
Lan uages and Computer Architecture, pages 39-53,

iLon on, September 1989. ACM Press.

[40] 0, Shivers. Control flow analysis in Scheme. In Pro-

ceedings of the SIGPLAN ’88 S mposium on Program-
7mang Language Design and mplementation, pages

164-174, June 1988.

[41] O. Shivers. Control Flow Analysis of Higher Order

Languages. PhD thesis, School of Computer Science,
Carnegie Mellon University, 1991.

[42] T, G. Spillman. Exposing side-effects in a PL/I op-

timizing compiler. In Proceedings of the 1971 IFIPS
Congress. North Holland Publishing Co., Amsterdam,
1971, pages 56–60.

[43] B. Sridharan. An analysis framework for the McCAT

8
com iler. Master’s thesis, School of Computer Science,
Mc iU University, September 1992.

[44] W. Weihl. Interprocedural data flow analysis in the

presence of pointers, procedure variables and label
variables. In Conference Record of the Seventh An-
nual ACM Symposium on Principles of Programming
Languages. pages 83-94, January 1980.

256

