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Abstract

We present the results of an empirical study evaluating the precision of subset-based points-to analysis with several
variations of context sensitivity on Java benchmarks of significant size. We compare the use of call site strings as the
context abstraction, object sensitivity, and the BDD-based context-sensitive algorithm proposed by Zhu and Calman,
and by Whaley and Lam. Our study includes analyses that context-sensitively specialize only pointer variables, as
well as ones that also specialize the heap abstraction. We measure both characteristics of the points-to sets themselves,
as well as effects on the precision of client analyses. To guide development of efficient analysis implementations, we
measure the number of contexts, the number of distinct contexts, and the number of distinct points-to sets that arise
with each context sensitivity variation. To evaluate precision, we measure the size of the call graph in terms of
methods and edges, the number of devirtualizable call sites, and the number of casts statically provable to be safe.

The results of our study indicate that object-sensitive analysis implementations are likely to scale better and more
predictably than the other approaches; that object-sensitive analyses are more precise than comparable variations of
the other approaches; that specializing the heap abstraction improves precision more than extending the length of
context strings; and that the profusion of cycles in Java call graphs severely reduces precision of analyses that forsake
context sensitivity in cyclic regions.

1 Introduction

Does context sensitivity significantly improve precision of interprocedural analysis of object-oriented programs? It is
often suggested that it could, but lack of scalable implementations has hindered thorough empirical verification of this
intuition.

Of the many variations of context sensitive points-to analysis that have been proposed (e.g. [3, 6, 9, 14–16, 22,
25–27]), which ones improve precision the most? Which ones are most effective for specific client analyses, and for
specific code patterns? For which variations are we likely tofind scalable implementations? Before devoting resources
to finding efficient implementations of specific analyses, weshould have empirical answers to these questions.

This study aims to provide these answers. Recent advances inthe use of Binary Decision Diagrams (BDDs) in
program analysis [2, 25, 27] have made context sensitive analysis efficient enough to perform an empirical study on
benchmarks of significant size. Using the JEDD system [11], we have implemented three different families of context-
sensitive points-to analysis, and we have measured their precision in terms of several client analyses. Specifically, we
compared the use of call site strings as the context abstraction, object sensitivity [14,15], and the algorithm proposed
by Zhu and Calman [27] and Whaley and Lam [25] (hereafter abbreviated ZCWL). Within each family, we evaluated
the effect of different lengths of context strings, and of context-sensitively specializing the heap abstraction. In our
study, we compared the relative precision of analyses both quantitatively, by computing summary statistics about the
analysis results, and qualitatively, by examining specificcode patterns for which a given analysis variation produces
better results than other variations.

Context-sensitive analyses have been associated with verylarge numbers of contexts. We wanted to also determine
how many contexts each variation of context sensitivity actually generates, how the number of contexts relates to the
precision of the analysis results, and how likely it is that scalable context-sensitive representations are feasible.These
measurements can be done directly on the BDD representation.

The remainder of this paper is organized as follows. In Section 2, we provide background about the variations of
context sensitivity that we have studied. In Section 3, we list the benchmarks included in our study. We discuss the
number of contexts and its implications on precision and scalability in Section 4. In Section 5, we examine the effects
of context sensitivity on the precision of the call graph. Weevaluate opportunities for static resolution of virtual calls
in Section 6. In Section 7, we measure the effect of context sensitivity on cast safety analysis. We briefly survey
related work in Section 8. Finally, we draw conclusions fromour experimental results in Section 9.

2 Background

Like any static analysis, a points-to analysis models the possible run-time features of the program using some chosen
static abstraction. A context-sensitive points-to analysis requires an abstraction of pointer targets, pointers, and method
invocations. We will denote these three abstractionsO, P , andI, respectively. Whenever it is possible for a run-time
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pointerp to point to the run-time targeto, the may-point-to relation computed by the analysis must contain the fact
O(o) ∈ pt(P(p)). The specific choice of static abstraction is a key determining factor of the precision of the analysis,
and this paper compares several different abstractions.

Pointer Target Abstraction:

In Java, the target of a pointer is always a dynamically allocated object. A popular abstraction for a pointer target is
the program statement at which the object was allocated. We will write this abstraction asOas.

Pointer Abstraction:

Each run-time pointer corresponds to either some local variable or some object field in the program. Pointers corre-
sponding to local variables are often statically abstracted by the local variable; we will write this abstraction asPvar.
For pointers corresponding to fields, we will consider only the field-sensitive abstraction in this paper, because it is
more precise than other alternatives (described, for example, in [10, 20]). The field-sensitive abstractionPfs(o.f) of
the fieldf of run-time objecto is the pair[O(o), f ], whereO(o) is our chosen static abstraction of the run-time object
o.

Method Invocation (Context) Abstraction:

Because different invocations of a method may have different behaviours, it may be useful to distinguish some of
them. A context is a static abstraction of a method invocation; an analysis distinguishes two invocations if their
abstract contexts are different. In this paper, we compare two families of invocation abstraction (also called context
abstraction), call sites [21,22] and receiver objects [14,15]. In call site context sensitivity, the context of an invocation
is the program statement (call site) from which the method was invoked. That is, for an invocationi, Ics(i) is the
statement from whichi was invoked. In receiver object context sensitivity, the context of an invocation is the static
abstraction of the object on which the method is invoked. That is, for an invocationi, Iro(i) = O(o), whereo is the
run-time receiver object on which the method was invoked.

In either case, the context abstraction can be made even finerby using a string of contexts corresponding to the
invocation frames on the run-time invocation stack. That is, having chosen a base abstractionIbase, we can define
Istring(i) to be[Ibase(i), Ibase(i2), I

base(i3), . . .], whereij is thej’th top-most invocation on the stack during the
invocationi (so i = i1). Since the maximum height of the stack is unbounded, the analysis must somehow ensure
that the static abstraction is finite. A simple, popular technique is to limit the length of each context string to at most
a fixed numberk. A different technique is used by the ZCWL algorithm. It doesnot limit the length of a context
string, but it excludes from the context string all contextscorresponding to call edges that are part of a cycle in the
context-insensitive call graph. Thus, the number of contexts is bounded by the number of acyclic paths in the call
graph, which is finite.

Orthogonal to the choice of context abstraction is the choice of which pointers and objects to model context-
sensitively. That is, having chosen a basic context-insensitive pointer abstractionPci and a context abstractionI, we
can model a run-time pointerp context-sensitively by definingP(p) to be [I(ip),P

ci(p)], whereip is the method
invocation in whichp occurs, or context-insensitively by definingP(p) to bePci(p). Similarly, if we have chosen
the allocation site abstractionOas as the basic abstraction for objects, we can model each object o context-sensitively
by definingO(o) to be[I(io),O

as(o)], whereio is the method invocation during whicho was allocated, or context-
insensitively by definingO(o) to beOas(o).

In the tables in the rest of this paper, we report results for the following variations of points-to analyses. The
“insens.” column of each table is a context-insensitive points-to analysis that does not distinguish different invocations
of any method. The “object-sensitive” columns are analysesusing receiver objects as the context abstraction, while
the “call site” columns are analyses using call sites as the context abstraction. Within each of these two sections, in the
1, 2, and 3 columns, pointers are modelled with context strings of maximum length 1, 2, and 3, and pointer targets are
modelled context-insensitively. In the 1H column, both pointers and pointer targets are modelled with context strings
of maximum length 1. The “ZCWL” column is the ZCWL algorithm,which uses call sites as the context abstraction,
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and allows context strings of arbitrary length. The ZCWL algorithm models pointers with context but pointer targets
without context.

In an analysis of an object-oriented language such as Java, there is a cyclic dependency between call graph con-
struction and points-to analysis. In all variations exceptthe ZCWL algorithm, we constructed the call graph on-the-fly
during the points-to analysis, since this maintains maximum precision. The ZCWL algorithm requires a context-
insensitive call graph to be constructed before it starts, which it then makes context-sensitive, and uses to perform
the points-to analysis. For this purpose, we used the call graph constructed by the context-insensitive analysis in the
“insens.” column.

3 Benchmarks

Total number of Executed methods
Benchmark classes methods app. +lib.
compress 41 476 56 463
db 32 440 51 483
jack 86 812 291 739
javac 209 2499 778 1283
jess 180 1482 395 846
mpegaudio 88 872 222 637
mtrt 55 574 182 616
soot-c 731 3962 1055 1549
sablecc-j 342 2309 1034 1856
polyglot 502 5785 2037 3093
antlr 203 3154 1099 1783
bloat 434 6125 138 1010
chart 1077 14966 854 2790
jython 270 4915 1004 1858
pmd 1546 14086 1817 2581
ps 202 1147 285 945

Table I: Benchmarks

We performed our study on programs from the SpecJVM 98 benchmark suite [23], the DaCapo benchmark suite,
version beta050224 [4], and the Ashes benchmark suite [24],as well as on the Polyglot extensible Java front-end [17],
as listed in Table I. Most of these benchmarks have been used in earlier evaluations of interprocedural analyses for
Java. The middle section of the table shows the total number of classes and methods comprising each benchmark.
These numbers exclude the Java standard library (which is required to run the benchmark), but include all other
libraries that must accompany the benchmark for it to run successfully. All of the measurements in this paper were
done with version 1.3.101 of the Sun standard library. The right-most section of thetable shows the number of
distinct methods that are executed in a run of the benchmark (measured using the *J tool [5]), both excluding and
including methods of the Java standard library, in the columns labelled “app.” and “+lib.”, respectively. About 400
methods of the standard library are executed even for the smallest benchmarks for purposes such as class loading;
some of the larger benchmarks make heavier use of the library.

4 Number of Contexts

Context-sensitive analysis is often considered intractable mainly because, if contexts are propagated from every call
site to every called method, the number of resulting contextstrings grows exponentially in the length of the call chains.
The purpose of this section is to shed some light on two issues. First, of the large numbers of contexts, how many
are actually useful in improving analysis results? Second,why can BDDs represent such seemingly large numbers of
contexts, and how much hope is there that they can be represented with more traditional techniques?
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4.1 Total number of contexts

We begin by comparing the number of contexts that appear in the context-sensitive points-to relation when the analysis
is performed with the different context abstractions. For this measurement, we treat the method invoked as part of the
context. For example, suppose we are using abstract receiver objects as the context abstraction; if two different
methods are called on the same receiver, we count them as two separate contexts, since they correspond to two
necessarily distinct invocations. In other words, we are counting method-context pairs, rather than just contexts.

The measurements of the total numbers of contexts are shown in Table II. Each column lists the number of contexts
produced by one of the variations of context-sensitive analysis described in Section 2. The column labelled “insens.”
shows the absolute number of contexts (which is also the number of methods, since in a context-insensitive analysis,
every method has exactly one context). All the other columns, rather than showing the absolute number of contexts,
which would be very large, instead show the number of contexts as a multiple of the “insens.” column (i.e. they show
the average number of contexts per method). For example, forthecompress benchmark, the total number of 1-object-
sensitive contexts is2596 × 13.7 = 3.56 × 104. The empty spots in the table (and other tables throughout this paper)
indicate configurations in which the analysis did not complete in the available memory, despite being implemented
using BDDs. We allowed the BDD library to allocate a maximum of 41 million BDD nodes (820 million bytes).

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 2596 13.7 113 1517 13.4 6.5 237 6.5 2.9 × 104

db 2613 13.7 115 1555 13.4 6.5 236 6.5 7.9 × 104

jack 2869 13.8 156 1872 13.2 6.8 220 6.8 2.7 × 107

javac 3780 15.8 297 13289 15.6 8.4 244 8.4
jess 3216 19.0 305 5394 18.6 6.7 207 6.7 6.1 × 106

mpegaudio 2793 13.0 107 1419 12.7 6.3 221 6.3 4.4 × 105

mtrt 2738 13.3 108 1447 13.1 6.6 226 6.6 1.2 × 105

soot-c 4837 11.1 168 4010 10.9 8.2 198 8.2
sablecc-j 5608 10.8 116 1792 10.5 5.5 126 5.5
polyglot 5616 11.7 149 2011 11.2 7.1 144 7.1 10130
antlr 3897 15.0 309 8110 14.7 9.6 191 9.6 4.8 × 109

bloat 5237 14.3 291 14.0 8.9 159 8.9 3.0 × 108

chart 7069 22.3 500 21.9 7.0 335
jython 4401 18.8 384 18.3 6.7 162 6.7 2.1 × 1015

pmd 7219 13.4 283 5607 12.9 6.6 239 6.6
ps 3874 13.3 271 24967 13.1 9.0 224 9.0 2.0 × 108

Table II: Total number of abstract contexts

The large numbers of contexts explain why an analysis that represents each context explicitly cannot scale to the
programs that we analyze here. While a 1-call-site-sensitive analysis must store and process 6 to 9 times more data
than a context-insensitive analysis, the ratio grows to 1500 times for a 3-object-sensitive analysis.

When context strings are limited to a length of 1, the 1-object-sensitive analysis produces about twice as many
contexts as the 1-call-site-sensitive analysis. However,as the context strings grow longer, the number of contexts in
the object-sensitive analyses grows much more slowly than in the call site string analyses. This is because it is very
common in Java programs to invoke a method on thethis pointer; in this common case, the receiver object of the
called method is the same as at the call site, so in many context strings, the same abstract receiver objects are repeated.

The ZCWL algorithm effectively performs ak-CFA analysis in whichk is the maximum call depth in the original
call graph after merging strongly connected components (SCCs). Becausek is different for each benchmark, the
number of contexts is much more variable than in the other variations of context sensitivity. On thejavac, soot-c,
sablecc-j, chart, andpmd benchmarks, the algorithm failed to complete in the available memory.
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4.2 Equivalent contexts

Next, we consider that many of the large numbers of abstract contexts are equivalent in the sense that the points-to
relations computed in many of the abstract contexts are the same. More precisely, we define two method-context pairs,
(m1, c1) and(m2, c2) to beequivalent if m1 = m2, and for every local pointer variablep in the method, the points-to
set ofp is the same in both contextsc1 andc2.

When two contexts are equivalent, there is no point in distinguishing them, because the resulting points-to relation
is independent of the context. In this sense, the number of equivalence classes of method-context pairs reflects how
worthwhile context sensitivity is in improving the precision of points-to sets.

The measurements of the number of equivalence classes of contexts are shown in Table III. Again, the “insens.”
column shows the actual number of equivalence classes of contexts, while the other columns give a multiple of the
“insens.” number (i.e. the average number of equivalence classes per method).

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 2597 8.4 9.9 11.3 12.1 2.4 3.9 4.9 3.3
db 2614 8.5 9.9 11.4 12.1 2.4 3.9 5.0 3.3
jack 2870 8.6 10.2 11.6 11.9 2.4 3.9 5.0 3.4
javac 3781 10.4 17.7 33.8 14.3 2.7 5.3 5.4
jess 3217 8.9 10.6 12.0 13.9 2.6 4.2 5.0 3.9
mpegaudio 2794 8.1 9.4 10.8 11.5 2.4 3.8 4.8 3.3
mtrt 2739 8.3 9.7 11.1 11.8 2.5 4.0 4.9 3.4
soot-c 4838 7.1 13.7 18.4 9.8 2.6 4.2 4.8
sablecc-j 5609 6.9 8.4 9.6 9.5 2.3 3.6 3.9
polyglot 5617 7.9 9.4 10.8 10.2 2.4 3.7 4.7 3.3
antlr 3898 9.4 12.1 13.8 13.2 2.5 4.1 5.2 4.3
bloat 5238 10.2 44.6 12.9 2.8 4.9 5.2 6.7
chart 7070 10.0 17.4 18.2 2.7 4.8
jython 4402 9.9 55.9 15.6 2.5 4.3 4.6 4.0
pmd 7220 7.6 14.6 17.0 11.0 2.4 4.2 4.2
ps 3875 8.7 9.9 11.0 12.0 2.6 4.0 5.2 4.4

Table III: Number of equivalence classes of abstract contexts

The relatively small size of these numbers compared to the total numbers of contexts in Table II explains why
a BDD can effectively represent the analysis information, since it automatically merges the representation of equal
points-to relations, so each distinct relation is only represented once. If we had some idea before designing an analysis
which abstract contexts are likely to be equivalent, we could define a new context abstraction in which these equivalent
contexts are merged. That is, each equivalence class of old abstract contexts would be represented by a single new
abstract context. With such a new context abstraction, the context-sensitive analysis could be implemented without
BDDs.

It is interesting that in the 1-, 2-, and 1H-object-sensitive analysis, the number of equivalence classes of contexts
is generally about 3 times as high as in the corresponding 1-,2-, and 1H-call site string analysis. This indicates that
receiver objects better partition the space of concrete calling contexts that give rise to distinct points-to relations. That
is, if at run time, the run-time points-to relation is different in two concrete calls to a method, it is more likely that the
two calls will correspond to distinct abstract contexts if receiver objects rather than call sites are used as the context
abstraction. This observation leads us to hypothesize thatobject-sensitive analysis should be more precise than the
call site string analysis; we will see more direct measurements of precision in upcoming sections.

In both object-sensitive and call site string analyses, making the context string longer increases the number of
equivalence classes of contexts by only a small amount, while it increases the absolute number of contexts much more
significantly. Therefore, increasing the length of the context string is unlikely to result in a large improvement in
precision, but will significantly increase analysis cost.

It was initially rather surprising that in the analysis using the ZCWL algorithm, the number of equivalence classes
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of abstract contexts is so small, often even smaller than in the 2-call-site-sensitive analysis. The algorithm effectively
performs ak-CFA analysis, wherek is the maximum call depth in the original call graph;k is likely to be much higher
than 2. The number of equivalence classes of contexts when using the ZCWL algorithm is small because the algorithm
merges SCCs in the call graph, and models all call edges in each such component in a context-insensitive way. In
contrast, the 2-call-site-sensitive analysis models all call edges context-sensitively, including those in SCCs. Indeed,
a very large number of methods are part of some SCC. The initial call graph for each of our benchmarks contains a
large SCC of 1386 to 2926 methods, representing 36% to 53% of all methods in the call graph. In particular, this SCC
always includes many methods for which context-sensitive analysis would be particularly useful, such as the methods
of theString class and the standard collections classes. These methods are used extensively within the Java standard
library, and contain many calls to each other. We examined this large SCC and found many distinct cycles; there was
no single method that, if removed, would break the component. In summary, the reason for the surprisingly small
number of equivalence classes of abstract contexts when using the ZCWL algorithm is that it models a large portion
of the call graph context-insensitively.

4.3 Distinct points-to sets

Finally, we measure the number of distinct points-to sets that appear in the points-to analysis result. This number
is an indication of how difficult it would be to efficiently represent the context-sensitive points-to sets in a non-
BDD-based analysis implementation, assuming there was already a way to represent the contexts themselves. An
increase in the number of distinct points-to sets also suggests an increase in precision, but the connection is very
indirect [8, Section 3.2]. We therefore present the number of distinct points-to sets primarily as a measure of analysis
cost, and provide more direct measurements of the precisionof clients of the analysis later in this paper. In traditional,
context-insensitive, subset-based points-to analyses, the representation of the points-to sets often makes up most of
the memory requirements of the analysis. If the traditionalanalysis stores points-to sets using shared bit-vectors as
suggested by Heintze [7], each distinct points-to set need only be stored once. Therefore, the number of distinct
points-to sets approximates the space requirements of sucha traditional representation.

The measurements of the number of distinct points-to sets arising with each context abstraction are shown in
Table IV. In this table, all numbers are the absolute count ofdistinct points-to sets, not multiples of the “insens.”
column.

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 3178 3150 3240 3261 34355 3227 3125 38242 3139
db 3197 3170 3261 3283 34637 3239 3133 38375 3173
jack 3441 3411 3507 3527 37432 3497 3377 40955 3541
javac 4346 4367 4579 4712 55196 4424 4303 54866
jess 3834 4433 4498 4514 51452 4589 4426 42614 4644
mpegaudio 4228 4179 4272 4293 36563 4264 4157 67565 4175
mtrt 3349 3287 3377 3396 35154 3387 3263 38758 3282
soot-c 4683 4565 4670 4657 45974 4722 4550 52937
sablecc-j 5753 5777 5895 5907 52993 5875 5694 59748
polyglot 5591 5556 5829 5925 50587 5682 5516 59837 5575
antlr 4520 5259 5388 5448 54942 4624 4535 54176 4901
bloat 5337 5480 5815 55309 5452 5342 49230 6658
chart 9608 9914 10168 233723 9755 9520
jython 4669 5111 5720 74297 4968 4857 46280 8587
pmd 7368 7679 7832 7930 94403 7671 7502 103990
ps 4610 4504 4639 4672 47244 4656 4521 58513 4802

Table IV: Total number of distinct points-to sets in points-to analysis results

The numbers of distinct points-to sets are fairly constant in most of the analysis variations, including object-
sensitive analyses, call site string analyses, and the analysis using the ZCWL algorithm. Therefore, in a traditional
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points-to analysis implemented using shared bit-vectors,representing the individual points-to sets should not be a
source of major difficulty even in a context-sensitive analysis. Future research in traditional implementations of
context-sensitive analyses should therefore be directed more at the problem of efficiently representing the contexts,
rather than representing the points-to sets.

However, when abstract heap objects are modelled context-sensitively, the elements of each points-to set are pairs
of abstract object and context, rather than simply abstractobjects, and the number of distinct points-to sets increases
about 11-fold. In addition, it is likely that the points-to sets themselves are significantly larger. Therefore, in order
to implement such an analysis without using BDDs, it would beworthwhile to look for an efficient way to represent
points-to sets of abstract objects with context.

5 Call Graph

We now turn our attention to the effect of context sensitivity on call graph construction. For the purposes of com-
parison, we have constructed context-sensitive call graphs, projected away their contexts, and measured differencesin
their context-insensitive projections. We adopted this methodology because context-sensitive call graphs using differ-
ent context abstractions are not directly comparable. Eachnode in the graph represents a pair of method and abstract
context, but the set of possible abstract contexts is different in each context variation. In the context-insensitive projec-
tion, each node is simply a method, so the projections are directly comparable. Projecting away context discards some
information from the call graph, but only the information which is not directly comparable between different context
abstractions. In particular, the context-insensitive projection preserves the set of methods reachable from the program
entry points, as well as the set of possible targets of each call site in the program; it is these sets that we measure. The
set of reachable methods is particularly important becauseany conservative interprocedural analysis must analyze all
of these methods, so a small set of reachable methods reducesthe cost of other interprocedural analyses.

We have not included the ZCWL algorithm in our study of call graph construction, because the context-insensitive
projection of the context-sensitive call graph that it produces is the same as the context-insensitive call graph that we
originally give it as input.

5.1 Reachable methods

Table V shows the number of methods reachable from the program entry points when constructing the call graph
using different variations of context sensitivity, excluding methods from the standard Java library. In Table V and all
subsequent tables in this paper, the most precise entry for each benchmark has been highlighted in bold. In the case of
a tie, the most precise entry that is least expensive to compute has been highlighted.

For the simple benchmarks likecompress anddb, the context-insensitive call graph is already quite precise (com-
pared to the dynamic behaviour), and any further improvements due to context sensitivity are relatively small. For the
more significant benchmarks, call graph construction benefits slightly from 1-object sensitivity. The largest difference
is 13 methods, in thebloat benchmark. All of these methods are visit methods in an implementation of the visitor
design pattern, in the classAscendVisitor. This class traverses a parse tree from a starting node upwards toward
the root of the tree, visiting each node along the way. Some kinds of nodes have no descendants that are ever the
starting node of a traversal, so the visit methods of these nodes can never be called. However, in order to prove this, an
analysis must analyze the visitor dispatch method context-sensitively in order to keep track of the kind of node from
which it was called. Therefore, a context-insensitive analysis fails to show that these visit methods are unreachable.

In jess, sablecc-j, polyglot, chart, jython, pmd, andps, modelling abstract heap objects object-sensitively further
improves the precision of the call graph. In thesablecc-j benchmark, an additional 13 methods are proved unreachable.
The benchmark includes its own implementation of maps similar to those in the Java standard library. The maps are
instantiated in a number of places, and different kinds of objects are placed in the different maps. Methods such
astoString() andequals() are called on some of the maps but not others. Calling one of the methods on a
map causes it to be called on all elements of the map. Therefore, these methods are called on some kinds of map
elements, but not others. However, the objects stored in every map are kept in generic map entry objects, which are
allocated at a single point in the map code. When abstract heap objects are modelled without context, all map entries
are modelled by a single abstract object, and the contents ofall maps are conflated. When abstract heap objects are
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object-sensitive call site actually
Benchmark insens. 1 2 3 1H 1 2 1H executed
compress 59 59 59 59 59 59 59 59 56
db 65 64 64 64 64 65 64 65 51
jack 317 313 313 313 313 316 313 316 291
javac 1154 1147 1147 1147 1147 1147 1147 1147 778
jess 630 629 629 629 623 629 629 629 395
mpegaudio 255 251 251 251 251 251 251 251 222
mtrt 189 186 186 186 186 187 187 187 182
soot-c 2273 2264 2264 2264 2264 2266 2264 2266 1055
sablecc-j 1744 1744 1744 1744 1731 1744 1744 1744 1034
polyglot 2421 2419 2419 2419 2416 2419 2419 2419 2037
antlr 1323 1323 1323 1323 1323 1323 1323 1323 1099
bloat 2464 2451 2451 2451 2451 2451 2451 138
chart 2081 2080 2080 2031 2080 2080 854
jython 1695 1693 1693 1683 1694 1693 1694 1004
pmd 4528 4521 4521 4521 4509 4521 4521 4521 1817
ps 835 835 835 835 834 835 835 835 285

Table V: Number of reachable benchmark (non-library) methods in call graph

modelled with context, the map entries are treated as separate objects depending on which map they were created for.
Note that successfully distinguishing the map entries requires receiver objects to be used as context, rather than call
site strings. The code that allocates a new entry is in a method that is always called from the same call site, in another
method of the map class. In general, although modelling abstract heap objects with context improved the call graph
for some benchmarks in an object-sensitive analysis, it never made any difference in analyses using call site strings as
the context abstraction (i.e. the 1-call-site and 1H-call-site columns are the same).

Overall, object-sensitive analysis results in slightly smaller call graphs than call site string analysis. The 1-object-
sensitive call graph is never larger than the 1-call-site-sensitive call graph, and it is smaller ondb, jack, mtrt, soot-c,
and jython. On thedb, jack, and jython benchmarks, the call-site-sensitive call graph can be madeas small as the
1-object-sensitive call graph, but it requires 2-call-site rather than 1-call-site analysis.

5.2 Call edges

Table VI shows the size of the call graph in terms of call edgesrather than reachable methods. Only call edges
originating from a benchmark (non-library) method are counted.

In general, context sensitivity makes little difference tothe size of the call graph when measured this way, with
one major exception. In thesablecc-j benchmark, the number of call edges is 17925 in a context-insensitive anal-
ysis, but only 5175 in a 1-object-sensitive analysis. This could make a significant difference to the cost of a client
analysis whose complexity depends on the number of edges in the call graph. The large difference is caused by
the following pattern of code. Thesablecc-j benchmark contains code to represent a parse tree, with manydiffer-
ent kinds of nodes. Each kind of node implements a method calledremoveChild(). The code contains a large
number of calls of the formthis.getParent().removeChild(this). In a context-insensitive analysis,
getParent() is found to possibly return any of hundreds of possible kindsof nodes. Therefore, each of these many
calls toremoveChild(this) results in hundreds of call graph edges. However, in a context-sensitive analysis,
getParent() is analyzed in the context of thethis pointer. For each kind of node, there is a relatively small
number of kinds of nodes that can be its parent. Therefore, ina given context,getParent() is found to return only
a small number of kinds of parent node, so each call site ofremoveChild() adds only a small number of edges to
the call graph.
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object-sensitive call site actually
Benchmark insens. 1 2 3 1H 1 2 1H executed
compress 270 270 270 270 270 270 270 270 118
db 434 427 427 427 427 434 427 434 184
jack 1283 1251 1251 1251 1250 1276 1251 1276 833
javac 10360 10296 10296 10296 10296 10318 10301 10318 2928
jess 3626 3618 3618 3618 3571 3618 3618 3618 919
mpegaudio 858 812 812 812 812 812 812 812 400
mtrt 761 739 739 739 739 746 746 746 484
soot-c 14611 14112 14112 14112 13868 14185 14112 14185 2860
sablecc-j 17925 5175 5140 5140 5072 5182 5140 5182 2326
polyglot 11768 11564 11564 11564 11374 11566 11566 11566 5440
antlr 9553 9553 9553 9553 9553 9553 9553 9553 4196
bloat 18586 18143 18143 17722 18166 18143 18166 477
chart 9526 9443 9443 9178 9443 9443 2166
jython 9382 9367 9367 9307 9367 9365 9367 2898
pmd 18785 18582 18582 18580 18263 18601 18599 18601 3879
ps 11338 11292 11292 11292 10451 11298 11292 11298 705

Table VI: Number of call edges in call graph originating froma benchmark (non-library) method

6 Virtual Call Resolution

Table VII shows the number of virtual call sites for which thecall graph contains more than one potential target
method. Call sites with at most one potential target method can be converted to cheaper static instead of virtual calls,
and they can be inlined, possibly enabling many other optimizations. Therefore, an analysis that proves that call sites
are not polymorphic can be used to significantly improve run-time performance.

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H
compress 3 3 3 3 3 3 3 3
db 5 4 4 4 4 5 4 5
jack 25 23 23 23 22 24 23 24
javac 737 720 720 720 720 720 720 720
jess 45 45 45 45 45 45 45 45
mpegaudio 27 24 24 24 24 24 24 24
mtrt 9 7 7 7 7 8 8 8
soot-c 983 913 913 913 913 938 913 938
sablecc-j 450 325 325 325 301 380 325 380
polyglot 744 592 592 592 585 592 592 592
antlr 843 843 843 843 843 843 843 843
bloat 1079 962 962 961 962 962 962
chart 254 235 235 214 235 235
jython 347 347 347 346 347 347 347
pmd 1224 1193 1193 1193 1163 1205 1205 1205
ps 304 303 303 303 300 303 303 303

Table VII: Total number of potentially polymorphic call sites in benchmark (non-library) code

In the benchmarks written in an object-oriented style, notably javac, soot-c, sablecc-j, polyglot, bloat, andpmd,
many more call sites can be devirtualized using object-sensitive analysis than context-insensitive analysis. In some
cases, call site string analysis gives the same improvement, but never any more, and insoot-c and sablecc-j, the
improvement from 1-object-sensitive analysis is much greater than from 1-call-site string analysis.
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In sablecc-j, there are three key sets of call sites that can be devirtualized using context-sensitive analysis. Any
context-sensitive analysis is sufficient to devirtualize the first set of call sites. Devirtualization of the second setof call
sites requires an object-sensitive analysis; an analysis using call sites as the context abstraction cannot prove themto
be monomorphic. Devirtualization of the third set of call sites not only requires an object-sensitive analysis, but it also
requires that abstract heap objects be modelled with context.

The first set of call sites are the calls to theremoveChild()method mentioned in Section 5.2. Object sensitivity
reduces the number of potential target methods at each of these call sites. At many of them, it reduces the number down
to one, so the calls can be devirtualized. The same improvement is obtained with call site string context sensitivity.

The second set of call sites are calls to methods of iteratorsover lists. Thesablecc-j benchmark contains several
implementations of lists similar to those in the standard Java library. A call toiterator() on any of these lists
invokesiterator() on theAbstractList superclass, which in turn invokes thelistIterator() method
specific to each list. The actual kind of iterator that is returned depends on whichlistIterator() was invoked,
which in turn depends on the receiver object of the call toiterator(); it is independent of the call site oflist-
Iterator(), which is always the same site initerator(). Therefore, calls tohasNext() andnext() on the
returned iterator can be devirtualized only with an object-sensitive analysis.

The third set of call sites are calls to methods such astoString() andequals() on objects stored in maps.
As we explained in Section 5.1, object-sensitive modellingof abstract heap objects is required distinguish the internal
map entry objects in each separate use of the map implementation. The map entry objects must be distinguished in
order to distinguish the objects that are stored in the maps.Therefore, devirtualization of these calls to methods of
objects stored in maps requires an object-sensitive analysis that models abstract heap objects with context.

7 Cast Safety

We have used the points-to analysis results in a client analysis that proves that some casts cannot fail. A given cast
cannot fail if the pointer that it is casting can only point toobjects whose type is a subtype of the type of the cast.
Table VIII shows the number of casts in each benchmark that cannot be statically proven safe by the cast safety
analysis.

object-sensitive call site
Benchmark insens. 1 2 3 1H 1 2 1H ZCWL
compress 18 18 18 18 18 18 18 18 18
db 27 27 27 27 21 27 27 27 27
jack 146 145 145 145 104 146 145 146 146
javac 405 370 370 370 363 391 370 391
jess 130 130 130 130 86 130 130 130 130
mpegaudio 42 38 38 38 38 40 40 40 42
mtrt 31 27 27 27 27 27 27 27 29
soot-c 955 932 932 932 878 932 932 932
sablecc-j 375 369 369 369 331 370 370 370
polyglot 3539 3307 3306 3306 1017 3526 3443 3526 3318
antlr 295 275 275 275 237 276 275 276 276
bloat 1241 1207 1207 1160 1233 1207 1233 1234
chart 1097 1086 1085 934 1070 1070
jython 501 499 499 471 499 499 499 499
pmd 1427 1376 1375 1375 1300 1393 1391 1393
ps 641 612 612 612 421 612 612 612 612

Table VIII: Number of casts potentially failing at run time

Context sensitivity improves precision of cast safety analysis in jack, javac, mpegaudio, mtrt, soot-c, sablecc-j,
polyglot, antlr, bloat, chart, jython, pmd, andps. Object sensitive cast safety analysis is never less precise and often
significantly more precise than the call site string contextsensitive variations. The improvements due to context
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sensitivity are most significant in thepolyglot andjavac benchmarks. Indb, jack, javac, jess, soot-c, sablecc-j, polyglot,
antlr, bloat, chart, jython, pmd, andps, modelling abstract heap objects with receiver object context further improves
precision of cast safety analysis.

The improvement is most dramatic in thepolyglot benchmark, which contains a hierarchy of classes representing
different kinds of nodes in an abstract syntax tree. At the root of this hierarchy is theNode c class. This class
implements a method calledcopy() which, like theclone() method ofObject, returns a copy of the node on
which it is called. In fact, thecopy() method first usesclone() to create the copy of the node, and then performs
some additional processing on it. The static return type ofcopy() isObject, but at most sites calling it, the returned
value is immediately cast to the static type of the node on which it is called. In our analysis, theclone() native
method is modelled as returning its receiver; that is, the original object and the cloned version are represented by
the same abstract object. Therefore, given a program that calls clone() directly, the cast safety analysis correctly
determines that the run-time type of the clone is the same as that of the original. However, inpolyglot, the call to
clone() is wrapped insidecopy(), and the casts appear at sites callingcopy(). Whencopy() is analyzed in a
context-insensitive way, it is deemed to possibly return any of the objects on which it is called throughout the program,
so the casts cannot be proven to succeed. In an object-sensitive analysis, however,copy() is analyzed separately in
the context of each receiver object on which it is called, andin each such context, it returns only an object of the same
type as that receiver object. Therefore, the cast safety analysis proves statically that the casts of the return value of
copy() cannot fail.

The number of potentially failing casts in thepolyglot benchmark decreases even more dramatically between the
1-object-sensitive and 1H-object-sensitive columns of Table VIII, from 3307 to 1017. The majority of these casts are
in the parser generated by JavaCUP. The parser uses aStack as the LR parse stack. Each object popped from the
stack is cast to aSymbol. The generatedpolyglot parser contains about 2000 of these casts. TheStack class extends
Vector, which uses an internalelementData array to store the objects that have been pushed onto the stack. In
order to prove the safety of the casts, the analysis must distinguish the array implementing the parse stack from the
arrays of other uses ofVector in the program. Since the array is allocated in one place, inside theVector class,
the different array instances can only be distinguished if abstract heap objects are modelled with context. Therefore,
modelling abstract heap objects with object sensitivity isnecessary to prove that these 2000 casts cannot fail.

8 Related Work

The work most closely related to our empirical evaluation ofcontext-sensitive interprocedural analyses for Java is the
evaluation of object-sensitive analysis by Milanova, Rountev, and Ryder [14,15]. They implemented a limited form of
object sensitivity within their points-to analysis framework based on annotated constraints [18] and built on top of the
BANE toolkit [1]. In particular, they selected a subset of pointer variables (method parameters, thethis pointer, and
the method return value) which they modelled context-sensitively using the receiver object as the context abstraction.
All other pointer variables and all abstract heap objects were modelled in a context-insensitive way. The precision
of the analysis was evaluated on benchmarks using version 1.1.8 of the Java standard library, and compared to a
context-insensitive and to a call site context-sensitive analysis, using call graph construction, virtual call resolution,
and mod-ref analysis as client analyses. Our BDD-based implementation has made it feasible to evaluate object-
sensitive analysis on benchmarks using the much larger version 1.3.1 01 of the Java standard library. Thanks to the
better scalability of the BDD-based implementation, we have performed a much broader empirical exploration of the
design space of object-sensitive analyses. In particular,we have modelled all pointer variables context-sensitively,
rather than only a subset, we have used receiver object strings of length up to three, rather than only one, and we have
modelled abstract heap objects context-sensitively.

Whaley and Lam [25] suggest several client analyses of the ZCWL algorithm, but state that “in-depth analysis
of the accuracy of the analyses . . . is beyond the scope of thispaper.” They do, however, provide some preliminary
data about thread escape analysis and a “type refinement analysis” for finding variables whose declared type could be
made more specific. In this paper, we have compared the precision of the ZCWL algorithm against object-sensitive
and call site string context-sensitive analyses using several client analyses, namely call graph construction, virtual call
resolution, and cast safety analysis.

Liang, Pennings and Harrold [13] evaluated the effect of context sensitivity on the size of pointed-to-by sets (the
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inverse of points-to sets), normalized using dynamic counts. Instead of using BDDs to allow their analyses to scale
to benchmarks using the large Java standard library, they simulated the library with a hand-crafted model. Their
results agree with our findings that context sensitivity improves precision for some benchmarks, and that a context-
sensitive heap abstraction is particularly important for precision. However, they found that call sites are sometimes
more precise than receiver objects. This difference could be caused by several factors, including their different choice
of benchmarks, their different precision metric, or their simulation of the standard library.

Several context-sensitive points-to analyses other than the subset-based analyses studied in this paper have been
proposed. Wilson and Lam [26] computed summary functions summarizing the effects of functions, which they then
inlined into summaries of their callers. Liang and Harrold [12] proposed an equality-based context-sensitive analysis;
its precision relative to subset-based context-sensitiveanalysis remains to be studied. Ruf [19] compared context-
insensitive analysis to using “assumption sets” as the context abstraction, and concluded that on C benchmarks, context
sensitivity had little effect on the points-to sets of pointers that are actually dereferenced. In the future, it would be
interesting to empirically compare these additional variations of context-sensitive analysis with those studied in this
paper.

9 Conclusions

We have performed an in-depth empirical study of the effectsof variations of context sensitivity on the precision of
Java points-to analysis. In particular, we studied object-sensitive analysis, context-sensitive analysis using call sites
as the context abstraction, and the ZCWL algorithm. We evaluated the effects of these variations on the number of
contexts generated, the number of distinct points-to sets constructed, and on the precision of call graph construction,
virtual call resolution, and cast safety analysis.

Overall, we found that context sensitivity improved call graph precision by a small amount, improved the precision
of virtual call resolution by a more significant amount, and enabled a major precision improvement in cast safety
analysis.

Object-sensitive analysis was clearly better than the other variations of context sensitivity that we studied, both in
terms of analysis precision and potential scalability. Client analyses based on object-sensitive analyses were neverless
precise than those based on call site string context-sensitive analyses or on the ZCWL algorithm, and in many cases,
they were significantly more precise. As we increased the length of context strings, the number of abstract contexts
produced with object-sensitive analysis grew much more slowly than with the other variations of context sensitivity,
so object-sensitive analysis is likely to scale better. However, the number of equivalence classes of contexts was
greater with object sensitivity than with the other variations, which indicates that object sensitivity better distinguishes
contexts that give rise to differences in points-to sets.

Of the object-sensitive variations, extending the length of context strings caused very few additional improvements
in analysis precision compared to 1-object-sensitive analysis. However, modelling abstract heap objects with context
did improve precision significantly in many cases. Therefore, we conclude that 1-object-sensitive and 1H-object-
sensitive analyses provide the best tradeoffs between precision and analysis efficiency. Our measurements of the
numbers of abstract contexts and distinct points-to sets suggest that it should be feasible to implement an efficient non-
BDD-based 1-object-sensitive analysis using current implementation techniques such as shared bit vectors. Efficiently
implementing a 1H-object-sensitive analysis without BDDswill require new improvements in the data structures and
algorithms used to implement points-to analyses, and we expect that our results will motivate and help guide this future
research.

Although the ZCWL algorithm constructs call site strings ofarbitrary length, we observed that client analyses
based on it were never more precise than those based on object-sensitive analysis. In many cases, analyses based on
the ZCWL algorithm were even less precise than those based on1-call-site-sensitive analysis. We found that the key
cause of the disappointing results of this algorithm was itscontext-insensitive treatment of calls within SCCs of the
initial call graph — a large proportion of call edges were indeed within such SCCs.
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