
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Context-sensitive ranking

Permalink
https://escholarship.org/uc/item/6gm3z8t9

Author
Chen, Liang

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6gm3z8t9
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Context-sensitive Ranking

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Liang Chen

Committee in charge:

Professor Yannis Papakonstantinou, Chair
Professor Alin Deutsch
Professor James D. Hollan
Professor Chen Li
Professor Victor Vianu

2012

Copyright

Liang Chen, 2012

All rights reserved.

The dissertation of Liang Chen is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION

To my parents, Guoguang and Zhengbi.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Motivating Use Case . 3
1.2 IR Heuristics . 5
1.3 Expressive Context . 7
1.4 Challenges & Solutions 9
1.5 Organization . 10

Chapter 2 Data Model & Query Semantics 13
2.1 Data Model . 13
2.2 Query Syntax & Semantics 14
2.3 Ranking Semantics . 17
2.4 Related Work . 21
2.5 Acknowledgments . 23

Chapter 3 Query Evaluation . 24
3.1 Physical Query Execution 26
3.2 Cost Analysis . 28
3.3 Related Work . 31
3.4 Acknowledgments . 32

Chapter 4 Computing Statistics Using Views: Overview 33
4.1 Two Forms of Views . 34
4.2 Performance Goal . 35
4.3 View Selection . 36
4.4 Acknowledgments . 37

v

Chapter 5 Views as Statistics Caching . 38
5.1 Selection of Views as Statistics Caching 38
5.2 Optimizations based on Dependencies 39

5.2.1 Illustrative Example 40
5.2.2 Mining Column Combinations with Functional

Dependencies . 40
5.3 Limitations of Original Association Rule Mining 42
5.4 Acknowledgments . 45

Chapter 6 Aggregation Views as Intermediate Results 46
6.1 From Statistics to Aggregation Queries 46
6.2 Aggregation Views . 49
6.3 Usability of Aggregation Views 49
6.4 Complexity of Rewritten Queries 52
6.5 Non-Aggregation Views 53
6.6 Selection of Aggregation Views 55

6.6.1 Greedy Selection 55
6.6.2 Graph-Decomposition-based Selection 58
6.6.3 Hybrid Approach 64

6.7 Related Work . 65
6.8 Acknowledgments . 68

Chapter 7 A Comparative Study of Two Forms of Views 69
7.1 Rules . 70
7.2 Rules’ Effects on Views as Statistics Caching 70
7.3 Rules’ Effect on Aggregation Views 71
7.4 Experimental Comparisons 72
7.5 Acknowledgments . 73

Chapter 8 A Diagnostic Tool . 74
8.1 Choosing a Context Size Threshold 74

8.1.1 Cost Model & Experimental Demonstration . . . 75
8.1.2 Parameter Selection 77

8.2 Choosing a View Type 78
8.3 Acknowledgments . 81

Chapter 9 Experimental Results . 82
9.1 Data Set & Experiment Setup 82
9.2 Ranking Quality . 83

9.2.1 Context: Combinations of MeSH Terms 83
9.2.2 Context: More than MeSH terms 88

9.3 View Selection . 89
9.4 Query Performance . 92

vi

9.5 Acknowledgments . 95

Chapter 10 Conclusion and Future Work 96
10.1 Concluding Remarks . 96
10.2 Further Work . 98

Bibliography . 100

vii

LIST OF FIGURES

Figure 1.1: MeSH terms and the hierarchy 4

Figure 2.1: Definition of structured document 13
Figure 2.2: Definition of document header 14
Figure 2.3: Definition of the structured query Qs 15

Figure 3.1: The physical execution plan of Q = w1 ∧w2|v1 ∧ v2 27

Figure 5.1: Efficiency comparison of ARM 44

Figure 6.1: The first graph decomposition scheme 60
Figure 6.2: The second graph decomposition scheme 62

Figure 7.1: Efficiency comparison of ARM and Aggregation views 72

Figure 8.1: Correspondence between the context size and the query exe-
cution time . 76

Figure 8.2: Three cost functions for the target ranges 77
Figure 8.3: The distribution of execution overtime of outlier queries . . . 79

Figure 9.1: Precision in top 20 retrieved results 86
Figure 9.2: Reciprocal rank of top 20 results 87
Figure 9.3: Execution time for the large-context queries 93
Figure 9.4: Execution time for the small-context queries 94

viii

LIST OF TABLES

Table 1.1: Academic citations of biomedical science 2

Table 2.1: Statistics used in ranking functions 18
Table 2.2: Evolved Statistics for Context-sensitive Ranking 19

Table 6.1: Pivot table of structured data d(h) 48

Table 9.1: MeSH Queries . 85
Table 9.2: A sample of queries with structured predicates 89
Table 9.3: Ranking effectiveness comparison. 90

ix

ACKNOWLEDGEMENTS

I would like to thank my advisor, Yannis Papakonstantinou, for his guid-

ance. Yannis is an exceptional professor who is always looking for challenging

and interesting problems. He has been constantly encouraging me to conduct

innovative research, rather than to follow others’ steps. His research style and

taste heavily influence me and remind me what kinds of works I should do in

the future. I would also like to thank his insightful comments all through my

graduate studies. He always has a clear high level picture, and guides me to

formal and elegant solutions.

I would like to thank Phil Bernstein. Phil was my mentor for two summer

internships. The work done with him is one of the most elegant works I’ve ever

done. The experience significantly changes my view of research. Phil is extremely

humble, even though he is a renowned researcher and has a busy schedule. He

reviewed every document I produced and carefully provided detailed comments.

It was such a delightful experience working with him.

I would like to thank my other collaborators. I had a lot of discussions

with Nathan Bales and Alin Deutsch on a large body of this thesis through last

two years. These discussions were very inspiring. I worked with Yu Xu as a

summer intern when I was still young in database research. His careful guidance

helped me mature in research. I would also like to thank my committee members

Victor Vianu, Chen Li, and James Hollan. Their insightful comments help this

thesis a lot.

I would like to thank every member of the database lab. It’s been a

great pleasure to attend inspiring seminars, enjoy delicious potlucks and talk

technology and academia gossips.

Finally, I would like to thank my parents in Beijing. They paid close

attention on every step in my graduate study and always encouraged me when

things didn’t go smoothly. I couldn’t go so far without their support.

Parts of Chapter 2 were published in ACM SIGMOD International Con-

ference on Management of Data 2011, entitled “Context-sensitive Ranking for

Document Retrieval”. This is joint work with Yannis Papakonstantinou. The

x

other parts are currently being prepared for submission for publication. This is

joint work with Yannis Papakonstantinou. The dissertation author is the primary

investigator of the two papers.

Chapter 3 was published in IEEE International Conference on Data En-

gineering (ICDE) 2010, entitled “Supporting Top-K Keyword Search in XML

Databases”, and in ACM SIGMOD International Conference on Management of

Data 2011, entitled “Context-sensitive Ranking for Document Retrieval”. Both

papers were joint work with Yannis Papakonstantinou. The dissertation author

is the primary investigator of the two papers.

Chapter 4 and 5 are currently being prepared for submission for publica-

tion, which is joint work with Yannis Papakonstantinou. The dissertation author

is the primary investigator of the paper.

Chapter 6 was published in ACM SIGMOD International Conference on

Management of Data, 2011, entitled “Context-sensitive Ranking for Document

Retrieval”. This is joint work with Yannis Papakonstantinou. The dissertation

author is the primary investigator of the paper.

Chapter 7 and 8 are currently being prepared for submission for publica-

tion, which is joint work with Yannis Papakonstantinou. The dissertation author

is the primary investigator of the paper.

Parts of Chapter 9 were published in ACM SIGMOD International Con-

ference on Management of Data, 2011, entitled “Context-sensitive Ranking for

Document Retrieval”. This is joint work with Yannis Papakonstantinou. The

other parts are currently being prepared for submission for publication. This is

joint work with Yannis Papakonstantinou. The dissertation author is the primary

investigator of the two papers.

xi

VITA

2004 B. S. in Electrical Engineering, Tsinghua University, Beijing,
China

2004-2006 M. S. in Electronic Engineering, Tsinghua University, Beijing,
China

2012 Ph. D. in Computer Science, University of California, San
Diego

PUBLICATIONS

Liang Jeff Chen, Philip A. Bernstein, etc, “Mapping XML to a Wide Sparse Table”
(extended version), IEEE Transactions on Knowledge and Data Engineering (TKDE),
2012.

Liang Jeff Chen, Philip A. Bernstein, etc, “Mapping XML to a Wide Sparse Table”,
International Conference on Data Engineering (ICDE), 2012.

Liang Jeff Chen, Yannis Papakonstantinou, “Context-sensitive Ranking for Docu-
ment Retrieval”, ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 757−768, 2012.

Liang Jeff Chen, Yannis Papakonstantinou, “Supporting Top-K Keyword Search
in XML Databases”, International Conference on Data Engineering (ICDE), pages
689−700, 2010.

Yu Xu, Xin Zhou, Pekka Kostamaa, Liang Chen, Handling Data Skew in Parallel
Joins in Shared-Nothing Systems, ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 1043−1052, 2008

Liang Chen, Shaozhi Ye, Xing Li, Template Detection for Large Scale Search
Engines, ACM Symposium on Applied Computing (SAC), pages 1094−1098, 2006

xii

ABSTRACT OF THE DISSERTATION

Context-sensitive Ranking

by

Liang Chen

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Yannis Papakonstantinou, Chair

We are witnessing a growing number of applications that involve both

structured data and unstructured data. A simple example is academic citations:

while the citation’s content is unstructured text, the citation is associated with

structured data such as author list, categories and publication time. To query

such hybrid data, a natural approach is to combine structured queries with

keyword search. Two fundamental problems arise for this unique marriage:

(1) How to evaluate hybrid queries efficiently? (2) How to model relevance

ranking? The second problem is especially difficult, because all the foundations

of relevance ranking in information retrieval are built on unstructured text and

no structures are considered.

xiii

We present context-sensitive ranking, a ranking framework that integrates

structured queries and relevance ranking. The key insight is that structured

queries provide expressive search contexts. The ranking model collects keyword

statistics in the contexts and feeds them into conventional ranking formulas to

compute ranking scores. The query evaluation challenge is the computation of

keyword statistics at runtime, which involves expensive online aggregations.

At the core of our solution to overcome the efficiency issue is an innovative

reduction from computing keyword statistics to answering aggregation queries.

Many statistics, such as document frequency, require aggregations over the data

space returned by the structured query. This is analogous to analytical queries in

OLAP applications, which involve a large number of aggregations. We leverage

and extend the materialized view research in OLAP to deliver algorithms and

data structures that evaluate context-sensitive ranking efficiently.

xiv

Chapter 1

Introduction

We are witnessing a growing number of applications that involve both

structured data and unstructured data. A simple example is academic citations:

while the citation’s content is unstructured text, the citation is associated with

structured data such as author list, categories and publication time. To query

such hybrid data, a natural approach is to combine structured queries and

keyword search, as these two querying paradigms have been used in database

and information retrieval (IR) for decades.

Consider academic citations shown in Table 1.11. Each citation is asso-

ciated with structured data such as publication year, author list and category,

as well as unstructured text. Structured queries are extended with keyword

search to query both structured data and unstructured text. For example, the

SQL query Q1 searches citations that belong to the category of digestive system

and contain two keywords “leukemia, pancreas”. The predicate Category

= ‘digestive system’ is a conventional structured predicate over the struc-

tured data, and the query construct CONTAINS performs keyword search over

text.

1The Citation table is not in a norm form. The types of the Author and Category columns are
lists rather than atomic values.

1

2

Q1 :

SELECT *

FROM Citation

WHERE Category = ‘digestive system’ AND

Content CONTAINS ‘‘leukemia, pancreas’’

Table 1.1: Academic citations of biomedical science

CID Authors Year Category Content

86 Smith, Chen 2006 digestive sys-

tem, transplant

We present in the

paper studies on com-

plications following

pancreas transplant . . .

200 Mason,Allen 2004 leukemia, diges-

tive system

organ failure in patients

with acute leukemia . . .

.

Two important problems arise for such hybrid query languages: first, how

to evaluate the query efficiently? Query processing of structured queries and

keyword search have different techniques, e.g., B-tree indexes for structured

data and inverted indexes for text. How to integrate these techniques seamlessly

is a critical problem in order to achieve high query efficiency. Second, how to

evaluate result ranking? Ranking is an attractive feature of IR systems. While a

user of conventional databases needs to examine all returned results, a user of

an IR system usually can get what he/she is looking for in top ranked results,

due to sophisticated ranking formulas that evaluate the relevance between the

query and results. On the integration of structured data and unstructured text,

it is a natural desire to introduce relevance ranking in query semantics, and to

improve search effectiveness and user experience.

In this dissertation, we study result ranking for the integration of struc-

tured queries and keyword search. At the first glance, a straightforward ranking

scheme is to decouple the structured data and unstructured text and to process

3

structured queries and keyword search separately. Specifically, keyword search

is evaluated on unstructured text, yielding a ranked list of results; structured

queries over the structured data are further processed to eliminate unsatisfied

results in the ranked list. In the above example query, the keyword query

‘‘pancreas, leukemia’’ is first evaluated over the Content column, return-

ing a list of tuples ranked by IR relevance scores; the structured query Category =

‘digestive system’ is then evaluated over the Category column, removing

tuples that do not satisfy the predicate.

Such a straightforward ranking scheme, however, always violates IR rank-

ing heuristics. IR heuristics are intuitions used to design IR ranking functions.

They reflect people’s common understandings on how textual content is ranked.

When a heuristic is violated, the ranking function may not perform well empiri-

cally since it is not entirely consistent with our intuitive preferences. To design

ranking schemes for the integration of structured queries and keyword search,

we expect that these heuristics are satisfied too. In the following, we first describe

an intuitive example that illustrates the value of structured queries in regulating

IR heuristics and ranking. Then we formally discuss IR heuristics, and analyze

why the naive decoupling of structured queries and keyword search will result

in violations.

1.1 Motivating Use Case

PubMed [4] is a database that contains 18 million biomedical citations. All

the citations include title, abstract, and authors’ information. Citations are often

linked to full-text articles. Additionally, every citation is annotated with one

or more MeSH (Medical Subject Headings) terms from a controlled vocabulary,

which specifies a variety of concepts in biomedical science, e.g., “anatomy”,

“diseases” and “diagnosis”. MeSH terms in the vocabulary are organized in a

hierarchy, as shown in Figure 1.1. A MeSH term may appear in several places in

the hierarchy tree.

The vocabulary and the hierarchy of MeSH terms represent an ontol-

4

MeSH

digestive system neoplasms

liver pancreas

…...

anatomy disease …...

Figure 1.1: MeSH terms and the hierarchy

ogy of biomedical science and structurally organize citations. Each MeSH term

represents a biomedical concept and indexes a list of related citations. A combi-

nation of MeSH terms forms a structured query that specifies a context spanning

the corresponding concepts. For example, “neoplasms” and “digestive system”

represent two concepts under “diseases” and “anatomy” respectively. The com-

bination of the two terms identify a set of citations, which form a search context

for researchers and doctors concentrating on gastrointestinal (GI) cancer.

Such MeSH term combinations have a special value for information re-

trieval in PubMed. Keyword distributions and statistics often vary dramatically

from a specialized context to another. For example, research on cancer and

research on digestive system have very different terminology. Using keyword

statistics from a specialized context in ranking functions will deliver a special-

ized ranking order for the documents in that context. For example, the classical

TF-IDF model uses document frequency (DF) as term weights to boost the rank-

ing of documents that contain query terms that are rare in the collection. The

rationale is that rare query terms are more discriminative, and therefore are more

important in identifying relevant documents than frequent query terms. In the

above example, a query term that is frequent for the citations on neoplasms may

be rare for the citations on digestive system. The ranking order of two documents

may be reversed when users are interested in different contexts.

5

Consider the example queryQ1 that searches two keywords ‘‘pancreas,

leukemia’’, and two citations d86 and d200 in Table 1.1, both annotated with

the MeSH term “digestive system”. Assume we rank the two citations by tf× idf.

Since both citations match precisely one query term (matched query terms are

underlined in Table 1.1), the ranking order of the two citations is only determined

by idf. Without the predicate Category = ‘digestive system’, the frequency

of leukemia is higher than pancreas in PubMed. Hence, d86 is ranked higher

than d200. However, if the query is issued by a GI doctor or researcher, whose

focus is on digestive system, the frequency of leukemia is much less than

pancreas in the corresponding context, and therefore d200 should be ranked

higher than d86. Intuitively, pancreas transplant is a common topic among GI

researchers. Leukemia in the query is more discriminative in the context. Given

that d200 is annotated with the MeSH term “digestive system”, it is very likely

that the organs mentioned in the d200 refer to digestive organs, which include

pancreas.

1.2 IR Heuristics

The deduction behind the above PubMed example relies on ranking

heuristics, specifically TF-IDF intuition. A variety of IR ranking models for

text search have been developed over decades. Though these models evolved

separately in the history, they all follow a small set of IR heuristics. In particular,

Fang et al. [42] formally define a set of basic constraints that any reasonable

ranking functions should satisfy. These constraints capture commonly used

retrieval heuristics, such as TF-IDF scheme, in a formal way, so as to apply them

to conventional IR ranking formulas analytically.

Let d or di be a document modeled as a bag of words, Qk be a keyword

query, andw orwi be a keyword/term. Let tf(w,d) be the number of occurrences

of w in document d, and |d| be the length of d (in terms of number of terms). Let

df(w) be the number of documents containing w, and idf(w) be the inverse of

df(w). The ranking function f(d,Qk) assigns a ranking score of dwith respect to

6

Qk to evaluate the relevance between d and Qk.

The Term Discrimination Constraint (TDC), which formalizes the intuition

of TF-IDF weighting, is described as follows:

For a two-keyword query Qk = {w1,w2} and two documents d1,d2, assume |d1| = |d2|

and tf(w1,d1) + tf(w2,d1) = tf(w1,d2) + tf(w2,d2). If idf(w1) > idf(w2) and

tf(w1,d1) > tf(w1,d2), then f(d1,Qk) > f(d2,Qk).

The TDC constraint formalizes the effect of term discrimination and regu-

lates the interaction between TF and IDF. The above constraint mathematically

ensures that, given a fixed number of occurrences of query terms, the ranking

function favors a document that has more occurrences of discriminative terms

(i.e., high IDF terms).

The TDC constraint, however, will be violated if we decouple structured

data and unstructured text, and only apply conventional IR ranking functions

on text. Consider the example query Q1. The relevance ranking is determined

the Content column. Since both citations match precisely one query term, i.e.,

w1 = leukemia,w2 = pancreas

tf(w1,d86) = 0, tf(w2,d200) = 0

tf(w1,d86) + tf(w2,d86) = tf(w1,d200) + tf(w2,d200) = 1

by the TDC constraint, the order of the two citations is only determined by

idf(w1) and idf(w2). If we only consider the Content column of the entire table,

leukemia has a higher DF than pancreas in PubMed. Hence, pancreas

has a higher IDF and d200 should be ranked higher than d86. Such a ranking

order, however, violates the TDC constraint for the structured query. In Q1, the

structural predicate Category = ‘digestive system’ explicitly specifies the

search scope to be citations related to digestive system, in which pancreas has

a much higher DF than leukemia. As a result, leukemia has a higher IDF and

d200 should be ranked higher than d86.

TDC is not the only constraint that is violated for the integration of struc-

tured queries and keyword search. Length normalization, formalized as Length

Normalization Constraint (LNC) [42], penalizes long documents’ ranking scores.

7

The intuition is that long documents may contain duplicate information or be

less specific on the topic, even though longer content usually means more oc-

currences of query terms, i.e., high TF. Thus, a long document with a high TF is

not necessarily more relevant to the query. To penalize long documents, many

IR ranking functions introduce average document length (denoted by avgdl): for

a document d, if |d|

avgdl
> 1, tf(w,d) is divided by a factor to decrease the d’s

ranking score; if |d|

avgdl
< 1, tf(w,d) is multiplied by a factor to promote the

d’s ranking score. The absolute value of avgdlwill determine how much each

document is penalized or promoted, and therefore change the ranking order.

Consider the following query that searches citations for clinical trials:

Q2 :

SELECT *

FROM Citation

WHERE Type = ‘clinical trial’ AND

Content CONTAINS ‘‘leukemia side effects’’

The query searches citations classified to “clinical trials”. Most clinical trial re-

ports tend to be shorter than research papers, because the former usually only

report clinical findings, while the latter include extensive materials, including

background, ideas, experimental results and discussions. When a user’s struc-

tured query specifies the focus to be clinical reports, these reports should not

be particularly promoted or penalized. However, if we decouple the structured

data and only apply IR ranking functions on the Content column, we will blindly

mix citations of all types and clinical reports will be unfairly promoted. As a

consequence, the ranking order of the matched citations will be skewed.

1.3 Expressive Context

The fundamental cause of various violations of IR heuristics is the mis-

interpretation of keyword statistics. Keyword statistics are basic ingredients

of ranking heuristics. Conventionally, keyword statistics are collected over

documents to characterize which document is more relevant to the keyword

8

query. On the integration of structured queries and keyword search, a structured

query explicitly specifies a search scope, i.e., a subset of the document collection.

When we decouple the structured data from unstructured text and only apply IR

models on text, keyword statistics collected from the entire collection no longer

characterize real ranking heuristics for the corresponding subset. Therefore,

ranking schemes based on decoupling always violate some IR heuristics in the

presence of structured queries.

In this dissertation, we present context-sensitive ranking, a ranking frame-

work that integrates structured queries and keyword search and applies IR

heuristics holistically. The key insight is that structured queries provide expres-

sive search contexts. The basic semantics of a structured query is to return a

subspace of data. The subspace defines a search context and depicts unique

keyword statistics. These context-sensitive statistics are fed into conventional

IR ranking functions to compute the results’ ranking scores. Note that we do

not change mathematical formulas of ranking functions, but only input statistics.

Since conventional IR functions combine statistics in a way such that IR heuris-

tics are satisfied2, our result ranking too satisfies IR heuristics of the specified

structured query.

Consider the previous query Q1 that searches citations related to “diges-

tive system”. If we only collect DF (document frequency) over citations that are

annotated by MeSH term “digestive system”, rather than the entire collection,

the parameters idf(pancreas) and idf(leukemia) will discriminate the two

terms appropriately, and the TDC heuristic will be satisfied. Similarly, for the

query Q2 that only searches citations of “clinical trials”, if the average document

length avgdl is computed purely based on clinical reports, returned results will

be normalized appropriately, and the LNC heuristic will be satisfied.

2Surprisingly, none of the conventional IR ranking functions satisfy all heuristics uncon-
ditionally, as proved in [42]. Since our ranking relies on mathematical formulas of existing
ranking functions, they cannot satisfy all heuristics unconditionally either. However, the ranking
framework guarantees that they do not violate more heuristics than existing IR ranking functions.

9

1.4 Challenges & Solutions

While improving ranking effectiveness and ensuring the consistency be-

tween ranking and IR heuristics, the new ranking framework radically changes

query processing and poses new challenges on query efficiency. In conventional

keyword search, the context is always fixed; it is the entire document collec-

tion. Statistics required by ranking functions are all precomputed at indexing

time. For context-sensitive ranking, however, contexts are specified by users at

query time and can be arbitrary subsets of the document collection. Therefore,

collection-specific statistics (such as document frequency) have to be computed

at query time.

Computing statistics at runtime is often expensive. First, in conventional

query processing, a canonical optimization is to evaluate the most selective

sub-expression first (e.g., the least frequent keyword), so that the number of

intermediate results is dramatically reduced. A query optimizer may interleave

keywords and structured predicates in a query plan to achieve optimality. This

strategy, however, is not valid in our ranking framework. Since ranking now

relies on a context specified by a structured query, the structured query must be

evaluated completely, even if some of the keywords are highly selective. This

restriction can lead to efficiency issues, when the structured query is not selective.

Second, computing keyword statistics not only requires the evaluation of the

structured query, but also aggregations. As we will show later, some statistics in

ranking formulas demand aggregations of the documents in the context, which

can be very expensive when the context is not small.

In this dissertation, we present an innovative reduction from computing

statistics to answering aggregation queries and use view-based ideas to over-

come efficiency challenges. At the core of the challenges is the computation of

context-specific statistics, some of which (e.g., document frequency) demand ag-

gregations over all documents satisfying the structured query. This is analogous

to analytical queries in RDBMSs, which often need to aggregate parameters over

a large number of tuples satisfying a structured query. An important technique

used in RDBMSs to improve the performance of analytical queries is material-

10

ized views. A materialized view is a database object that stores the results of

a query. When an online query matches a precomputed query and can use the

materialized results, query evaluation does not need to start from scratch; query

performance can be improved significantly.

Following the idea of OLAP techniques, we develop view-based algo-

rithms and data structures to evaluate context-sensitive ranking efficiently. We

reduce context-sensitive statistics to aggregation queries and present two forms

of views to answer queries. We particularly concentrate on the problem of view

selection, whose goal is to guarantee the performance of worst-case queries.

We conduct a series of studies and experiments, and show that the proposed

techniques are effective in guaranteeing the system’s overall performance.

1.5 Organization

In this dissertation, we present context-sensitive ranking, a ranking frame-

work for the integration of structured data and unstructured text. Our main

contributions are a novel ranking framework, an innovative problem reduction,

and a series of view-based algorithms that improve the efficiency of context-

sensitive ranking.

In Chapter 2, we formally define data model for the integration of struc-

tured data and unstructured text, query semantics, and ranking model. While

data model and query semantics share resemblances with data models in the

database literature, our ranking model departs from existing ranking schemes in

that it defines keyword statistics based on the structured query, leaving ranking

formulas unchanged. The main merit of the ranking model is that we do not

need to re-design ranking formulas based on various heuristics derived from

application semantics.

In Chapter 3, we discuss evaluation of ranked query semantics, with an

emphasis on the influence of context-sensitive ranking. We present a straight-

forward evaluation strategy based on existing query processing techniques. We

analyze the complexity of query evaluation, and analytically demonstrate the

11

bottleneck of the straightforward evaluation.

While context-sensitive ranking provides an elegant integration of struc-

tured queries and text ranking, it raises a new problem on query efficiency. Chap-

ter 4 provides an overview of our view-bases solution. We present an innovative

reduction from computing statistics to answering aggregation queries. Using

views to answer queries to improve efficiency is an old problem in database

research. Instead of studying generic queries and views, in our problem setting,

we concentrate on two forms of views. We present technical challenges, namely

view selection, and a high-level problem formalization.

In Chapter 5, we discuss the first form of views: views as statistics caching.

This form of views cache pre-computed collection-specific statistics directly. Only

when a query matches the view exactly, the cached statistics are retrieved. The

challenge is how to choose a number of views for caching.

In Chapter 6, we introduce another form of views: views as intermediate

results. The idea is that even if the view dose not match the query precisely,

if the view can be used as intermediate results, computing statistics does not

need to start from scratch. We give formal definition of views, and study how

to compute statistics using them. We also study view selection problem and

propose selection algorithms.

Given that two forms of views serve the same goal, we conduct a compar-

ative study in Chapter 7. We show that while essentially the two approaches for

materialization are not different, with some special constraints, views as interme-

diate results can yield better performance. The experimental results present a

guidance on under what circumstances one approach is superior to the other.

In Chapter 8, we present a diagnostic tool that inputs a user-specified

maximal query execution time and outputs the context size threshold. The output

threshold is fed into view selection algorithms to materialize views. The goal

is that with these selected views, queries can finish within the maximal query

execution time. Such an automatic end-to-end tool greatly improves usability

and frees administrators from the pain of tuning parameters.

Experimental results on ranking quality and query efficiency are reported

12

in Chapter 9. We use data from PubMed for evaluation. We concentrate on three

measures: ranking quality, query performance and view selection efficiency. The

first metric validates the value of context-sensitive ranking. The last two metrics

show the efficiency of our techniques.

We conclude the dissertation in Chapter 10. We also discuss several future

directions along the line of this work.

Chapter 2

Data Model & Query Semantics

In this chapter, we formally define data model (Section 2.1), query seman-

tics (Section 2.2), and ranking model (Section 2.3) for querying structured data

and unstructured text.

2.1 Data Model

We model the combination of structured data and unstructured text as

structured documents, whose definition is given in Figure 2.1. A structured docu-

ment, denoted by d, has two sections: (1) document header d(h) that wraps the

structured data, and (2) document content d(c) that wraps the unstructured text.

d ::= d(h), d(c)

d(h) ::= 〈record〉

d(c) ::= 〈string〉
(

, 〈string〉
)

*

Figure 2.1: Definition of structured document

The document content d(c) is modeled as a bag of (unordered) words,

following the convention in information retrieval. A document header d(h) is

a strong typed multi-field record. Its abstract syntax is given in Figure 2.2. A

structured record consists of an unordered collection of fields. Every field has a

description, i.e., 〈name〉. The value of a field can be an atomic value or a list of

13

14

atomic values. Atomic values include integers, floating-point numbers, strings,

and etc. Values in a list can be order-sensitive or order-insensitive, whereas fields

in a record are always order-insensitive.

〈record〉 ::= 〈field〉
(

, 〈field〉
)

*

〈field〉 ::= 〈name〉 : 〈value〉

〈name〉 ::= 〈string〉

〈value〉 ::= 〈atom〉 | 〈list〉 | 〈record〉

〈list〉 ::= 〈value〉
(

, 〈value〉
)

*

〈atom〉 ::= 〈integer〉 | 〈double〉 | 〈string〉 |

Figure 2.2: Definition of document header

The definition of document header coincides with existing semi-structured

data models such as XML [5] and JSON [3], but without nesting. It is expressive

enough to capture a wide range of applications. For example, in email systems,

an email header can be represented by three fields, 〈sender〉, 〈receiver〉, 〈time〉.

〈sender〉 and 〈time〉 are single-valued fields. 〈receiver〉 is a multi-valued field;

each value in the field represents an email address. As another example, for

academic citations in Table 1.1, structured data associated with citations can be

represented by 〈year〉, 〈author〉 and 〈category〉, where the latter two represent

lists of atomic values.

2.2 Query Syntax & Semantics

Let D be a collection of structured documents. A hybrid queryQ = Qk|Qs

over structured documents consists of two sub-queries, the structured query Qs

over structured header d(h) and the keyword query Qk over unstructured text

d(c). Qk is a conventional keyword query consisting of terms Qk = {w1, . . . ,wn}.

Qs is a structured query whose formal syntax will be defined shortly. Each

sub-query specifies a subset of documents.

Definition 2.2.1. The keyword query Qk = {w1, . . . ,wn} over D specifies a subset of

15

documents Qk(D) ⊆ D such that for any document di ∈ Qk(D), there exists wj ∈ Qk

such that di(c) contains wj.

The above semantics of Qk follows the OR semantics in text search, i.e., a

returned document contains at least one query term. While we focus on the OR

semantics for keyword search all through this dissertation, the following discus-

sion and proposed techniques can be easily extended to the AND semantics.

The structured query Qs is a conjunction of predicates, each of which is

over a field of the structured data. Its formal specification is given in Figure 2.3.

Qs ::= SELECT cid

FROM D

WHERE (list)?

list ::= cond (and cond)*

cond ::= d(h).field.atom op const

const ::= string | integer |

op ::= = | > | < | . . .

Figure 2.3: Definition of the structured query Qs

The specification of Qs follows the SQL syntax, with a new construct

d(h).field.atom. The construct “·” (dot) resembles the path expression in semi-

structured data and references to an atomic value of a field. It syntactically

eliminates joins for many-to-many and many-to-one relationships. For example,

Category presents a many-to-many relationship between categories and doc-

uments. This relationship is usually maintained in RDBMSs in three tables: a

Citation table, a Category table and a relationship table referencing to the two. A

structured query searching citations from two categories need a three-way join

between the Citation table and two aliases of the Category table, as shown as

follows:

16

SELECT C.did

FROM Citation C

WHERE EXISTS (

SELECT C.did

FROM Category C1

WHERE C1.cid = C.cid AND C1.val = ‘neoplasm’

) AND EXISTS (

SELECT C2.cid

FROM Category C2

WHERE C2.cid = C.cid AND C2.val = ‘brain’

)

With the syntax introduced in Figure 2.3, the query has no relational joins, but

path expressions in the WHERE clause:

SELECT C.did

FROM Citation C

WHERE C.category.atom = ‘neoplasm’ AND

C.category.atom = ‘brain’

The dot (·) and path expressions still require joins for query execution. But

they facilitate problem formalization and reduction. Their effect will be clearer

in following chapters.

Definition 2.2.2. The structured query Qs over D specifies a subset of documents

Qs(D) ⊆ D such that for any document di ∈ Qs(D), di(h) satisfies Qs.

Definition 2.2.3. Given the query Q = Qk|Qs and the document collection D, the

unranked result of Q is the intersection of Qs(D) and Qk(D), i.e., Q(D) = Qs(D) ∩

Qk(D).

The unranked semantics ofQ is based on decoupling structured data d(h)

and unstructured text d(c). It defines Qs and Qk on d(h) and d(c) respectively.

However, as we argued earlier, the result ranking cannot be based on such

decoupling, which will yield ranking functions violating IR heuristics. In next

17

section, we will discuss how to incorporate Qs and Qk into an IR-consistent

ranking semantics.

2.3 Ranking Semantics

In this section, we define the ranking semantics of Q = Qk|Qs over a

collection of structured documents D. We start by presenting a generic represen-

tation of ranking functions for conventional keyword queries. We then evolve it

to the context-sensitive ranking function for the hybrid queryQ. In the following,

we use Qt to denote conventional keyword queries, dt to denote conventional

documents, and Dt to denote a collection of dt.

A variety of ranking functions were developed in information retrieval

to rank documents with respect to keyword queries. In general, they combine

keyword statistics to a single score to evaluate the relevance between a query Qt

and a document dt. The statistics used in the ranking models can be classified

into three categories: query-specific, document-specific and collection-specific:

• A query-specific statistic, denoted by Sq(Qt), is a statistic computed from

the input query Qt. For instance, query length counts how many terms in

the query Qt, which is only determined by Qt.

• A document-specific statistic, denoted by Sd(dt), is a statistic computed from

document dt, e.g., term count of wi in dt. Every document has its unique

document-specific statistics.

• A collection-specific statistic, denoted by Sc(Dt), is a statistic computed from

the collection Dt. They describe global characteristics of the entire collec-

tion. Conceptually, a collection-specific statistic is calculated by aggregating

parameters of individual documents in the collection to a single value. For

example, term count of wi in the collection is calculated by summing up

the number of occurrences of wi in every document in the collection.

Table 2.1 summarizes atomic statistics used in a variety of ranking models,

including vector space models (TF-IDF), language models and probabilistic

18

Table 2.1: Statistics used in ranking functions

Scope Statistics Notation

term count of w in the collection tc(w,Dt)

collection length len(Dt)

collection-specific collection cardinality |Dt|

document count (for term w) df(w,Dt)

unique term count in the collection utc(Dt)

term count in document tf(w,dt)

document-specific document length len(dt)

unique term count in document utc(dt)

term count in query (for w) tq(w,Qt)

query-specific query length len(Qt)

unique term count in query utc(Qt)

relevance models. Note that some compound statistics used in the models can be

computed by combinations of atomic statistics. For example, average document

length (avgdl) is calculated by collection length divided by collection cardinality:

avgdl =
len(Dt)

|Dt|

Let Sq(Qt) be a set of query-specific statistics for Qt, Sd(dt) be a set

of document-specific statistics for d, and Sc(Dt) be a set of collection-specific

statistics for Dt.

Given a query Qt and a document dt ∈ Dt, a conventional ranking

function f(·) takes as input statistics from Sq(Qt), Sd(dt), Sc(Dt), and computes

a score of dt with respect to Qt:

score(Qt,dt) = f
(

Sq(Qt), Sd(dt), Sc(Dt)
)

(2.1)

Now we evolve Formula 2.1 to a function for context-sensitive ranking.

For the hybrid query Q = Qk|Qs, the context-sensitive ranking views Qs as

a context specification that defines a set of documents Qs(D) ⊆ D of interest.

Accordingly, the statistics used in the ranking function should be based on

19

Table 2.2: Evolved Statistics for Context-sensitive Ranking

Scope Statistics Notation

term count of w in the context tc
(

w,Qs(D)
)

context length len
(

Qs(D)
)

collection-specific context cardinality |Qs(D)|

document count (for term w) df
(

w,Qs(D)
)

unique term count in the context utc
(

Qs(D)
)

term count in document tf
(

w,d(c)
)

document-specific document length len
(

d(c)
)

unique term count in document utc
(

d(c)
)

term count in keyword query (for w) tq(w,Qk)

query-specific keyword query length len(Qk)

unique term count in keyword query utc(Qk)

Qs(D), rather than D. Since query-specific and document-specific statistics are

only determined by the input query and individual documents and have nothing

to do with a document collection, they stay unchanged for the context-sensitive

ranking. Only collection-specific statistics are updated based on a new collection

of documents Qs(D). The evolved statistics for query Q = Qk|Qs is shown in

Table 2.2.

Given the hybrid queryQ = Qs|Qk and the evolved statistics, the ranking

score of a structured document d ∈ Qs(D), the d’s ranking score is computed as:

score(Q,d) = f
(

Sq(Qk), Sd

(

d(c)
)

, Sc

(

Qs(D)
)

)

(2.2)

The ranking model uses the same computation function f as the conven-

tional IR model, but different inputs—context-sensitive statistics. This enables

the ranking to automatically inherit all merits of conventional IR models for

relevance ranking and satisfy ranking heuristics specified by the structured

query. Specifically,Qk is a conventional keyword query, and query-specific statis-

tics Sq(Qk) in Formula 2.2 is equivalent to Sq(Qt) in Formula 2.1. Since d(c)

is the document’s content and is equivalent to dt, document-specific statistics

20

Sd

(

d(c)
)

in Formula 2.2 is equivalent to Sd(dt) in Formula 2.1. The only differ-

ence between Formula 2.1 and 2.2 is collection-specific statistics Sc: Sc

(

Qs(D)
)

in Formula 2.2 collects statistics from Qs

(

D
)

, a subset of the collection, whereas

Sc(D) in Formula 2.1 collects statistics from the entire collection Dt.

Example 2.3.1. TF-IDF weighting is a well-known ranking model. Among its variants,

the pivoted normalization formula [89] is considered to be one of the best performing

vector space models and is widely used in many text search systems. Its mathematical

representation is shown in Formula 2.3, where s is a constant and is usually set to 0.2.

The other variables’ meanings can be found in Table 2.1.

score(Qt,dt) =
∑

w∈Qt

1 + ln(1 + ln(tf(w,dt)))

(1 − s) + s ·
len(dt)

avgdl

·

tq(w,Qt) · ln
|Dt|+ 1

df(w,Dt)
(2.3)

where avgdl =
len(Dt)

|Dt|
.

The statistics used in the pivoted normalization formula are classified as follows:

• tq(w,Qt) is a query-specific statistic.

• tf(w,dt), len(dt) are document-specific statistics.

• df(w,Dt), |Dt|, len(Dt) are collection-specific statistics.

The context-sensitive version of the pivoted normalization formula for Q =

Qk|Qs replaces every Sc(Dt) with Sc
(

Qs(D)
)

, i.e.,

score(Q,d) =

∑
w∈Qk

1 + ln(1 + ln(tf(w,d(c))))

(1 − s) + s ·
len(d(c))

avgdls

if d ∈ Qs(D)

·tq(w,Qk) · ln
|Qs(D)|+ 1

df(w,Qs(D))

0 if d /∈ Qs(D)

21

2.4 Related Work

Personalized ranking is a problem whose motivation is similar to context-

sensitive ranking. It aims to bring personalizations to ranking so that users

issuing the same query get different rankings for their own preferences, interests

or search contexts. Personalized ranking has been extensively studied in IR

community, especially in web search. A wide spectrum of personalization models

were proposed, including users’ profile information [88, 76, 100], and prior search

behavior (e.g., query history, click logs) [92, 97, 80, 86]. They either re-rank top

K results returned by standard search systems, or reformulate queries before

sending to the search systems. The fundamental difference between these models

and our ranking model is that they still rely on conventional ranking models and

do not “personalize” underlying statistics.

Personalized PageRank [56, 62, 27, 64] is a personalization model for

link analysis in web search. PageRank is a probabilistic model that simulates

a pseudo user randomly walking on the web by following the links between

web pages. The more likely the user is to visit a web page, the higher ranking

scores that page has. A standard setting of PageRank is that the user may start

from any page in the web. Instead of using the uniform distribution for all pages

at the initial state, personalized PageRank uses a set of query or user-specific

nodes as the random walk starting points. Since the initial state is query- or user-

specific, PageRank scores are user- or query-sensitive, and must be computed at

runtime. The main challenge is how to compute personalized scores efficiently,

as online computations usually involve expensive fixpoint iterations over a very

large graph. Among the proposed solutions, the algorithms in [62, 64] share

the same spirit of the materialized view technique: some small subgraphs are

precomputed in advance. Online computations use the materialized subgraphs

to improve efficiency.

Personalized ranking has also been studied in database community. Paper

[67] defines a preference model, where preferences are expressed as predicates

associated with interest scores. Users’ preferences are stored in their profiles and

are used to rewrite SQL queries. Paper [6] defines a preference as an order of

22

two tuples when their attributes satisfy some conditions. Preferences are not

commutative, and may conflict with each other. Given a selection SQL query,

the goal is to compute an order of the retrieved tuples that is consistent with the

predefined preferences as much as possible. Unlike the model in [67], this model

does not personalize rankings for individual users.

We are not the first one to utilize domain-specific statistics to improve

ranking effectiveness. For example, the clustered-based retrieval [72] clusters

documents that are semantically related and uses statistics within individual

clusters to improve the smoothing of language models. In machine learning,

topic model was also studied [82, 21]. However, none of the existing work

ever considers dynamic context/domain/topic specifications. Given that static

contexts/domains/topics are chosen in advance, they cannot satisfy diverse

users’ needs. Our query model provides much more power to domain experts.

There is a wealth of literature on integrating structured queries with

keyword search in XML databases. Indeed, our data model and query semantics

share many resemblances with XML, except that our data model does not allow

nesting. Three previous XML works stand out for considering structural aspects

of the query for ranking statistics. In [98], each XML element name defines a

context, and IDF is computed with respect to all other elements with the same

name. In [44], a subset of element names are designated as defining contexts.

Each other element belongs to its lowest context-defining ancestor. In [22], XPath

expressions define search contexts, much like in our own work, though they use

an inefficient evaluation strategy.

Content relevance ranking for XML are studied in IR community as well.

We distinguish between our data model and structured retrieval. In the former

structured data can be decoupled from text, whereas in the latter structures

are embedded in text, e.g., <subject>this</subject>is a <bold>cat</bold>.

Because of the difference in data modelling, our ranking model uses structured

data as contexts, whereas the latter uses structure embedding to break text into

smaller pieces and designs ranking schemes at finer granularity [26, 23, 32, 81].

23

2.5 Acknowledgments

Parts of Chapter 2 were published in ACM SIGMOD International Con-

ference on Management of Data (SIGMOD), 2011, entitled “Context-sensitive

Ranking for Document Retrieval”. This is joint work with Yannis Papakonstanti-

nou. The other parts are currently being prepared for submission for publication.

This is joint work with Yannis Papakonstantinou. The dissertation author is the

primary investigator of the two papers.

Chapter 3

Query Evaluation

In this chapter, we discuss naive query evaluation, and analyze its perfor-

mance bottlenecks, which will be tackled in later chapters.

The evaluation of ranked queries involves two tasks: (1) compute un-

ranked results and (2) compute the results’ ranking scores and return a ranked

list. For the first task, a canonical query optimization technique is to evaluate the

most selective sub-expression first, so that the number of intermediate results is

dramatically reduced. It means that in our problem setting, a query optimizer

may interleave keywords from Qk and structured predicates from Qs in a query

execution plan. Furthermore, for ranked semantics, computing top-K results

is generally more important than returning complete results, because ranking

scores measure the relevance between results and queries and users usually

only examine top ranked results. Hence, computing ranking scores are often

incorporated into the execution plan by an appropriate use of top-K algorithms

[40, 94] to return top ranked results first.

In conventional ranking schemes that decouple structured data and un-

structured text, computing ranking scores is computationally cheap because

statistics needed by a ranking function are all pre-computed at indexing time, i.e.,

before receiving queries. Once a structured document is evaluated to satisfy the

query, its ranking score is computed instantly by aggregating the precomputed

statistics.

The ranking model defined in Formula 2.2, however, poses a computa-

24

25

tional challenge, since the search context and ranking statistics are specified by

the structured query and must be computed at execution time. For the hybrid

query Q = Qk|Qs, its search context is specified by the following SQL query:

SELECT *

FROM D

WHERE EXISTS Qs(d(h))

This query must be fully evaluated, after which documents in the context are

collected to compute collection-specific statistics, which are further used to

compute ranking scores.

Example 3.0.1. Consider the queryQ1 from Chapter 1 that searches citations containing

“leukemia, pancreas”. Document Frequency (DF) characterizes how discriminate

a term is with respect to the papers published in the domain of ”digestive system”.

This value cannot be computed until we evaluate the structured predicate Category

= ‘digestive system’, and count how many returned citations contain the two

terms respectively.

A high-level evaluation scheme of Q = Qk|Qs is shown in Algorithm 1.

The first two steps evaluate the structured query Qs and compute collection-

specific statistics. Once all the statistics are prepared, the following steps further

evaluate the keyword query Qk and return ranked results.

Algorithm 1 poses efficiency issues when the structured query is not

selective. First, query engine must evaluate Qs, and cannot interleave Qs’s pred-

icates and keywords, even if some keywords are highly selective (otherwise,

statistics are not complete, and there will be no ranking scores!). Second, com-

puting context statistics demands aggregations of the context collection. Online

aggregations over a large set can be fairly expensive.

In the following, we dive into details of physical executions and quantita-

tively analyze its performance.

26

Algorithm 1: Query evaluation of Q = Qk|Qs

1 Evaluates the structured query Qs over the document collection D,

and returns the search context Qs(D) = {d1, . . . ,dm}.

2 Scans Qs(D) = {d1, . . . ,dm}, and aggregates collection-specific

statistics Sc

(

Qs(D)
)

over {d1(c), . . . ,dm(c)}.

3 Evaluates the keyword query Qk over Qs(D), and returns

Qk

(

Qs(D)
)

⊆ Qs(D) such that ∀d ∈ Qk

(

Qs(D)
)

, d(c) satisfies Qk.

4 ∀d ∈ Qk

(

Qs(D)
)

, computes the ranking score f
(

Sq(Qk), Sd

(

d(c)
)

,

Sc

(

Qs(D)
)

)

.

5 Returns top ranked results.

3.1 Physical Query Execution

The structured query Qs consists of conjunctive predicates, each referenc-

ing to an atomic value in a field. For easy of exposition and representation, we

assume all predicates test equality between an atomic value and a literal, and

refer to the same field. The structured queryQs is simplified toQs = v1∧ . . .∧vn,

where v1, . . . , vn are literals of a fixed field. A structured document d satisfies Qs

if d(h) contains all the literals in the field.

By Algorithm 1, evaluation of Q = Qk|Qs first materializes the context

collectionQs(D) and computes required statistics accordingly. Thereafter eval-

uation is the same as conventional keyword queries. Let Lw = σw(D) be the

inverted list of keyword w, and Lv be the inverted list of literal v. Consider the

queryQ = Qk|Qs = w1 ∧w2|v1 ∧ v2 and the TF-IDF ranking function in Formula

2.3. By query semantics in Section 2.2, the unranked result of Q is evaluated as

the intersection of the structured query and the keyword search, i.e.,

Lw1
∩ Lw2

∩ Lv1
∩ Lv2

To compute collection-specific statistics, the query plan must satisfy the

following constraints:

1. Document frequency (DF) for wi, df
(

wi,Qs(D)
)

, is the number of docu-

27

ments in the context that containwi, which is evaluated as
∣

∣σwi
(D)∩Qs(D)

∣

∣.

Therefore, the query plan must include Lw1
∩ Lv1

∩ Lv2
and Lw2

∩ Lv1
∩ Lv2

,

where the first expression computes document count forw1, and the second

expression computes document count for w2.

2. Collection cardinality |Qs(D)| is evaluated as |σv1
(D) ∩ σv2

(D)|. Hence, the

query plan must include Lv1
∩ Lv2

, and a COUNT aggregation on top of it.

3. Collection length len
(

Qs(D)
)

requires a SUM aggregation on the lengths of

the documents in the context, i.e., γsum(σv1

(

D) ∩ σv2
(D)

)

where γ denotes

an aggregation operator.

Putting the above constraints together, the execution plan ofQ is shown in

Figure 3.1, where ∩γ means “intersection with aggregation”. At the bottom level,

Lv1
and Lv2

are intersected to return documents in the context. Two aggregations,

denoted by γcount and γsum, are performed upon Lv1
∩Lv2

to compute collection

cardinality and collection length. The result of Lv1
∩ Lv2

is further intersected

with Lw1
and Lw2

respectively to obtain document frequency of w1 and w2. The

final result is computed by the highest intersection operator.

Lv1 Lv2

γsum⋂γ
⋂γ ⋂γ

Lw1 Lw2

γcount

⋂
γcountγcount

Figure 3.1: The physical execution plan of Q = w1 ∧w2|v1 ∧ v2

28

3.2 Cost Analysis

We introduce a simple cost model to quantify the cost of the physical

execution. The goal of the model is not to estimate the cost as accurate as

possible, but to analytically demonstrate the bottlenecks of the straightforward

evaluation.

Cost Models for Inverted List Intersection and Aggregation

The core operation of the query plan in Figure 3.1 is the intersection of

inverted lists. In standard text search systems, a simple representation of an

entry in an inverted list is a pair of document ID and term frequency (TF), i.e.,

〈docid, tf〉. Inverted lists are ordered by document ID so that two lists can be

merged efficiently. A simple cost model for the merge join is |Li|+ |Lj|, where Li

and Lj are two inverted lists.

In addition to the standard merge join, there are many sophisticated

optimization techniques that leverage low join selectivity [37, 17, 38, 13, 14, 18].

These algorithms use the total number of comparisons as the measure of the

algorithm’s complexity and aim to use the minimum number of comparisons

ideally required to establish the intersection. The benefit of these algorithms is

that when join selectivity is low, the execution of intersections can be very close

to |Li ∩ Lj|, which is much faster than |Li|+ |Lj|.

A simple technique belonging to this category and widely used in many

text search systems is skip pointers [78]. Specifically, inverted lists are partitioned

into segments and skip pointers are maintained to jump between consecutive

segments. When two inverted lists are scanned, if the current document ID of

the first inverted list does not fall in the segment of the second inverted list, the

whole segment of the second inverted list can be skipped.

Example 3.2.1. Consider two inverted lists of integers L1 = {1, . . . , 100} and L2 =

{100, . . . , 199}. L1 and L2 are partitioned into segments:

L1 = {1, . . . , 20}{21 − 40} . . . {81 − 100}

L2 = {100 − 119}{120 − 139} . . . {180 − 199}

29

When the first element of L2 (i.e., 100) is processed, only last segment of L1 is

processed. All previous segments are skipped, because 100 is out of their ranges. After

the first segment of L2 is processed, all the following segments of L2 are skipped as well,

because L1 has reached the end. Overall, only two segments from L1 and L2 are processed.

The complexity of the execution can be characterized by |L1 ∩ L2|, rather than |L1|+ |L2|.

Let M0 be the number of entries in one segment, No
i be the number of

segments in Li whose ranges overlap with some segment(s) in Lj, and No
j be

the number of segments in Lj whose ranges overlap with some segment(s) in Li.

Then the cost of the intersection with skip pointers is

M0 · (N
o
i +No

j)

Since No
i 6

|Li|

M0
and N0

j 6
|Lj|

M0
, we have

M0 · (N
o
i +No

j) 6 |Li|+ |Lj|

Therefore, the cost model of the intersection is:

cost(Li ∩ Lj) =M0 · (N
o
i +No

j)

As we can see, when the join selectivity is low,No
i orNo

j can be very close

to the number of results. The algorithm’s complexity can be approximated by a

linear function with respect to the result size |Li ∩ Lj|.

An aggregation over a list requires a full scan of the elements in the list.

Hence, the cost model of the aggregation is:

cost
(

γ
(

Qs(D)
)

)

=
∣

∣

⋂

vi∈Qs

Lvi

∣

∣

Analysis

Intersecting inverted lists is generally considered to be efficient. The

skip pointer optimization and other techniques [37, 17, 38, 13, 14, 18] improve

the efficiency significantly when the join cardinality is low, as many segments

can be skipped. In particular, when |Li| is orders of magnitude smaller than

|Lj|, Li’s entries span at most |Li| segments of Lj, i.e., each entry in Li falls in a

30

separate segment of Lj. In such a case, the cost for the intersection of Li and Lj is

|Li|+ |Li| ·M0, which can be much less than |Li|+ |Lj|.

However, intersecting very long inverted lists may not cheap [30]. In

particular, when the join cardinality is not low, the intersection cannot take

advantages of skip pointers and all segments must be scanned. In these cases,

the cost of the context materialization is bounded by
∑

vi∈Qs
|Lvi

|.

While inverted-list intersections in conventional keyword query evalua-

tion can start from the most selective keyword, the evaluation of context-sensitive

ranking must fully materialize the context. Intuitively, the context size tends to be

fairly large, because the purpose of the context specification is to define a general

search scope, rather than to filter out specific information as the keywords in

conventional queries.

In standard text search systems, when the keywords in the query are

not selective and the result size (i.e., the join cardinality) is very large, top-K

processing techniques have been developed to reorder inverted lists so that only

a small fraction of the lists are processed to generate top K results. This strategy,

however, is not applicable for context-sensitive ranking before all collection-

specific statistics are computed. The performance of the query will still be

bounded by the complexity of the context materialization.

In addition to the cost of intersections, the cost of aggregations is propor-

tional to the context size which is less than
∑

vi∈Qs
|Lvi

|.

Proposition 3.2.1. The cost of a context-sensitive query Q = Qk|Qs is bounded by

O(
∑

vi∈Qs
|Lvi

|) in the worst case.

The above analysis shows that context-sensitive ranking can be fairly

expensive when the structured query is not selective and the context is fairly

large. The performance of Q = Qk|Qs can be orders of magnitudes slower than

the unranked query Qt = Qk ∩Qs, which by query semantics presents the same

unranked results as Q = Qk|Qs. The performance drop makes context-sensitive

ranking unacceptable, as the ranking sacrifices efficiency too much in order to

deliver a better ranking quality.

31

3.3 Related Work

Query evaluation for the integration of structured queries and keyword

search has attracted a lot of research attention in the past few years. Consider-

able works have been dedicated to relational and XML databases respectively.

In XML databases, much effort has been devoted to query semantics and effi-

cient evaluation [33, 94, 11, 10, 45, 93]. Though query syntaxes and semantics

considered by these works are not strictly the same, they all interleave XML

structured queries (in forms of XPath or XQuery) and keyword search (through

special query constructs, e.g., contains). It is commonly agreed that query

evaluation is handled by a generic optimizer that processes structured queries

and keyword queries uniformly. Technical contributions involve how to combine

the evaluation algorithms of the two kinds of queries seamlessly.

XML keyword search is a line of works parallel to combining structured

queries and structured search [49, 101, 102, 73, 91, 69, 31]. Though queries consid-

ered in these works are pure keyword queries, the structure of XML documents

raises unique opportunities for structured search. Specifically, they define query

semantics to be a fragment of XML documents containing all keywords. This

is formalized by the notion of Lowest Common Ancestor (LCA). Various LCA-

based semantics were proposed and their evaluation algorithms are studied.

In addition to query semantics and evaluation algorithms, XML tree structures

are also studied to improve other aspects of search. For example, paper [85]

studies query evaluation over virtual views of XML. The major difference with

the LCA-based keyword search is that given the view definition, the returned

elements are fixed, whereas the returned results of the LCA-based semantics can

be arbitrary fragments in XML tree. Papers [73, 74] study the problem of how

to return results with more semantics. They leverage XML structures to infer

relevant results by analyzing matched patterns.

Keyword search is also studied in relational databases. DISCOVER [61],

DBXplorer [8] and BANKS [20] are pioneer systems that support keyword search

in relational databases. Their query semantics is that results of keyword queries

are sets of tuples that contain all the keywords and are connected through

32

primary keys and foreign keys. Later works follow this semantics and further

focus on two aspects: efficiency [61] and effectiveness [71, 75].

Among all the above systems and algorithms, top-K processing is an

important technique in keyword-oriented search. Since ranking mechanism is

introduced, users are likely to only examine a few relevant results. There is no

need to compute complete results. The philosophy of top-K processing is to focus

on those “promising” results, so that processing can stop as long as first K results

are available. The Threshold Algorithm [40] is the most well-known instance in

this category. In XML databases, several works [94, 65, 31] extend the idea of TA

and adapt it for the integration of XML structured queries and keyword search.

Top-K problems are also studied from other dimensions: monotonic ranking

functions [41, 29, 19, 77], non-monotonic ranking functions [99, 75], existence of

materialized views [60, 36, 15], and top-K joins [63, 59].

All the existing top-K query processing techniques rely on the assumption

that keyword statistics are prepared in advance. Under this assumption, top-K

processing naturally fits in query evaluation, because once a result is computed,

its ranking score is immediately computed from pre-computed scores or statistics.

In our ranking framework, however, top-K processing is only useful when all

statistics are available and is not helpful in relieving the performance pressure

when the structured query is not selective.

3.4 Acknowledgments

Chapter 3 was published in IEEE International Conference of Data En-

gineering (ICDE) 2010, entitled “Supporting Top-K Keyword Search in XML

Databases”, and in ACM SIGMOD International Conference on Management of

Data 2011, entitled “Context-sensitive Ranking for Document Retrieval”. Both

papers were joint work with Yannis Papakonstantinou. The dissertation author

is the primary investigator of the two papers.

Chapter 4

Computing Statistics Using Views:

Overview

While context-sensitive ranking provides a clean integration of structured

queries and relevance ranking, current database or text search systems cannot

efficiently evaluate queries specifying very large contexts. The technical chal-

lenge is to maintain query efficiency as close as possible to query semantics using

conventional ranking schemes.

At the core of our solution to overcoming the efficiency issue is to reduce

the computation of collection-specific statistics to aggregation queries. Com-

puting collection-specific statistics essentially involves online aggregations. For

instance, document frequency df(w) is equivalent to a COUNT aggregation over

documents containing the termw and satisfying the structured queryQs. Similar

problems were encountered in OLAP [46], an approach to quickly analyze multi-

dimensional data. A large body of OLAP queries involve expensive aggregations

which must be answered in a short time. The most important mechanism in

OLAP that allows such performance is the use of materialized views. A material-

ized view is a database object that contains the results of a query. The high level

idea is that if the view is pre-computed in advance and online queries can use it

to save computations, query evaluation does not need to start from scratch and

query performance can be improved significantly.

In this chapter, we provide an overview of our view-based techniques.

33

34

We discuss two forms of views we exploit in this dissertation to improve query

performance. We further analyze technical challenges and present their formal-

ization and quantification. Algorithms and data structures will be discussed in

the following chapters.

4.1 Two Forms of Views

A materialized view is a database object that contains the results of a

query. Intuitively, a materialized view can be beneficial to queries in two forms.

First, the view stores collection-specific statistics of a context-sensitive query. In

this case, online evaluation simply retrieves statistics. Second, though the view

does not contain the result directly, it can be used as intermediate results. Query

evaluation does not need to start from scratch and hence is efficient than the

approach without using any views. In the following, we refer to the first form as

views as caching statistics and the second as views as intermediate results.

The nature of the two forms of views presents unique trade-offs: views as

statistics caching provide best online performance, because there is basically no

online computation. However, it potentially involves more offline computations

when we materialize views. Views as intermediate results, on the other hand,

need some online computations, because they are “half-baked” results and

further computations are needed to compute final statistics. As we will see later,

offline computations in this case are usually lighter than that of views as statistics

caching.

When we consider views as intermediate results, a special question arises:

what kinds of views can be used to answer the query? Since in this case views

do not match queries precisely, special attention must be paid to determine

whether we can use this view to answer the query. This problem is also known

as view usability. An intuition to the question is that the view must preserve all

information required by the query for evaluation.

35

4.2 Performance Goal

The goal of using views is to improve query performance. In this disserta-

tion, we set our performance goal as guaranteeing the performance of worst-case

queries. Query performance is measured by online execution time. In text search

systems, response time is the most critical factor for user experience, as users are

usually expecting instant responses [24, 70]. Ideally, by using views to answer

queries, we want to ensure that all queries can be executed within a fixed amount

of time.

We assume that all queries are run individually, i.e., a single query envi-

ronment. We transform the performance goal into two parameters, context size

and view size. Context size is used to quantitatively characterize query execu-

tion time. As discussed in 3.2, computing collection-specific statistics involves

two steps: intersecting inverted lists of conjunctive predicates and aggregating

documents in the context. Both steps’ complexities can be approximated by the

context size.

• When the predicate inverted lists are short, aggregation queries that com-

pute statistics are evaluated from scratch. Evaluation of intersections is

efficient. Also since the result size must be small, the cost of online aggre-

gation is small too. Overall, the query execution time can be guaranteed.

• When the input inverted lists are long and the context size is large, both

intersections and aggregations are expensive. We refer to this type of

queries as worst-case queries. Every worst-case query must be answered

by at least one view so that its execution time is within the specified limit.

• When the input inverted lists are long but the context size (which is the

intersection of the inverted lists) is small, statistics will be computed from

scratch. Aggregation cost is small, because of the small context size. Evalu-

ation of intersections is also efficient in this case, because the join selectivity

is low and various techniques are designed to reduce the complexity of in-

tersections as close as possible to the result size, as discussed in Section 3.2.

Overall, the execution time of this type of queries can also be guaranteed.

36

Based on this modeling, a structured query specifying a context greater

than a certain threshold cannot finish within a short time. There must be at

least one view to improve its performance. Queries specifying small contexts are

evaluated from scratch and statistics are computed at run time.

In Chapter 8, we will present a diagnostic tool that selects a context size

threshold automatically. Specifically, the tool inputs a user-specified maximal

query execution time, and returns a context size threshold. The tool is based on

the analysis that the connection between query execution time and context size

fits in a linear function. The selected threshold is further used to select views.

In addition to the context size, online computation cost is the second

parameter that needs to be constrained. The goal of using views to compute

statistics is to improve search performance and response time. If the online com-

putation is too expensive, the performance goal will not be achieved. Specifically,

for views as statistics caching, the performance goal can always be achieved,

because there is basically no online computation, but directly retrieval. For views

as intermediate results, as we will see later, its online computation cost is directly

related to the view size (in terms of number of tuples). Therefore, we require

that views be smaller than a certain threshold. (Views as statistics caching can be

viewed as a special case, where each view has only one tuple storing different

statistics in different columns.)

4.3 View Selection

Given a context size threshold TC and a view size threshold TV , view

selection aims to select views to answer queries whose context sizes are greater

than TC. We formalize the view selection problem as follows:

Problem Statement 4.3.1. Given a context size threshold TC (in terms of percentage

of the data size) and a view size threshold TV (in terms of number of tuples in the view),

find a set of views V = {VK1
,VK2

, . . .} such that

1. ∀VKi
∈ V, ViewSize(VKi

) 6 TV .

37

2. For every possible context specification Qs, if |Qs(D)| > TC · |D|, then ∃VKj
∈ V

such that VKj
can be used to compute the QS’s collection-specific statistics.

View selection algorithms will be dependent on the view forms. For

views as statistics caching, since a view caches the query’s statistics directly, the

essential problem is to identify target queries (i.e., worst-case queries). For views

as intermediate results, since they maintain intermediate results, worst-case

queries may not be identified explicitly. However, it must be guaranteed that

these queries must be covered by at least one view.

It is worth noting that our problem formalization of view selection is

different from that of conventional RDBMSs. In RDBMSs, view selection is for-

malized as a combinatorial problem: given a query workload and some resource

constraints, find a set of views to materialize so that the performance improve-

ment for the workload is maximized. Our goal of view selection, however, is to

improve the performance of worst-case queries. Such a formalization is based

on the following considerations. First, no query workload is available for this

new query model. Second, even if the query workload is available, it is still

dangerous to only rely on it. Unlike RDBMS queries which are fairly stable,

queries of keyword search systems are typically unpredictable and may evolve

over the time.

4.4 Acknowledgments

Chapter 4 is currently being prepared for submission for publication,

which is joint work with Yannis Papakonstantinou. The dissertation author is

the primary investigator of the paper.

Chapter 5

Views as Statistics Caching

In this chapter, we consider using views as statistics caching. A view

stores collection-specific statistics of the contextQs(D). When a user’s structured

query is an exact match of the view definition, pre-computed statistics are di-

rectly retrieved to compute ranking scores. When no view definitions match the

structured query, statistics must be computed online.

Views as statistics caching provide best online performance, because there

is no online computation, but only retrieval. However, there is basically an

infinite number of queries. Since each view can only serve one query, we must

carefully choose which views to materialize. In following, we discuss algorithms

to select views and further optimizations.

5.1 Selection of Views as Statistics Caching

To select views for statistics caching, the key is to identify target queries.

We quantify the cost of a query by its context size. All queries specifying contexts

larger than the threshold TC · |D| are the targets for materialization.

In our query semantics, a structured query Qs is a conjunction of predi-

cates on fields in structured data. Qs is evaluated by intersecting the inverted

lists of the predicate values. The result size, which is the context size, is the

number of occurrences of predicate values.

38

39

Example 5.1.1. Consider the structured query Category.atom = ‘neoplasm’

AND Category.atom = ‘brain’, which specifies the context as a collection of

documents belonging to the categories of “neoplasm” and “brain”. The context size is

the number of documents in which the values “neoplasm” and “brain” co-occur.

Finding value combinations co-occurring in many documents is equiva-

lent to mining association rules of values such that their supports, in terms of

the number of documents in which they co-occur, are greater than TC · |D|. For

each combination returned by the mining algorithms, the corresponding query

specifies a large context and its collection-specific statistics will be materialized

as a tuple.

A number of algorithms for association rule mining (ARM) have been

proposed in the data mining literature, e.g., Apriori [7], FP-growth [54], Eclat

[105]. Given a set of items and a set of transactions, the algorithms scan the

transaction set one or more times and return combinations of items whose

occurrences in transactions (called support) are greater than a pre-specified

threshold (called minimum support). In our problem setting, an item is mapped

to a field value, and a transaction is mapped to a document. An association

rule mining algorithm returns a set of values combinations, whose supports are

greater than TC · |D|.

5.2 Optimizations based on Dependencies

A view selection algorithm based on conventional ARM algorithms treats

predicate values as a flat set, and does not leverage their relationships. In

applications such as PubMed [4], application-level optimizations can be used to

achieve better selection efficiency.

Databases usually contain various constraints enforced by applications.

These constraints present additional information that can be used for various op-

timizations. In this section, we discuss a special form of constraints—functional

dependencies—to optimize mining value combinations for view selection.

40

5.2.1 Illustrative Example

We start by illustrating an example in PubMed. MeSH terms in PubMed

are structured data associated with citations, indicating which categories or

domains a citation belongs to. Since each citation may have one or more MeSH

terms, the MeSH field is a list. To select views as statistics caching, an ARM

algorithm needs to compute which MeSH terms co-occur frequently.

MeSH terms in PubMed are highly co-related. Specifically, all MeSH terms

represent a biomedical ontology and are organized in a hierarchy, as shown in

Figure 1.1. Given such a hierarchy structure, an important property is that when

a citation is annotated with the MeSH term m1, it is automatically annotated

with all the m1’s ancestors {ma
1 , . . . ,ma

n}. For any combinations containing m1,

the support stay unchanged after adding one or more ancestors of m1 to the

combination. In general, we have:

supp
(

{m1} ∪ S
)

= supp
(

{m1} ∪ S ∪M
a
)

, Ma ⊂ {ma
1 , . . . ,ma

n}

where S is a set of MeSH terms. In other words, if the support of {m1} ∪ S is

greater than the threshold, the support of the new combination {m1} ∪ S ∪M
a is

also greater than the threshold. No additional computation is required.

The above observation implies an optimization that can dramatically re-

duce the computations of mining association rules. To discover high-support

combinations of MeSH terms, we only need to consider combinations in which

no two MeSH terms have an ancestor-descendant relationship. When a com-

bination {m1,mj1
,mj2

, . . . ,mjk} is determined to have high support, the combi-

nation is automatically expanded by adding all the m1’s ancestor into it, i.e., {

m1,ma
1 , . . . ,ma

n,mj1
, . . . ,mjk }. Since citations annotated with m1 is also anno-

tated with {ma
1 , . . . ,ma

n}, the expanded combination also has a high support.

5.2.2 Mining Column Combinations with Functional Dependen-

cies

The hierarchical structure of an ontology can be generalized to functional

dependencies. A functional dependency (FD) is a constraint between two sets of

41

attributes in a relation from a database. Given a relation R and a set of attributes

X, X is said to functionally determine another attribute Y, denoted by X→ Y, if

and only if, each X value is associated with precisely one Y value in R. In simple

words, if the X value is known, the Y value is also known.

Functional dependencies are common in real-life examples. For instance,

consider two columns ZipCode and State in a relational table. Given a zip code

value, its state location is fixed, i.e., ZipCode → State. Such constraints play

an important role in conventional database design and query optimization. In

our problem setting, the goal is to discover high-support column combinations.

When a column set X fully determines Y, we only need to consider X for the

mining purpose. Any high-support combinations including X can be expanded

by adding a subset of Y.

In the PubMed example, hierarchical relationships in an ontology can

be viewed as a special form of functional dependencies. For a MeSH term m1,

since all the citations annotated with m1 are also annotated with its ancestor

ma
1 , the occurrence ofm1 impliesma

1 . Theoretically speaking,m1 does not fully

determine ma
1 , because the absence of m1 indicates neither the occurrence nor

the absence ofma
1 . However, for the purpose of mining value combinations, we

are only interested in whether m1 appears in a combination whose support is

greater than the threshold: if a combination with m1 has a high support, ma
1

is automatically added to the combination; otherwise, m1 is replaced with its

ancestorma
1 , and the support of the new combination is computed.

Algorithmically, we process functional dependencies in a generic way. All

functional constraints, whether defined as conventional dependencies or derived

from the ontology, are organized into a dependency graph: every node in the

graph represents a value or a set of values. An edge points from u to v, if u and

v are on left and right hand sides of a constraint. For a value combination p,

1. for every functional dependency X→ Y and p fully contains X, add values

in Y into p.

2. Go to step 1, until no more values can be added based on the dependency

graph.

42

The pseudo code of the mining algorithm that leverages functional depen-

dencies is shown in Algorithm 2.

5.3 Limitations of Original Association Rule Mining

Selecting views as statistics caching relies on association rule mining

(ARM). ARM is a classical problem in the data mining literature, and many

algorithms have been proposed, e.g., e.g., Apriori [7], FP-growth [54], Eclat [105].

These algorithms can achieve good performance in many scenarios.

While a lot of progress has been made for ARM, the problem is intrinsically

expensive in some cases. In addition to well-known factors—data size and

minimal support threshold—we identify another factor that is common in our

problem setting but rare in conventional scenarios such as retail transactions. The

ARM problem is expensive when each transaction (or a document in our problem

setting) involves a large number items. In retail transactions, one transaction

usually involves at most dozens of items. The average number of items in a

transaction is not large. This means that the probability of a combination of items

appearing together is not very high, especially when the combination’s size is

close to the average transaction size. For example, assume the average number

of items in a transaction is 10. Then the number of high-support combinations

with 8 items must be small, because it is unlikely all these transactions are highly

similar. Hence, as the ARM algorithms proceed to mine combinations with larger

sizes, the number of high-support combinations and candidates decreases very

fast; the algorithms will terminate soon.

When each transaction involves a large number of items, however, the

number of high-support combinations with 8 items can still be very high: it is

not uncommon for 8 items appearing together in 100-item transactions. Hence,

the number of high-support combinations with 8 items will still be very high.

While large transactions are uncommon in retail transactions, they are

common in IR applications. For example, using keywords in abstracts to specify

contexts is supported in our query semantics for context-sensitive ranking. The

43

Algorithm 2: Mining column combinations using functional depen-

dencies
input :A dependency graph and a cardinality threshold TC · |D| on

value combinations

output : A set of values combinations whose supports are greater than

the threshold

1 rs← ∅ ;

2 Build a lattice graph defined by the standard ARM algorithm ;

3 Traverse the lattice using breadth-first search ;

4 foreach combination C in the lattice do

5 foreach dependency X→ Y in the dependency graph do

6 if C contains X and Y then

7 The support of C can be derived from another combination

that has been processed before, and therefore skip C and

move to the next combination in the lattice.
8 end

9 end

10 Compute the C’s support supp(C) ;

11 if supp(C) > TC · |D| then

12 rs← rs ∪ {C} ;

13 foreach dependency X→ Y do

14 if C contains X then

15 foreach subset Ys ⊆ Y do

16 rs← rs ∪ {C ∪ Ys} ;

17 end

18 end

19 end

20 end

21 end

22 return rs

44

average number of terms in the abstract in PubMed is 70, much larger than

everyday retail transactions. Using terms in citations’ full-text content is also an

option for context specification. In this case, the average number of terms is 1000.

In both cases, ARM algorithms are expensive, and may not be efficient enough

for our view selection purpose.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0.1% 0.5% 1.0% 3.0% 5.0% 70.0% 75.0% 80.0%

E
x

e
c

ti
m

e
 (

s)

min support threshold (in percentage of data size)

MeSH-10 terms Abstract-70 terms full-text-1000 terms

Figure 5.1: Efficiency comparison of ARM

Figure 5.1 shows execution times of ARM algorithms in different transac-

tion sizes. The data set we use is PubMed. We consider three types of transactions:

(1) MeSH terms. Every document is annotated with one or more MeSH terms.

The average number of MeSH terms in a document is 10. (2) Abstract terms. The

average number of abstract terms in a document is 70, significantly larger than

MeSH terms. (3) Full-text terms. The average number of terms in the full-text

content is 1000.

As we can see from the figure, when each document (or transaction) is

small, the minimal support threshold can go very low. It is widely acknowl-

edged that the lower the threshold, the more high-support combinations will be

generated and thus the more computations are needed. And yet, the minimal

threshold for MeSH terms can go as low as 0.1% of the data size, and execution

time is still acceptable. However, when we consider abstract, the execution time

is significantly larger. Note that it increases exponentially! When we consider an

45

extreme case, i.e., the full-text content, the execution time is very high, even if

the minimal support threshold is uncommonly high.

Maintaining a low support threshold (or context size threshold) is critical

to query execution time. The higher the context size threshold is, the fewer views

are materialized, and therefore the more expensive queries are evaluated from

scratch. As we will see in later Chapter 8, when the context size threshold is

around 0.5% of the data size, materialized views can ensure that queries can

finish within a few hundred milliseconds, which is acceptable for text search

systems. When the context size threshold is as high as 70% of the data size,

queries can run up to tens of seconds, which is considered unacceptable for text

search systems.

The limitations of ARM-based selection algorithms lead us to the second

option: views as intermediate results. Intuitively, views as intermediate results

do not directly compute statistics, and thus should require cheaper offline com-

putations. However, views as intermediate results raise new problems because

online computations are not trivial and must be bounded. In the next chapter,

we present techniques for views as intermediate results. We will show that this

technique can leverage unique opportunities and present better performance

when the opportunities are available.

5.4 Acknowledgments

Chapter 5 is currently being prepared for submission for publication,

which is joint work with Yannis Papakonstantinou. The dissertation author is

the primary investigator of the paper.

Chapter 6

Aggregation Views as Intermediate

Results

In this chapter, we present using views as intermediate results to compute

statistics. We first present the view definition. Then we study view usability, i.e.,

how to find a match between a view and a query and how to use the view to

answer the query. We further analyze the complexity of answering queries using

these views, to quantify our performance goal (Section 4.3) in this setting. Finally,

we discuss how to select aggregation views to satisfy the performance goal.

6.1 From Statistics to Aggregation Queries

Given a context-sensitive query Q = Qk|Qs, collection-specific statistics

are defined based on the search context specified by the structured query Qs. A

collection-specific statistic Sc
(

Qs(D)
)

is computed by aggregating parameters of

individual documents returned by the structured query. It is equivalent to an

aggregation query:

Qa(Qs):

SELECT AggrFuc(parameter)

FROM D

WHERE field1.atom = v1 AND ...AND fieldn.atom = vn

46

47

in which AggrFuc is an aggregation function and parameter is a parameter of

individual documents.

Query Qa(Qs) is not a standard SQL aggregation query, because as dis-

cussed in Section 2.2, path expressions syntactically remove joins. But the physi-

cal execution may still involve joins. Specifically, when a predicate is over a field

that is a list, a join is required because of many-to-one or many-to-many rela-

tionships. For such multi-way join aggregation queries, it is not straightforward

what kinds of views to materialize to facilitate query evaluation.

We use the pivot technique to transform the documents’ structured data to

a pivot table to facilitate problem modeling. The document collection is modeled

as a wide sparse table T . Every row corresponds to a document di. Every field f

of document header d(h) is mapped to one or more columns:

1. if the field’s type is atomic, T populates one column colf for it. The entry

in row di and column colf is the atomic value of field f in di(h).

2. if the field’s type is list, T populatesM columns {colf:v1
, . . . , colf:vM

}, each

of which corresponds to a distinct value in the field’s domain. The entry in

row di and column colf:vi
is 1 if the field f contains the value vi in the list;

otherwise, the entry is 0.

Table 6.1 shows the pivot table of the structured data of PubMed. The

Year field is integer-typed, and thus corresponds to one column in the pivot table.

The Category field is list-typed. Hence, each distinct value in the field, such as

”leukemia” and ”digestive system”, is mapped to a separate column. Citation

d86 contains MeSH term ”digestive system” in its Category field, and thus the

corresponding entry is 1. d86 does not contain MeSH term ”leukemia” in the

Category field. Hence, its corresponding field is 0.

Given the pivot table T , the aggregation query that computes the statistics

is transformed to the following SQL query:

48

Table 6.1: Pivot table of structured data d(h)

CID len
(

d(c)
)

tf
(

w,d(c)
)

Year leukemia digestive system . . .

86 2006 0 1 . . .

200 2004 1 1 . . .

Qa(Qs):

SELECT AggrFuc(parameter)

FROM T

WHERE colf1
= v1 AND ...colfm = vm AND

colfm+1:vm+1
= 1 AND ...colfn:vn

= 1

In the query, the firstm predicates are over atomic fields and the remaining are

over list-typed fields. Compared with the old query Qa(Qs), the new query

Qa(Qs) transforms the last n−m+ 1 predicates by moving predicate literals to

column names and replacing the literals with 1. This is because after pivoting, a

list-typed field is expanded to multiple field-value columns.

Column parameter in Qa(Qs) represents a parameter of individual

documents required by collection-specific statistics. For ease of exposition, we

populate them as columns in the pivot table as well. For example, Table 6.1 pop-

ulates two parameter columns, document length len
(

d(c)
)

and term frequency

tf
(

w,d(c)
)

.

Example 6.1.1. Consider the PubMed database and a user’s structured query specifying

two MeSH terms neoplasm and brain for the Category field. After pivoting the

Category field into multiple columns, two parameters, ollection length len
(

Qs(D)
)

and collection cardinality |Qs(D)|, are translated to a SUM and a COUNT aggregation

on the pivot table T as shown as follows:

len
(

Qs(D)
)

:

SELECT SUM

(

len
(

d(c)
)

)

FROM T

WHERE colneoplasm = 1 AND colbrain = 1

49

|Qs(D)|:

SELECT COUNT(CID)

FROM T

WHERE colneoplasm = 1 AND colbrain = 1

QueryQa(Qs) is a single-block conjunctive SQL query, where the SELECT

clause contains SQL aggregate functions, e.g., SUM and COUNT. For such a

query form, we can leverage existing works on answering queries using views

in the relational world. In the following, we consider two forms of views to

improve query evaluation.

6.2 Aggregation Views

An aggregation view is defined by a SQL query with aggregation func-

tions. In particular, we consider aggregation views defined by single-block

queries. Let K = {colf1
, . . . , colfk} be a subset of columns in T . Va

K is a material-

ized view that groups by K and aggregates the documents’ parameters of every

group:

Va
K: SELECT colf1

, . . . , colfk,

AggrFunc
(

para(d)
)

AS ContxPara

FROM T

GROUP BY colf1
, . . . , colfk

6.3 Usability of Aggregation Views

A view V is usable for query Q if V can be used to compute complete or

partial results ofQ. In determining whether Va
K is usable for Qa(Qs), we need to

consider the mapping from Va
K to Qa(Qs), as studied in the following.

We first define some notation. For notation convenience, we assume

that each column in the pivot table T has a unique name. For a SQL query

Q, we use Q.GroupCols to denote a set of columns in the GROUPBY clause,

Q.WHERECols to denote a set of columns in the WHERE clause, and Q.AggrCol

50

to denote the aggregate column. For the aggregation view Va
K , Va

K .AggrCol is

K = colf1
, . . . , colfk . Here we assume each query only contains at most one

aggregation function. Queries having more than one aggregations can be easily

decomposed into multiple single-aggregation queries.

Definition 6.3.1 (Column Mapping). A 1:1 column mapping φ is a mapping between

column set ColA and column set ColB such that (1) for every column coli ∈ ColA,

there exists a column colj ∈ ColB, coli = φ(colj), and (2) for every column colj ∈

ColB, there exists a column coli ∈ ColA, colj = φ
−1(coli).

Theorem 6.3.1. Given a collection-specific statistic Sc specified by the structured query

Qs and its aggregation query Qa(Qs), view Va
K can compute Sc such that

1. there exist an 1:1 column mapping between Qa(Qs).WHERECols and a subset of

Va
K .GroupCols.

2. For the aggregation function AggrFunc

(a) if AggrFuc is SUM, MAX or MIN, Va
K has the same aggregation function,

and there exists an 1:1 column mapping between Qa(Qs).AggrCol and

Va
K .AggrCol.

(b) if AggrFuc is COUNT, Va
K has a COUNT aggregation over any column.

An intuitive understanding of the view usability is as follows: the GROUP

BY clause in the view definition essentially partitions the document collection. Ev-

ery tuple in the view is an aggregation on one partition—a statistic of documents

in one partition. The evaluation of the rewritten query aggregates pre-computed

results of those partitions that satisfy the query condition and avoids scanning

the raw table.

Formally, for a view to be usable for a query, it must not project out any

column needed in the query (and is not otherwise recoverable). When a view

performs a group-by on one or more columns, we lose some information about

all the other columns in the raw table. Thus, the query must require the same

or a coarser grouping than performed in the view. Otherwise, we cannot drill

51

down to details from the view and the view is unusable. The first condition in

the theorem ensures that the view’s groups are finer enough to evaluate all the

predicates in the original query Qa(Qs). Furthermore, the aggregated column

must be either available or can be reconstructed from other columns, which is

guaranteed by the second condition.

When the view is usable, the query that computes the statistic Sc can be

rewritten as follows:

SELECT AggrFuc2(ContxPara)

FROM Va
K

WHERE φ(colf1
) = v1 AND ...φ(colfm) = vm AND

φ(colfm+1:vm+1
) = 1 AND ...φ(colfn:vn

) = 1

in which AggrFuc2 is SUM if AggrFuc in Qa(Qs) is COUNT; otherwise,

AggrFuc2 is the same AggrFuc.

A special case of the view usability is that Qa(Qs).WHERECols is exactly

the same as Va
K .GroupCols. In this case, the view Va

K directly contains the tu-

ple that contains the collection-specific statistics of the context specified by Qs.

Hence, no additional computation is needed, and query evaluation simply need

to retrieve the required statistics.

Example 6.3.1. Consider the structured queryQs with two predicates on the Category

field: Category.atom = ‘neoplasm ′ ∧ Category.atom = ‘brain ′. Two statistics,

collection length len
(

Qs(D)
)

and collection cardinality |Qs(D)|, can be translated to

a SUM and a COUNT aggregation query. Let colneoplasm and colbrain be two columns in

T to which the two values of the Category field are pivoted. The transformed aggregation

query Qa(Qs) that computes the statistics is shown as follows:

SELECT COUNT(CID), SUM

(

len
(

d(c)
)

)

FROM T

WHERE colneoplasm = 1 AND colbrain = 1

Consider a column setK = {colneoplasm, colbrain, coldiagnosis}, three pivot columns

of the Category field. The view

52

Va
K : SELECT colneoplasm, colbrain, coldiagnosis,

SUM
(

len(d(c))
)

AS ContxtLen,

COUNT(∗) AS ContxCount

FROM T

GROUP BY colneoplasm, colbrain, coldiagnosis

partitions D into 23 partitions. Tuple

V(colneoplasm = 0, colbrain = 1, coldiagnosis = 1)

aggregates the parameters of the documents that are annotated with brain and diagnosis

but not neoplasm. Similarly, tuple

V(colneoplasm = 0, colbrain = 0, coldiagnosis = 0)

aggregates the parameters of the documents that are not annotated with any of neoplasm,

brain or diagnosis.

Given view Va
K , collection length and collection cardinality for the structured

query can be computed as follows:

len
(

Qs(D)
)

= VK(colneoplasm = 1, colbrain = 1, coldiagnosis = 1).ContxLen

+ VK(colneoplasm = 1, colbrain = 1, coldiagnosis = 0).ContxLen

|Qs(D)| = VK(colneoplasm = 1, colbrain = 1, coldiagnosis = 1).ContxCount

+ VK(colneoplasm = 1, colbrain = 1, coldiagnosis = 0).ContxCount

6.4 Complexity of Rewritten Queries

The complexity of an aggregation query is measured in terms of the num-

ber of tuples/documents. If a materialized view is usable, collection-specific

statistics can be computed by aggregating the materialized view, whose com-

plexity is only determined by the view size, regardless of the context size. In

other words, by choosing appropriate view sizes, query performance of context-

sensitive ranking can be guaranteed.

53

Theorem 6.4.1. If view Va
K is usable for Sc

(

Qs(D)
)

in the context Qs(D), the

complexity of computing Sc
(

Qs(D)
)

is O
(

ViewSize(VK)
)

, which is bounded by

O
(

Πcoli∈K|dom(coli)|
)

, where |dom(coli)| is the domain cardinality of column coli.

In particular, |dom(coli)| = 2 if the column is pivoted from a value of a multi-valued

field.

When no additional indexes are built on the view, computing collection-

specific statistics using a view requires a full scan of the view. Theoretically,

the number of tuples in the view is exponential to the number of GROUPBY

columns in the view. However, the actual number of non-empty tuples can

be much smaller. Consider two Category columns colm1
, colm2

and the two

MeSH terms m1,m2 always appear together in the same documents. Then

tuples Va
K(colm1

= 1, colm2
= 0) and Va

K(colm1
= 0, colm2

= 1) are always

empty. Similarly, if m1 and m2 never appear in the same document, tuple

Va
K(colm1

= 1, colm2
) is always empty.

Given a materialized view Va
k , a naive approach to compute view size is

to scan the entire document collection and evaluate the view expression. While

accurate computation can be expensive, a simple alternative is to estimate the

view size by sampling: a small number of documents are sampled and mapped

to VK. The number of non-empty tuples after the mapping is estimated as the

view size. In the following, we use ViewSize(·) to denote a function that returns

the size of a given view, either by sampling or by scanning.

6.5 Non-Aggregation Views

A materialized SQL query without any aggregation functions is called a

non-aggregation view. There is a large body of work in the database literature

studying answering aggregation queries using non-aggregation views [90, 50,

104]. Our goal, however, is not to study a generic rewriting algorithm to answer

queries using views. Hence, we concentrate on a special form of non-aggregation

views.

Let K = {col1, . . . , colk}. Consider the view in the following form:

54

SELECT CID, parameter, col1, . . . , colk

FROM T

ORDER BY col1, ..., colk, CID

If there is an one-to-one mapping φ between predicates in Qa(Qs) and a

subset of K, the view can be used to fully answer the query. The rewritten query

is:

SELECT AggrFuc(parameter)

FROM VK

WHERE φ(colf1
) = v1 AND ...φ(colfm) = vm AND

φ(colfm+1:vm+1
) = 1 AND ...φ(colfn:vn

) = 1

If there only exists an 1:1 column mapping ψ between a subset of pred-

icates in Qa(Qs) and a subset of K, then the view cannot answer the query

completely. Intuitively, since some of the predicates in the query cannot be

mapped to columns in VK, VK does not contain all information to answer the

query. However, VK can yield a partial rewriting. Together with the base table T ,

we can still answer the query using the views.

SELECT AggrFuc(parameter)

FROM VK JOIN T on T.cid = VK.cid

WHERE VK.φ(col1) = val1 ...AND VK.φ(coln) = valn

AND T .coln+1 = valn+1 ...AND T .colm = valm

Compared with the usability of aggregation views studied in Section 6.3,

a non-aggregation view may still be partially usable even if there exists no 1:1

column mapping between columns in the non-aggregation view and the query.

This is because the view populates the CID column and does not lose multiplicity

of citations. By joining with the pivot table, all information required by the

query can be reconstructed. The aggregation view, however, loses multiplicity of

citations after aggregating parameter columns. Hence, it cannot be joined with

the base table to reconstruct lost information.

55

6.6 Selection of Aggregation Views

In this section, we discuss aggregation view selections. Similar to views as

statistics caching, for every structured query specifying a large context (> TC · |D|),

there must be an aggregation view that is able to answer it. A structured query

is a conjunction predicates. By view usability theorem in the prior section, these

predicate columns must be covered by a view’s GROUPBY clause. We re-state the

view selection formalization in the context of aggregation views as follows:

Problem Statement 6.6.1. Given a threshold of context size TC and a threshold of view

size TV , find a set of views V = {VK1
,VK2

, . . .} such that

1. ∀VKi
∈ V, ViewSize(VKi

) 6 TV .

2. For every possible context specification P (P is a column set in the structured

query), if ContextSize(P) > TC, then ∃VKj
∈ V such that P ⊆ Kj (Kj is the

column set of the view’s GROUPBY clause).

6.6.1 Greedy Selection

Given the problem statement, a straightforward approach is to first find

these column combinations specifying large contexts, and then choose a set

of views to cover them. Similar to views as statistics caching, finding column

combinations that specify large contexts is equivalent to mining association rules

of pivot columns such that their support, in terms of the number of documents

in which they co-occur, are greater than TC · |D|. Hence, existing association rule

mining algorithms can return a set of combinations that must be covered by

aggregation views.

Given a set of high-support column combinations, while each combination

can be materialized as one tuple, storing statistics of the corresponding context,

we may also consolidate several combinations and their materialized tuples

into one view. The effect is equivalent to horizontal partitioning of a very large

table, which improves online access time. There could be a very large number of

combinations and materialized tuples. While a single retrieval operation may be

56

efficient, matching a materialized tuple against the given structured query at run

time would be still expensive. Therefore, we can consolidate combinations into

smaller number of views so that the matching phase will be more efficient. We

reformulate the problem as follows:

Problem Statement 6.6.2. Given a set of high-support column combinations P =

{P1,P2, . . .}, find the minimal number of views V = {VK1
,VK2

, . . .} such that

1. ∀VKi
∈ V, ViewSize(VKi

) 6 TV .

2. ∀P ∈ P, ∃VKj
∈ V such that P ⊆ Kj (Kj is the column set of the view’s GROUPBY

clause).

Theorem 6.6.1. Given a set of high-support column combinations, the view selection

problem is NP-hard.

Algorithm 3 presents a greedy algorithm that takes as an input a set of

column combinations generated by association rule mining algorithms, and

returns a set of views to materialize. Two heuristics are used for algorithm

design. First, for two column combinations P1,P2, if P1 ⊂ P2, a view covering

P2 is usable for P1. In other words, we only need to consider P2 for the view

selection purpose. Second, in order to reduce the total number of views, the

overlap of the column combinations that are covered by a view is expected to be

maximized.

The algorithm first removes column combinations that are subsets of

other combinations (Line 1 in Algorithm 3), according to the first heuristic. For

each newly created view VKi
, the algorithm iteratively scans uncovered column

combinations and adds the one that has the maximal overlap with Ki (Line 6-9

in Algorithm 3), until the size of VKi
reaches TV .

An implicit assumption of Algorithm 3 is that for any input column com-

bination P, ViewSize(VP) < TV . This assumption can be guaranteed by setting

an upper bound on the number of keywords when applying association rule

mining algorithms. The upper bound on |P| is reasonable in practice. Statistics

from standard text search systems have shown that most user queries have no

57

Algorithm 3: Greedy View Selection

input :A set of column combinations P = {P1,P2, . . .} generated by

association rule mining algorithms

output :A set of views V = {VK1
,VK2

, . . .}

1 Scan P and remove Pi such that ∃Pj ∈ P,Pi ⊂ Pj;

2 i← 0;

3 while P is not empty do

4 Create a new view VKi
,Ki = ∅;

5 Remove Pj with the largest size from P, and add it to VKi
, i.e.,

Ki = Pj;

6 while ViewSize(VKi
) ¡ TV do

7 Remove Pm from P such that (1) |Ki ∩ Pm| is maximized, and

(2) ViewSize(VKi∪Pm
) < TV ;

8 Ki ← Ki ∪ Pm;

9 end

10 V = V ∪ {VKi
} ;

11 i← i+ 1;

12 end

13 return K

58

more than 5 keywords [12]. The number of keywords in context specifications is

expected to be even smaller.

6.6.2 Graph-Decomposition-based Selection

Many existing algorithms for mining association rules achieve good

efficiency. But mining association rules is still an expensive operation, as

discussed in Section 5.3. In particular, to discover a combination of size k,

Pk = {m1,m2, . . . ,mk} , k− 1 combinations must be visited, i.e., P1 = {m1},P2 =

{m1,m2}, . . . ,Pk−1 = {m1,m2, . . . ,mk−1}, and their supports must be computed

accurately, even though we are only interested in Pk to select aggregation views.

The selection algorithm in Section 6.6.1 essentially presents a bottom-up

approach to select views: column combinations whose supports are greater than

TC ·D are generated first. Then a set of views are selected to cover all of them.

In this section, we present a top-down approach to select views. The idea

is to decompose the column set to smaller subsets, until each column subset is

small enough to be covered by one view whose size is less than TV . The key of

this approach is that the decomposition process does not violate the principle of

view selection: column combinations with high supports should be covered by

at least one view. Under this principle, the algorithm skips many combinations

and only computes accurate supports when necessary.

Graph decomposition Schemes

Definition 6.6.1. A Column Association Graph (KAG) is a graph of columns, where

vertexmi represents a column, and the weight of the edge emi−mj
represents the number

of documentsmi andmj co-occur. Edges with zero weight do not appear in the graph.

A KAG constructs pair-wise relationships between columns, and implic-

itly captures k-ary (k > 3) columns relationships: m1,m2, . . . ,mk co-occur in the

same document only ifm1,m2, . . . ,mk form a clique in the KAG. Initially, edges

whose weights are less than TC · D can be removed from the graph, because

59

cliques containing such edges do not have high supports and therefore are not

considered for view selection.

A connected component is a subgraph of KAG in which any two vertexes

are connected to each other. As the first step, the KAG is decomposed to a set

of connected components. We only need to consider views covering individual

components. Without loss of generality, we assume the KAG is fully connected,

and has only one connected component.

For a view that covers a subgraph, the view size is determined by the

number of vertexes in the subgraph. Initially, the KAG has one component,

which contains all vertexes. It is too large to be covered by one view. We need to

decompose the KAG into subgraphs so that views covering individual subgraphs

are smaller than TV .

A cut divides the KAG G = (V ,E) into two parts, as shown in Figure

6.1(a). Since the graph is fully connected, some edges’ endpoints are in different

parts. In Figure 6.1(a),m1,m2,m3 form a clique and some of its edges cross the

two parts. The goal of the decomposition is to completely separate the graph.

The question is: how to deal with the crossing edges?

The principle of the decomposition is that if the support of a clique (i.e., a

columns combination) is greater than TC ·D, the clique must be kept holistically

in one subgraph after the decomposition, so that at least one view will cover

it. In Figure 6.1(a), if the support of {m1,m2,m3} is greater than TC ·D, after the

decomposition, at least one subgraph needs to contain the clique. To this end,

m1,m2 and the edge between them are replicated in G2 after the decomposition,

as shown in Figure 6.1(b). Notice that m1,m2 and the edge em1−m2
are kept in

G1 as well. The reason is that other vertexes in G1 may form cliques with them.

Removing m1,m2 and the edge em1−m2
from G1 may lose column combinations

that should be covered by views.

If the support of {m1,m2,m3} is less than TC ·D, the corresponding clique

is decomposable, because we do not need any view to cover it. This is the

second decomposition scheme, as shown in Figures 6.2. Compared with the first

decomposition scheme, the edge em1−m2
is not replicated in G2. Hence, G2 in

60

G

m1

m2

m3

(a) The original graph

G1 G2

m1

m2

m1

m2

m3

(b) Subgraphs after decomposition

Figure 6.1: The first graph decomposition scheme

61

Figure 6.2(b) is sparser than G2 in Figure 6.1(b).

A formal representation of the decomposition schemes is described as

follows.

Definition 6.6.2. A vertex separator is a set of vertexes whose removal separates a

graph into two distinct connected components.

Let S0 be a vertex separator whose removal separates the vertexes in the

KAG G = (V ,E) into S1 and S2, i.e., V = S1 ∪ S2 ∪ S0. Given S0, G = (V ,E) is

decomposed into G1 = (V1,E1),G2 = (V2,E2) such that:

• V1 = S1 ∪ S0, V2 = S2 ∪ S0.

• ∀mi ∈ S1,mj ∈ S1, if emi−mj
∈ E, emi−mj

∈ E1.

• ∀mi ∈ S2,mj ∈ S2, if emi−mj
∈ E, emi−mj

∈ E2.

• ∀m0 ∈ S0, if ∃mi ∈ S1, em0−mi
∈ E, then em0−mi

∈ E1; if ∃mj ∈ S2, em0−mj
∈

E, then em0−mj
∈ E2.

• ∀mi ∈ S0,mj ∈ S0, if emi−mj
∈ E, emi−mj

∈ E1.

• ∀mi ∈ S0,mj ∈ S0, if (1) there exists a clique containing mi,mj and ver-

tex(es) in S2, and (2) the support of the clique is greater than TC ·D, emi−mj

is replicated in E2.

In the example in Figure 6.1 and 6.2, S0 = {m1,m2}. Theoretically, whether

to replicate the edge em1−m2
in G2 or not depends on whether the support of the

clique containing em1−m2
is greater than TC ·D. Since the support of the clique

cannot be derived from the graph, we still need to compute support, which is

similar to mining association rules. However, recall that as long as the view

selection principle is satisfied, either decomposition scheme is correct. If the

support of the clique is unknown, we may implicitly assume that the support

is greater than TC · D, and all the edges in the clique are replicated in G2. In

other words, using the first decomposition scheme always leads to a correct

decomposition.

62

G

m1

m2

m3

(a) The original graph

G1 G2

m1

m2

m1

m2

m3

(b) Subgraphs after decomposition

Figure 6.2: The second graph decomposition scheme

63

The above analysis indicates that computing support is not always nec-

essary for the view selection purpose, especially when the subgraphs are large

and sparse. The first decomposition scheme becomes less effective when the

graphs are smaller and denser, and eventually is invalid for the subgraphs that

are cliques.

Graph Decomposition Algorithm

Having the decomposition schemes, the remaining question is how to

choose the vertex separator S0 so that the graph can be decomposed efficiently.

Two factors are considered: first, S1 and S2 should be about the same size, so

that the sizes of all subgraphs decreases fast as the decomposition proceeds.

Second, the number of vertexes in S0 should be minimized. Since vertexes in S0

are replicated in G1 and G2, and the view size is directly related to the number of

vertexes in a subgraph, we want to minimize the number of replicated vertexes.

The optimization function for the graph decomposition is defined as

follows:

min
|S0|

min{|S1|, |S2|}+ |S0|
(6.1)

The numerator minimizes the number of vertexes to be replicated. The

denominator ensures that neither of the subgraphs is too small.

Given the optimization function in Formula 6.1, the graph decomposi-

tion problem is NP-hard [25]. A number of approximation algorithms have

been developed. Most recently, paper [43] exhibits an O(
√

logn) approxima-

tion algorithm for finding balanced vertex separators in general graph, with

approximation ratio of O(
√

log opt) where opt is the size of an optimal separator.

The pseudo code of the algorithm that decomposes the KAG is shown in

Algorithm 4.

64

Algorithm 4: Graph decomposition

input :A KAG G = (V ,E)

output :A vertex separator (S1,S2,S0)

1 Let V = {v1, v2, . . . , vn} ;

2 foreach 1 6 i 6 n do

3 Create the augmented graph by adding a source s and a sink t to

G;

4 Connect s to vj, 1 6 j 6 i, and connect t to vk, i < k 6 n;

5 Find the minimum capacity s− t separator Si0 ;

6 Let Si1 = (V ∪ {s, t}) − Si0, Si2 = V − (Si1 ∪ S
i
0) ;

7 end

8 return (Si1,Si2,Si0) such that
|Si

0|

|Ei
12|

is minimal, where |Ei12| is the number

of edges eu−v, u ∈ Si1 ∪ S
i
0, v ∈ Si2 ∪ S

i
0;

6.6.3 Hybrid Approach

The greedy selection and the decomposition-based selection have

strengths in different directions. The greedy approach is strict, and only cov-

ers column combinations that must be covered. Therefore, it is space efficient.

However, it has to enumerate a very large number of column combinations. The

decomposition-based selection, on the other hand, usually covers more column

combinations than required. While it has high efficiency when the graph is large

and sparse, its capability is limited when the graph is small and dense.

In implementation, we uses a hybrid approach to select aggregation views.

Initially, the graph decomposition algorithm quickly decomposes the KAG into

subgraphs, most of which can be covered by individual views. The greedy

approach is used thereafter to further decompose the remaining sub-graphs,

each of which is a clique and is still too large to be covered by one view.

65

6.7 Related Work

The reduction from collection-specific statistics to aggregation queries

is the key insight in our solution to the efficiency issue of context-sensitive

ranking. To our best knowledge, we are the first to envision this formalization.

Once we have the reduction, using materialized views to improve efficiency is

straightforward. And years of research on answering queries using views in the

database community can be leveraged.

Answering queries using views has a long history, due to its relevance

to a variety of data management problems, such as query optimization and

data integration. Paper [53] presents a survey of most of these efforts. We pay

a special attention on queries with aggregation functions, because collection-

specific statistics always demand aggregations. Aggregation queries and views

raise several additional subtleties on using views. The first difficulty arises in

dealing with aggregated columns. For a view to be usable by a query, it must

not project out an attribute that is needed in the query. When a view performs

an aggregation on an attribute, we lose some information about the attribute,

and in a sense partially projecting it out. If the query requires the same or

a coarser grouping than performed in the view, and the aggregated column is

either available or can be reconstructed from other attributes, then the view is still

usable for the query. The second difficulty arises due to the loss of multiplicity

of values on attributes on which grouping is performed. When we group on an

attribute, we lose the multiplicity of the attribute, thereby losing the ability to

perform subsequent sum, counting or averaging operations. Only in some cases,

it may be possible to recover the multiplicity using additional information.

Paper [50] considers syntactic matching between views and queries by

performing a set of transformations. The goal is to identify a sub-expression of

the query that is identical to the view, and hence can be substituted by the view.

The limitation of this approach is that it only considers at the syntax level and

may not be applied to many scenarios.

Paper [90] presents a semantic approach for aggregation queries. It de-

scribes the conditions required for a view to be usable for answering an aggre-

66

gation query, and a rewriting algorithm that uses these conditions. A result

that is not captured in [50] is that an aggregation view may be used to answer

a query, only if the query removes duplicates in the SELECT clause. The work

described in [104] extends the treatment of grouping and aggregation to consider

multi-block queries and to multi-dimensional aggregation functions such as cube,

roll-up, and grouping sets [46].

Papers [79, 35, 47, 48, 34] present formal aspects of answering queries

using views in the presence of grouping and aggregation. They present cases in

which it can be shown that a rewriting algorithm is complete, in the sense that it

will find a rewriting if one exists. Their algorithms are based on insights into the

problem of query containment for queries with grouping and aggregation.

In our problem setting, our goal is not to study query rewriting for generic

queries and views with aggregations. Instead, aggregation queries for computing

collection-specific statistics are in a fixed form: they are single-block conjunctive

aggregation queries over a single table. Also, what views to materialize to

improve performance is under our control. Hence, we choose a simple view form

such that usability and query rewriting is mainly based on syntactic matching,

which is a special case studied in [90].

In addition to answering queries using views, a lot of work has been

done in OLAP query processing, e.g., [46, 55, 58, 28, 95]. Data cubes are as a

special form of materialized views. Compared with works in answering queries

using views, OLAP only deals with a fixed pattern queries, i.e., single-block

queries over a star schema—a fact table referencing one or more attribute tables.

Aggregations are always over the fact table. This query pattern greatly simplifies

the rewriting problem. Works in OLAP in return mainly concerns about physical

representations of cubes and how to maintain them efficiently.

View selection is an important problem in conventional relational database

systems (RDBMSs) and there has been extensive works on it. The problem setting

is as follows: given a database consisting of relations R = {R1, . . . ,Rr} and a query

workload Q = {Q1, . . . ,Qq} over R, select a set of views V such that the query

workload is answered with the lowest cost under limited amount of resources,

67

e.g., disk space or view maintenance cost.

Paper [55] presents a greedy algorithm for view selection for OLAP

queries. The algorithm is in polynomial time, but does not consider view main-

tenance cost. Subsequent works also contribute to view selection in OLAP

environment [16, 87].

Paper [103] proposes a greedy view selection algorithm for SPJ (SELECT,

PROJECT AND JOIN) aggregation queries with minimized cost of query pro-

cessing and view maintenance. However, this works does not consider resource

constraint. A theoretical study on view selection in data warehousing is pre-

sented in [51], in which authors present a near-optimal exponential greedy

algorithm for AND-OR view graph and a near-optimal polynomial algorithm

for AND view graph and OR view graph. The work is extended in [52].

Physical database design is a large category of works in which view selec-

tion is treated as a sub-problem. For example, paper [9] presents a syntactical

analysis of the workload to address the problem of selecting both views and

indexes to be materialized. This approach proceeds in three main steps. The first

step analyses the workload and chooses subsets of base relations with a high

impact on the query processing cost. Based on the base relations subsets, the sec-

ond step identify syntactically relevant views and indexes that can potentially be

materialized. In the third step, the system runs a greedy enumeration algorithm

to pick a set of views and indexes to materialize based on the result of the second

step by taking into account the space constraint. However, this approach does

not take into account the view maintenance cost.

The problem setting of view selection in this dissertation is essentially

different from that of conventional databases. Our goal of view selection is to

improve the performance of worst-case queries. This is based on the following

considerations. First, no query workload is available for this new query model.

Second, even if the query workload is available, it is still dangerous to only rely

on it. Unlike RDBMS queries which are fairly stable, queries of keyword search

systems are typically unpredictable and may evolve as time passes.

68

6.8 Acknowledgments

Chapter 6 was published in ACM SIGMOD International Conference on

Management of Data, 2011, entitled “Context-sensitive Ranking for Document

Retrieval”. This is joint work with Yannis Papakonstantinou. The dissertation

author is the primary investigator of the paper.

Chapter 7

A Comparative Study of Two Forms

of Views

We present two forms of views in prior chapters. While views as statistics

caching aggressively materialize statistics of target queries and optimize online

efficiency, aggregation views strike a middle ground between offline computa-

tions (i.e., view selections and materialization) and online computations (i.e.,

using intermediate results to compute statistics). Since both approaches aim to

compute statistics and save online computations, a natural question to ask is

which approach is better or are they completely equivalent?

In this chapter, we conduct a comparative study to compare the perfor-

mance trade-offs of the two approaches. Though these two approaches have

different outputs—fully materialized statistics vs. intermediate results, we set

the measure as the execution time of association rule mining (ARM). For views as

statistics caching, the results of the selection algorithm are the same as ARM. For

aggregation views, the algorithm’s outputs are intermediate results. We further

use these intermediate results to compute the ARM’s results, and count the total

execution time.

In the following, we first describe the factor that determines the perfor-

mance trade-offs. Then we show experimental results and a guidance on under

which circumstances one approach is superior than the other.

69

70

7.1 Rules

Definition 7.1.1. Given the structured document collection D, a rule is a constraint

between two sets of field values X = {x1, . . . , xn} and Y = {y1, . . . ,yn}. X and Y are

either conjunctive or disjunctive. X infers Y, denoted by X → Y, iff all structured

documents in D satisfying X also satisfy Y. A document d satisfies {x} iff the structured

header d(c) contains the field value x.

A rule specifies a connection between two or more field values. The

connection may be a ground truth or a data-specific attribute. For example, every

citation in PubMed annotated with the MeSH term “leukemia” is also annotated

with “neoplasm”, because leukemia is classified as a disease of neoplasm. Hence,

we have

leukemia→ neoplasm

As another example, the term “diabetes” in abstract of PubMed citations is always

associated with “type I” or “type II”. Though in public domains diabetes are

often mentioned alone, in PubMed, a professional biomedical database, diabetes

types are specifically mentioned, because they have different causes and lead to

different studies. Hence, we have

diabetes→ type I ∨ type II

7.2 Rules’ Effects on Views as Statistics Caching

Rules present constraints between field values. These constraints can be

used to save computations of association rule mining (ARM). To distinguish

different savings, we further define definite rules and indefinite rules.

Definition 7.2.1. A rule X→ Y is a definite rule iff Y is purely conjunctive. Otherwise,

it is an indefinite rule.

A definite rule can save computations by the following property:

Property 7.2.1. If a combination C’s support is n and C satisfies X, for any subset

Ys ⊆ Y, the support of C ∪ Ys is also n.

71

Example 7.2.1. Consider the above definite rule leukemia → neoplasm: any citations

annotated with “leukemia” are also annotated with “neoplasm”. For the problem of

ARM, if the support of {leukemia, digestive system} is known, the support of {leukemia,

digestive system, neoplasm} is also known without any computations.

Indefinite rules, on other hands, are not effective in saving computations

for ARM. Consider diabetes→ type I ∨ type II. Given the support of {diabetes},

the supports of {diabetes, type I} and {diabetes, type II} are still unknown.

Intuitively, citations annotated with “diabetes” can be annotated with either

“type I” or “type II” or both. No definite answers can be derived from this rule.

In general, when Y involves disjunctions, the inference X → Y does not

give definite answers when X is satisfied. Hence, the support of a combination

derived from an indefinite rule still needs computations for its support.

7.3 Rules’ Effect on Aggregation Views

Rules save computations for aggregation views by eliminating tuples in

the view. View tuples that do not satisfy the rules are always empty, i.e., no

documents will be mapped to the corresponding tuple. By Theorem 6.4.1, the

complexity of using views to answer queries is proportional to the view size. The

more tuples are empty, the smaller the view size is, and hence the more efficient

online computations are.

Example 7.3.1. Consider an aggregation view that groups by coldiabetes, coltypeI and

coltypeII, and aggregates statistics of each group. Theoretically, this view will generate 23

tuples. Given the above indefinite rule diabetes→ type I ∨ type II, the tuple

V(coldiabetes = 1, coltypeI = 0, coltypeII = 0)

is always empty, because citations with “diabetes” are either annotated with “type I” or

“type II” or both. “Diabetes” are never mentioned alone. Hence, no documents will be

mapped to this tuple; this tuple is always empty.

An important distinction between rules for ARM and rules for aggregation

views is that both definite and indefinite rules create empty tuples, reducing

72

the view size significantly. The above example shows an indefinite rule, which

eliminates one tuple in the aggregation view.

7.4 Experimental Comparisons

We experimentally evaluate the performance effect of rules. Analytically,

the more definite rules there are, the more combinations can be skipped in ARM.

Their supports can be derived directly. Similarly, for aggregation views, the more

rules there are, the more empty tuples in the view, and thus the more efficient

online computations are.

We create a synthesized data set and vary number of definite rules to

show the performance trade-offs between the two forms of views. The data set

contains is 3 GB documents. And the average number of terms of a document is

20.

0

10 00 0

20 00 0

30 00 0

40 00 0

50 00 0

60 00 0

70 00 0

80 00 0

90 00 0

0 10 10 0 50 0 10 00 20 00 30 00 40 00 50 00

Ex
e
c

Ti
m

e
 (s

)

of rule s

A RM w/ o ru le s A ggr V iew s A RM w/ ru le s

Figure 7.1: Efficiency comparison of ARM and Aggregation views

The execution time of the two approaches with different number of defi-

nite rules are shown in Figure 7.1. As we can see, when there are a large number

of definite rules, using ARM algorithms to generate statistics is efficient, even

73

a little faster than aggregation views. As the number of rules decreases, aggre-

gation views are more efficient. However, when there are very few rules, both

approaches are not efficient in generating statistics for all queries specifying large

contexts.

Another observation in Figure 7.1 is that when the number of rules is 0,

using aggregation views is a little more expensive than ARM. This is due to the

fact that when the number of rules is 0, every document is mapped to a separate

view tuple and the aggregation view size is as large as the data size. Then using

the aggregation view to find high-support combinations is equivalent to ARM.

In such a case, materializing aggregation views presents no benefits, but the

only materialization cost—reading and writing the data set once. Hence, the

execution time of using aggregation views is slightly longer than ARM.

7.5 Acknowledgments

Chapter 7 is currently being prepared for submission for publication,

which is joint work with Yannis Papakonstantinou. The dissertation author is

the primary investigator of the paper.

Chapter 8

A Diagnostic Tool

In prior chapters, we discuss two forms of views, their usage to improve

query performance and their selection algorithms. In this chapter, we present

a diagnostic tool that (1) given a user-specified maximal query execution time,

selects a context size threshold, and (2) chooses a view type for materialization

based on the characteristics of the data.

The first functionality of the diagnostic tool transforms the performance

goal to a single parameter: context size threshold. Selection algorithms for both

forms of views use this parameter to select appropriate views so that queries

specifying contexts larger than this threshold are answered by views. With the

help of views, all queries are expected to finish within the specified time.

The second functionality of the diagnostic tool selects a view type for

materialization. As demonstrated in the comparative study, two forms of views

show different strengths when the number of rules varies. In this chapter, we

present an automatic process that chooses an appropriate view type on the fly.

Overall, such an automatic end-to-end tool greatly improves usability and

frees administrators from the pain of tuning parameters and making decisions.

8.1 Choosing a Context Size Threshold

To design a tool that selects a context size threshold, the key is to derive

a cost model that connects the context size and the query execution time. In

74

75

the following, we first reiterate the theoretical cost model presented in Section

3.2 and present an experimental demonstration of the model. Then we propose

a practical solution to accommodate inaccuracy of the theoretical model. We

show experimentally that the revised model achieves a very high accuracy in

predicting the query cost. Most queries can finish within the specified time given

the context size threshold automatically selected by the tool.

8.1.1 Cost Model & Experimental Demonstration

Evaluation of a context-sensitive query involves two steps: materialize

the context and aggregate collection-specific statistics. The second step is imple-

mented by aggregating documents’ parameters in the context. Since aggrega-

tion functions for statistics are arithmetic, accessing one document is O(1), and

hence the complexity of the second step is characterized byO(contxSize), where

contxSize is the context size, i.e., the number of documents in the context. The

first step of query evaluation is modeled as intersections of inverted lists. Each

inverted list maps a predicate value to a list of documents containing the value.

As discussed in Section 3.2, in addition to the standard merge join, many

sophisticated optimization techniques have been proposed [37, 17, 38, 13, 14,

18], aiming to use the minimum number of comparisons ideally required to

establish the intersection. Instead of measuring the algorithm’s complexity by

the input lists’ sizes, these algorithms use the result size as the measure to

evaluate the optimality. Hence, O(contxSize) is a good approximation of the

cost of materializing the context.

Overall, the cost of evaluating a context-sensitive query is approximated

by the context size contxSize. The query execution time is characterized by the

following formula:

exec time = α · contxSize

To validate the above formula, we perform an experimental study: we

randomly sample a large number of context specifications (which are random

combinations of MeSH terms in PubMed), and measure the correspondence

76

between the context size and query execution time. The results are shown in

Figure 8.1.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 500000 1000000 1500000 2000000 2500000 3000000

E
x

e
c

ti
m

e
 (

m
s)

Context Size (# of docs)

Figure 8.1: Correspondence between the context size and the query execution

time

The relationship demonstrated in Figure 8.1 does not follow a linear

function exactly; the cost per result—the slope of the linear function—decreases

as the number of results (i.e., the context size) increases. An intuitive explanation

is as follows. To evaluate a query and process a result, some basic units of data

structures must be accessed. For example, to generate 1 result, at least two

disk (or memory) pages must be accessed to establish an intersection of two

inverted lists. One more disk page will be accessed to aggregate the document’s

parameters to compute statistics. However, it usually takes fewer than 100 disk

pages for intersections to produce 100 results.

An important observation, however, is that even though we cannot use

a single linear function to accurately characterize the full spectrum, the linear

property still satisfy in smaller sub-ranges.

77

8.1.2 Parameter Selection

An ideal diagnostic tool for view selection inputs a maximal query exe-

cution time and outputs a context size threshold to materialize views so that all

queries can finish within the specified time. This requires a cost function that

characterizes the query execution time in terms of the context size. The linear

cost function described above may not be accurate overall.

A practical solution to tackle the problem is to fit a linear function and

derive the constant α based on query samples in a target range. As shown

in Figure 8.1, a linear function is accurate enough for a specific range. Given

the user-specific query time, we only need to sample a set of queries in the

corresponding time range. The derived linear function can estimate the context

size for the target.

1.09% 0.32% 0.93%
0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

50ms 75ms 100ms 200ms 500ms

P
e

rc
e

n
ta

g
e

 o
f

o
u

tl
ie

rs

Required Max Exec Time

Three cost functions and their accuracy

[50ms, 100ms]

[100ms, 300ms]

[300ms,600ms]

Figure 8.2: Three cost functions for the target ranges

To validate the solution, we derive three cost functions for three time

ranges, namely 50-100 ms, 100-300 ms and 300 - 600 ms. Each function is evalu-

ated by the percentage of outlier queries that cannot finish within the specified

time. The results are reported in Figure 8.2. The X axis is the user-specified

maximal query time, and the Y axis is the percentage of outlier queries out of

50,000 sampled queries.

78

The major conclusion drawn from Figure 8.2 is that three cost functions

achieve high accuracy for the target range. For instance, only 1.09% queries

cannot finish within 75 ms when the function targets at 50-100 ms. The outlier

queries exceeding 200 ms drop to 0.32% when the function targets at 100-300 ms.

Overall, the percentage of outlier queries exceeding the target time is around 1%

for all functions.

Another observation made from Figure 8.2 is that the cost function for a

target time always overestimates the cost of queries far more expensive than the

target. On the other hand, the cost function always underestimates the cost of

queries cheaper than the target time. In Figure 8.2, when we use the function

targeting at 100-300 ms to estimate queries around 75 ms, the percentage of outlier

queries is much higher, i.e., 14%. This means that the function underestimates the

query cost and hence does not choose a context size threshold small enough to

cover all outlier queries. This observation is consistent with our prior observation:

the cost per result—the slope of the linear function—decreases as the context size

increases. Using a linear function with a smaller slope always underestimates

the value when the function is supposed to have a larger slope.

In Figure 8.3, we report the distribution of query execution time of outlier

queries. The X axis is the execution overtime in percentage of the target time.

Results in these two figures further demonstrate the superiority of our solution

to estimate the context size threshold. In Figure 8.3(a), the cost function targets

at the range of 50-100 ms and the user-specified maximal query time is 75 ms. Of

all the outlier queries that cannot finish within 75 ms, more than 70% of them

exceed within 10%. In other words, they can be finished within 82.5 ms. In

Figure 8.3(b), the cost function targets at 100-300 ms. Of all the outlier queries

that cannot finish within 200ms, more than 60% of them exceed within 10%.

8.2 Choosing a View Type

The observations in Figure 7.1 show that the number of explicit rules is

the determining factor that which view form is better than the other.

79

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1
%

2
%

4
%

5
%

6
%

8
%

9
%

1
0
%

1
2
%

1
3
%

1
4
%

1
6
%

1
7
%

1
8
%

2
6
%

3
0
%

3
2
%

4
6
%

4
8
%

D
is

tr
ib

u
ti

o
n

Exec overtime (in percentage of 75ms)

Exec overtime distrubtion for the 1% outliers

(a)

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

1% 2% 5% 6% 8% 9% 10% 11% 13% 14% 15%

D
is

tr
ib

u
ti

o
n

Exec overtime (in percentage of 200ms)

Exec overtime distribution for the 0.32% outliers

(b)

Figure 8.3: The distribution of execution overtime of outlier queries

80

1. When there are a large number of explicit rules (e.g., ontology), ARM is

good enough. As discussed in Section 5.2, the PubMed ontology specifies

hierarchical relationships of MeSH terms and thus form definite rules.

ARM algorithms can use these explicit rules to efficiently select queries and

materialize their statistics.

2. When many rules are implicit (e.g., terms in abstract), aggregation views

can be much better, because the view encoding captures all the rules implic-

itly. Materializing an aggregation view does not need knowledge of any

rules. Rather, the mapping between documents and groups (determined by

the GROUPBY clause of the view definition) automatically hides all empty

tuples, which are essentially determined by the rules. For instance, the

above example rule diabetes→ type I ∨ type II are implicit in the data set.

And yet aggregation views can leverage it to improve online computations.

3. When there are few rules, both views show expensive computations. In

such cases, we need to use views as statistics caching and aggressively

materialized statistics offline. Since each aggregation view is very large

and aggregating the view online is expensive, aggregation views cannot

provide efficient online computations any more and the performance goal

in Section 4.3 will not be satisfied.

When no explicit rules are available, a natural question to ask is whether

we can first discover rules and use them later to accelerate ARM algorithms.

Discovering rules is only efficient for binary rules in the form ofA→ B. A→ B is

derived iff supp(A,B) = supp(A). In other words, discovery requires compute

the supports of {A,B} and {A} respectively. Computing supp(A,B) and supp(A)

coincides with ARM in the first two steps; ARM algorithms need to compute

them anyway. Equality can be quickly checked once ARM algorithms return

supports of all pairs.

Discovering rules involving more values, however, departs from ARM

and may introduce higher cost. ARM algorithms prune many combinations

directly by eliminating those containing any low-support subsets. To discover

81

rules, however, combinations with any supports must be considered. For exam-

ple, A∧ B→ C iff supp(A,B,C) = supp(A,B). The combination {A,B,C} may

already be pruned by ARM much earlier. Hence, discovering rules have more

computations. The cost of discovering rules itself may already exceeds that of

ARM algorithms.

An algorithmic procedure for choosing a view type as listed as follows:

1. If there is a large number of explicit rules, use ARM to choose queries for

statistics caching.

2. Otherwise, compute all the supports of binary combinations and discover

binary rules in the form of A→ B. If many binary rules are discovered, go

to 1.

3. Otherwise, materialize aggregation views. If aggregation views are small,

use these views to compute statistics at runtime.

4. Otherwise, choose ARM to aggressively materialize statistics for caching.

8.3 Acknowledgments

Chapter 8 is currently being prepared for submission for publication,

which is joint work with Yannis Papakonstantinou. The dissertation author is

the primary investigator of the paper.

Chapter 9

Experimental Results

In this chapter, we experimentally evaluate the effectiveness of context-

sensitive ranking and query performance of proposed techniques. Specifically,

we concentrate on three measure: ranking quality, query performance and view

selection efficiency. The first metric validates the value of context-sensitive

ranking. The last two metrics show the efficiency of our techniques.

9.1 Data Set & Experiment Setup

We use the PubMed data set to evaluate the effectiveness of context-

sensitive ranking and the efficiency of the materialized view technique. PubMed

maintains 18 million citations. Citations have both unstructured data such as

title and abstract, and structured data such as publication time, citation type,

and citation type. The value of using combinations of structured queries and

keyword search for PubMed is validated by the fact that current PubMed search

interface [4] already supports such combinations (though returned results have

no relevance ranking). Moreover, there are dozens of third-party tools (such

as GoPubMed [39], PubReMiner [1]) that use similar combinations to improve

information retrieval and analytics.

In the experiments, we use the Lucene library [2] as the standard text

search system. Lucene is a general-purpose text search system and reflects the

state-of-the-art of keyword query evaluation. We only use Lucene for perfor-

82

83

mance evaluation, but not for ranking. The reason is that Lucene’s ranking

module provides limited interfaces for customized ranking, which is not suitable

for our context-sensitive ranking model.

The algorithms and the framework are implemented under Java 6. All the

experiments are performed on an Intel i7 860 PC, with 8G memory.

9.2 Ranking Quality

We evaluate the effectiveness of context-sensitive ranking using the TREC

Genomics benchmark of 2007 [57], which consists of 162,048 full-text documents,

a small fraction of the PubMed data set. The TREC Genomics also contains

34 topics in the form of biological questions, which were collected from bench

biologists and represent actual information needs in biomedical research. For

each query, relevant documents were tagged manually by biologists based on

pooled results from team submissions as the gold standard.

9.2.1 Context: Combinations of MeSH Terms

In the first set of experiments, we use combinations of MeSH terms to

specify contexts. A MeSH term is an atomic value in the Category field. Thus, a

conjunction of MeSH terms is equivalent to conjunctive equality predicates on

the Category field.

Given the TREC Genomics questions, conventional keyword queries are

constructed by extracting one or more noun keywords from the questions. For

example, for the question “What symptoms are caused by human parvovirus infec-

tion”, a possible keyword query is Qk = symptoms ∧ human ∧ parvovirus ∧

infection.

Then we rely on PubMed’s Automatic Term Mapping (ATM) to construct

appropriate contexts. Given a set of keywords, PubMed’s ATM maps them to

one or more MeSH terms. For the previous example, ATM maps the keywords

to two MeSH terms: Humans and Parvovirus. Then Qs = Humans ∧ Parvovirus

specifies the context that studies Humans and Parvovirus.

84

For the constructed context-sensitive queries, we exclude those queries

whose result sets are too small (less than 20), or the corresponding relevant

document sets in the gold standard are too small (less than 5), since ranking

thereof is not so important. Altogether 30 queries qualify for the experiment.

Table 9.1 lists the queries.

The main concern of ranking quality in practice is the number of relevant

results in top few returned results, which are most likely to be examined by users.

To study this aspect, we measure the rank precision among top ranked results,

i.e., the number of relevant results in top K results. For the TREC Genomics

benchmark, the relevance of a document to the query is based on whether the

TREC Genomics gold standard includes the document. In the experiments, K is

set to 20, as statistics from PubMed has shown that most users do not go beyond

looking top 20 [4].

In additional to the precision, the reciprocal rank [96] is another popular

measure for evaluating top ranked results. The reciprocal rank is the inverse of

the position of the first relevant document in the ranked results. The higher the

reciprocal rank of the query, the better the ranking is. In particular, if the first

result is relevant, the reciprocal rank is 1
1
= 1.

In the experiments, we use the TF-IDF model as shown in Formula 2.3.1.

While more sophisticated ranking functions are in use nowadays, TF-IDF still

remains at the core and provides a clean way to measure the effect of context

sensitivity.

Given a context-sensitive query Qc = Qk|Qs, we compare the context-

sensitive ranking and the conventional ranking. The conventional ranking of Qt

is equivalent to the ranking of the conventional query Qt(D) = Qk(D) ∩Qs(D),

where Qs is treated as a boolean filter and does not contribute to ranking scores.

The measures of the precision and the reciprocal rank are shown in Figures 9.1

and 9.2, where the x-axis denotes the query ID. In Figure 9.1(a) and 9.1(b), the

y-axis denotes the number of relevant results in top 20 results. In Figure 9.2(a)

and 9.2(b), the y-axis denotes the reciprocal rank, whose maximum value is 1.

Figure 9.1(a) and 9.1(b) show that context-sensitive ranking delivers bet-

85

Table 9.1: MeSH Queries

QID Keyword queries MeSH predicates

1 serum, lupus Proteins

2 proteins, serum, lupus Proteins

3 cell, receptor, binding, vasoactive D002477

4 glycan, modification, molecular D011134

5 insect, segmentation D007313

6 drosophila, neuroblast D004330

7 axon, guidance D001369

8 axon, guidance D017173

9 axon, guidance D017173 ∧ D001369

10 actin, polymerization, muscle D000199

11 actin, polymerization, muscle D009132

12 actin, polymerization, muscle D009132 ∧ D000199

13 puberty, humans D005796

14 human, homologs, rats D011506

15 alcohol, preference D000431

16 alcohol, preference D005796

17 centrosomal, brain D013568

18 activation, pmrd D011506

19 apc, colon, cancer D003110

20 actins, assembly, apc D011506

21 signal, recognition, particle D012261

22 host, solubility, proteins D011506

23 SYMPTOMS, human, parvovirus, infection D006801

24 Sarcoma, Ewing, PATHWAYS D012512

25 inhibit, HIV D006678

26 drugs, inhibit, HIV D006678

27 membrane, fusion, HIV D006678

28 nfkappab, signaling, pathway D055614

29 genes, inos D015398

30 genes, signaling, inos D015398

86

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

#
 o

f
re

le
v

a
n

t
re

su
lt

s

Query ID

Conventional Context-sensitive

(a)

0

5

10

15

20

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

#
 o

f
re

le
v

a
n

t
re

su
lt

s

Query ID

Conventional Context-sensitive

(b)

Figure 9.1: Precision in top 20 retrieved results

87

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
e

c
ip

ro
c
a

l
ra

n
k

Query ID

Conventional Context-sensitive

(a)

0

0.2

0.4

0.6

0.8

1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

R
e

c
ip

ro
c
a

l
ra

n
k

Query ID

Conventional Context-sensitive

(b)

Figure 9.2: Reciprocal rank of top 20 results

88

ter ranking in 21 out of 30 queries, with occasional large improvements over

conventional ranking (e.g., Q8 and Q9), while in the few occasions conventional

ranking is superior (Q15, Q16, Q30) and the gap is not large. Statistically, the

mean precisions of conventional ranking and context-sensitive ranking over 30

queries are 7.9 and 10.2 respectively; the mean reciprocal ranks over 30 queries

are 0.62 and 0.78 respectively.

It is worth pointing out that some queries shown in Figure 9.1 and 9.2

do not benefit from context-sensitive ranking. Our observation is that ranking

effectiveness depends on how well a context specification fits the original TREC

query. In the experiments, the contexts are mechanically generated by PubMed’s

ATM mapping. We expect that context-sensitive ranking can deliver more im-

provements over conventional rankings for real-life queries, as their contexts are

constructed by domain expects.

9.2.2 Context: More than MeSH terms

In the second set of experiments, we consider structured queries beyond

combinations of MeSH terms. We also consider predicates on other structured

fields of citations, such as publication year and category. Queries are constructed

similar to prior experiments. That is: keyword queries are extracted from bio-

logical questions. Structured queries are constructed based on PubMed query

construction tool [4]. A sample of the query workload is shown in Table 9.2.

The numbers of ranking precision and reciprocal ranking of 27 queries

are shown in Table 9.3, where CSR is a shorthand for context-sensitive ranking,

and CON is a shorthand for conventional ranking schemes. CMP indicates the

increase/decrease of the two metrics, denoted by ↑ or ↓.

As we can see from Table 9.3, context-sensitive ranking delivers better

ranking quality for most queries with structured predicates. A few decreasing

cases are underlined in the table. Even for these queries, the drop of ranking

quality is only indicated by one metric. On average, the precision in top 20 results

is 30% better; and the reciprocal ranking is much improved.

89

Table 9.2: A sample of queries with structured predicates

QID Structured Query Qs Keyword Query Qk

200 Year > 1998 “serum, lupus”

203 Year > 1950 “receptor, vip”

205 Category = ‘disease’ ∧ Year = 2001 “coronary, disease”

215 Year > 2002 ∧ Category = ‘actins’ actin, polymerization

221 Year > 2000 ∧ Year 6 2003 cd44

226 Year 6 2008 protein, signal

recognition, particle

235 Category = ‘signal’ ∧ inos

Category = ‘transduction’

9.3 View Selection

In this section, we consider how efficient the view selection algorithm

is. For easy of exposition, we only consider combinations of MeSH terms as

structured queries. Total number of MeSH terms are more than 65,000. In other

words, the Category field yields more than 65,000 pivot columns. They post

major challenges on view selection. Other columns can be negligible compared

with MeSH columns.

We set TC to 0.17% of the PubMed data set. This parameter is picked by the

diagnostic tool for the target of 200 ms. PubMed has 18 million citations. Thus,

the absolute value of the mining threshold is TC · |D| = 30, 600. In other words,

only contexts whose sizes are greater than 30, 600 are covered by views. Query

performance under this setting will be shown in Section 9.4. The maximum view

size TV is set to 212 = 4096 tuples. Note that this is the number of non-empty

tuples. The actual number of pivot columns in a view can be much higher than

12.

For a materialized view VK, while pivot columns (i.e., K) determines

the number of tuples in VK, the storage of VK is also dependent on parameter

columns, e.g., len(D), tf
(

d(c),wi

)

, which are specified by a specific ranking

90

Table 9.3: Ranking effectiveness comparison.

QID
Precision Reciprocal

CSR CON CMP CSR CON CMP

200 13 9 44% ↑ 1/1 1/3 ↑

201 4 4 - 1/3 1/1 ↑

202 6 0 ∞ ↑ 1/3 1/29 ↑

203 17 13 31% ↑ 1/1 1/3 ↑

204 16 15 7%↑ 1/2 1/1 ↓

205 4 2 100% ↑ 1/1 1/10 ↑

206 10 10 - 1/1 1/1 ↑

208 8 8 - 1/1 1/2 ↑

210 1 0 ∞ ↑ 1/6 1/24 ↑

212 8 5 60% ↑ 1/3 1/4 ↑

213 20 20 - 1/1 1/1 -

214 9 5 80% ↑ 1/1 1/6 ↑

215 6 1 500% ↑ 1/2 1/13 ↑

216 2 1 100% ↑ 1/1 1/6 ↑

217 1 0 ∞ ↑ 1/9 1/22 ↑

218 13 12 8% ↑ 1/1 1/1 -

221 10 6 67%↑ 1/1 1/5 ↑

223 1 1 - 1/6 1/8 ↑

226 10 7 43%↑ 1/2 1/3 ↑

227 9 8 13% ↑ 1/1 1/3 ↑

228 1 1 - 1/2 1/4 ↑

229 16 13 23% ↑ 1/4 1/1 ↓

230 7 6 17% ↑ 1/1 1/3 ↑

232 2 0 ∞ ↑ 1/2 1/27 ↑

233 2 4 50% ↓ 1/3 1/3 -

234 8 7 14% ↑ 1/1 1/4 ↑

235 10 7 43% ↑ 1/5 1/2 ↓

avg 7.93 6.11 30%↑ 1/2.4 1/7.0 ↑

91

function. In the experiments, we use the TF-IDF formula which demands docu-

ment count df
(

wi,Qs(D)
)

of every query term which can be any keyword in the

document set. Storing df
(

wi,Qs(D)
)

for all the keywords in the document set

would result in tens of thousands of parameter columns in VK.

In our system, VK only stores the df
(

wi,Qs(D)
)

column if |Lwi
| > TC. In

other words, document counts of keywords with low frequencies are computed

at query time. Consider the query Q = w1 ∧w2|m1 ∧m2 and the materialized

view VK,K = {m1,m2,m3}. Assume |Lw2
| < TC. Then document count of w2,

which is evaluated as |Lw2
∩ Lm1

∩ Lm2
|, cannot be computed from VK. However,

since |Lw2
| < TC, the support of {w2,m1,m2} must be less than TC, and Lw2

∩

Lm1
∩ Lm2

can be evaluated efficiently at query time. Notice that the evaluation

of Lw2
∩ Lm1

∩ Lm2
can start from the most selective keyword and leverage the

optimization of skip pointers. The intersection Lm1
∩ Lm2

is not enforced in the

query plan, because collection cardinality |Lm1
∩ Lm2

| and other statistics can be

evaluated from VK directly.

There are 910 keywords in the document set whose frequencies are greater

than TC. Therefore, every materialized view contains 912 parameter columns

(the other two columns are context length and context cardinality). Given that

the maximal number of the tuples in a materialized view is 4096, the maximal

storage of a single view is 14.3 MB.

The total storage of the materialized views is 4.38 GB. For comparison,

the original data set of PubMed takes 70 GB, and the Lucene index takes 5.72 GB.

The average storage of a single view is 3.71 MB, which means that most views

have fewer tuples than 4096. The cost of using a materialized view to compute

statistics is very small. The total time of selecting and materializing views is 7.45

hours.

We use the same context size threshold (i.e., 30, 600) to select views as

statistics. Each view tuple materializes one context. Similar to aggregation

views, each tuple populates 912 columns to store different statistics. Total space

consumed is 1.73 GB. Total materialization time is 20.1 hours.

The above experimental numbers reveal the trade-offs between space and

92

offline computations of the two forms of views. When using ARM to select views,

we accurately enumerate queries whose contexts are greater than the context size

threshold, and therefore spend longer time on execution and only materialize

when we have to. When using aggregation views, graph-decomposition-based

selection introduces approximation, which improves selection/materialization

efficiency, but scarifies space efficiency. We may materialize more intermediate re-

sults than necessary, which can cover some non-expensive queries (all expensive

queries are covered under the guarantee).

9.4 Query Performance

Next we evaluate the performance of context-sensitive queries. The com-

plete PubMed data set is used in the experiments. The straightforward evalu-

ation, which was described in Chapter 3, is implemented as follows: for each

collection-specific statistic, a conventional keyword query that materializes the

corresponding document set is constructed and sent to Lucene. After Lucene

returns the document set, an aggregation is performed upon it. Consider the

example queryQ = w1 ∧w2|m1 ∧m2 in Figure 3.1. Four collection-specific statis-

tics are required for the TF-IDF function: document count for w1,w2, collection

cardinality and collection length. Hence, three conventional queries are evaluated

by Lucene: Q1
t = m1 ∧m2, Q2

t = w1 ∧m1 ∧m2 and Q3
t = w2 ∧m1 ∧m2, upon

which the required statistics can be computed. Basically, we simulate the execu-

tion plan of a context-sensitive query in Lucene by issuing multiple conventional

keyword queries.

With the materialized view technique, before sending keyword queries to

Lucene, collection-specific statistics are matched over the views first. If a view

is usable for a collection-specific statistic, no Lucene evaluation is needed. It is

possible that there are more than one views that are usable for a collection-specific

statistic. In such cases, the view with the minimal size is picked.

Two categories of queries are tested in the experiments:

• Large contexts: queries whose context sizes are greater than TC. They are

93

1

10

100

1000

10000

2 3 4 5

T
im

e
 (

m
s)

Number of Keywords

Conventional

Context-View

Context-NoView

Figure 9.3: Execution time for the large-context queries

evaluated using some materialized view(s).

• Small contexts: queries whose context sizes are smaller than TC. They are

evaluated without any views.

The large-context queries demonstrate the effectiveness of the materi-

alized view technique. The small-context queries show how bad the query

performance could be when the context size is below TC and the evaluation

uses the straightforward approach. For each category, context-sensitive queries

are randomly generated in the following way: keywords in Qk are randomly

selected from keywords in the citations’ titles. Given the generated keywords,

PubMed’s ATM is used to map them to MeSH terms. We vary the number of

keywords from 2 to 5. For each experiment, fifty queries are generated. The

values shown in the following figures are the average of the fifty queries.

For a large-context query Qc = Qk|Qs, three numbers are compared: (1)

the execution time of the conventional queryQt(D) = Qk(D)∪Qs(D), which re-

turns the same result set asQ, but different ranking orders. (2) the execution time

of Qwith materialized views. (3) the execution time of Qwithout materialized

views. The numbers are reported in Figure 9.3.

Figure 9.3 shows that the materialized view technique improves query

efficiency significantly. Query performance of context-sensitive ranking with

materialized views is about 2 times slower than the conventional queries, which

94

1

10

100

1000

2 3 4 5

T
im

e
 (

m
s)

Number of Keywords

Conventional

Context

Figure 9.4: Execution time for the small-context queries

is much better than the straightforward approach. The performance drop is

mainly attributed to the partial coverage of document counts for keywords

in the materialized views: for a keyword wi whose frequency is less than TC,

df(wi,DP) is computed at query time. Overall, the absolute execution time stays

around 100 ms.

For a small-context queryQc = Qk|P, only two numbers are compared: (1)

the execution time of the conventional query Qt = Qk ∪ P, and (2) the execution

time of Qc. Note that since the Qc’s context size is smaller than TC, no views can

be used. The results are shown in Figure 9.4.

As expected, the performance decreases are much larger than the large-

context queries, as every collection-specific statistic must be computed at query

time. However, the absolute execution time of context-sensitive queries stays

around 100 ms. Figure 9.3 and 9.4 validate our original goal for query perfor-

mance: while context-sensitive ranking may sacrifice query performance to some

degree, the execution time of worst-case queries should be bounded.

The experiments in Section 9.2 has shown that ranking quality is directly

related to the contexts. As a special case, when the context size is too small, the

statistics are much less unreliable. For example, one of the most important prob-

lems for language models is smoothing, a technique to estimate the keywords’

probabilities. When the context size is too small, smoothing becomes harder.

The derived language models may not achieve satisfactory ranking performance.

95

This means that the materialized view technique is even more important in

practice: real-life queries that can benefit greatly from context-sensitive ranking

are most likely to be answered by materialized views.

9.5 Acknowledgments

Parts of Chapter 9 were published in ACM SIGMOD International Con-

ference on Management of Data, 2011, entitled “Context-sensitive Ranking for

Document Retrieval”. This is joint work with Yannis Papakonstantinou. The

other parts are currently being prepared for submission for publication. This is

joint work with Yannis Papakonstantinou. The dissertation author is the primary

investigator of the two papers.

Chapter 10

Conclusion and Future Work

10.1 Concluding Remarks

While information retrieval (IR) systems and databases evolved sepa-

rately in the history, modern applications often involve both structured data and

unstructured text. Such an interplay has inspired many research works from

both IR and database communities. Result ranking is a problem at the core of

all the existing effort. From a database’s perspective, result ranking provides

an effective way for users to browse relevant results first and potentially avoid

examining a large number of results. From an IR’s perspective, structured data

have more rigid formats and semantics that can be understood by computers,

thereby providing many opportunities to improve relevance ranking.

Though structured data sound promising for improving relevance rank-

ing, their interactions with relevance ranking are not obvious on the surface.

Conventional IR models and heuristics are based on a bag or a sequence of words,

leaving no space for structured data. A common way to integrate structured data

into ranking is to design application-specific ranking heuristics for each type of

structured data, and then manipulate ranking formulas to reflect these heuristics.

Context-sensitive ranking proposed in this dissertation provides an ele-

gant integration of structured data and relevance ranking. The essence of the

ranking scheme is that structured queries regulate keyword statistics, which

96

97

eventually influence result ranking. We do not design new ranking heuristics

or ranking formulas. All merits of the state-of-the-art of IR ranking models are

automatically inherited.

While originally designed for content relevance, context-sensitive ranking

is applicable to a much wider scope. Classification of ranking statistics (namely

query-specific, document-specific and collection-specific) basically can be applied

to any ranking functions of any entities. A structured query over entities will

regulate the ranking of entities, as long as it changes collection-specific statistics.

For instance, a location-based service ranks restaurants in a given area and

recommends them to users. A restaurant ranking function, though not the

same as content relevance ranking, still uses various statistics, each falling in

one of the three categories. A structured query specifying a location will define

collection-specific statistics over a set of restaurants near the location and regulate

restaurant ranking through location-sensitive statistics. For instance, document

frequency (DF) now evolves to restaurant frequency, which characterizes how

discriminative a term is among restaurants around the area.

Context-sensitive ranking poses new challenges on query evaluation. The

fundamental reason is that result ranking requires context-sensitive statistics,

which seriously limit query optimization. Specifically, since the context must be

materialized to compute statistics, query performance is mainly determined by

the context size.

Our innovative reduction from statistics to aggregation queries greatly

simplifies the problem and shreds new light on the connection between ranking

and data analytics. Treating statistics as aggregation queries naturally leads to

the view solution. Two problems arise under the umbrella of materialized views:

view usability (what queries can be answered by views) and view selection

(what views to materialize). We study the two problems respectively in the

dissertation. Since our goal is not to study materialized views for generic queries,

we concentrate on two forms of views: views as statistics caching and aggregation

views as intermediate results. For view usability, we only consider single-block

views without joins. The problem of view usability reduces to syntactic matching

98

between views and queries. For view selection, we depart from the standard

problem setting in conventional databases and set the selection goal to guarantee

the performance of worst-case queries.

10.2 Further Work

This dissertation builds a cornerstone for relevance ranking in the pres-

ence of structured data. One missing piece of the ranking puzzle is structured text.

Conventionally, unstructured data often refers to text, which is typically modeled

as a bag or a sequence of words. However, text data can also have embedded

structures. For instance, a research paper is organized by sections, each of which

may have several sub-sections. In each sub-section, text is further organized by

paragraphs, sentences, and annotated semantic blocks such as definition and

theorem. These structures are different from structured data and are embedded

within text. We cannot decouple the two and model them separately. From the

ranking perspective, structured text provides more semantic information than

a sequence of words, and should provide better ranking effectiveness. Unfor-

tunately, very little progress has been made for the ranking of structured text.

While there are some works along this direction, no ranking models are widely

accepted. A promising direction is to revisit ranking heuristics for structured

text. Ranking heuristics are fundamental ingredients of IR. Our work revisits

ranking heuristics in our new setting—context-sensitive heuristics specified by

structured queries. It is natural to adopt the same philosophy for structured

text. This line of works will have high impacts on industry. Structured text is

widely observed in enterprise applications. For example, re-consider the email

example. In addition to email headers which are considered as structured data,

email bodies can be organized by conversations. Replies within a conversation

form a nesting structure. How to design ranking schemes that are aware of this

nesting structure is evidently important for almost every email system.

Another direction that is worth exploration is web search. Though web

pages used to be less structured, many web pages also contain structured data,

99

such as last modified time, location and language. Furthermore, web pages are

in the HTML format and have latent structures describing structured data, e.g.,

two-dimension web tables. Web mining [66] techniques can be used to extract

and associate structured data with web pages. With progress of information

extraction [83], structured data, such as names or locations, can be even extracted

from text. All these structured data evidently can be used to improve search

experience and ranking quality of search engines. Though web search is mainly

based on keyword queries with no explicit structured predicates, recent works

[84, 68] have been working on parsing keyword queries into structured forms.

Combined with such query parsing techniques, context-sensitive ranking can be

applied in web search, without changing existing sophisticated ranking formulas.

Our techniques on improving query efficiency can be used as well. The challenge

of this line of work, however, is that structured data associated web pages may

not be accurate, because of careless web page publishers or extraction errors.

Query semantics and ranking mechanism must be able to tolerate such errors.

Current query semantics and ranking schemes may not be sufficient, because a

structured query has a precise semantics and all documents that do not satisfy it

are removed from results.

Bibliography

[1] http://bioinfo.amc.uva.nl/human-genetics/pubreminer/.

[2] http://lucene.apache.org/.

[3] http://www.json.org/.

[4] http://www.ncbi.nlm.nih.gov/pubmed/.

[5] http://www.w3.org/xml/.

[6] Rakesh Agrawal, Ralf Rantzau, and Evimaria Terzi. Context-sensitive
ranking. In SIGMOD, 2006.

[7] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, 1994.

[8] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. Dbxplorer: A system
for keyword-based search over relational databases. In ICDE, pages 5–16,
2002.

[9] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated
selection of materialized views and indexes in sql databases. In VLDB,
pages 496–505, 2000.

[10] Shurug Al-Khalifa, Cong Yu, and H. V. Jagadish. Querying structured text
in an xml database. In SIGMOD, 2003.

[11] Sihem Amer-Yahia, Emiran Curtmola, and Alin Deutsch. Flexible and
efficient xml search with complex full-text predicates. In SIGMOD, 2006.

[12] Avi Arampatzis and Jaap Kamps. A study of query length. In SIGIR, 2008.

[13] Ricardo A. Baeza-Yates. A fast set intersection algorithm for sorted se-
quences. In CPM, pages 400–408, 2004.

[14] Ricardo A. Baeza-Yates and Alejandro Salinger. Experimental analysis of
a fast intersection algorithm for sorted sequences. In SPIRE, pages 13–24,
2005.

100

101

[15] Nilesh Bansal, Sudipto Guha, and Nick Koudas. Ad-hoc aggregations of
ranked lists in the presence of hierarchies. In SIGMOD Conference, pages
67–78, 2008.

[16] Elena Baralis, Stefano Paraboschi, and Ernest Teniente. Materialized views
selection in a multidimensional database. In VLDB, 1997.

[17] Jérémy Barbay, Alejandro López-Ortiz, and Tyler Lu. Faster adaptive set
intersections for text searching. In WEA, pages 146–157, 2006.

[18] Jérémy Barbay, Alejandro López-Ortiz, Tyler Lu, and Alejandro Salinger.
An experimental investigation of set intersection algorithms for text search-
ing. ACM Journal of Experimental Algorithmics, 14, 2009.

[19] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and
Gerhard Weikum. Io-top-k: Index-access optimized top-k query processing.
In VLDB, pages 475–486, 2006.

[20] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in databases using
banks. In ICDE, pages 431–440, 2002.

[21] David M. Blei and John D. Lafferty. Correlated topic models. In In Proceed-
ings of the 23rd International Conference on Machine Learning, 2006.

[22] Chavdar Botev and Jayavel Shanmugasundaram. Context-sensitive key-
word search and ranking for xml. In WebDB, pages 115–120, 2005.

[23] Andreas Broschart and Ralf Schenkel. Proximity-aware scoring for xml
retrieval. In SIGIR, 2008.

[24] J. Brutlag. Speed matters for google web search.
http://code.google.com/speed/files/delayexp.pdf. 2009.

[25] Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and
edge partitions is np-hard. Inf. Process. Lett., 42(3), 1992.

[26] David Carmel, Yoëlle S. Maarek, Matan Mandelbrod, Yosi Mass, and Aya
Soffer. Searching xml documents via xml fragments. In SIGIR, 2003.

[27] Soumen Chakrabarti. Dynamic personalized pagerank in entity-relation
graphs. In WWW, 2007.

[28] Chee Yong Chan and Yannis E. Ioannidis. Hierarchical prefix cubes for
range-sum queries. In VLDB, 1999.

102

[29] Kevin Chen-Chuan Chang and Seung won Hwang. Minimal probing:
supporting expensive predicates for top-k queries. In SIGMOD Conference,
pages 346–357, 2002.

[30] Surajit Chaudhuri, Kenneth Ward Church, Arnd Christian König, and
Liying Sui. Heavy-tailed distributions and multi-keyword queries. In
SIGIR, 2007.

[31] Liang Jeff Chen and Yannis Papakonstantinou. Supporting top-k keyword
search in xml databases. In ICDE, pages 689–700, 2010.

[32] Charles L. A. Clarke. Controlling overlap in content-oriented xml retrieval.
In SIGIR, 2005.

[33] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. Xsearch:
A semantic search engine for xml. In VLDB, 2003.

[34] Sara Cohen, Werner Nutt, and Yehoshua Sagiv. Equivalences among
aggregate queries with negation. In PODS, 2001.

[35] Sara Cohen, Werner Nutt, and Alexander Serebrenik. Rewriting aggregate
queries using views. In PODS, pages 155–166, 1999.

[36] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris Tsirogian-
nis. Answering top-k queries using views. In VLDB, pages 451–462, 2006.

[37] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Adaptive set
intersections, unions, and differences. In SODA, pages 743–752, 2000.

[38] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Experiments
on adaptive set intersections for text retrieval systems. In ALENEX, pages
91–104, 2001.

[39] Andreas Doms and Michael Schroeder. Gopubmed: exploring pubmed
with the gene ontology. Nucleic Acids Research, 33(Web-Server-Issue), 2005.

[40] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algo-
rithms for middleware. In PODS, 2001.

[41] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algo-
rithms for middleware. In PODS, 2001.

[42] Hui Fang, Tao Tao, and ChengXiang Zhai. A formal study of information
retrieval heuristics. In SIGIR, 2004.

[43] Uriel Feige, Mohammad Taghi Hajiaghayi, and James R. Lee. Improved
approximation algorithms for minimum-weight vertex separators. In
STOC, 2005.

103

[44] Norbert Fuhr and Kai Großjohann. XIRQL: a query language for informa-
tion retrieval in XML documents. In SIGIR, 2001.

[45] Torsten Grabs and Hans-Jörg Schek. Powerdb-xml: Scalable xml processing
with a database cluster. In Intelligent Search on XML Data, 2003.

[46] Jim Gray, Adam Bosworth, Andrew Layman, and Hamid Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-total. In ICDE, 1996.

[47] Stéphane Grumbach, Maurizio Rafanelli, and Leonardo Tininini. Querying
aggregate data. In PODS, pages 174–184, 1999.

[48] Stéphane Grumbach and Leonardo Tininini. On the content of materialized
aggregate views. In PODS, pages 47–57, 2000.

[49] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.
Xrank: Ranked keyword search over xml documents. In SIGMOD, 2003.

[50] Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-query
processing in data warehousing environments. In VLDB, pages 358–369,
1995.

[51] Himanshu Gupta. Selection of views to materialize in a data warehouse.
In ICDT, pages 98–112, 1997.

[52] Himanshu Gupta and Inderpal Singh Mumick. Selection of views to
materialize under a maintenance cost constraint. In ICDT, pages 453–470,
1999.

[53] Alon Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4),
2001.

[54] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent
patterns without candidate generation: A frequent-pattern tree approach.
Data Min. Knowl. Discov., 8(1), 2004.

[55] Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Implement-
ing data cubes efficiently. In SIGMOD, 1996.

[56] Taher H. Haveliwala. Topic-sensitive pagerank. In WWW, 2002.

[57] William R. Hersh and Ellen M. Voorhees. Trec genomics special issue
overview. Inf. Retr., 12(1), 2009.

[58] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan
Srikant. Range queries in olap data cubes. In SIGMOD, 1997.

104

[59] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient
ir-style keyword search over relational databases. In VLDB, pages 850–861,
2003.

[60] Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. Prefer: A
system for the efficient execution of multi-parametric ranked queries. In
SIGMOD Conference, pages 259–270, 2001.

[61] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search
in relational databases. In VLDB, pages 670–681, 2002.

[62] Heasoo Hwang, Andrey Balmin, Berthold Reinwald, and Erik Nijkamp.
Binrank: Scaling dynamic authority-based search using materialized sub-
graphs. In ICDE, 2009.

[63] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k
join queries in relational databases. In VLDB, pages 754–765, 2003.

[64] Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW,
2003.

[65] Raghav Kaushik, Rajasekar Krishnamurthy, Jeffrey F. Naughton, and
Raghu Ramakrishnan. On the integration of structure indexes and in-
verted lists. In SIGMOD, 2004.

[66] Raymond Kosala and Hendrik Blockeel. Web mining research: A survey.
SIGKDD Explorations, 2(1):1–15, 2000.

[67] Georgia Koutrika and Yannis E. Ioannidis. Personalization of queries in
database systems. In ICDE, 2004.

[68] Xiao Li, Ye-Yi Wang, and Alex Acero. Extracting structured information
from user queries with semi-supervised conditional random fields. In
SIGIR, pages 572–579, 2009.

[69] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-free xquery. In VLDB,
pages 72–83, 2004.

[70] G. Linden. http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-
20.html.

[71] Fang Liu, Clement T. Yu, Weiyi Meng, and Abdur Chowdhury. Effective
keyword search in relational databases. In SIGMOD Conference, pages
563–574, 2006.

[72] Xiaoyong Liu and W. Bruce Croft. Cluster-based retrieval using language
models. In SIGIR, 2004.

105

[73] Ziyang Liu and Yi Chen. Identifying meaningful return information for
xml keyword search. In SIGMOD Conference, pages 329–340, 2007.

[74] Ziyang Liu and Young Chen. Reasoning and identifying relevant matches
for xml keyword search. PVLDB, 1(1):921–932, 2008.

[75] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: top-k keyword
query in relational databases. In SIGMOD Conference, pages 115–126, 2007.

[76] Zhongming Ma, Gautam Pant, and Olivia R. Liu Sheng. Interest-based
personalized search. ACM Trans. Inf. Syst., 25(1).

[77] Nikos Mamoulis, Kit Hung Cheng, Man Lung Yiu, and David W. Cheung.
Efficient aggregation of ranked inputs. In ICDE, page 72, 2006.

[78] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. In-
troduction to Information Retrieval. Cambridge University Press, New York,
2008.

[79] Werner Nutt, Yehoshua Sagiv, and Sara Shurin. Deciding equivalences
among aggregate queries. In PODS, pages 214–223, 1998.

[80] Feng Qiu and Junghoo Cho. Automatic identification of user interest for
personalized search. In WWW, 2006.

[81] Stephen E. Robertson, Hugo Zaragoza, and Michael J. Taylor. Simple bm25
extension to multiple weighted fields. In CIKM, 2004.

[82] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth.
The author-topic model for authors and documents. In UAI, 2004.

[83] Sunita Sarawagi. Information extraction. Foundations and Trends in
Databases, 1(3):261–377, 2008.

[84] Nikos Sarkas, Stelios Paparizos, and Panayiotis Tsaparas. Structured
annotations of web queries. In SIGMOD Conference, pages 771–782, 2010.

[85] Feng Shao, Lin Guo, Chavdar Botev, Anand Bhaskar, Muthiah M. Muthiah
Chettiar, Fan Yang 0002, and Jayavel Shanmugasundaram. Efficient key-
word search over virtual xml views. In VLDB, pages 1057–1068, 2007.

[86] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Context-sensitive informa-
tion retrieval using implicit feedback. In SIGIR, 2005.

[87] Amit Shukla, Prasad Deshpande, and Jeffrey F. Naughton. Materialized
view selection for multidimensional datasets. In VLDB, 1998.

106

[88] Ahu Sieg, Bamshad Mobasher, and Robin D. Burke. Web search personal-
ization with ontological user profiles. In CIKM, 2007.

[89] Amit Singhal. Modern information retrieval: A brief overview. IEEE Data
Eng. Bull., 24(4), 2001.

[90] Divesh Srivastava, Shaul Dar, H. V. Jagadish, and Alon Y. Levy. Answering
queries with aggregation using views. In VLDB, 1996.

[91] Chong Sun, Chee Yong Chan, and Amit K. Goenka. Multiway slca-based
keyword search in xml data. In WWW, pages 1043–1052, 2007.

[92] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Personalizing search via
automated analysis of interests and activities. In SIGIR, 2005.

[93] Anja Theobald and Gerhard Weikum. The index-based xxl search engine
for querying xml data with relevance ranking. In EDBT, 2002.

[94] Martin Theobald, Ralf Schenkel, and Gerhard Weikum. An efficient and
versatile query engine for topx search. In VLDB, 2005.

[95] Jeffrey Scott Vitter and Min Wang. Approximate computation of mul-
tidimensional aggregates of sparse data using wavelets. In SIGMOD
Conference, 1999.

[96] Ellen M. Voorhees. Overview of the trec-9 question answering track. In
TREC, 2000.

[97] Ryen W. White and Dan Morris. Investigating the querying and browsing
behavior of advanced search engine users. In SIGIR, 2007.

[98] Jens E. Wolff, Holger Flörke, and Armin B. Cremers. Searching and brows-
ing collections of structural information. In IEEE Advances in Digital Li-
braries, 2000.

[99] Dong Xin, Jiawei Han, and Kevin Chen-Chuan Chang. Progressive and
selective merge: computing top-k with ad-hoc ranking functions. In SIG-
MOD Conference, pages 103–114, 2007.

[100] Shengliang Xu, Shenghua Bao, Ben Fei, Zhong Su, and Yong Yu. Exploring
folksonomy for personalized search. In SIGIR, 2008.

[101] Yu Xu and Yannis Papakonstantinou. Efficient keyword search for smallest
lcas in xml databases. In SIGMOD Conference, pages 537–538, 2005.

[102] Yu Xu and Yannis Papakonstantinou. Efficient lca based keyword search
in xml data. In EDBT, pages 535–546, 2008.

107

[103] Jian Yang, Kamalakar Karlapalem, and Qing Li. Algorithms for materi-
alized view design in data warehousing environment. In VLDB, pages
136–145, 1997.

[104] Markos Zaharioudakis, Roberta Cochrane, George Lapis, Hamid Pira-
hesh, and Monica Urata. Answering complex sql queries using automatic
summary tables. In SIGMOD Conference, pages 105–116, 2000.

[105] Mohammed Javeed Zaki. Scalable algorithms for association mining. IEEE
Trans. Knowl. Data Eng., 12(3), 2000.

