
Context-Specific Multiagent Coordination and Planning with Factored MDPs

Carlos Guestrin
Computer Science Dept.

Stanford University
guestrin@cs.stanford.edu

Shobha Venkataraman
Computer Science Dept.

Stanford University
shobha@cs.stanford.edu

Daphne Koller
Computer Science Dept.

Stanford University
koller@cs.stanford.edu

Abstract

We present an algorithm for coordinated decision making in
cooperative multiagent settings, where the agents’ value func-
tion can be represented as a sum of context-specific value
rules. The task of finding an optimal joint action in this set-
ting leads to an algorithm where the coordination structure
between agents depends on the current state of the system
and even on the actual numerical values assigned to the value
rules. We apply this framework to the task of multiagent plan-
ning in dynamic systems, showing how a joint value function
of the associated Markov Decision Process can be approx-
imated as a set of value rules using an efficient linear pro-
gramming algorithm. The agents then apply the coordination
graph algorithm at each iteration of the process to decide on
the highest-value joint action, potentially leading to a differ-
ent coordination pattern at each step of the plan.

1 Introduction

Consider a system where multiple agents must coordinate in
order to achieve a common goal, maximizing their joint util-
ity. Naively, we can consider all possible joint actions, and
choose the one that gives the highest value. Unfortunately,
this approach is infeasible in all but the simplest settings,
as the number of joint actions grows exponentially with the
number of agents. Furthermore, we want to avoid a central-
ized decision making process, letting the agents communi-
cate with each other so as to reach a jointly optimal decision.

This problem was recently addressed by Guestrin, Koller,
and Parr (2001a) (GKP hereafter). They propose an ap-
proach based on an approximation of the joint value func-
tion as a linear combination of local value functions, each of
which relates only to the parts of the system controlled by
a small number of agents. They show how factored value
functions allow the agents to find a globally optimal joint
action using a message passing scheme. However, their ap-
proach suffers from a significant limitation: They assume
that each agent only needs to interact with a small number
of other agents. In many situations, an agent can potentially
interact with many other agents, but not at the same time.
For example, two agents that are both part of a construc-
tion crew might need to coordinate at times when they could
both be working on the same task, but not at other times.
If we use the approach of GKP, we are forced to represent

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

value functions over large numbers of agents, rendering the
approach intractable.

Our approach is based on the use of context speci-
ficity — a common property of real-world decision making
tasks (Boutilier, Dean, & Hanks 1999). Specifically, we as-
sume that the agents’ value function can be decomposed into
a set of value rules, each describing a context — an assign-
ment to state variables and actions — and a value increment
which gets added to the agents’ total value in situations when
that context applies. For example, a value rule might assert
that in states where two agents are at the same house and
both try to install the plumbing, they get in each other’s way
and the total value is decremented by 100. This representa-
tion is reminiscent of the tree-structured value functions of
Boutilier and Dearden (1996), but is substantially more gen-
eral, as the rules are not necessarily mutually exclusive, but
can be added together to form more complex functions.

Based on this representation, we provide a significant ex-
tension to the GKP notion of a coordination graph. We
describe a distributed decision-making algorithm that uses
message passing over this graph to reach a jointly optimal
action. The coordination used in the algorithm can vary sig-
nificantly from one situation to another. For example, if two
agents are not in the same house, they will not need to co-
ordinate. The coordination structure can also vary based on
the utilities in the model; e.g., if it is dominant for one agent
to work on the plumbing (e.g., because he is an expert), the
other agents will not need to coordinate with him.

We then extend this framework to the problem of sequen-
tial decision making. We view the problem as a Markov de-
cision process (MDP), where the actions are the joint actions
for all of the agents, and the reward is the total reward. Once
again, we use context specificity, assuming that the rewards
and the transition dynamics are rule-structured. We extend
the linear programming approach of GKP to construct an
approximate rule-based value function for this MDP. The
agents can then use the coordination graph to decide on a
joint action at each time step. Interestingly, although the
value function is computed once in an offline setting, the
online choice of action using the coordination graph gives
rise to a highly variable coordination structure.

2 Context-specific coordination

We begin by considering the simpler problem of having a
group of agents select a globally optimal joint action in or-

AAAI-02 253

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

der to maximize their joint value. Suppose we have a col-
lection of agents A = {A1, . . . , Ag}, where each agent Aj

must choose an action aj from a finite set of possible actions
Dom(Aj). The agents are acting in a space described by
a set of discrete state variables, X = {X1 . . . Xn}, where
each Xj takes on values in some finite domain Dom(Xj).
The agents must choose the joint action a ∈ Dom(A) that
maximizes the total utility.

As discussed in GKP, the overall utility, or value function
is often decomposed as a sum of “local” value functions,
associated with the “jurisdiction” of the different agents. For
example, if multiple agents are constructing a house, we can
decompose the value function as a sum of the values of the
tasks accomplished by each agent.

Definition 2.1 We say that a function f is restricted to a
scope Scope[f] = C ⊆ X ∪ A if f : C �→ IR.

Thus, we can specify the value function as a sum of agent-
specific value functions Qj , each with a restricted scope.
Each Qj is typically represented as a table, listing agent j’s
local values for different combinations of variables in the
scope. However, this representation is often highly redun-
dant, forcing us to represent many irrelevant interactions.
For example, an agent A1’s value function might depend on
the action of agent A2 if both are trying to install the plumb-
ing in the same house. However, there is no interaction if A2

is currently working in another house, and there is no point
in making A1’s entire value function depend on A2’s action.
We represent such context specific value dependencies using
value rules:

Definition 2.2 Let C ⊆ X ∪ A and c ∈ Dom(C). We say
that c is consistent with b ∈ Dom(B) if c and b assign the
same value to C ∩ B. A value rule 〈ρ; c : v〉 is a function
ρ : Dom(X,A) �→ IR such that ρ(x,a) = v when (x,a) is
consistent with c and 0 otherwise.

In our construction example, we might have a rule:

〈ρ; A1, A2 in-same-house = true ∧

A1 = plumbing ∧ A2 = plumbing : −100〉.

This definition of rules adapts the definition of rules for
exploiting context specific independence in inference for
Bayesian networks by Zhang and Poole (1999). Note that
a value rule 〈ρ; c : v〉 has a scope C.

Definition 2.3 A rule-based function f : {X,A} �→ IR is
composed of a set of rules {ρ1, . . . , ρn} such that f(x,a) =
∑n

i=1 ρi(x,a).

This notion of a rule-based function is related to the tree-
structure functions used by Boutilier and Dearden (1996)
and by Boutilier et al. (1999), but is substantially more gen-
eral. In the tree-structure value functions, the rules corre-
sponding to the different leaves are mutually exclusive and
exhaustive. Thus, the total number of different values repre-
sented in the tree is equal to the number of leaves (or rules).
In the rule-based function representation, the rules are not
mutually exclusive, and their values are added to form the
overall function value for different settings of the variables.
Different rules are added in different settings, and, in fact,
with k rules, one can easily generate 2k different possible

(a) (b)

Figure 1: (a) Coordination graph for a 6-agent problem, the rules
in Qj are indicated in the figure by the rules next to Aj . (b) Graph
becomes simpler after conditioning on the state X = x.

values. Thus, the rule-based functions can provide a com-
pact representation for a much richer class of value func-
tions.

We represent the local value function Qj associated with
agent j as a rule-based function:

Qj =
∑

i

ρj
i .

Note that if each rule ρj
i has scope C

j
i , then Qj will be a

restricted scope function of ∪iC
j
i . The scope of Qj can be

further divided into two parts: The state variables

Obs[Qj] = {Xi ∈ X | Xi ∈ Scope[Qj]}

are the observations agent j needs to make. The agent deci-
sion variables

Agents[Qj] = {Ai ∈ A | Ai ∈ Scope[Qj]}.

are the agents with whom j interacts directly.

3 Cooperative action selection

Recall that the agents’ task is to select a joint action a that
maximizes Q =

∑

j Qj(x,a). The fact that the Qj’s depend

on the actions of multiple agents forces the agents to coor-
dinate their action choices. As we now show, this process
can be performed using a very natural data structure called
a coordination graph. Intuitively, a coordination graph con-
nects agents whose local value functions interact with each
other. This definition is the directed extension of the defi-
nition proposed in GKP, and is the collaborative counterpart
of the relevance graph proposed for competitive settings by
Koller and Milch (2001).

Definition 3.1 A coordination graph for a set of agents with
local utilities Q = {Q1, . . . , Qg} is a directed graph whose
nodes are {A1, . . . , Ag}, and which contains an edge Ai →
Aj if and only if Ai ∈ Agents[Qj].

An example of a coordination graph with 6 agents and one
state variable is shown in Fig. 1(a). See, for example, that
agent A3 has the parent A4, because A4’s action affects Q3.

Recall that our task is to find a coordination strategy
for the agents to maximize

∑

j Qj at each state x. First,

note that the scope of the Qj functions that comprise the
value can include both action choices and state variables.

A1A1

A5A5

A4A4A2A2

A3A3

A6A6

7:6 xa ∧4:51 xaa ∧∧

2:65 xaa ∧∧

1.0:32 xaa ∧∧

3:43 xaa ∧∧

3:41 xaa ∧∧

5:21 xaa ∧∧

1:31 xaa ∧∧

3:61 xaa ∧∧

A1A1

A5A5

A4A4A2A2

A3A3

A6A6
7:6a

4:51 aa ∧

2:65 aa ∧

1.0:32 aa ∧

3:43 aa ∧

3:41 aa ∧

5:21 aa ∧

254 AAAI-02

We assume that each agent j has full observability of the
relevant state variables Obs[Qj]. Given a particular state
x = {x1, . . . , xn}, agent j conditions on the current state
by discarding all rules in Qj not consistent with the current
state x. Note that agent j only needs to observe Obs[Qj],
and not the entire state of the system, substantially reduc-
ing the sensing requirements. Interestingly, after the agents
observe the current state, the coordination graph may be-
come simpler. In our example the edges A3 → A1 and
A1 → A6 disappear after agents observe that X = x, as
shown in Fig. 1(b). Thus, agents A1 and A6 will only need
to coordinate directly in the context of X = x̄.

After conditioning on the current state, each Qj will only
depend on the agents’ action choices A. Now, our task is to
select a joint action a that maximizes

∑

j Qj(a). Maximiza-

tion in a graph structure suggests the use of non-serial dy-
namic programming (Bertele & Brioschi 1972), or variable
elimination. To exploit structure in rules, we use an algo-
rithm similar to variable elimination in a Bayesian network
with context specific independence (Zhang & Poole 1999).

Intuitively, the algorithm operates by having an individ-
ual agent “collect” value rules relevant to them from their
children. The agent can then decide on its own strategy, tak-
ing all of the implications into consideration. The choice of
optimal action and the ensuing payoff will, of course, de-
pend on the actions of agents whose strategies have not yet
been decided. The agent therefore communicates the value
ramifications of its strategy to other agents, so that they can
make informed decisions on their own strategies.

More precisely, our algorithm “eliminates” agents one by
one, where the elimination process performs a maximization
step over the agent’s action choice. Assume that we are elim-
inating Ai, whose collected value rules lead to a rule func-
tion f . Assume that f involves the actions of some other set
of agents B, so that f ’s scope is {B, Ai}. Agent Ai needs to
choose its optimal action for each choice of actions b of B.
We use MaxOut (f, Ai) to denote a procedure that takes a
rule function f(B, Ai) and returns a rule function g(B) such
that: g(b) = maxai

f(b, ai). Such a procedure is a fairly
straightforward extension of the variable elimination algo-
rithm of (Zhang & Poole 1999). We omit details for lack of
space. The algorithm proceeds by repeatedly selecting some
undecided agent, until all agents have decided on a strategy.
For a selected agent Al:

1. Al receives messages from its children, with all the rules
〈ρ; c : v〉 such that Al ∈ C. These rules are added to
Ql. After this step, Al has no children in the coordination
graph and can be optimized independently.

2. Al performs the local maximization step gl =
MaxOut (Ql, Al); This local maximization corresponds
to a conditional strategy decision.

3. Al distributes the rules in gl to its parents. At this point,
Al’s strategy is fixed, and it has been “eliminated”.

Once this procedure is completed, a second pass in the
reverse order is performed to compute the optimal action
choice for all of the agents. Note that the initial distribu-
tion of rules among agents and the procedure for distributing
messages among the parent agents in step 3 do not alter the

final action choice and have a limited impact on the commu-
nication required for solving the coordination problem.

The cost of this algorithm is polynomial in the num-
ber of new rules generated in the maximization operation
MaxOut (Ql, Al). The number of rules is never larger
and in many cases exponentially smaller than the complex-
ity bounds on the table-based coordination graph in GKP,
which, in turn, was exponential only in the induced width
of the graph (Dechter 1999). However, the computational
costs involved in managing sets of rules usually imply that
the computational advantage of the rule-based approach will
only manifest in problems that possess a fair amount of con-
text specific structure.

More importantly, the rule based coordination structure
exhibits several important properties. First, as we discussed,
the structure often changes when conditioning on the current
state, as in Fig. 1. Thus, in different states of the world,
the agents may have to coordinate their actions differently.
In our example, if the situation is such that the plumbing
is ready to be installed, two qualified agents that are at the
same house will need to coordinate. However, they may not
need to coordinate in other situations.

More surprisingly, interactions that seem to hold between
agents even after the state-based simplification can disap-
pear as agents make strategy decisions. For example, if
Q1 = {〈a1 ∧ a2 : 5〉, 〈a1 ∧ a2 ∧ a3 : 1〉}, then A1’s opti-
mal strategy is to do a1 regardless, at which point the added
value is 5 regardless of A3’s decision. In other words,
MaxOut (Q1, A1) = {〈a2 : 5〉}. In this example, there is
an a priori dependence between A2 and A3. However, after
maximizing A1, the dependence disappears and agents A2

and A3 may not need to communicate. In the construction
crew example, suppose electrical wiring and plumbing can
be performed simultaneously. If there is an agent A1 that
can do both tasks and another A2 that is only a plumber,
then a priori the agents need to coordinate so that they are
not both working on plumbing. However, when A1 is op-
timizing his strategy, he decides that electrical wiring is a
dominant strategy, because either A2 will do the plumbing
and both tasks are done, or A2 will work on another house,
in which case A1 can perform the plumbing task in the next
time step, achieving the same total value.

The context-sensitivity of the rules also reduces commu-
nication between agents. In particular, agents only need to
communicate relevant rules to each other, reducing unnec-
essary interaction. For example, in Fig. 1(b), when agent
A1 decides on its strategy, agent A5 only needs to pass the
rules that involve A1, i.e., only 〈a1 ∧ a5 : 4〉. The rule in-
volving A6 is not transmitted, avoiding the need for agent
A1 to consider agent A6’s decision in its strategy.

Finally, we note that the rule structure provides substan-
tial flexibility in constructing the system. In particular, the
structure of the coordination graph can easily be adapted in-
crementally as new value rules are added or eliminated. For
example, if it turns out that two agents intensely dislike each
other, we can easily introduce an additional value rule that
associates a negative value with pairs of action choices that
puts them in the same house at the same time.

AAAI-02 255

Figure 2: A DDN for a 2-agent crew and 1 house setting.

4 One-step lookahead

Now assume that the agents are trying to maximize the
sum of an immediate reward and a value that they expect
to receive one step in the future. We describe the dy-
namics of such system τ using a dynamic decision net-
work (DDN) (Dean & Kanazawa 1989). Let Xi de-
note the ith variable at the current time and X ′

i the vari-
able at the next step. The transition graph of a DDN
is a two-layer directed acyclic graph G whose nodes are
{A1, . . . , Ag, X1, . . . , Xn, X ′

1, . . . , X ′
n}, and where only

nodes in X
′ have parents. We denote the parents of X ′

i

in the graph by Parents(X ′
i). For simplicity of exposition,

we assume that Parents(X ′
i) ⊆ X ∪ A, i.e., all of the par-

ents of a node are in the previous time step. Each node
X ′

i is associated with a conditional probability distribution
(CPD) P (X ′

i | Parents(X ′
i)). The transition probability

P (x′ | x,a) is then defined to be
∏

i P (x′
i | ui), where

ui is the value in x,a of the variables in Parents(X ′
i). The

immediate rewards are a set of functions r1, . . . , rg , and the
next-step values are a set of functions h1, . . . , hg .

Fig. 2 shows a DDN for a simple two-agent problem,
where ovals represent the variables Xi (features of a house)
and rectangles the agent actions (tasks). The arrows to the
next time step variables represent dependencies, e.g., paint-
ing can only be done if both electrical wiring and plumbing
are done and agent A2 decides to paint. The diamond nodes
in the first time step represent the immediate reward, while
the h nodes in the second time step represent the future value
associated with a subset of the state variables.

In most representations of Bayesian networks and DDNs,
tables are used to represent the utility nodes ri and hi and the
transition probabilities P (X ′

i | Parents(X ′
i)). However, as

discussed by Boutilier et al. (1999), decision problems often
exhibit a substantial amount of context specificity, both in
the value functions and in the transition dynamics. We have
already described a rule-based representation of the value
function components. We now describe a rule representation
(as in (Zhang & Poole 1999)) for the transition model.

Definition 4.1 A probability rule 〈π; c : p〉 is a function π :
{X,X′,A} �→ [0, 1], where the context c ∈ Dom(C) for
C ⊆ {X,X′,A} and p ∈ [0, 1], such that π(x,x′,a) = p
if {x,x′,a} is consistent with c and is 1 otherwise. A rule-
based conditional probability distribution (rule CPD) P is
a function P : {X ′

i,X,A} �→ [0, 1], composed of a set of
probability rules {π1, π2, . . . }, such that:

〈π1;¬Electrical : 0〉
〈π2;¬ Plumbing : 0〉
〈π3;A2 = ¬ paint ∧ ¬ Painting : 0〉
〈π4; Plumbing ∧ Electrical

∧ A2 = paint : 0.95〉
〈π5; Plumbing ∧ Electrical ∧ Painting

∧ A2 = ¬ paint : 0.9〉

(a) (b)

Figure 3: (a) Example CPD for Painting’, represented as a CPD-
tree. (b) Equivalent set of probability rules.

P (x′

i | x,a) =

n
∏

i=1

πi(x
′

i,x,a);

and where every assignment (x′
i,x,a) is consistent with the

context of only one rule.

We can now define the conditional probabilities P (X ′
i |

Parents(X ′
i)) as a rule CPD, where the context variables C

of the rules depend on variables in {X ′
i ∪ Parents(X ′

i)}. An
example of a CPD represented by a set of probability rules
is shown in Fig. 3.

In the one-step lookahead case, for any setting x of the
state variables, the agents aim to maximize:

Q(x,a) =

g
∑

j=1

Qj(x,a)

Qj(x,a) = rj(x,a) +
∑

x
′

P (x′ | x,a)hj(x
′).

In the previous section, we showed that if each Qj is a rule-
based function, it can be optimized effectively using the co-
ordination graph. We now show that, when system dynam-
ics, rewards and values are rule-based, the Qj’s are also rule
based, and can be computed effectively. Our approach ex-
tends the factored backprojection of Koller and Parr (1999).

Each hj is a rule function, which can be written

as hj(x
′) =

∑

i ρ
(hj)
i (x′), where ρ

(hj)
i has the form

〈

ρ
(hj)
i ; c

(hj)
i : v

(hj)
i

〉

. Each rule is a restricted scope func-

tion; thus, we can simplify:

gj(x,a) =
∑

x
′

P (x′ | x,a)hj(x
′)

=
∑

i

∑

x
′

P (x′ | x,a)ρ
(hj)
i (x′);

=
∑

i

v
(hj)
i P (c

(hj)
i | x,a);

where the term v
(hj)
i P (c

(hj)
i | x,a) can be written as

a rule function. We denote this backprojection operation

A1

Foundation Foundation Foundation Foundation FoundationFoundation

Electrical Electrical

Plumbing

Decoration Decoration Decoration Decoration Decoration Decoration

A2

R1

h3h3

h4h4

h2h2

h1h1

R2

R3

R4

Plumbing

Painting Painting

R5
h5h5

t t+1

Electrical Electrical

PlumbingPlumbing

A2A2

P(Painting’) = 0

Not done Done

PaintingPainting

Done

Done

Not done

Not done

P(Painting’) = 0

P(Painting’) = 0

PaintDifferent

than paint

P(Painting’) = 0.9

P(Painting’) = 0.95

256 AAAI-02

by RuleBackproj (ρ
(hj)
i); its implementation is straight-

forward, and we omit details for lack of space. For
example, consider the backprojection of a simple rule,
〈ρ; Painting done at t + 1 : 10〉, through the CPD in Fig. 3:

RuleBackproj (ρ) =
∑

x
′

P (x′ | x,a)ρ(x′);

=
∑

Painting′

P (Painting
′ | x,a)ρ(Painting

′);

= 10

5
∏

i=1

πi(Painting′,x, Paint) .

Note that the contexts for these probability rules are mu-
tually exclusive, and hence the product is equivalent to the
CPD-tree shown in Fig. 3(a). Hence, this product is equal
to 0 in most contexts, e.g., when electricity is not done at
time t. The product in non-zero only in two contexts: in the
context associated with rule π4 and in the one for π5. Thus,
we can express the backprojection operation as:

RuleBackproj (ρ) =
〈Plumbing ∧ Electrical ∧ A2 = paint : 9.5〉 +
〈Plumbing ∧ Electrical ∧ Painting ∧ A2 = ¬ paint : 9〉;

which is a rule-based function composed of two rules.

Thus, we can now write the backprojection of the next
step utility hj as:

gj(x,a) =
∑

i

RuleBackproj (ρ
(hj)
i); (1)

where gj is a sum of rule-based functions, and therefore
also a rule-based function. Using this notation, we can write
Qj(x,a) = rj(x,a) + gj(x,a), which is again a rule-based
function. This function is exactly the case we addressed
in Section 3. Therefore, we can perform efficient one-step
lookahead planning using the same coordination graph.

5 Multiagent sequential decision making

We now turn to the substantially more complex case where
the agents are acting in a dynamic environment and are try-
ing to jointly maximize their expected long-term return. The
Markov Decision Process (MDP) framework formalizes this
problem.

An MDP is defined as a 4-tuple (X,A,R, P) where: X

is a finite set of N = |X| states; A is a set of actions; R is a
reward function R : X ×A �→ IR, such that R(x, a) repre-
sents the reward obtained in state x after taking action a; and
P is a Markovian transition model where P (x′ | x, a) rep-
resents the probability of going from state x to state x

′ with
action a. We assume that the MDP has an infinite horizon
and that future rewards are discounted exponentially with a
discount factor γ ∈ [0, 1). Given a value function V , we
define QV(x, a) = R(x, a) + γ

∑

x
′ P (x′ | x, a)V(x′), and

the Bellman operator T ∗ to be T ∗V(x) = maxa QV(x, a).
The optimal value function V∗ is the fixed point of T ∗:
V∗ = T ∗V∗. For any value function V , we can de-
fine the policy obtained by acting greedily relative to V:
Greedy(V)(x) = arg maxa QV(x, a). The greedy policy

relative to the optimal value function V∗ is the optimal pol-
icy π∗ = Greedy(V∗).

There are several algorithms for computing the optimal
policy. One is via linear programming. Our variables are

V1, . . . , VN , where Vi represents V(x(i)) with x
(i) referring

to the ith state. One simple variant of the LP is:

Minimize: 1/N
∑

i Vi ;
Subject to: Vi ≥ R(x(i), a) + γ

∑

j P (x(j) | x(i), a)Vj

∀i ∈ {1, . . . , N}, a ∈ A.

In our setting, the state space is exponentially large, with
one state for each assignment x to X. We use the common
approach of restricting attention to value functions that are
compactly represented as a linear combination of basis func-
tions H = {h1, . . . , hk}. A linear value function over H is

a function V that can be written as V(x) =
∑k

j=1 wjhj(x)

for some coefficients w = (w1, . . . , wk)′. The linear
programming approach can be adapted to use this value
function representation (Schweitzer & Seidmann 1985) by
changing the objective function to

∑

i wihi, and modifying
the constraints accordingly. In this approximate formula-
tion, the variables are w1, . . . , wk, i.e., the weights for our
basis functions. The LP is given by:

Variables: w1, . . . , wk ;
Minimize:

∑

x
1/N

∑

i wi hi(x) ;
Subject to:

∑

i wi hi(x) ≥
R(x, a) + γ

∑

x
′ P (x′ | x, a)

∑

i wi hi(x
′)

∀x ∈ X,∀a ∈ A.

This transformation has the effect of reducing the number
of free variables in the LP to k (one for each basis function
coefficient), but the number of constraints remains |X|×|A|.
We address this issue by combining assumptions about the
structure of the system dynamics with a particular form of
approximation for the value function. First, we assume that
the system dynamics of the MDP are represented using a
DDN with probability rule CPDs, as described in Section 4.
Second, we propose the use of value rules as basis functions,
resulting in a rule-based value function. If we had a value
function V represented in this way, then we could implement
Greedy(V) by having the agents use our message passing
coordination algorithm of Section 4 at each step.

Our formulation is based on the approach of GKP, who
show how to exploit the factorization of the basis functions
and system dynamics in order to replace the constraints
in the approximate LP by an equivalent but exponentially
smaller set of constraints. First, note that the constraints can
be replaced by a single, nonlinear constraint:

0 ≥ max
x,a

[

R(x,a) +
∑

i

(γgi(x) − hi(x))wi

]

;

where gi = RuleBackproj (hi) =
∑

x
′ P (x′ | x,a)hi(x

′),
which can be computed as described in Section 4. Although
a naive approach to maximizing over the state space would
require the enumeration of every state, as we have shown in
Section 3, the structure in rule functions allow us to perform
such maximization very efficiently. The same intuition al-
lows us to decompose this nonlinear constraint into a set of

AAAI-02 257

linear constraints, whose structure is based on the intermedi-
ate results of the variable elimination process. The algorithm
is directly analogous to that of GKP, except that it is based on
the use of rule-based variable elimination rather than stan-
dard variable elimination. We refer the reader to (Guestrin,
Koller, & Parr 2001a) for the details.

The approximate LP computes a rule-based value func-
tion, which approximates the long-term optimal value func-
tion for the MDP. These value functions can be used as the
one-step lookahead value in Section 4. In our rule-based
models, the overall one-step value function is also rule-
based, allowing the agents to use the coordination graph in
order to select an optimal joint action (optimal relative to
the approximation for the long-term value function). It is
important to note that, although the same value function is
used at all steps in the MDP, the actual coordination struc-
ture varies substantially between steps.

Finally, we observe that the structure of the computed
value rules determines the nature of the coordination. In
some cases, we may be willing to introduce another approx-
imation into our value function, in order to reduce the com-
plexity of the coordination process. In particular, if we have
a value rule 〈ρ; c : v〉 where v is relatively small, then we
might be willing to simply drop it from the rule set. If c

involves the actions of several agents, dropping ρ from our
rule-based function might substantially reduce the amount
of coordination required.

6 Experimental results

We implemented our rule-based factored approximate
linear programming and the message passing coor-
dination algorithms in C++, using CPLEX as the
LP solver. We experimented with a construction
crew problem, where each house has five features
{Foundation, Electric, Plumbing, Painting, Decoration}.
Each agent has a set of skills and some agents may move
between houses. Each feature in the house requires two
time steps to complete. Thus, in addition to the variables
in Fig. 2, the DDN for this problem contains “action-
in-progress” variables for each house feature, for each
agent, e.g., “A1-Plumbing-in-progress-House 1”. Once an
agent takes an action, the respective “action-in-progress”
variable becomes true with high probability. If one of the
“action-in-progress” variables for some house feature is
true, that feature becomes true with high probability at the
next time step. At every time step, with a small probability,
a feature of the house may break, in which case there is
a chain reaction and features that depend on the broken
feature will break with probability 1. This effect makes the
problem dynamic, incorporating both house construction
and house maintenance in the same model. Agents receive
100 reward for each completed feature and −10 for each
“action-in-progress”. The discount factor is 0.95. The basis
functions used are rules over the settings of the parents of
the CPDs for the house feature variables in the DDN.

Fig. 4 summarizes the results for various settings. Note
that, although the number of states may grow exponentially
from one setting to the other, the running times grow poly-
nomially. Furthermore, in Problem 2, the backprojections of

the basis functions had scopes with up to 11 variables, too
large for the table-based representation to be tractable.

The policies generated in these problems seemed very
intuitive. For example, in Problem 2, if we start with no fea-
tures built, A1 will go to House 2 and wait, as its painting
skills are going to be needed there before the decoration skill
are needed in House 1. In Problem 1, we get very interest-
ing coordination strategies: If the foundation is completed,
A1 will do the electrical fitting and A2 will do the plumbing.
Furthermore, A1 makes its decision not by coordinating with
A2, but by noting that electrical fitting is a dominant strat-
egy. On the other hand, if the system is at the state where
both foundation and electrical fitting is done, then agents co-
ordinate to avoid doing plumbing simultaneously. Another
interesting feature of the policies occurs when agents are
idle; e.g., in Problem 1, if foundation, electric and plumbing
are done, then agent A1 repeatedly performs the foundation
task. This avoids a chain reaction starting from the founda-
tion of the house. Checking the rewards, there is actually a
higher expected loss from the chain reaction than the cost of
repeatedly checking the foundation of the house.

For small problems with one house, we can compute the
optimal policy exactly. In the table in Fig. 5, we present the
optimal values for two such problems. Additionally, we can
compute the actual value of acting according to the policy
generated by our method. As the table shows, these values
are very close, indicating that the policies generated by our
method are very close to optimal in these problems.

We also tested our rule-based algorithm on a variation
of the multiagent SysAdmin problem of GKP. In this prob-
lem, there is a network of computers, each is associated
with an administrator agent. Each machine runs processes
and receives a reward if a process terminates. Processes
take longer to terminate in faulty machines and dead ma-
chines can send bad packets to neighbors, causing them
to become faultye. The rule-based aspect in this problem
comes from a selector variable which chooses which neigh-
boring machine to receive packets from. We tested our al-
gorithm on a variety of network topologies and compared
it to the table-based approach in GKP. For a bidirectional
ring, for example, the total number of constraints gener-
ated grows linearly with the number of agents. Furthermore,
the rule-based (CSI) approach generates considerably fewer
constraints than the table-based approach (non-CSI). How-
ever, the constant overhead of managing rules causes the
rule-based approach to be about two times slower than the
table-based approach, as shown in Fig. 6(a).

However, note that in ring topologies the the induced
width of the coordination graph is constant as the number
of agents increases. For comparison, we tested on a reverse
star topology, where every machine can affect the status of a
central server machine, so that the number of parents of the
server increases with the number of computers in the net-
work. Here, we observe a very different behavior, as seen in
Fig. 6(b). In the table-based approach, the tables grow expo-
nentially with the number of agents, yielding an exponential
running time. On the other hand, the size of the rule set only
grows linearly, yielding a quadratic total running time.

Notice that in all topologies, the sizes of the state and

258 AAAI-02

Prob. ♯houses Agent skills ♯states ♯actions Time (m)

1 1 A1 ∈ {Found, Elec, Plumb}; A2 ∈ {Plumb, Paint, Decor} 2048 36 1.6

2 2
A1 ∈ {Paint, Decor}, moves
A2 ∈ {Found, Elec, Plumb, Paint}, at House 1
A3 ∈ {Found, Elec} and A4 ∈ {Plumb, Decor}, at House 2

33,554,432 1024 33.7

3 3

A1 ∈ {Paint, Decor}, moves
A2 ∈ {Found, Elec, Plumb}, at House 1
A3 ∈ {Found, Elec, Plumb, Paint}, at House 2
A4 ∈ {Found, Elec, Plumb, Decor}, at House 3

34,359,738,368 6144 63.9

4 2
A1 ∈ {Found}, moves; A2 ∈ {Decor}, moves
A3 ∈ {Found, Elec, Plumb, Paint}, at House 1
A4 ∈ {Elec, Plumb, Paint}, at House 2

8,388,608 768 5.7

Figure 4: Summary of results on the building crew problem.

Agent skills
Actual value of

rule-based policy
Optimal

value

A1 ∈ {Found, Elec};
A2 ∈ {Plumb, Paint, Decor}

6650 6653

A1 ∈ {Found, Elec, Plumb};
A2 ∈ {Plumb, Paint, Decor}

6653 6654

Figure 5: The actual expected value of our algorithm’s rule-based
policy and the value of the optimal policy for one-house problems.

(b)
Figure 6: Running times: (a) Bidirectional ring; (b) Inverted star.

action spaces are growing exponentially with the number of
machines. Nonetheless, the total running time is only grow-
ing quadratically. This exponential gain has allowed us to
run very large problems, with over 10124 states.

7 Conclusion

We have provided a principled and efficient approach to
planning in multiagent domains where the required interac-
tions vary from one situation to another. We have shown
that our results scale to very complex problems, including
problems where traditional table-based representations of
the value function blow up exponentially. In problems where
the optimal value could be computed analytically for com-
parison purposes, the value of the policies generated by our
approach were within 0.05% of the optimal value. From a
representation perspective, our approach combines the ad-

vantages of the factored linear value function representation
of (Koller & Parr 1999; Guestrin, Koller, & Parr 2001a;
2001b) with those of the tree-based value functions of
(Boutilier & Dearden 1996).

We showed that the task of finding an optimal joint ac-
tion in our approach leads to a very natural communication
pattern, where agents send messages along a coordination
graph determined by the structure of the value rules. The
coordination structure dynamically changes according to the
state of the system, and even on the actual numerical val-
ues assigned to the value rules. Furthermore, the coordina-
tion graph can be adapted incrementally as the agents learn
new rules or discard unimportant ones. We believe that this
graph-based coordination mechanism will provide a well-
founded schema for other multiagent collaboration and com-
munication approaches.

Acknowledgments. We are very grateful to Ronald Parr for many
useful discussions. This work was supported by the DoD MURI
program administered by the Office of Naval Research under Grant
N00014-00-1-0637, and by Air Force contract F30602-00-2-0598
under DARPA’s TASK program. C. Guestrin was also supported
by a Siebel Scholarship.

References
Bertele, U., and Brioschi, F. 1972. Nonserial Dynamic Program-
ming. New York: Academic Press.

Boutilier, C., and Dearden, R. 1996. Approximating value trees
in structured dynamic programming. In Proc. ICML, 54–62.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision theo-
retic planning: Structural assumptions and computational lever-
age. Journal of Artificial Intelligence Research 11:1 – 94.

Dean, T., and Kanazawa, K. 1989. A model for reasoning about
persistence and causation. Computational Intelligence 5(3).

Dechter, R. 1999. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence 113(1–2):41–85.

Guestrin, C.; Koller, D.; and Parr, R. 2001a. Multiagent planning
with factored MDPs. In Proc. NIPS-14.

Guestrin, C.; Koller, D.; and Parr, R. 2001b. Max-norm projec-
tions for factored MDPs. In Proc. IJCAI.

Koller, D., and Milch, B. 2001. Multi-agent influence diagrams
for representing and solving games. In Proc. IJCAI.

Koller, D., and Parr, R. 1999. Computing factored value functions
for policies in structured MDPs. In Proc. IJCAI.

Schweitzer, P., and Seidmann, A. 1985. Generalized polyno-
mial approximations in Markovian decision processes. Journal of
Mathematical Analysis and Applications 110:568 – 582.

Zhang, N., and Poole, D. 1999. On the role of context-specific
independence in probabilistic reasoning. In Proc. IJCAI.

0

100

200

300

400

0 5 10 15 20 25
number of agents

ru
n

n
in

g
ti

m
e

(s
e
c
o

n
d

s
) csi

non-csi

(a)

y = 0.53x2 - 0.96x - 0.01

R2 = 0.99

0

100

200

300

400

500

0 5 10 15 20 25 30

number of agents

ru
n

n
in

g
ti

m
e

(s
e
c
o

n
d

s
)

non-csi

csi

y = 0.000049 exp(2.27x)

R = 0.9992

AAAI-02 259

