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Most theories dealing with ill-defined concepts assume that performance is based
on category level information or a mixture of category level and specific item
information. A context theory of classification is described in which judgments
are assumed to derive exclusively from stored exemplar information. The main
idea is that a probe item acts as a retrieval cue to access information associated
with stimuli similar to the probe. The predictions of the context theory are con-
trasted with those of a class of theories (including prototype theory) that as-
sume that the information entering into judgments can be derived from an
additive combination of information from component cue dimensions. Across
four experiments using both geometric forms and schematic faces as stimuli, the
context theory consistently gave a better account of the data. The relation of
the context theory to other theories and phenomena associated with ill-defined
concepts is discussed in detail.

One of the major components of cognitive
behavior concerns abstracting rules and form-

ing concepts. Our entire system of naming ob-

jects and events, talking about them, and inter-
acting with them presupposes the ability to

group experiences into appropriate classes.
Young children learn to tell the difference be-
tween dogs and cats, between clocks and fans,
and between stars and street lights. Since few
concepts are formally taught, the evolution of
concepts from experience with exemplars must
be a fundamental learning phenomenon. The
focus of the present article is to explore how
such conceptual achievements emerge from

individual instances.

Structure of Concepts

An early step in analyzing task demands
involved in conceptual behavior is to ask how
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individual instances or exemplars are related
to the superordinate concept. Although there
is general agreement that natural categories
are structured so that exemplars within a
category are more similar to one another than
to exemplars from alternative categories, there
is disagreement concerning the rigidity of this
structure. One extreme view is that all natural
concepts are characterized by simple sets of
denning features that are singly necessary and
jointly sufficient to determine category mem-
bership (Katz & Postal, 1964). Each exemplar
of the concept must possess these defining
features, and therefore, each exemplar is
equally representative of the concept. Con-
cepts containing singly necessary and jointly
sufficient denning features are said to be well-
defined concepts.

A contrasting point of view is that most
natural concepts are not well-defined but
rather are based on relationships that are only
generally true. Individual exemplars may vary
in the number of characteristic features they
possess, and consequently, some exemplars
may be more representative or more typical of
a concept than others. For example, cows may
be better exemplars of the concept mammal
than are whales. Instances are neither arbi-
trarily associated with categories nor strictly
linked by defining features, but rather in-
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stances reflect more nearly a "family resem-
blance" structure (Rosch & Mervis, 1975).

These ideas concerning the structure of
categories influence the way instances are set
up in laboratory studies of artificial concepts.
Most early work with concepts used well-
defined concepts and focused on such issues as
the relative difficulty of acquiring different
rules, strategies for formulating and testing
alternative hypotheses, and the transfer of
behavior to new stimulus sets (e.g., Bourne,
1970; Levine, 1975; Trabasso & Bower, 1968).
While this approach has accumulated con-
siderable information about processes under-
lying hypothesis selection and rule learning
where rules are well-defined, little information
exists to show how these models might be
applied to a variety of other situations where
rules and concepts are not so precisely defined.
Therefore, substantial reason exists to examine
more closely the case in which the concepts
and classifications acquired in everyday ex-
perience do not conform to well-defined rules.

On the basis of an extensive series of experi-
ments, Rosch and her associates (Rosch, 1973,
1975a, 1975b, 1975c; Rosch & Mervis, 1975;
Rosch et al., 1976) have argued that most
natural categories do not have well-defined
rules or fixed boundaries separating alternative
categories. Rather, members vary in the degree
to which they are judged to be good examples
(typical) of the category, and many natural
concepts cannot be defined by a single set of
critical features. In addition, subjects appear
to use nonnecessary features in making cate-
gory judgments. Smith, Shoben, and Rips
(1974) found that the items judged to be
typical of a category possess features that are
characteristic of the class but not necessary for
category definition. For example, robin is a
typical member of the category bird and has
the characteristic feature that it flies, but not
all birds fly (e.g., penguins). In a reaction time
task, Smith et al. observed that subjects re-
quired less time to verify the category member-
ship of the more typical items in a category.
Characteristic features and not just defining
features appear to be involved in these category
judgments.

If many natural categories have a loosely
defined structure, how do people acquire and
use this structure? Posner and Keele (1968)

proposed that based on experience with ex-
emplars, people form an impression of the
central tendency of a category and that cate-
gorical judgments come to be based on this
central tendency, or prototype. While there is
not universal agreement that prototype forma-
tion underlies conceptual learning in this
domain, the increasing evidence that natural
categories and concepts are not well-defined
has amplified the interest in developing theories
of conceptual behavior appropriate to rules
with exceptions.

The present article takes the perspective of
aiming to see if recent theoretical develop-
ments arising in the domain of discrimination
learning might be profitably applied to classi-
fication learning. In the case of well-defined
rules for stimulus classification, there are some
striking parallels between paradigm and theory
in discrimination learning and concept identi-
fication. For example, the simple affirmative
concept "red in one pile, green in the other
pile" corresponds to a simultaneous discrimi-
nation learning task, where red is correct and
green is incorrect. Likewise, hypothesis-testing
theories for concept identification tasks (e.g.,
Trabasso & Bower, 1968) are closely mirrored
by theories of selective attention in discrimina-
tion learning (Medin, 1976; Sutherland &
Mackintosh, 1971).

Is there any basis for expecting useful inter-
action between the domains of discrimination
learning and concept learning for ill-defined
rules? We shall argue that there is. Not all
discrimination learning problems map onto
simple affirmative rules. For example, in a
successive brightness discrimination problem,
the solution might be "If the choice stimuli
are white, go right; if black, go left." The
various stimulus components, that is, black,
white, left, and right, each are associated with
reward half the time, and the problem could
not be solved on the basis of associations to
these independent stimulus components. In-
deed, Spence's (1936) theory of discrimination
learning assumed independence of compo-
nents, and it was unable to predict that suc-
cessive discrimination problems could be mas-
tered. Other discrimination learning theories
have been proposed that can account for rela-
tionships between simultaneous and successive
discrimination learning, and the present article
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attempts to demonstrate the applicability of
one such theory (Medin, 1975) to learning and
classification involving ill-defined categories.
Before discussing this theory, however, we
consider two phenomena that have been ad-
duced in support of prototype theory and that
directly motivated our theoretical efforts.

Some Evidence Related to Classification Involving

Ill-defined Concepts

In a typical study assessing the learning of
ill-defined concepts, subjects learn to sort a
set of instances into two or more categories
and then are given transfer tests with new
stimuli, including a pattern representing the
central tendency, or prototype. An alternative
to the procedure of presenting two or more
contrasting categories is simply to present
subjects with instances of a single concept and
then to give a new-old recognition test for new
and old instances. Stimuli range from sche-
matic faces, geometric forms, and dot patterns
to letter sequences and biographical descrip-
tions. A major theoretical view is that as a
function of experience with exemplars of a
category, subjects abstract out the central
tendency of the category. This summary
representation, or prototype, is assumed to
provide the basis for classification performance.
The closer an exemplar is to its category proto-
type and the farther it is from the prototypes
associated with alternative categories, the
greater the likelihood that it will be appropri-
ately classified.

Two main results arising from this literature
seem to provide cogent evidence for prototype
formation:

1. Subjects classify prototypic patterns they
have never seen before virtually as fast and
accurately as they classify old training pat-
terns. In addition, these two types of patterns
are classified better than other new exemplars
(e.g., Homa & Chambliss, 1975; Homa &
Vosburgh, 1976; Peterson, Meagher, Chait, &
Gillie, 1973; Posner & Keele, 1968, 1970;
Strange, Keeney, Kessel, & Jenkins, 1970).
Transfer performance is well-predicted by dis-
tance of a pattern from the prototype and not
by the frequency with which individual fea-
tures of patterns appeared during training
(e.g., Franks & Bransford, 1971; Lasky, 1974;
Posnansky & Neumann, 1976).

It is generally proposed that two factors
determine classification performance in these
situations (e.g., Posner & Keele, 1968, 1970).
One is specific item information, which leads
to old training patterns being classified better
than new patterns; the other is abstraction,
which gives rise to performance being a func-
tion of the distance of a pattern from the
central tendency, or prototype.

2. The second major finding concerns dif-
ferential retention of old and new patterns.
When delays on the order of several days are
inserted between learning and transfer tests,
significantly greater forgetting is observed for
the old training stimuli than for the prototype
and other new patterns (Goldman & Homa,
1977; Homa et al., 1973; Homa & Vosburgh,
1976; Posner & Keele, 1970; Strange et al.,
1970). These results are consistent with the
idea that judgments are based on a mixture
of specific item and category level information
and that the specific item information is for-
gotten more rapidly than the abstract, cate-
gory level information. According to this view,
as retention interval increases, judgments are
increasingly likely to be based on the proto-
type and less likely to be based on specific
exemplar information.

Previous theoretical explanations of the
above two phenomena have relied on positing
both specific item and category level informa-
tion. Yet, we noted that at least one dis-
crimination learning theory (Medin, 1975)
might account for these results and interac-
tions simply in terms of the similarity or con-
fusability of the learned exemplars. Therefore,
it is of interest to see how well this theory can
account for classification without assuming
that category level information influences per-
formance. In the remainder of this article, we
present a context theory of classification based
on Medin's (1975) context theory of discrimi-
nation learning, describe four new experiments
that contrast the predictions of the context
model with predictions derived from a large
class of classification models, and finally discuss
more generally the relationship between the
context theory and classification behavior.

Context Theory for Classification

The general idea of the context model is
that classification judgments are based on the
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retrieval of stored exemplar information. Spe-
cifically, we assume that a probe stimulus
functions as a retrieval cue to access informa-
tion stored with stimuli similar to the probe.
This mechanism is, in a sense, a device for
reasoning by analogy inasmuch as classifica-
tion of new stimuli is based on stored informa-
tion concerning old exemplars, but one should
also note its similarity to contemporary mem-
ory models. For example, Ratcliff (Note 1)
has recently proposed a model for recognition
memory that relies on a resonance metaphor,
whereby the set of stored items to be searched
is evoked on the basis of similarity of the in-
formation provided by the probe to the infor-
mation in the memory items.

Although we shall propose that classifica-
tions derive from exemplar information, we do
not assume that the storage and retrievability
of this exemplar information is necessarily
veridical. If subjects are using strategies and
hypotheses during learning, the exemplar in-
formation may be incomplete and the salience
of information from alternative dimensions
may differ considerably. A person focusing on
the hypothesis that red cards belong in Cate-
gory A and green cards in Category B might
store and be able to retrieve little information
concerning, say, the form of the stimuli.
The context model attempts to represent the
effect of strategies and hypotheses in terms
of the ease of storage and retrieval of informa-
tion associated with the component stimulus
dimensions.

Notation

In discussing the context theory and alterna-
tive theories, it is useful to work with an ab-
stract notation. Consider a situation where
the stimuli to be classified comprise binary
values on each of four dimensions (e.g., color
[red or blue], form [triangle or circle], size
[large or small], and number [one or two]).
By assigning the number 1 to one value on a
dimension and the number 0 to the other, each
stimulus can be described in terms of a simple
binary code. For example, if the dimensions
are ordered as color, form, size, and number,
the notation 1001 might refer to a single small
red circle, while 0110 would refer to a stimulus
comprised of two large blue triangles. This

binary code is also useful for noting similarity
relationships. Thus, the two stimuli 1111 and
1101 differ only in size, while 0101 and 1101
differ only in color.

Before proceeding to the particular assump-
tions of the context model, it might prove
helpful to consider a specific example. Suppose
two A patterns, AI and A2 (Ai =1110 and
A2 = 1010), and two B patterns, BI and B2

(Bi = 0001 and B2 = 1100), have been pre-
sented a few times during a classification
learning task and that now a new stimulus
1101 is presented. Suppose further that the
person in the experiment has selectively at-
tended to the first two dimensions, so that less
information has been stored or is retrievable
concerning the third and fourth dimensions.
The subject's representation of exemplar in-
formation may be something like this:

lll?~A(Ai) 10?0-A(A2)
OO?I-B(B!) no?-B(B2),

where the question marks indicate that infor-
mation that would differentiate value 1 and
value 0 on that dimension either has not been
stored or cannot be accessed. When the probe
1101 is presented, the most likely event is that
the representation associated with the B2 ex-
emplar (110?) will be retrieved, and the probe
will be classified as a B. The next most likely
event is that exemplar AI will be retrieved,
since the probe differs from the representation
of AI only on the third dimension. In this
case, the probe would be classified as an A.
The greater the similarity of a stored ex-
emplar to a probe, the more likely it is that
the probe will retrieve the information associ-
ated with that, exemplar. In the following
paragraphs, we provide a general rationale for
our ideas concerning similarity and then de-
velop the specific assumptions of the context
model.

Interactive Similarity

Imagine that a blue circle is presented in
some experimental context and that some
event (e.g., the classification assignment) oc-
curs. It is not assumed that individual stimulus
components get directly and independently
associated with the event. Rather, we propose
that information concerning the cue, the con-
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text, and the event are stored together in
memory and that both cue and context must
be activated simultaneously in order to re-
trieve information about the event. A change
in either the cue or the context can impair
the accessibility of information associated with
both.

This idea is depicted in Figure 1. R(cue),
R(context), and R (event) refer to the mem-
ory representation of the cue, context, and
event, respectively. It is further assumed that
a particular stimulus component serves a cue
function and acts as context for other cues. In
our example, blue is part of the context in
which circle appears. As a result, transfer or
generalization along the form dimension will
not be independent of color value. This non-
independence represents an important con-
straint on the accessibility of stored informa-
tion and provides the basis for the experimen-
tal contrasts to be considered later.

This formulation is closely related to the
assumptions of the Estes hierarchical associa-
tion model (Estes, 1972, 1973, 1976). The cue-
context node corresponds to what Estes calls
a "control element," and we use it to denote
the assumptions (a) that neither cue nor con-
text is directly associated with an event or
outcome and (b) that inputs from both cue
and context are needed to activate the node
and provide access to the representation of an
event. The latter assumption implies that the
effect of cue changes and context changes com-
bine in an interactive manner.

Specific Assumptions

1. Category judgments are based on the
retrieval of specific item information; no cate-
gorical information is assumed to enter into
the judgments independently of specific item
information. While it is assumed that categori-
cal information does not influence judgments,
this is not the same as assuming that category
level information does not exist. In the case of
natural categories, information on the level of
categories is often explicitly presented. Our
proposal simply is that judgments in classifica-
tion tasks are based on retrieval of exemplar
information rather than on category level
information.

CUE-CONTEXT NODE

R(CUE)' R(CONTEXT) K(EVENT)

Figure 1. Illustration of factors proposed to determine
the accessibility of information associated with a cue
presented in a particular context. (R refers to the
memory representation of the cue, context, or event.)

2. The probability of classifying exemplar i
into category j is an increasing function of the
similarity of exemplar i to stored category j
exemplars and a decreasing function of the
similarity of exemplar i to stored exemplars
associated with alternative categories. Specifi-
cally, it is assumed that the evidence favoring
a category j response to probe i is equal to the
sum of the similarities of probe i to the stored
j exemplars divided by the sum of the simi-
larities of probe i to all stored exemplars. For
purposes of the present article, we assume that
the probability of a j response is equal to the
evidence favoring a j classification. The mecha-
nism by which these similarities operate is
detailed in the next assumption.

3. Probe or test stimuli act as retrieval cues
to access information associated with stimuli
similar to the probe. Which stimuli will be
retrieved depends on the overall similarity of
the stored exemplars to the probe stimulus.
Instead of proposing that subjects compute
the similarity of a probe to all of the training
patterns, we assume that the retrieval rules
act to determine which patterns are likely to
be accessed. In fact, later on we shall consider
the possibility that judgments are based solely
on the first pattern retrieved.

4. The similarity of two cues along a dimen-
sion can be represented by a similarity param-
eter whose value can range between 0 and 1,
with 1 representing maximum similarity. For
example, the similarity of a yellow circle and
a blue triangle along the color dimension would
be represented by a parameter c for color
similarity, while form similarity would be
represented by a parameter /. The parameter
c for color would be larger if the two colors
were yellow and orange than if the two colors
were yellow and blue, since presumably yellow
is more similar to orange than to blue.

5. The various cue dimensions comprising
stimuli in some context are combined in an
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interactive, specifically multiplicative, manner
to determine the overall similarity of two
stimuli. This means that the overall similarity
of a yellow circle and a blue triangle would be
equal to cf. If the form differences were very
salient (i.e., /=0), then variations in color
similarity would not alter performance, since
c/=S 0 regardless of the value of c.

Although the rationale for the multiplicative
rule grows out of attempts to represent the
effects of similarity and context in other situa-
tions (e.g., Estes, 1973; Medin, 1975), it fits
well with certain intuitions concerning natural
concepts. For example, although mannequins
may resemble human beings along a variety
of dimensions, we are not tempted to judge
that they are, in fact, human beings. In a
multiplicative combination rule, the effects of
various dimensions of similarity can be effec-
tively overcome by a single dimension of dif-
ference (e.g., animacy). If judgments were
based solely on a summing of evidence, it
would be more awkward to represent the dif-
ference between mannequins and human beings.
In short, the interactive rule has the potential
to represent the effects of necessary features
without the theory committing itself to the
idea that category membership is defined in
terms of singly necessary and jointly sufficient
features.

The multiplicative rule implies that a pat-
tern will be classified more efficiently if it is
highly similar to one pattern (differing in only
one dimension) and has low similarity to a
second (differing in three dimensions) than if
it has medium similarity (differing in two
dimensions to two patterns in its category. If
all dimensions were equally salient, then in
the first case, the net similarity would be 5 + s3

(where s is the similarity parameter for a differ-
ence along a given dimension); and in the

second, the net similarity would be 2si. Since
s is defined to be between 0 and 1, the first

term is larger than the second, except for the
uninteresting cases where s is 0 or where s is 1.

6. Selective attention can be represented by
changes in the salience or similarity parameter
for dimensions. That is, the similarity param-
eter of two cues along a dimension is less
when that dimension is attended than when it
is not attended.

This assumption is designed to capture the
consequences of active hypothesis testing. For
example, if subjects were trying out the pos-
sibility that all red stimuli belong to Category
A and all green stimuli to Category B, they
might code much less information about other
attributes such as size or form than otherwise.
As a result, the effective similarity of two size
or two form cues might be greater than usual,
and the effective similarity of red and green
would be expected to be less than otherwise.
For tests that can be solved by attending to a
single dimension, subjects may have only
minimal information to distinguish the indi-
vidual exemplars (see Bourne & O'Banion,
1969; Calfee, 1969).

7. The last general assumption is that reten-
tion loss can be represented by changes
(increases) in the similarity parameters. We
assume that retention loss corresponds to a
loss of distinctiveness, which we represent as
increased similarity, regardless of whether it
arises from forgetting of hypotheses or strate-
gies involving selective attention or from de-
creased availability of the exemplar informa-
tion independent of strategies.

No special assumptions are made to dis-
tinguish old and new patterns, and later on we
will indicate how differential forgetting is
handled in terms of changes in the similarity
parameters. We propose that the ease of learn-
ing to classify a training pattern into Category
A and the likelihood of classifying a new pat-
tern into Category A increases with the simi-
larity of the pattern to the stored exemplars in
Category A and decreases with the similarity
of an item to the exemplars in Category B.
One shortcoming of the context model as so
far developed is that specific assumptions con-
cerning learning and storage of exemplar infor-
mation have not been spelled out. Predictions
concerning errors during learning will be based
on the qualitative evidence derived from the
similarity of an exemplar to other exemplars
of its category versus its similarity to exem-
plars of alternative categories.

Application to an Example

In developing the predictions of the context
theory as well as those alternative classifica-
tion theories, it is useful to work with a con-
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crete example. Consider a situation where six
stimuli are to be presented, three assigned to
Category A and three to Category B. Suppose
further that the stimuli comprise binary values
on the dimensions of color, form, size, and
position. Figure 2 represents this situation in
terms of our abstract notation. If 1 represents
red and 0 blue, then red figures are more
often associated with Category A than Cate-
gory B. One can also see that Stimulus 1
differs from Stimulus 2 only on position but
differs from Stimulus 3 in color, form, and
size. The categories are not well-defined be-
cause there is no set of singly necessary and
jointly sufficient features to define category
membership. In fact, no simple feature is even
necessary for category membership. Note that
for any dimension, two of the three Category A
members have value 1 and two of the three
Category B members have value 0. We will
now use this notation and write prediction
equations based on our assumptions concern-
ing similarity and retrieval.

The similarity parameters for the dimen-
sions of color, form, size, and position are
represented as parameters c, f, s, and p when
two comparison stimuli differ in their value on
the dimension in question, and the similarity
parameter is set at 1 when the two values are
identical. Using this notation for Stimulus
Pattern 1, we can represent the evidence
favoring a Category A assignment (£A) in
terms of the likelihood that the probe will re-
trieve a pattern associated with Category A as

^.^(l- l - l -

-s-pK. (1)

Multiplying out the terms in parenthesis, we
can write the more simple form

£A,I
cfs

cfsp + cf+ sp' (2)

The numerator of Equation 2 arises from
the fact that Stimulus 1 is identical to itself;
differs only in position (p) from Stimulus 2;
and differs in color, form, and size (cfs) from
Stimulus 3. The second three terms of the
denominator represent the overall similarity
of Stimulus 1 to Stimulus 4, Stimulus 5, and
Stimulus 6, respectively.

CATEGORY A

STIMULUS

1

2

3

PATTERN

C F S

1 1 1

1 1 1

0 0 0

STIMULUS

7

CATEGORY B

STIMULUS

P

1 1

0 S

I 6

TRANSFER

PATTERN

0 1 0 1

PATTERN

C F S P

0 0 0 0

0 0 1 1

1 1 0 0

Figure 2. Abstract notation for representing stimuli
with binary values along four dimensions. (C, F, S,
and P stand for color, form, size, and position,
respectively.)

In a directly analogous manner, one can
show that for Stimulus 4 in Figure 2,

sp + cf
cfs'

(3)

Comparing Equations 2 and 3, one may note
that if c = / = s = p = x (x 7* 0 or 1), £A,i is
larger than £B,4. The denominators of the two
equations are identical; and subtracting the
numerator of Equation 3 from that of Equa-
tion 2, we get x — 1y? + x3, which is positive
because x lies between 0 and 1. Based on the
general proposal that ease of learning and
accuracy of classification increase as the evi-
dence favoring the category increases, Pattern
1 should be easier to learn and classify than
Pattern 4.

On a qualitative level, one may note that
the reason that Stimulus 1 should be easier to
learn and classify than Stimulus 4 is that
Stimulus 1 is highly similar to one other
pattern (Stimulus 2), and this pattern is as-
sociated with the same category; while Stimu-
lus 4 is highly similar to one other pattern
(Stimulus 3), but this pattern is associated
with the opposite category. Therefore, when
Stimulus 4 is presented, the representation and
category assignment associated with Stimulus
3 might well be activated and produce
misclassifications.

Because of its multiplicative combination
rule for deriving overall similarity, the con-
text model implies that performance will be
primarily affected by stored exemplars that
are highly similar to the item in question. This
relationship is assumed to hold for transfer as
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well as original learning. Usually classification
models make qualitative predictions based on
the evidence favoring one category versus
alternative categories. We shall follow this
practice in comparing the context model with
alternative models, but at the same time, we
shall attempt to make quantitative predictions
by using a simple rule relating the weights to
classification probabilities. As a first attempt
at quantitative predictions, we will let the
probability that an item will be classified as an
A on transfer tests be equal to the weight
favoring Category A. That is,

PA,, = EA,,-. (4)

For example, for New Stimulus 7 in Figure 2,
we would have

A,7

cs + csp + /
(5)

where/, s, c, and p are the respective similarity
parameters for the dimensions of form, size,
color, and position. If all four parameters were
equal to the value .30, then according to
Equation 5, New Pattern 7 should be classified
as an A 61% of the time.

In brief, the context model assumes that
classification is based on the retrieval of stored
exemplar information, that this retrieval pro-
cess is directly a function of the similarity of
the probe item to the stored exemplars, and
that similarity derives from an interactive
combination of component cue dimensions.
We consider now how these ideas might ac-
count for excellent performance on prototype
stimuli and differential retention.

Performance on Prototypic Stimuli and

Differential Retention

Performance on prototype patterns fre-
quently equals or exceeds performance on old
training patterns. This result can be predicted
by the context model because the prototypic
pattern almost always is the pattern having
the greatest number of highly similar category
exemplars or training patterns. Not only that
but also because of the ways in which cate-
gories have usually been constructed (Reed,
1972), the prototype is unlikely to be highly
similar to any exemplars from alternative

categories. In fact, as Reed (1972) has noted,
almost all models generally predict excellent
classification of prototypic patterns, and spe-
cial measures must be taken in setting up an
experiment to distinguish alternative models.

Whether performance on new prototype
patterns is better or worse than performance
on old training patterns will depend on the
component similarity parameters according to
the context theory. If similarity is low, few
between-category confusions will occur, and
training pattern performance will be excellent;
if similarity is higher, more between-category
confusions will occur, and this will hinder
performance on training patterns more than
prototype patterns because prototype patterns
are unlikely to be highly similar to (confusable
with) alternative category exemplars.

These interactions associated with the degree
of similarity also provide the basis for ac-
counting for differential retention. Suppose,
for example, that the similarity parameters
associated with the stimuli in Figure 2 were
equal and constant at .10 on an immediate
test and (consistent with Assumption 6) that
the similarity parameters increased to .40 on
a delayed test. Predicted performance on Old
Pattern 5 (0011) would drop from 91% correct
to 63% correct; while performance on the new
pattern (1000) would only drop from 91%
correct (Category B responses) to 69% correct
on the delayed test.

In general, performance on old patterns will
suffer more over a retention interval than per-
formance on new patterns because of the de-
creasing likelihood that a training pattern
probe will successfully access its own stored
representation and the associated category as-
signment information. By a careful selection
of training and transfer stimuli, one might be
able to produce increases in classification per-
formance over a retention interval for certain
patterns. As of yet, we are unable tg commit
ourselves on the issue of whether changes in
similarity parameters derive mainly from
changes in the availability of component ex-
emplar information or whether changes reflect
the forgetting of a strategy involving selective
attention.

It seems that in principle, the context theory
can account both for excellent classification of
prototypic stimuli and for differential reten-
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tion of old and new stimuli without positing a
(changing) mixture of two types of informa-
tion. Rather, both results follow from our as-
sumptions concerning retrieval of stored ex-
emplars by similarity. In addition to this
apparent parsimony, the context model sug-
gests some new theoretical contrasts that
differentiate the context theory from a large
class of classification models including proto-
type models. Before discussing these new
contrasts, we characterize this class of models,
which we shall call independent cue models.

Independent Cue Models

Independent cue models assume that the
information entering into category judgments
(i.e., overall similarity, distance, or validity)
can be derived from an additive combination
of the information (similarity, distance, or
validity) from the component cue dimensions
(Franks & Bransford, 1971; Hayes-Roth &
Hayes-Roth, 1977; Reed, 1972). Prototype,
average distance, and versions of cue validity
and frequency models fall under this domain.
First, a general form of an independent cue
model will be presented and then the relation-
ship between this general form and particular
models will be examined. While the derivation
is not completely general, it will hold for
binary-valued dimensions.

Consider again Figure 2. A value 1 on any
dimension is more closely or more often as-
sociated with Category A than Category B, and
a value 0 is more likely to be associated with
Category B. In other words, a value 1 pro-
vides information that a stimulus will probably
fall into Category A, while a value 0 provides
information that a stimulus will probably fall
into Category B. For all of the models to be
considered, the probability of classifying a
pattern into Category A is assumed to be an
increasing function of the weight of evidence
favoring Category A and a decreasing function
of the weight of evidence favoring Category B.
Owing to perceptual salience, selective atten-
tion, or particular learning strategy, the com-
ponent dimensions of a stimulus may not be
equally weighted. With these considerations
and Figure 2 in mind, one can write an equa-
tion for evidence for Category A (£A) as

where We, Wf, W,, and Wp are the weights
associated with the color, form, size, and
position dimensions, and where //A and Ij-&
for a given dimension j (j = c, /, s, or p) are,
respectively, the information favoring Cate-
gory A and the information favoring Category
B.

The first term, (!CA — I^)WC, consists of a
difference in information value (/CA — lea)
and an associated weighting factor (Wc). When
a pattern is presented to be classified at some
point, the value associated with the color di-
mension (red [1] or blue [0] in our example)
will be sampled. If red (denoted 1) is sampled,
then (7<,A — /CB) would be positive, since red
is more closely associated with Category A
than Category B. If blue (denoted as value 0)
were sampled, then (/CA — /CB) would be
negative, since blue is more closely associated
with Category B than Category A. This in-
formation from the color dimension would then
be weighted by the parameter Wc and added
to the weighted information from the form,
size, and position dimensions to arrive at the
overall evidence favoring Category A. In the
example shown in Figure 2, for each dimension,
the associated values are equally informative
(i.e., probability of Category A given value 1
is equal to the probability of Category B given
value 0), which means that IJA. — Ijs for value
1 is equal to 7jB — IJA. for value 0. Because of
this symmetry, Equation 1 can be rewritten as

£A = WJ.k + Wflfk + WJsk + Wvlpk, (7)

where Wc, W/, Ws, and Wv are denned as
before, and where /,-,* for a given dimension

3 (J = c>f> s> or P) and value k (k = 0 or 1) is
equal to +1 if k is 1 and equal to —1 if k is 0.
Since for each dimension, the values 1 and 0
are equally informative and since the weights
for the various dimensions are arbitrary pa-
rameters, Equation 7 represents the general
case where for each dimension, the value is
sampled to see in which category it is more
closely associated. This information is then
weighted according to the importance of the
dimension. Equation 7 can be used to derive
the evidence for Category A for the three A
training stimuli in Figure 2 (£A,I> ^A,S and

(7/A -

P, (6) Wc + Wf + W, + WP (8)



216 DOUGLAS L. MEDIN AND MARGUERITE M. SCHAFFER

and
EA,2 =Wc+Wf+Ws- WP, (9)

EA,3 = -WC-W,-WS+ Wf. (10)

For Stimulus 1, the values on each of the
dimensions are more often associated with
Category A, and therefore, each of the terms
in Equation 8 are positive. For Stimulus 2,
the values associated with color, form, and
size are also more consistent with Category A ;
but the value 0 for position was more often
associated with Category B, and therefore,
Wp in Equation 9 is negative. To the extent
that category judgments are based on the
position dimension, Stimulus 2 would tend to
be inappropriately classified.

From this example, we can see that Stimulus
1 should be easier to learn and classify than
Stimulus 2 or 3 because unlike the latter two
stimuli, all of its values are associated with
positive weights; however, the relative diffi-
culty of learning and classifying Stimulus 2
and Stimulus 3 will depend on the weights
associated with the four dimensions.1 If all
dimensions are weighted equally, then Stimu-
lus 2 should be easier to learn and classify
than Stimulus 3; and in this case, EA.S would
actually be less than zero, which implies that
the total information favors the item being
sorted into Category B. If a New Stimulus 7
having notation 0101 were introduced, then,

= - We WP, (11)

and no clear prediction concerning its classi-
fication would be made unless the weights had
been determined. If all dimensions were
weighted equally, EA,7 would be zero, and one
would predict that the stimulus would be as
likely to be classed as an A or as a B.

In evaluating independent cue models, we
will also take into consideration the possibility
that category judgments of training stimuli
are based on specific item information. This
will be represented by a parameter M,, and it
will be assumed that this parameter is added
to the other evidence as detailed in Equation 7.
In other words, a fifth term, +Mi, will be
added to Equation 7 for predictions concern-
ing transfer tests involving old training stimuli.

For patterns in Category B, one can either
write analogous equations for EB and assume
items are classified into Category B if EB is

greater than EA, or one simply can note that
when EA is less than zero, a pattern is more
closely associated with Category B. In the
next paragraphs, particular independent cue
models will be described briefly and related to
Equation 7.

Prototype Theory

Reed (1972) has provided the most formal
and general treatment of prototype theory.
The prototype of a category represents its
central tendency, and the main idea is that
experience with exemplars of a category leads
to the development of the prototype, which
then provides the basis for classification
judgments.

For prothetic (intensity) dimensions, the
central tendency is defined as some function
of the mean value along each dimension. For
metathetic continua, such as color, the proto-
type is more appropriately defined as some
function of the modal values along each dimen-
sion, since subjects presented with red and
blue stimuli do not act as if they have been
presented with purple stimuli (Hirschfeld,
Bart, & Hirschfeld, 1975). For binary-valued
dimensions, this function will be assumed to
be such that if a value is closer to either the
mode or the mean associated with a category,
the value will be taken as evidence favoring
that category. In our example, the modal pro-
totype for Category A is 1111 and for Category
B is 0000. The decision rule for responding to
new stimuli is to compare the distance from
the stimulus to the prototype for Category A
and to the prototype for Category B and assign
the stimulus to the category whose prototype
is closest to the stimulus. These distances are
derived by summing the distances along each
component dimension. In a generalized form
of the model, one allows the distances from
the various dimensions to be weighted differ-

1 Strictly speaking, Equation 7 and our derivation
have only been shown to hold for transfer. However,
if training stimuli are randomly presented and the de-
velopment of whichever form of information a model
uses is orderly, then the predictions should also hold
for learning. One cannot, of course, prove this rigor-
ously, since none of the classification models has been
elaborated to account for the details of acquisition.
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entially (Reed, 1972) in order to account for
selective attention to distinctive features.

To relate prototype theory to Equations 6
and 7, one need only note that distance from
the prototype corresponds to information. If
a value of some new stimulus on dimension x
is closer to the value of Prototype A than
Prototype B on that dimension, then this
represents evidence that the new stimulus
belongs to Category A. Reed (1972) used a
particular algorithm to fix the weights of the
component dimensions, and Equation 7 pro-
vides the more general case where the weights
are free parameters.

Other Independent Cue Models

Average distance, cue validity, and frequency
models can also be mapped onto Equations 6
and 7. Average distance models assume that
people compute the distance of a probe stimu-
lus from all of the stored patterns and assign
the probe to the category having the smallest
average distance from the probe. Cue validity
models propose that people learn the degree to
which values on individual dimensions can be
used to predict category membership and that
category judgments are produced by summing
the validity information from the component
dimensions (see Reed, 1972, for a more com-
plete presentation of average distance and cue

validity models).
Simple frequency models propose that people

store the frequency with which the individual
attributes of dimensions are associated with
each category. In the frequency model assessed

by Franks and Bransford (1971), category
judgments of probe stimuli are assumed to be
derived from summing the frequency with
which each of the attributes of the probe have
been associated with each of the categories
and selecting the category with the higher
frequency sum (for further assessment of

frequency models, see Hayes-Roth & Hayes-

Roth, 1977).Each of the above models assumes

that classification is based on an additive
summation of component information, and
Equations 6 and 7 represent the general case
where these component dimensions may be
differentially weighted.

Context Model Versus Independent
Cue Models

The context model differs from independent
cue models in that it assumes an interactive,
specifically multiplicative, combination rule
for component dimensions. This means that
high similarity to particular patterns should
determine classification performance more than
overall average similarity of a given pattern
to other patterns. For independent cue models,
average similarity (or its converse, distance) is
the only determinant of performance. Previous
research does not bear at all directly on this
difference between the theories, since most
earlier work has concerned itself with the
effects of varying the distance of exemplars
from the category prototype. The context
model predicts that with distance of an ex-
emplar from the prototype held constant,
performance will vary with the number of
stored exemplars similar to the exemplar in
question (category density). Independent cue
models are insensitive to such density effects.
The experiments in the next section of this
article are aimed specifically at this difference
between the theories.

Experiment 1

Design and Theoretical Predictions

The design of the first experiment is shown
in Figure 3. For each dimension, two of the
three values in Category A are 1 and two of
the three values in Category B are 0. Thus,
each dimension carries some information, but
none provides a perfectly valid cue. Certain
combinations of cues, such as size 1 and color 1,
do provide valid cues. The structure might
correspond to an ill-defined concept, where for
every dimension, there exists an exception to
the rule in each category.

All models will predict that Stimulus 6 and
Stimulus 10 (the modal prototypes) should be
easiest to learn, while Stimulus 15 should be
difficult. Because Stimulus 10 has a high simi-
larity pattern in its own category, while Stimu-
lus 6 has a highly similar pattern associated
with the contrasting category, the context
model predicts that Stimulus 10 should be
easier to learn than Stimulus 6, assuming that
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Figure 3. Design of Experiment 1. (F, S, C, and P refer to the dimensions of form, size, color, and posi-
tion, respectively. The rating scores are averages over the initial and delayed tests.)

all dimensions are equally salient. Independent
cue models predict no difference.

The most interesting predictions arise, how-
ever, concerning the new transfer stimuli.
These stimuli are grouped into pairs in Figure
3, where each stimulus in a pair has the same
weight (though with respect to different cate-
gories) on each dimension according to Equa-
tion 7. Therefore, independent cue models
predict transfer on Stimulus 3 to equal transfer
on Stimulus 5, transfer on 8 to equal 13, and
transfer on 14 to equal 4. That is, Stimulus 3
should be called an A as often as Stimulus 5 is
called a B, and so on. There are also certain
paired implications such as if transfer is better
on Stimulus 3 than Stimulus 8, then transfer
on 5 should be better than on 8 and transfer
on both 3 and 5 better than on 13. Between-
pair differences might arise if the dimensions
were not equally weighted, and the predictions
derive from consistency in such weightings.

The context model makes different predic-
tions. One way to see this is to note that

Stimuli 3, 8, and 14 are highly similar to one
A stimulus and one B stimulus; while Stimuli
5, 13, and 4 are highly similar to two A stimuli
and are not highly similar to any B stimuli.
Therefore, Stimulus 5 should be classified as
an A more readily than Stimulus 3 is classified
as a B; similarly, 13 should be better than 8
and 4 better than 14. These predictions can be
established more rigorously by writing out
prediction equations analogous to Equation 1.
Predictions between pairs will depend on the
relative salience of the various dimensions.

Method

Subjects. Thirty-two volunteers were solicited
through ads in local newspapers. The subjects, men and
women ranging in ages from 17 to 30 years, were paid
$2.50 for each of two experimental sessions.

Stimulus cards. The 16 stimuli consisted of geo-
metric forms mounted on plain white 12.7 X 20.3 cm
index cards. The forms varied along the four binary-
valued dimensions of form, size, color, and position. A
form was either an equilateral triangle or a circle,
either red or green, had a diameter or height of .either
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1.25 cm or 2.5 cm, and was centered either on the
left or right side of the card. For a given subject, six
training and six additional transfer stimuli were used,
and across subjects all 16 cards were used.

The basic design has already been presented in
Figure 3. All subjects were presented with cards in
accordance with that general design, but the particular
assignment of individual stimulus cards to the abstract
notation varied from subject to subject. For example,
1111 might refer to triangle, large, red, and left for one
subject; triangle, small, green, and left for another
subject; circle, small, green, and right for another sub-
ject; and so on. Overall, each card was assigned to a
given stimulus notation exactly twice, once when
Stimuli 6, 7, and 9 were associated with Category A
and once when they were associated with Category B.
In other words, the assignment of stimulus cards to
conditions and category labels was exactly counter-
balanced.

Procedure. The basic procedure in the first session
involved initial learning followed by a 5-minute dis-
tractor task, which was then followed by transfer tests.
In the second session, which was given 1 week later, a
5-minute distractor task was followed by a second
transfer test, and then a final classification test was
given with the training stimuli visible.

Training. Initial training consisted of up to 20 runs
through the list of 6 training stimuli. Subjects were
given the following instructions:

This is an experiment concerned with how we store
information in memory. I'm going to present you
with some cards belonging to two sets, A and B. At
first you will just have to guess which set each card
belongs to. But after you make a choice, I'll tell you
whether you are right or wrong, so that eventually
you should be able to learn which set each card
belongs to. Although this task is very difficult, there
are no tricks involved, and a given card will always
be in the same category.

For training, subjects were shown the cards one at a
time and asked to classify them as either A or B. Each
card was displayed until the subject responded, im-
mediate feedback concerning correctness or incorrect-
ness was given, and the card continued to be displayed
for about 1 sec after feedback was given. Each of the
six cards was presented once on each run through the
list. The cards were presented in a random order, and
there was no obvious break between runs. Training
continued until a subject made no errors on two con-
secutive runs through the list or until the list had been
presented 20 times.

Interpolated activity. After the training period, the
subjects were asked either to rate the meaningfulness
or the pronounceability of consonant-vowel-consonants
(CVCs) on a 7-point scale. This activity lasted 5-10
minutes.

Initial transfer test. Subjects were given the follow-
ing transfer instructions:

Now I would like you to give a judgment as to which
set each card belongs to, but in addition, I'd like you
to indicate how confident you are of your judgment.
So after you say "A" or "B," say "one" if you feel

like you were guessing, "three" if you're sure you're
correct, and "two" for somewhere between guessing
and sure. Some of the cards you see may be new. If
you see one that's new, say "new," and then give
your judgment as to which set it belongs to anyway,
plus a confidence rating. This time I won't tell you
whether you are right or wrong.

Subjects were then shown the 12 cards, one at a time
in a random order. Each card was displayed until the
subject's judgment and confidence rating was com-
pleted. No feedback was given concerning either the
judgment or whether the pattern was old or new.

One week later, subjects returned to the laboratory
for additional tests. First, subjects rated either the
meaningfulness or pronounceability of CVCs for 5-10
minutes. Subjects who had originally rated meaning-
fulness were now asked to rate pronounceability and
vice versa. Then, subjects were given a transfer test
involving the same 12 stimulus cards and the identical
instructions they had experienced a week earlier. The
only difference was that a new random order was used
for the stimulus presentation. Again no feedback was
given.

Final classification. Immediately following the trans-
fer task, the experimenter laid out the three A training
cards and the three B training cards in two groups in
front of the subjects. They were told that these were
the training cards and then were shown the six new
cards, one at a time, and asked with which group they
thought the card went. In addition, subjects were asked
to give a confidence rating on their judgment. No feed-
back was given on judgments, since feedback would
have been inappropriate because there were no right
or wrong answers.

Results

Learning. All but 5 of the 32 subjects met
the learning criterion. Mean errors on Stimulus
Numbers 6, 7, 9, 10, 15, and 16 were 3.6, 4.7,
4.4, 3,1, 4.9, and 3.8, respectively. As expected
by all theories, the modal prototypes—Stimu-
lus 10 and Stimulus 6—were easiest to learn;
while Stimulus 15, which according to indepen-
dent cue theories could only be mastered by
the use of specific item information, proved to
be the most difficult to master.

Transfer. The recognition data reveal a
modest ability to discriminate training and
new transfer stimuli. On the first transfer test,
the hit rate was .98 and the false alarm rate
(saying "old" to a new stimulus) was .69; on
the second test given a week later, the hit rate
was .96 and the false alarm rate was .75. An
analysis of variance on the new stimuli indi-
cated that the effect of time did not reach
statistical significance nor were there signifi-
cant differences in recognition between new
transfer stimuli.
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The transfer category responses and con-
fidence ratings were transformed into a 6-point
rating score as follows: 1 = high confidence
error, 2 = medium confidence error, 3 = gues-
sing error, 4 = guessing correct, 5 = medium
confidence correct, and 6 = high confidence
correct. For new stimuli, where correctness
and incorrectness are inappropriate, the scale
is arbitrarily defined with respect to what
would be predicted from an independent cue
model with each dimension equally weighted.
This definition simply provides a consistent
standard and does not favor one set of theories
over the other.

The transfer rating data are shown in Figure
3, a mean rating of 3.5 representing chance or
nondifferential classification. The scores in the
figure are an average of the ratings on the
initial and delayed transfer tests. The greatest
interest lies in performance on the new transfer
stimuli. On all three tests, Stimulus 5 was rated
higher than Stimulus 3, 13 was rated higher
than 8, and 4 was rated higher than 14. These
differences are predicted by the context model
and are contrary to the predictions of the
general independent cue model. There are also
large between-pair differences in rating scores,
suggesting that all dimensions were not equally
salient.

An analysis of variance on rating scores
conducted for the new transfer stimuli showed
that both the effect of sets (4, 5, and 13 vs. 3,
8, and 14), /?(!, 30) = 4.36, MSe = 6.21,
p < .05, and the effect of pairs (3 and 5 vs.
8 and 13 vs. 4 and 14), F(2, 60) = 5.76, MSe

= 3.57, p < .01, were significant. Neither the
effects of tests nor the interactions involving
tests were reliable, although both the Tests
X Sets, ^(1,30) = 3.29, MSe = lAO,p< .10,
and the Tests X Pairs, F(2, 60) = 2.58, MSe

= 2.58, p < .10, interactions approached sig-
nificance. On the final classification test, both
the effect of sets, F(l, 30) = 6.79, MSe = 2.86,
p < .01, and the effect of pairs, F(2, 60) = 3.18,
MSe = 4.16, p < .05, were significant.

Ratings for the training stimuli were quite
high on the initial test and showed a sharp
drop (from an average of 5.3 to an average of
4.4) over the 1-week retention interval. The
new transfer stimuli did not show this sharp
drop between Test 1 and Test 2, changing

from an average of 3.9 to an average of 3.8.

An analysis of variance was conducted using
old versus new stimuli and tests as factors to
assess differential retention. The effects of old
versus new stimuli, F(l, 30) = 32.5, MSK

= 31.0, p < .01, tests, jF(l, 30) = 23.03, MSe

= 16.0, p < .01, and the interaction of these
two factors, F(l, 30) = 24.3, MS6 = 10.0,
p < .01, were significant. The interaction sug-
gests that old patterns were forgotten more
rapidly than new patterns, a result that has
been obtained frequently in this area. One
must be careful in inferring differential reten-
tion based on a statistically significant inter-
action, particularly since ratings on several of
the transfer stimuli are near chance. If we
consider only transfer stimuli showing clear
above-chance ratings (5, 8, and 13) versus the
old stimuli and subtract 3.5 from each score
and divide by the base value (first transfer
test) to get a measure of percentage retained,
old patterns show a mean of 41% retention,
while the three new stimuli under considera-
tion show a mean of 64% retention. In addi-
tion, if we disregard the rating scores and
consider only percentage correct classifica-
tions, Stimulus Numbers 5, 8, and 13 again
show a better retention than training stimuli
over the 1-week interval (62% vs. 39% re-
tained). Therefore, there is at least modest
evidence for differential retention of old and
new stimuli.2

2 Two surprising results were that Stimulus IS, which
should have been difficult to classify, was rated higher
than Stimulus 16 on the initial test, and that Stimulus
4 and Stimulus 14 received such low ratings. We
suspect that this result was produced by a specialized
strategy involving the position dimension. Specifically,
it appears that subjects normally pay little attention
to position, but if two stimuli differing only in position
fall into distinct categories, subjects may use the
strategy of assigning all stimuli differing only in posi-
tion to distinct categories. In the design of Experiment
1, there are two stimulus pairs differing only in position
(Stimuli 7 and 15 and Stimuli 9 and 16), and they both
were assigned to different categories. If such a strategy
carried over into transfer, then performance on Stimulus
4 and Stimulus 14 would suffer, because Stimulus 14
differs from Stimulus 10 only in position, while 4
differs from 6 only in position; this strategy would lead
to 14 being classified as an A and 4 being classified as
a B. Although the use of this strategy undermines any
attempts to fit the transfer data quantitatively, the
qualitative differences between Stimuli 3 and 5 and
between 8 and 13 would not be affected, since none of
these four stimuli differs from any training stimulus
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Discussion

The transfer results of Experiment 1 were in
accord with predictions derived from the con-
text model but inconsistent with independent
cue models. This finding held for an immediate
transfer test, a similar transfer test given 1
week later, and on a final classification task
where the training cards were displayed and
subjects were asked to sort the new cards into
categories based on the visible training stimuli.

Aside from questions about generality, two
serious reservations might be posed concerning
Experiment 1. The most salient objection is
that according to the structural constraints
imposed in some experiments with artificial
categories (e.g., Reed, 1972; Reed & Friedman,
1973), the A and B stimuli did not comprise
proper categories because Stimulus 15 (1011)
belongs in the category where the value 1
appears most often (Category A). More form-
ally, one would argue that the categories were
not separable by a linear discriminant function
in the sense that no additive combination of
dimension weights and values could be used to
correctly classify the training stimuli (see Reed,
1972; Sebestyen, 1962). Although the training
stimuli could be unambiguously sorted by an
independent cue model if we used the param-
eter Mi for specific item information, this ob-
jection must be taken seriously because inde-
pendent cue models may operate only when
linear separability holds. On the other hand,
there is no evidence to indicate that natural
categories conform to linear separability.

A second objection is that Experiment 1 is
biased in the sense that support for indepen-
dent cue models would have amounted to
embracing the null hypothesis, which generally
speaking, is not an attractive strategy. One
would prefer a situation where the context
theory and independent cue models make dif-
ferent predictions, neither of which amount to
predicting the absence of differences.

Experiment 2 is directed toward answer-
ing both objections. The categories employed
conform to linear separability, and the theo-
ries make distinctly different qualitative
predictions.

only in position. Because of the potential use of this
strategy, position was not used as a stimulus dimension
in subsequent experiments.

Experiment 2

Design and Theoretical Predictions

The structure of Experiment 2 is shown in
Figure 4. As in Experiment 1, the value 1 is
likely to be associated with Category A and
the value 0 with Category B for each of the
dimensions. Unlike the other experiments,
however, a linear discriminant function may
be used to separate the two categories. One
easy way to see this is to note that if the form
dimensions were given zero weight, then at
least two of the other three dimension values
for each stimulus are appropriate for the cate-
gory. The categories are not well defined, since
no specific feature values are even necessary
for category membership.

The main prediction of interest concerns
Stimuli 4 and 7. Since the modal prototype is
1111, Stimulus 4 must be at least as close as 7
is to the prototype, no matter how the dimen-
sions are weighted. More generally, all inde-
pendent cue models will predict that Stimulus
4 will be easier to learn than 7 because for the
only dimension where the two stimuli differ,
4 will have a positive weight and 7 a negative
weight (unless Wf = 0). Unlike Experiment 1,
an overall bias favoring one category response
over the other will not change this prediction.3

In contrast, the context model predicts that
Stimulus 7 should be easier to learn than
Stimulus 4 because the effect of number of
highly similar patterns is the most important
factor in performance. Stimulus 7 is highly
similar (i.e., differs in only one dimension) to
two other Category A patterns (Stimuli 4 and
15) but is not highly similar to any Category B
patterns. Stimulus 4, on the other hand, is
highly similar to one Category A pattern
(Stimulus 7) and to two Category B patterns
(Stimuli 2 and 12) and hence should be more
difficult to learn. This prediction is not com-
pletely parameter free, but it holds over a
large range of parameter values, and param-

3 The symmetry assumption embodied in Equation
7 does not hold for the dimensions in the design of
Experiment 2. For example, for color, the probability
of Category A given a value 1 is .80, while the proba-
bility of Category B given a value 0 is .75. The asym-
metries are extremely small, however, and the qualita-
tive conclusions drawn will not hinge on the symmetry
assumption.
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eter values that would alter this prediction
would place numerous other testable con-
straints on the data.

Method

Subjects. Thirty-two volunteers were solicited
through ads in local newspapers. The subjects, men and
women ranging in ages from 17 to 30 years, were paid
$2.50 for the experimental session. The subjects had not
participated in the first experiment.

Stimuli, Sixteen stimulus cards with geometric
forms drawn on them were used. Nine cards were used
in training and seven additional cards were used in
transfer. The geometric forms were like those from the
preceding experiment, except that the dimension of
number was substituted for the dimension of position.
The number dimension was represented by either a
single geometric form centered on the card or by two
geometric forms each centered on their respective
halves of the card.

The assignment of abstract notation to individual
stimulus cards varied from subject to subject exactly
as in the first experiment. That is, the assignment of

stimulus cards to conditions and category labels was
exactly counterbalanced.

Procedure. The procedure followed that used in
the first part of Experiment 1: initial training, followed
by a S-10-minute interpolated activity, followed by a
transfer task involving both training and new transfer
stimuli.

The instructions for training were those used in
Experiment 1. Training consisted of up to 16 runs
through the list of 9 training stimuli with a learning
criterion of 1 errorless run. Other procedural details
followed those of Experiment 1, including the inter-
polated activity and the transfer test instructions and
procedure.

Results

Learning. The learning task was of moder-
ate difficulty; 19 of the 32 subjects learned the
classification task within the maximum limit
of 16 runs. Overall, subjects averaged 18%
errors on the last run through the list, but
virtually all subjects showed some improve-
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ment with practice. Mean errors for each
stimulus are shown in Figure 4. Contrary to
the independent cue models and consistent
with the context model, Stimulus 4 proved to
be more difficult than Stimulus 7.

An analysis of variance on errors showed
that the effect of stimuli, F(S, 240) = 4.29,
MSe = 6.27, p < .01, was statistically signifi-
cant. A Duncan's multiple-range test using the
.05 significance level indicated that Stimuli 2,
4, 12, and 13 were associated with more errors
than 7, 10, and 15; Stimulus 5 had more errors
than 10; and Stimulus 12 had more errors than
14. A planned direct t test of Stimulus 4 versus
Stimulus 7 was, of course, also significant
(/ai = 3.71, p < .01, two-tailed).

Transfer. The overall hit rate for old
stimuli was .99, while the false alarm rate for
new stimuli was .87. Stimulus 6, the modal
prototype for Category A, was never correctly
rejected as new. Although no other new stimu-
lus had a zero correct rejection rate, an overall
analysis of correct rejections indicated that the
effect of stimuli was not reliable, F(6, 186)
= 1.51, MSe = .10, p > .10.

The transfer rating data appear in Figure 4.
Stimulus 7 received a higher mean rating than
Stimulus 4, but the effect fell short of statistical
significance (t=. 1). Old stimuli generally re-
ceived higher ratings than new stimuli, and
the transfer rating data were in reasonable
accord with both theories.

Because so many subjects failed to meet the
learning criterion, the data for learners and
nonlearners were considered separately. No
systematic differences were noted. Both learn-
ers and nonlearners made more errors on
Stimulus 4 than Stimulus 7, and there was a
similar overall pattern of performance in the
two groups. Learners averaged 88% correct on
the transfer test, nonlearners averaged 78%
correct, and the rank-order correlation of the
classification probabilities for the two groups
was high and positive (+.62).

Detailed fits of theories and data. Although
the focus has been on qualitative comparisons
of the models, it is also of interest to see how
well they fit the data overall. For the context
model prediction, equations analogous to Equa-
tions 1 and 4 were written for each stimulus
pattern in terms of the similarity parameters
associated with the four dimensions. To esti-

mate the similarity parameters, programs were
written to minimize the average absolute devia-
tion of predicted and observed classification
probabilities. No distinction was made be-
tween old training patterns and new patterns
in applying the model.

For the error data predictions, equations
analogous to Equation 1 were again used, and
programs were written to search the parameter
space to maximize the correlation between
ranked evidence values (£A or E-B) and the
ranked error data. To make appropriate com-
parisons with the independent cue model, the
correlation between ranked evidence values
and ranked classification data was also calcu-
lated. The ranked evidence values were derived
from the parameter values used to generate
predictions of classification probabilities.

A similar procedure was used for the class
of independent cue models. Equation 7 was
specialized for each pattern, and the parameter
space was searched to find values that would
maximize the correlation between the ranked
evidence values (£A and EB) and ranked
errors and separately between the ranked
evidence values and the ranked transfer classi-
fication probabilities. For the error data, pa-
rameters corresponding to the weight of each
dimension were used; and for the transfer data,
a fifth parameter for the weight of specific
item information was also estimated. Since the
dimension weighting parameters involve rela-
tive weightings, there really are only three
independent dimension weight parameters.

The correlation between predicted and ob-
served ranked errors was + .99 for the context
model and +.81 for the independent cue
model. The parameters associated with these
correlations were c = .14, / = .18, s = .16, and
n = .14 for the context model and Wc = .40,
Wf = .10, Ws = .50, and Wn = .20 for the
independent cue model. Table Al in the Ap-
pendix shows predicted and observed error
ranks.

Observed classification probabilities and pre-
dictions based on the context model are shown
in Table 1. With the exception of Stimulus 15,
most of the predictions are quite close: The
rank-order correlation between predicted and
observed classification probabilities was +.81.
Note that data from both old and new stimuli
are all well predicted, even though no special



224 DOUGLAS L. MEDIN AND MARGUERITE M. S CHAFFER

Table 1
Predicted and Observed Classification
Probabilities for the Transfer Task of
Experiment 2

Classification probability

Stimulus number Observed Predicted

4A
7A

ISA
13A
5A

12B
2B

14B
10B

Training stimuli

.78

.88

.81

.88

.81

.84

.84

.88

.97

.79

.94

.97

.86

.86

.76

.76

.93

.97

New transfer stimuli

1A .59 .64
6A .94 .93
9A .50 .57

11A .62 .64
3B .69 .61
8B .66 .61

16B .84 .87

Note. The letters A and B define the category with
respect to which classification proportions are scored.
Each observed proportion is based on 32 observa-
tions.

assumptions are made to distinguish new and
old stimuli. For the independent cue model,
the rank-order correlation was +.79, indi-
cating that the overall fit was approximately
as good as that of the context model. The
parameters associated with the classification
data were c = .16, / = .16, s = .18, and n = .14
for the context model and Wc = .38, Wf = .10,
W, = .40, Wn = .20, and Mt = .35 for the
independent cue model. Table A2 in the Appen-
dix summarizes these rank-order predictions.

Discussion

The results on errors, but not on classifica-
tion, favor the context model. A stimulus
close to the modal prototype proved to be
more difficult to learn and classify than one
farther away. In addition, quantitative pre-
dictions of the context model were in good
agreement with the data, and overall ranked-
order correlations between predicted and ob-
served error and classification data were higher

for the context model than for the independent
cue model. Apparently, difficulties for the in-
dependent cue model are not confined to
situations where the classes are not linearly
separable.

So far, we know little about the generality
of these results to other stimulus domains. The
next experiment uses the same design as em-
ployed in Experiment 2, but now the stimuli
are Brunswik faces rather than geometric
forms. These face stimuli were selected because
the clearest quantitative evidence favoring
prototype models, a subset of independent cue
theories, was derived from studies using these
stimuli (Reed, 1972).

Experiment 3

The structure of Experiment 3 mirrors that
of Experiment 2 as shown in Figure 4. The
two categories are linearly separable, and the
qualitative focus again is on the learning and
classification of Stimulus 4 versus Stimulus 7,
since distance from the category central tend-
ency and the number of highly similar training
patterns are placed in conflict. In addition to
learning and classification data, Experiment 2
included an additional training phase where
response latency was the dependent variable
of interest. We will assume for both theories
that the greater the evidence favoring a re-
sponse to a training stimulus, the faster will
be the response. The major difference between
Experiments 2 and 3 is that Experiment 3
employs Brunswik faces rather than geometric
forms as stimuli.

Method

Subjects. Thirty-two volunteers were solicited
through ads in local newspapers. The subjects, men and
women ranging in ages from 17 to 30 years, were paid
$2.50 for the experimental session, which lasted ap-
proximately 50 minutes. No subject had participated
in either of the first two experiments.

Stimuli. The stimuli were Brunswick faces dis-
played on an approximately 27 X 34 cm visual display
screen (Digital Equipment Corp. VR-17 cathode-ray
tube screen) linked to a PDP-11 computer. The face
outlines were 13.5 X 11.5 cm and centered on the
screen. The faces differed in nose length, mouth height,
eye separation, and eye height, which were the four
dimensions that had been varied previously by Reed
(1972). The nose was either a 1.5-cm or a 3.0-cm vertical
line centered within the face outline. The mouth was a
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4.0-cm horizontal line, which was either 1.5 cm or 3.0 cm
from the chin line. The eyes were 1 cm X 2.5 cm and
were separated either by 1.5 cm or 3.5 cm (measuring
from inner edges). Finally, the eyes were either 2.5 cm
or 5 cm from the top of the face outline (measured to
the top edge of the eye). The two possible values on
each of the four dimensions were combined to produce
16 distinct stimuli.

Categories were constructed in accordance with the
design shown in Figure 4. Moving from left to right,
the dimensions of eye height, eye separation, nose
length, and mouth height were substituted for the
dimensions of color, form, size, and number.

Procedure. The experiment had three main phases;
initial training, transfer test, and speeded classification.
Initial training consisted of up to 32 runs through the
list of 9 training stimuli with a learning criterion of 1
errorless run. The basic trial sequence was as follows:
A face appeared on the screen and remained on until
the subject pressed either the button marked "A" or
the button marked "B," which occupied the lower left
and lower right corners, respectively, of a 4 X 4 button
response box; the face remained on the screen for 2 sec,
while feedback ("Correct"; "No, that is A"; or "No,
that is B") was displayed below the face; a 1-sec
interstimulus interval ensued. The initial training in-
structions paralleled those of the first two experiments.

Transfer tests immediately followed initial training
and mirrored the procedures used in the earlier experi-
ments. The only difference was that two randomly
scrambled runs through the 16 possible faces were
given, staying on the screen until the confidence judg-
ment was completed. The interstimulus interval was
as before, but no feedback concerning either recognition
or classification was given.

After these transfer tests, subjects were given an
additional 16 runs through the nine training stimuli.
Presentation and feedback were exactly as in initial
training. The only difference was that subjects were
told we were now recording response latencies and
that we wanted them to respond as fast as they could
without making errors.

Results

Learning. Apparently, faces were harder to

discriminate than geometric stimuli, since only
14 of the 32 subjects met the learning criterion

within the maximum of 32 runs. Mean errors
for each stimulus are shown on the left side of

Table 2. Stimulus 7 again proved to be easier

to learn than Stimulus 4, contrary to the quali-

tative predictions of the independent cue

model. This difference is not large, however,

and though the overall effect of stimuli is
significant, ^(8, 240) = 31.5, MSe = 17.2, £ <

.001, the difference between errors on Stimulus

7 and Stimulus 4 was not significant. On the

other hand, if we consider only the data of

Table 2
Mean Errors and Mean Rating Scores for
Experiment 3

Learning Transfer

Stimulus
number

4
7

15
13
5

12
2

14
10

Mean
errors

5.5
4.2
2.8

11.9
8.2

15.2
12.9
6.6
4.4

Stimulus
number

4A
7A

ISA
13A
5A

12B
2B

14B
10B

1A
3B
6A
8B
9A

11A
16B

Mean
rating

5.2
5.2
5.1
4.7
4.1
4.3
4.1
5.1
5.2
4.0
3.7
5.2
4.7
2.5
2.7
4.8

Note. The mean rating score is with respect to the
category label (A or B) associated with each stimu-
lus in the table. Rating scores may vary from 1 to 6,
with 3.5 representing chance (nondifferential) classi-
fication.

the 14 subjects who mastered the task, the

difference is reliable (tu = 2.84, p < .02, two-
tailed).

Transfer. Recognition scores were low: The

probability of saying "old" given an old face
was .82, while the probability of saying "old"

given a new face was .79. Neither the old-new

difference nor individual stimulus differences

were significant.
The transfer rating data appear on the right

side of Table 2. The mean rating scores for

Stimulus 4 and Stimulus 7 were nearly identi-

cal. Generally, old stimuli received higher
ratings than new stimuli; but New Stimulus 6,

the modal prototype for Category A, had as
high a rating as any of the training stimuli.

Detailed fits of the models to these data will

be considered shortly.

Speeded classification. Since fewer than half

the subjects met the learning criterion during

initial training, the speeded classification data

were associated with a relatively high propor-
tion of errors (17% overall). The mean error

and mean correct latency data are shown in

Table 3. As can readily be seen, the correlation
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Table 3
Mean Errors and Mean Correct Latency for
Each of the Training Stimuli in the Speeded
Classification Phase of Experiment 3

Stimulus Mean Mean
number latency errors

4
S
7

13
15
2

10
12
14

1.11
1.34
1.08
1.27
1.07
1.30
1.08
1.37
1.13

2.12
S.19
1.00
3.12
.18

4.50
.88

5.75
1.38

between the error and latency data is very
high. Apparently, differences in error scores do
not arise from a simple trade-off of speed and
accuracy. Stimulus 7 was associated with
fewer errors and faster correct latencies than
Stimulus 4. Again these differences are small
and unreliable. Each of the 14 subjects who
met the learning criterion, however, responded
faster to Stimulus 7 than to Stimulus 4. This
latency difference is significant (/u = 3.67, p <
.01, two-tailed) and corresponds to a small
difference in error rates, Stimulus 4 being as-
sociated with 2.2% errors and Stimulus 7
with 1.3% errors.

Although learners showed a larger difference
between Stimulus 4 and Stimulus 7 for both
errors and speeded classification, the classifica-
tion performance of the two groups was highly
comparable. Learners averaged 95% correct
on transfer tests, nonlearners averaged 78%
correct, and the rank-order correlation be-
tween the classification probabilities for the
two groups was high and positive (+.88).

Detailed fits of theories and data. The over-
all fit of the context model and the independent
cue models was assessed in the same manner
as in Experiment 2. For the context model,
equations analogous to Equations 1 and 4
were used; and for the general independent
cue model, functions based on Equation 7
were employed.

For errors during learning, the correlations
between predicted and observed ranked errors
were +.95 for the context model and +.88 for
the independent cue model. The parameters as-
sociated with these predictions were eye height

(eh) = .20, eye separation (es) = .20, nose
length (nl) = .15, and mouth height (mti) = .35
for the context model and Weh = .40, We,
= .00, Wni = .50, and Wmh = .20 for the in-
dependent cue models. Table A3 in the Appen-
dix shows the predicted and observed error
ranks for each model.

For transfer, observed classification proba-
bilities and predicted values based on the
context model are shown in Table 4. The aver-
age deviation of predicted and observed values
is less than 4%, with the largest deviation
being 9 percentage points. The rank-order
correlation between predicted and observed
classification probabilities was +.92. For the
independent cue model, the best rank-order
correlation was +.89, nearly as high as that
of the context model. The parameters associ-
ated with the classification data were eh = .00,
es = .20, nl = .10, and mh = .40 for the con-
text model and Weh = .40, Wea = .10, Wni
= .35, Wmh = .14, and Mi (weight of specific
item information) = .12 for the independent

Table 4
Predicted and Observed Classification
Probabilities for the Transfer Task in
Experiment 3

Classification probability

Stimulus number Observed Predicted

4A
7A

ISA
13A
5A

12B
2B

14B
10B

Training stimuli

.97

.97

.92

.81

.72

.67

.72

.97

.95

.93

.99

.99

.73

.70

.65

.72

.99

.99

New transfer stimuli

1A .72 .81
6A .98 .95
9A .27 .24

11A .39 .48
3B .44 .45
8B .77 .81

16A .91 .90

Note. The letters A and B define the category with
respect to which the classification proportions are
scored. Each observed proportion is based on 64
observations.
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cue model. Table A4 in the Appendix sum-
marizes these rank-order predictions.

For speeded classification, best-fitting pa-
rameters for the context model produced rank-
order correlations of +.98 with the error data
and +.95 with the latency data. Respective
correlations for the independent cue model
were +.92 and +91. For both models, the
same parameters produced best fits to both
the error data and the latency data, the values
being eh = .00, es = .22, nl = .10, and mh
= .40 for the context model and Weh = .40,
Wea = .00, Wni = .50, and Wmh = .20 for the
independent cue model. Table AS in the Ap-
pendix shows the predicted and observed
rankings for these two models.

Discussion

The results again favored the context model
over the independent cue model. Learners
made more errors on and classified more
slowly a stimulus close to the prototype
(Stimulus 4) than one farther away (Stimulus
7). Quantitative predictions of both models
were in good accord with the data, but in each
case, the correlation between predicted and
observed ranks was higher for the context
model than for the independent cue model.
Apparently, the advantage of the context
model over the independent cue model is not
limited to studies using geometric stimuli or
metathetic stimulus dimensions.

Experiment 4

The retrieval process implied by the context
model is straightforward. Although Equation 1
seems to require the subject to do considerable
computation to develop the various similarity
estimates, actually this need not be so. One
could assume that judgments are based on the
first pattern retrieved, with the similarity
parameters determining the likelihood that
particular stimuli will be the first retrieved.
An obvious advantage of assuming that per-
formance is based on the initial pattern or
patterns retrieved is that one would like to
generalize the context model to classification
tasks where a large number of exemplars may
be involved, and the plausibility of an exhaus-
tive retrieval plan would become quite strained.

If classification judgments are based on the
first pattern retrieved, on what are confidence
ratings based? A strong possibility is that
confidence ratings are based on how quickly or
easily the first pattern is retrieved. This would
imply that confidence ratings for new transfer
stimuli should increase with the number of
highly similar patterns, regardless of whether
the same classification response is associated
with the various patterns. Our data give some
support to this idea. For example, judgments
of Stimulus 16 in Experiment 2 received a high
confidence rating 16 times, and in each case,
the category assignment was a B; judgments
on Stimulus 9 received a high confidence rating
17 times, but the stimulus was assigned to
Category A only 6 of those 17 times. Un-
fortunately, the number of patterns highly
similar to a new transfer stimulus scarcely
varied within experiments. Stimulus 6 in
Experiment 2 had more similar patterns (four
vs. three) than the other transfer stimuli
and was most likely to receive a high con-
fidence rating and least likely to receive a low
confidence rating. When a stimulus was judged
to be new, confidence ratings were low—only
16% of the time were subjects highly con-
fident, and half of the time they reported that
they were guessing.4

New-old recognition may also be based on
how quickly or easily the probe retrieves in-
formation and, therefore, may be based on the
number of highly similar training patterns.
In Experiment 2, a transfer stimulus (Number
6) had more highly similar training patterns
than the other stimuli. A direct test indicates
that this stimulus was more likely to be
judged as old than the other stimuli (t$\ = 4.38,
p < .01). Unfortunately, the first three experi-
ments provide little variation in the number
of similar training patterns. Experiment 4 was

4 Although confidence judgments depend on the
number of highly similar exemplar patterns and hence
similarity parameters, similarity cannot be the sole
determinant of confidence judgments. The context
model represents forgetting in terms of increases in
similarity, and it is extremely unlikely that forgetting
is accompanied by corresponding increases in confidence
rating. Presumably, additional factors such as changes
in context determine the general accessibility of stored
exemplars, and this general accessibility decreases over
time.
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Figure 5. Design of Experiment 4. (C, F, S, and N refer to the dimensions of color, form, size, and
number, respectively. The stimulus numbers are carried over from the first two experiments. Fe refers
to average errors during learning. Rating scores may vary from 1 to 6, with 3.5 representing chance
[nondifferential] classification.)

designed to see whether recognition varies
with the number of similar training patterns,
as would be expected if recognition were based
on the ease with which stored information
could be accessed. The experiment also pro-
vides still another test of the two main classi-
fication models.

The design of Experiment 4 is shown in
Figure 5. As before, the value 1 tends to be
associated with Category A and the value 0
with Category B. The two categories are
separable by a linear discriminant function, as
can readily be seen by assuming that the num-
ber dimension receives no weight at all, for in
that case, two of the three values of each
training stimulus match the modal value for
their category. The main focus of Experiment 4
concerns new-old recognition, specifically on
the predictions of the context model that the
more stored exemplars similar to the probe,
the less likely the probe will be called new.

This should hold for both old and new probe
stimuli. For example, Stimulus 16 is highly
similar to only one other training pattern (2),
while Stimulus 2 is highly similar to four
training stimuli (4, 5, 8, and 16); therefore,
Stimulus 16 should be more likely to be called
new than Stimulus 2. Likewise, New Stimulus
14 is highly similar to two B training stimuli
(1 and 11), while Stimulus 12 is highly similar
to two A and two B training patterns, so sub-
jects should call Stimulus 14 new more often
than Stimulus 12.

No general predictions concerning recogni-
tion for independent cue models are available.
For new patterns, one might speculate that
the farther a probe is from a prototype pattern,
the more likely it would be called new. In this
case, Stimulus 6 and Stimulus 10, the modal
prototypes, should rarely be called new; if the
four dimensions are equally weighted, Stimulus
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12 should be called new more often than
Stimulus 14.

Although the focus of Experiment 4 was on
recognition, one should note that the two
theories will differ also in their predictions
concerning classification. According to the in-
dependent cue models, each member of the
following stimulus pairs should produce equi-
valent performance: 2 and 1, 5 and 3, 13 and
8, 15 and 16, and 6 and 10. The context
model generally predicts that the first member
of each of these pairs will be classified more
accurately, partly on the basis of high-simi-
larity exemplars and partly on the basis of
the extra Category A pattern that provides an
additional opportunity for an A pattern to be
retrieved by a probe.

Method

Subjects. Thirty-two volunteers were solicited
through ads in local newspapers. The subjects, men and
women ranging in ages from 17 to 30 years, were paid
$2,50 for the experimental session. The subjects had
not participated in any of the first three experiments.

Stimuli. Sixteen stimulus cards with geometric
forms drawn on them were used. Eleven cards were
used in training, and five additional cards were used
during transfer tests. The same stimulus dimensions
were used as in Experiment 2, but new values for the
color and form dimensions were employed. The forms
were either equilateral triangles or hexagons, and they
were colored either yellow or purple. The values for the
size and number dimensions were as before.

The assignment of abstract notation to individual
stimulus cards varied from subject to subject exactly
as in the preceding experiments. The assignment of
stimulus cards to stimulus conditions and category
labels was exactly counterbalanced.

Procedure. Original training was followed by a
S-10-minute interpolated activity, then a transfer test
involving both training and new transfer stimuli. Train-
ing instructions and the interpolated activity were as
in the first two experiments. Training consisted of up
to 16 runs through the list of 11 training stimuli with a
learning criterion of 1 errorless run. Other procedural
details followed those of Experiment 2 including the
interpolated activity and the transfer test instructions.
The only difference was that the 16 stimulus cards
were presented twice during transfer in 2 randomized
runs.

Results

Learning. Half of the subjects met the
learning criterion within the 16-run limit, and
only two subjects failed to show improvement
with practice. Mean errors for each stimulus

are shown in Figure 5. There was not much
variation in errors, and an analysis of variance
on errors did not reach statistical significance
(F < 1).

Transfer. For recognition, overall, the prob-
ability of saying "old" given an old pattern
was .95, and the probability of saying "old"
given a new pattern was .72. On both old and
new patterns, the probability of saying "old"
increased with the number of training pat-
terns highly similar to the probe. For purposes
of analysis, patterns were classified as having
large, medium, or small numbers of highly
similar training patterns, with large, medium,
and small corresponding to four, three, and
two highly similar patterns for a new stimulus
and corresponding to four, three or two, and
one highly similar patterns for an old probe
stimulus, respectively. The probabilities of new
responses were .03, .05, and .10, respectively,
for large, medium, and small numbers of
similar patterns for old stimuli and .24, .28,
and .38 for corresponding new patterns. These
results are consistent with the predictions of
the context model. An analysis of variance
indicated that both the effects of old versus
new probes, F(l, 31) = 29,8, MS, = 5.08,
p < .01, and the effects of number of highly
similar training patterns, F(2, 62) = 4.65, MSe

= 2.22, p < .05, were significant.
The rating scores from classification tests

are shown in Figure 5. Generally speaking,
old stimuli received higher ratings than new
stimuli, and of the new stimuli, Modal Proto-
types 6 and 10 received higher ratings than
other new stimuli. An analysis of variance
indicated that the effect of stimuli was signifi-
cant, F(15, 450) = 3.08, MSe = 6.29, p < .01.
The relation of the classification results to the
theories will be brought out when the detailed
fits of theory and data are considered.

In view of the large number of nonlearners,
the data for learners and nonlearners were
considered separately. The recognition data
revealed that learners were more accurate in
detecting new patterns (probability of saying
"new" given new was .35 for learners and .22
for nonlearners) and were slightly more likely
to call an old pattern new (.07 vs. .04); also,
the effects of the number of highly similar
patterns were more clear for learners than non-
learners. On the classification tests, learners
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Table 5
Predicted and Observed Classification
Probabilities for the Transfer Task of
Experiment 4

Classification probability

Stimulus number Observed Predicted

Training stimuli

2A
4A
SA
7A
13A
ISA
IB
3B
8B
11B
16B

.80

.78

.86

.83

.72

.80

.70

.64

.73

.78

.69

.74

.90

.80

.72

.78

.74

.70

.73

.73

.72

.69

New transfer stimuli

6A .89 .88
9A .56 .56

10B .78 .83
12A .62 .62
14B .64 .59

Note. The letters A and B define the category with
respect to which the classification proportions are
scored. Each observed proportion is based on 64
observations.

averaged 84% correct, nonlearners averaged
68% correct, and the correlation between the
classification performance in the two groups
was modest and positive (+.41). No systematic
differences between the two groups were noted,
and the low correlation apparently derives
from the low overall performance of non-
learners.

Detailed fit of theories and data. Since the
effect of stimuli on errors during learning was
not significant, no attempt was made to fit the
acquisition data. Fits to the classification data
were attempted by using equations analogous
to Equations 1 and 4 for the context model
and Equation 7 for the independent cue model.

Observed classification probabilities and pre-
dicted values based on the context model are
shown in Table 5. Overall, the average devia-
tion of predicted from observed values is less
than 5%, with the largest deviations being the
overprediction of performance on Stimulus 4
and the underprediction of performance on

Stimulus 7. The rank-order correlation of pre-
dicted and observed classification probabilities
was +.72. For the independent cue model, the
best rank-order correlation was +.41, con-
siderably lower than that for the context
model. The problem for the independent cue
model is that A training stimuli were better
classified than B training stimuli, a difference
not predicted by the model. The parameters
associated with the classification data were
c = .18,/,= .20, i = .28, and n = .33 for the
context model and Wc = .22, Wt = .27, W.
= .30, Wn = .30, and Af,- = .54 for the inde-
pendent cue model. Table A6 in the Appendix
summarizes these rank-order predictions.

Discussion

As predicted by the context model, the
probability of calling a probe stimulus old in-
creased with the number of training stimuli
highly similar to the probe. In addition, the
classification data were predicted considerably
better by the context model than by the inde-
pendent cue model.

General Discussion

Major Results

In each experiment, the data were more
consistent with the context model than with
the general independent cue model. Qualitative
predictions favored the context model regard-
less of whether or not the two classes were
linearly separable and regardless of whether
the stimuli were geometric forms or face out-
lines. Moreover, quantitative predictions of
the context model were in each case more
accurate than corresponding predictions of the
independent cue model, though generally these
differences were small. At the very least, the
context model must be taken seriously as a
contending classification theory. The results
also raise questions concerning the adequacy
of the assumption that component stimulus
dimensions are treated independently, a basic
underlying assumption of prototype models in
particular and independent cue theories in
general.

The context model differs from all inde-
pendent cue models in its assumption that
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component dimensions are not independent
and differs from all but average distance
models in its proposal that classification judg-
ments derive from exemplar, rather than cate-
gory level, information. The model assumes
that classification judgments are based on the
retrieval of specific item information, the
retrieval of information about old stimuli when
a new stimulus is presented being a function
of similarity. The model contains parameters
for the similarity of the values along each
dimension but adds no special process to dif-
ferentiate old and new items. Nonetheless, the
context model predicts differences between old
and new stimuli, and by representing forgetting
in terms of increases in the similarity param-
eters, it yields predictions consistent with the
differential retention of old and new stimulus
classification. Specific details of the various
experiments were consistent with the context
model, and an initial attempt at a quantitative
fit to the data produced fairly accurate predic-
tions. Finally, the new-old recognition data
and the confidence rating data are consistent
with the idea that recognition and confidence
are related to how easily or quickly the probe
stimulus retrieves specific stored information.

Relation of the Context Model to
Other Theories

Although transfer performance is not well
predicted by the frequency of individual fea-
tures (Franks & Bransford, 1971), a number
of researchers have proposed that subjects
may encode relational frequencies (Hayes-
Roth & Hayes-Roth, 1977; Neumann, 1974,
1977; Reitman & Bower, 1973). That is, in
addition to encoding the frequency with which
Features A, B, and C occur, subjects may en-
code the frequency with which A and B; B
and C; A and C; and A, B, and C occur
together. Judgments are assumed to be based
on combinations of simple frequency (A, B,
and C) and relational frequency (AB, AC, BC,
and ABC). In most experiments, as distance
of an exemplar from the prototype increases,
relational frequency decreases; therefore, rela-
tional frequency models can account for most
results concerning transfer to new patterns.
Relational frequency theory and prototype
theory predict transfer about equally well when
geometric stimuli are used (Neumann, 1974;

Posnansky & Neumann, 1976), while rela-
tional frequency models actually are better
predictors of transfer performance than proto-
type theory when letter strings and biographi-
cal descriptions are used (Hayes-Roth &
Hayes-Roth, 1977; Posnansky & Neumann,
1976). Whether these differences in accuracy
of prediction depend on the nature of the
stimuli presented or on details of experimental
design that have covaried with the alternative
stimuli is uncertain.

Relational frequency models differ from the
context model in that they assume that cate-
gory judgments are based on category level
rather than exemplar information, but like the
context model, they do not assume that cate-
gory judgments are based on an independent
summation of component information. In fact,
most of the qualitative predictions of the con-
text model examined in the present experi-
ments are shared by relational frequency
models. Several difficulties arise in attempting
to extend these models to the present data
with greater explicitness. For Neumann's at-
tribute frequency model, the net frequency
scores of old and new stimuli in our experi-
ments frequently overlapped considerably,
while ratings of new stimuli generally fell
below those of old stimuli. Therefore, one would
have to posit that a mixture of specific item
information and category level (frequency) in-
formation controlled performance. A more
serious problem concerns how to treat differ-
ential salience of dimensions. If color is more
salient than form, one might imagine that a
color frequency counter is more likely to be
incremented than a simple form frequency

counter, but how should one treat the status
of the counter corresponding to color plus
form? Another concern is that the encoding
processes seem quite complex. When a pattern
having values along four dimensions is pre-
sented, four one-dimensional counters, six two-
dimensional counters, four three-dimensional
counters, and one four-dimensional counter all
get incremented and associated with the cate-
gory. Probably none of these difficulties is in-

surmountable, but at present, the context

model appears to be easier to work with, if

not more parsimonious.

Hayes-Roth and Hayes-Roth (1977) have

proposed a model called the most diagnostic
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property set model, where classification is based
on the features or combinations of features
that are most diagnostic (i.e., have the highest
validity). The fact that combinations of fea-
tures may be used distinguishes this model
from independent cue theories. As developed
by Hayes-Roth and Hayes-Roth (1977), the
property set model makes no differential pre-
dictions among stimuli that have at least one
perfectly valid cue. In our experiments, the
training stimuli always contain at least one
perfectly valid combination of features, and
transfer stimuli almost always contain at least
one combination of features valid for each of
the two categories. As a result, the Hayes-Roth
and Hayes-Roth model makes almost no spe-
cific predictions for our experiments, except
that performance on old patterns should be
better than performance on new patterns. If
one assumed that with diagnosticity held con-

stant, classification performance varied with
the number and frequency of the associated
property sets, then the main qualitative re-
sults of our experiments would be predicted.

In the experiments designed to test the
property set model, Hayes-Roth and Hayes-
Roth (1977) varied the frequency with which
the different exemplars were presented in
training. Differential frequency of exemplar
presentation might naturally be represented
in the context model by assuming that different
numbers of representations are developed. For
example, if stimulus i appears twice as often as
stimulus,/, we might treat the task as involving
two stimulus i exemplars and one stimulus _;'
exemplar. With this interpretation, the context
model would reproduce the main qualitative
results of the Hayes-Roths' experiment.

Finally, one other very simple classification
model, the proximity model, deserves con-
sideration. One version of the proximity model
simply assumes that new patterns are classified
according to the training stimulus that most
closely resembles the new stimulus. If that
training stimulus was associated with Class A,
then the new pattern is classified as an A. If
the training stimulus was a B, then the new

pattern would be called a B (for more exten-

sive treatment of proximity models, see Reed,

1972;Sebestyen, 1962).

The proximity model is similar to the con-

text model in that it assumes that classification

is based on specific item information. In fact,
the proximity model might be thought of as a
special case of the context model where per-
formance is based on the first pattern re-
trieved, and the first pattern retrieved is al-
ways the most similar training pattern. The

proximity model would need further elabora-
tion to account for the differential retention of
old and new stimulus patterns observed in
Experiment 1. Modification with this end in
mind would further increase the similarity be-
tween the context model and the proximity
model.

Relation of the Context Model to Other
Classification Results

Many of the results on prototype abstrac-
tion and classification with ill-defined rules
derive from studies employing dot patterns.
Although it is somewhat risky to discuss the
application of the context model to these
results so long as we are unable to specify the
component dimensions, the context model
seems qualitatively consistent with some of the
main findings.

First of all, transfer to new stimulus patterns
appears to increase with the number of exem-
plars comprising a category (e.g., Homa &
Chambliss, 1975). This result could be derived
from the context model by proposing that the
greater the number of training patterns, the
more likely it is that a new pattern will be
highly similar to at least one training pattern
from the correct category. If this were true,
the average dissimilarity (or distortion level)
of the training pattern would enter as a de-
terminer of transfer in the following manner:
For training patterns that were low distortions
(quite similar to one another), increasing the
number of exemplars per category would not
facilitate transfer as much as when the training
patterns were more varied. In other words, if
training patterns were low distortions, no one
of them might be similar enough to a new
probe to be activated by it, so that one might
expect an interaction between category size

and level of distortion of category members.

Exactly this interaction was obtained by Homa

and Vosburgh (1976).

According to prototype theories, learning

and transfer behavior depend on the distance
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of alternative prototypes from each other and
on the average distance of exemplar stimuli
from the prototypes. Performance should be
unaffected by how these distances arise.
Barresi, Robbins, and Shain (1975) held over-
all average distance of dot patterns from the
prototypes constant and varied whether each
individual dot in a given dot pattern was
about the same distance from the correspond-
ing dot in the prototype from which it was
derived (low-variance condition) or whether
some individual dots were close and others far
from the corresponding dot locations in the
prototype. Since overall average distance is
constant, prototype theory predicts no effect
of variance. The results showed, however, that
high-variance classes were learned faster and
had better generalization than low-variance
classes.

The context model predicts that a new item
highly similar to one member but dissimilar
from another member of a category would be
assigned to that category with greater ease
than a new item moderately similar to both
category members. Likewise, in distinguishing
two items in different categories on the basis
of the values along two dimensions, one similar
value and one distinct value should combine
to be more discriminable than two values
intermediate in distinctiveness. Thus, if one is
willing to assume that physical and psycho-
logical distances were roughly equivalent in
the Barresi et al. experiment, the context
model correctly predicts that high-variance
categories will be more discriminable than low-
variance categories.

Generality

While we have indicated informally how the
context model might apply to other classifica-
tion studies, the generality of the context model
to different stimulus populations and experi-
mental procedures is an open question. One
reason for optimism concerning generality is
that basically the same ideas give an excellent
account of a wide range of discrimination
learning and transfer phenomena across a
variety of subject populations (Medin, 1975).

Stimulus dimensions. Immediate extensions
to other stimulus populations face some non-
trivial obstacles. The problems center around

developing appropriate descriptions of the
features or dimensions in terms of which stimu-
lus information is stored in memory. In the
absence of such analyses, the experimenters'
and subjects' representations of the stimuli
may not coincide, relational cues (e.g., ratio
of nose length to mouth width) may operate,
and interactions caused by factors such as
asymmetrical similarity (e.g., Atkinson &
Estes, 1963; Bush & Hosteller, 1951; Tversky,
1977) may go undetected. Yet, many of the
comparisons that one is most interested in
making involve natural concepts whose com-
ponent features are unknown and undoubtedly
complex.

Certain tests of the context model are even
possible in working with complex stimuli, such
as human faces, whose constituent dimensions
cannot be specified. Such tests would employ
a confusion matrix (which could be indepen-
dently derived) for the exemplars to be used
in the classification task. The work of Shepard
and Chang (1963) suggests that classification
performance can be predicted from an identi-
fication confusion matrix so long as selective
attention is minimized. The context model
would predict that with between-category
confusability held constant, classification per-
formance on an exemplar would be better the
greater within-category confusability. The
basis for this prediction is that if an exemplar
is highly confusable with other exemplars in
its category, then when the exemplar is pre-
sented as a probe, it will lead to a correct
categorization if either the information as-
sociated with the stored representation of that
exemplar is retrieved or if information associ-
ated with the representations of the other con-
fusable exemplars is accessed. If an exemplar
is not confusable with (similar to) any of its
fellow category exemplars, the latter source of
correct classifications will not be available.

Test situations. There is reason to think
that the context model will account for classi-
fication performances in settings where ana-
lytical strategies are either absent or irrelevant
to the concept in question. Brooks (Note 2)
trained subjects on a paired-associate task,
where the stimuli were complex symbols and
the responses were either animal or city names.
Then, subjects were told that the concept "old
world" versus "new world" (animals or cities)
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was relevant, and they were asked to classify
new complex symbols as old or new world on
the basis of what they had previously learned.
The results suggested that subjects classified
new patterns by analogy with similar learned
instances rather than by applying analytical
strategies. Incidental concept learning proved
to be more effective than explicit concept
training in situations where the stimuli were
complex and presumably difficult to analyze
or where the conceptual tasks were disguised
during learning.

Although it was developed without the bene-
fit of any knowledge of Brooks's research, the
retrieval assumptions of the context model
closely embody Brooks's propositions concern-
ing analogical thinking. Therefore, the con-
text model is likely to be at least qualitatively
successful in addressing incidental concept
learning.

The idea that judgments may be based on
retrieval of examples has also been applied to
situations distinctly different from concept
learning situations. Tversky and Kahneman
(1973) proposed that people often evaluate the
frequency or likelihood of events by the ease
with which relevant instances come to mind.
This strategy can be very efficient, but it can
lead to systematic biases. For example, people
can accurately estimate how many words they
can recall from a category within some time
limit, but they make gross errors on questions
such as whether the letter k is more likely to
be the first than the third letter of English
words. Most subjects guessed that k is more
likely to appear in the first position, perhaps
because people can generate words beginning
with k more easily than words which have k
as the third letter.

There is also some evidence that retrieval of
instances may play a role in semantic memory
tasks. Holyoak and Glass (1975) reported
evidence consistent with the idea that sen-
tences such as "All birds are canaries" often
are disconfirmed by retrieval of counter-
examples (e.g., robins). They speculate that
true judgment of such sentences as "All birds
lay eggs" may be confirmed by induction after
the retrieval of several positive instances (e.g.,
robins lay eggs, ducks lay eggs, and ostriches
lay eggs).

A related implication of the context model

is that classification judgments depend on
contextual factors. For example, a rather
strange looking four-legged animal may be
much more likely to be classified as a dog
when seen walking down the street on a leash
than when seen running through the woods.
Our assumption is similar to the principle of
encoding specificity (Tulving & Thompson,
1971, 1973; Watkins, Ho, & Tulving, 1976) in
that the presence of specific context plays a
role in whether the specific stimulus informa-
tion is accessed.

Further Considerations and Conclusions

If one were going to design a system to learn
about the structural relations between stimulus
classes and events (i.e., a natural concept
learning device), what kind of system should
one build? First of all, it would seem that one
would be judicious in one's use of analytical
processes, particularly if those processes ac-
curately reflected concept identification models
that focused on valid cues. One would not
want a system that only learned exceptionless
rules. Hence, in some sense, learning by analogy
should be allowed for.

An analogical process would also serve the
function of protecting the concept learning
system from ignoring or throwing away infor-
mation that might later prove critical when
other concepts or categories were acquired.
For example, in learning to tell the difference
between dogs and cats, size is a good cue,
whereas domesticity is not. But ignoring
domesticity and learning only about size could
prove costly later when one might want to
distinguish dogs and wolves or dogs and
coyotes.

At the present time, it is hard to make a
perfectly general statement concerning how
one ought to balance analytical and analogical
processes. On the one hand, Reber (1967,1969,
1976) has shown that active rule search can
interfere with acquiring a grammar if that
grammar involves very complex rules; on the
other hand, a system that did not abstract the
rules within its grasp might prove to be need-
lessly inefficient.

Finally, in designing a concept learning
system, one might want to be guided by the
simplicity of the proposed underlying proces-
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ses. The context model, embodying instance
learning and retrieval on the basis of similarity,
appears to accomplish efficient mastery of
ill-defined concepts with a minimum of proces-
sing machinery.
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Table Al
Predicted and Observed Rank Error Data from
Experiment 2 for the Context Model and the
Independent Cue Model

Predicted rank

Stimulus
number

4
7

IS
13
5

12
2

14
10

Observed
rank

7
3
2
6
5
9
8
4
1

Context
model

7
3
1.5
5.5
5.5
9
8
4
1.5

Independent
cue model

3.5
5
2
6
7
8
9
3.5
1

Table A3
Predicted and Observed Rank Error Data from
Experiment 3 for the Context Model and the
Independent Cue Model

Predicted rank

Stimulus
number

4
5
7

13
15
2

10
12
14

Observed
rank

4
6
2
7
1
8
3
9
5

Context
model

5
6
3
7
1
9
2
8
4

Independent
cue model

4
7.5
4
6
1.5
9
1.5
7.5
4

Note. The rankings are arranged from least errors
to most errors.

Note. The rankings are ordered from least to most
errors.

Table A2
Predicted and Observed Ranked Classification
Data from Experiment 2 for the Context Model
and the Independent Cue Model

Predicted rank

Stimulus
number

4
7

15
13
5

12
2

14
10

1A
3B
6A
8B
9A

11A
16B

Observed
rank

11
4
9.5
4
9.5
7
7
4
1

15
12
2

13
16
14
7

Context
model

9
3.5
1.5
7.5
7.5

11
10
5
1.5

12
15
3.5

13
16
14
6

Independent
cue model

4.5
8
2
6
9

10
11
4.5
1

15
12
3

13
16
14
7

Table A4
Predicted and Observed Ranked Classification
Data from Experiment 3 for the Context Model
and the Independent Cue Model

Predicted rank

Stimulus
number

4
7

15
13
5

12
2

14
10
1A
3B
6A
SB
9A

11A
16B

Observed
rank

3
3
6
8

11
13
11
3
5

11
14
1
9

16
15

7

Context
model

6
2.5
2.5

10
12
13
11
2.5
2.5
8.5

15
5
8.5

16
14
7

Independent
cue model

4.5
8
3
7
9

13
11
4.5
1

14
12
2

10
16
15
6

Note. The rankings are arranged from highest class-
ification scores to lowest.

Note. The rankings are ordered from highest to
lowest classification scores.
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Table AS
Predicted and Observed Ranked Error and Reaction Time Data from the Overtraining Phase
of Experiment 3 for the Context and Independent Cue Models

Predicted rank
V_/UOCi VCl.

Stimuli!"
number Latency

4 4
7 3

IS 1
13 6
5 8

12 9
2 7

14 4
10 2

i lauii

Error

5
2
1
6
7
9
8
5
3

Context model

5
2
2
6
8
9
7
4
2

Independent
cue model

4
4
1.5
6
7.5
7.5
9
4
1.5

Note. Rankings are arranged according to increasing errors and latency.

Table A6
Predicted and Observed Ranked Classification
Data from Experiment 4 for the Context Model
and the Independent Cue Model

Predicted rank

Stimulus Observed Context Independent
number rank model cue model

2
4
5
7
13
15
1
3
8

11
16
6A
9A
10B
12A
14B

4.5
7
2
3
10
4.5
11
13.5
9
7
12
1
16
7
15
13.5

7
1
4
10.5
5
6
12
8.5
8.5
10.5
13
2
16
3
14
15

10.5
8.0
1.5
12.4
8.0
4.5
10.5
1.5
8.0
14
4.5
4.5
15
4.5
15
12.5

Note. The rankings are ordered from highest to
lowest classification scores.
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