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Abstract

Crowdsourcing struggles when workers must see all of the
pieces of input to make an accurate judgment. For exam-
ple, to find the most important scenes in a novel or movie,
each worker must spend hours consuming the entire plot to
acquire a global understanding and then apply that under-
standing to each local scene. To enable the crowdsourcing
of large-scale goals with only local views, we introduce con-
text trees, a crowdsourcing workflow for creating global sum-
maries of a large input. Context trees recursively combine
elements through written summaries to form a tree. Work-
ers can then ground their local decisions by applying those
summaries back down to the leaf nodes. In the case of scale
ratings such as scene importance, we introduce a weighting
process that percolates ratings downwards through the tree so
that important nodes in unimportant branches are not over-
weighted. When using context trees to rate the importance of
scenes in a 4000-word story and a 100-minute movie, work-
ers’ ratings are nearly as accurate as those who saw the en-
tire input, and much improved over the traditional approach
of splitting the input into independent segments. To explore
whether context trees enable crowdsourcing to undertake new
classes of goals, we also crowdsource the solution to a large
hierarchical puzzle of 462,000 interlocking pieces.

Introduction
The fox knows many things, but the hedgehog knows one
big thing. — Archilochus, 700 B.C.

Crowdsourcing collects parallel, isolated pieces of knowl-
edge at scale. However, when the problem cannot be de-
composed and contributors instead must see all the inputs to
make a single decision, crowdsourcing struggles. For exam-
ple, how might we crowdsource the summary of a novel? If
each person looks at one paragraph, it is difficult to know
how important the paragraph is relative to unseen ones.
Worse, it is impossible to know about dependencies that
might turn a minor detail at the beginning of the story into a
major plot point once the climax is revealed. Crowdsourc-
ing’s strength — the isolation of small, independent sub-
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Figure 1: Context trees enable crowds to build up global
summaries of many inputs (in blue), then apply those sum-
maries back down the tree to ground their local decisions.

problems — becomes its weakness when the subproblems
are no longer independent.

To succeed, the crowd must be able to act with global un-
derstanding when each contributor only has access to local
views. This is a counter-intuitive proposal: how can a crowd
make judgments about an entire story if nobody has the abil-
ity to see the big picture? Crowdsourcing techniques often
sidestep this problem by avoiding information dependencies
between tasks. Instead, they aggregate local contributions al-
gorithmically so that no crowd member ever needs a higher-
level view, as for example with clustering (Chilton et al.
2013; Bragg, Mausam, and Weld 2013; Tamuz et al. 2011;
Gomes et al. 2011). When algorithms cannot aggregate the
results, a single worker must do it instead (Kittur et al. 2011;
Kulkarni, Can, and Hartmann 2012). These approaches can-
not scale larger than what a single contributor can con-
sume. If the task is iterative, workers can leave an an-
notated history for later workers (Lasecki et al. 2012b;
2013), but this again only succeeds if the history is compact
enough to be consumed by the next worker.

In this paper, we focus on extractive summarization via
crowdsourced microtasks — for example of novels and
movies — as a representative problem requiring global un-
derstanding. In extractive summarization, the goal is to tag
each element with an importance score and then filter to
the top-rated elements and/or trim elements according to the
their score. These summaries would allow a user, for ex-
ample, to know which parts of their essay to cut or watch
a movie at accelerated speed. Crowds have been able to
shorten text (Bernstein et al. 2010), but only through uni-
form cuts and not through global consideration of which sec-
tions should be kept and which should be cut entirely. These
cuts can only be completed by simultaneously understanding
the local context as well as how it fits into the larger picture.



Solving such a problem could unlock goals such as the au-
tomatic retargeting of content to mobile devices; support for
strategic decisions that involve consuming days, weeks, or
months worth of news; or user-controlled resizing of a book
or movie so that it can be consumed with as much or as little
time as is available. As the amount of user-generated con-
tent continues to scale up, attention remains constant: it will
be crucial that we can efficiently “compress” this content as
easily as we generate it.

To solve problems that require global knowledge to make
local decisions, we introduce context trees, a hierarchical
summarization crowdsourcing workflow. The general ap-
proach is to summarize upwards, then apply downwards
(Figure 1). In the upward phase, workers write a short sum-
mary of each raw input, then vote for the most accurate sum-
maries and recursively write new summaries to aggregate
several child summaries. The top layer then produces a sum-
mary for the whole storyline. In the downward phase, work-
ers start at the top of the tree and use the final summaries to
rate the importance of each child node. When this process
reaches the bottom, workers rate the raw input based on the
hierarchical summaries at all higher levels of the tree.

In practice, workers’ context tree ratings are still only ac-
curate when considered in relative terms between the items
they examine. For example, workers who rate several scenes
in a single subplot can only accurately rate those scenes rel-
ative to each other: their scores are not always grounded
against the rest of the plot. Thus, we use ratings from higher
tree levels to weigh opinions at lower levels. If workers at a
higher level declared a subplot to be unimportant, the scenes
inside that subtree will be downweighted appropriately.

In an evaluation, we use context trees to generate impor-
tance ratings of each scene in a 4193-word story and a 104-
minute movie. We compare context trees to a baseline lo-
cal approach where workers use a traditional crowdsourc-
ing technique and rate each section independently, and to
a global approach where workers read the whole story or
watch the whole movie. We find that the performance of con-
text trees is near that of workers who consumed the entire
input, and significantly improved over the local condition.
In most realistic crowdsourcing scenarios, where a global
approach would be unrealistic to scale, context trees may
produce near-optimal performance. Finally, we demonstrate
that context trees can generalize to complex, multi-layered
problems by solving a 462,400-piece interlocking puzzle.

Crowdsourcing workflows typically decompose a task
into smaller and smaller subproblems (Kulkarni, Can, and
Hartmann 2012). With this work, we suggest that it may be
worthwhile to explore techniques that reverse this process,
recursively combining higher- and higher-level actions to
produce globally coherent behavior even though no worker
has bandwidth to see the whole input.

Related Work
Crowdsourcing research often solves complex tasks by in-
telligently splitting and recombining the outcome of sim-
ple tasks (e.g., crowd entity resolution (Wang et al. 2013;
Whang, Lofgren, and Garcia-Molina 2013) and cluster-
ing (Gomes et al. 2011; Tamuz et al. 2011; Biswas and Ja-

cobs 2012)). We extend this work by focusing on problem
domains where all obvious decompositions lead to simple
tasks that are impossible to answer accurately without hav-
ing a global view of all inputs. Context trees contribute a
mechanism for having the crowd author such global views
along the way to solving a large distributed task.

Categorization is one clear case where algorithms can
produce globally consistent results without any worker see-
ing a global view. Cascade (Chilton et al. 2013) and DEL-
UGE (Bragg, Mausam, and Weld 2013) build a multi-
level categorization of items by having workers suggest and
vote on the categories of each item. Crowds can also pro-
duce globally consistent coding of qualitative data if they
gather sufficient domain knowledge (André, Kittur, and Dow
2014). Context trees may be an effective method of generat-
ing these global constraints, or giving workers a sense of the
larger qualitative dataset before coding.

Workers can also take an active role in decomposing tasks
and aggregating them later. CrowdForge shards the prob-
lem into parallelizable tasks and then aggregates their out-
put into a meaningful single outcome, e.g., an article (Kittur
et al. 2011). Turkomatic also follows a divide-and-conquer
approach, recursively dividing each task into smaller and
smaller sub-components (Kulkarni, Can, and Hartmann
2012). These papers demonstrate that it is possible to recur-
sively decompose complex work: context trees aim to recur-
sively combine smaller tasks into larger perspectives instead.

Crowd-powered systems are another domain where the
crowd must act in a globally consistent way. Otherwise,
the crowd agent might be mercurial and act one way now,
then change opinion in the next round. To accomplish this,
crowds can pass along memories to each other so that new
untrained workers can effectively replace the experienced
workers that leave (Lasecki et al. 2012b). Using similar prin-
ciples, Chorus (Lasecki et al. 2013) builds a global represen-
tation of a long chat conversation by maintaining a record of
the most important points of the conversation. Itinerary plan-
ning (Zhang et al. 2012) and real-time captioning of spoken
language (Lasecki et al. 2012a) apply similar mechanisms.
Still, these mechanisms are well-suited to tasks where this
additive global representation can be understood quickly by
a single worker. Context trees might enable these tasks to
scale up to much larger problem spaces.

Problem Statement
Our goal is for crowds to be able to act with global knowl-
edge even though each crowd member can only see a small
subset of the input. In this section, we lay out content sum-
marization as an instance of this general problem and sketch
out the main challenges of interdependence and parallelism.

In summarization, we begin by splitting up a large piece
of content such as a book or movie into many small atoms
such as chapters or scenes. In most scenarios this subdivision
can be accomplished automatically through scene detection
algorithms. We do not assume a perfect splitting of the con-
tent into atoms: even when scenes are split poorly, they will
be recombined via context trees.

The final objective is to produce an importance rating for
each atom. An algorithm or worker can then generate a sum-



mary by filtering to the top-k atoms, or by trimming each
atom proportionally to its rating. This framework is simi-
lar to extractive summarization in natural language process-
ing (Gupta and Lehal 2010).

Our running example consists of a short story called Hard
Feelings by Barbara D’Amato, which is 4193 words long.
The novel is split into 29 atoms (Table 1): the average atom
is 145 words and 1.5 paragraphs. Atoms were split at para-
graph boundaries; no atom split within a paragraph. The
main characters of the story are two police officers who are
accused of leaving a person to die in an apartment that had
caught fire. The female officer claims that the person was al-
ready dead when she reached him — his forehead was cold
to the touch. On the other hand, the male officer states that
the person was still warm when the he touched the victim,
implying that they abandoned him. In the climax, the story
reveals that the person was in fact already dead. The male
officer had been touching something cold before examining
the victim, while the female officer had been touching some-
thing hot. Due to the contrast, the male officer felt the victim
to be warm, and the female officer felt the victim to be stone-
cold. All of the important events leading to the final conclu-
sion are shuffled over the storyline, making it very difficult
to understand the importance of each atom when isolated.

Challenges
There are two basic challenges for any potential solution to
rating the importance of each atom in this story.

Quality and parallelism are in tension. It is difficult for
a human reading part of the story to understand the cur-
rent atom’s meaning and relative importance. For instance,
a gun-shooting scene may be a key component in a political
movie or one of the many meaningless gun-shooting scenes
in a military movie. While a single contributor will have the
context to make globally consistent decisions, that person
might need hours, days, or months to process a long story-
line, for example a ten-season TV series or the popular fan-
fiction Harry Potter and the Methods of Rationality, which
spans roughly 2000 paperback pages. Parallelizing across
many workers would complete much faster, but also sacri-
fice the background necessary to make accurate decisions.

Importance ratings are only reliable locally. Even with
global summaries at hand, workers’ ratings are typically
only reliable relative to their other ratings and cannot eas-
ily be averaged to produce a global ranking. For example,
workers are often positively biased toward the importance
of the events they spent time inspecting (Norton, Mochon,
and Ariely 2012). The effect is that many nodes end up with
highly clustered, blandly positive ratings. In addition, work-
ers will use different ranges of the rating scale (Herlocker,
Konstan, and Riedl 2002). For example, in a 7-point Likert
scale, one worker may give 7s to important atoms and 5s to
non-important ones, while another worker may use 5 as her
highest rating and 1 as her lowest one.

Given these challenges, an efficient solution must provide
mechanisms so that workers can build a global view while
preserving a high level of parallelism. Simultaneously, an
effective solution must correctly normalize biases in indi-
vidual workers’ ratings.

Context trees
Context trees construct hierarchical summaries where each
node describes the main events taking place in its child
nodes and labels each child node with a weight signifying its
importance to the global input. Specifically, each tree node
stores two pieces of information: a) a text summary of the
events taking place in the node’s descendant atoms, and b) a
rating for the most important event in the node’s descendant
atoms. The summary (a) is generated in an upward phase
while the tree is built, and the rating (b) is generated during
a downward phase.

Upward Phase
The upward phase, which generates the summary, requires
two parameters. The first parameter is b, the desired branch-
ing factor of the context tree. In practice, there may be a dif-
ferent b for the leaf layer, because it may take more or less
time to view atoms and summarize them than to combine
existing summaries. The second parameter is r , the replica-
tion factor, which determines how many workers summarize
or vote on each node. In future work, r might be adaptively
determined, e.g., (Sheng, Provost, and Ipeirotis 2008).

In the mystery novel example, we use a branching factor b
of 4 in the bottom layer and a b of 3 in the upper layers (Fig-
ure 3), so each worker sees 4 atoms or 3 previous summaries
and writes a meta-summary. We used an r of 4, meaning that
4 workers provided input on each node.

In addition to writing and voting on summaries, the up-
ward phase asks workers to vote on the most representative
atom (leaf) for that subtree. The most representative atom
propagates from the child nodes to the parent so that workers
processing the upper layers of the tree can take a look of the
raw content and not just read text summaries of other work-
ers. The purpose of this early voting is to provide a glimpse
of the actual content to the workers writing the summaries.
The votes are discarded once the upward phase is complete.

The worker interface thus presents three questions:
1. Vote on the most informative summary for each child node

(non-leaf nodes only): workers see all r summaries for
each child node, giving them several perspectives on the
content, and vote on which one is best.

2. Summarize the events described in the child nodes via a
text summary.

3. Pick the most representative of the atoms propagated to
the child nodes: This atom propagates to the parent node
so that workers can see the raw content if they wish.

In practice, workers may reference the same event or en-
tity in different ways, for example calling a character either
by her first or her last name. This lack of alignment can make
it more difficult for workers in the higher levels of the tree to
combine nodes. So, we ask the user or requester to seed the
system with canonical names for any major entities or char-
acters, and workers must use the canonical name whenever
they refer to that entity. In the future, we believe that this step
could be automated, e.g., using named entity identification
(novels) or face recognition (movies).

When the tree grows a root node, the upward phase has
produced a global view of the storyline in a hierarchical
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Figure 2: Summaries generated in the upper layers of the context tree for the mystery novel Hard Feelings.
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Figure 3: Context trees sample rating for the mystery novel
Hard Feelings, after the downward phase.

form. Figure 2 shows the higher level summaries for the
mystery novel. This hierarchical summary allows workers
to understand the storyline at any level of granularity. Our
next task is to use this global context to rate the local views.

Downward Phase
The downward phase applies the hierarchical summaries to
help a second set of workers make informed ratings of the
importance of each tree node. To this end, our approach must
account for workers’ biases and their differing use of the
rating scale. The main principle of our rating process is to
weigh each node in comparison to its siblings. In particular,
we present the summaries on the path from the root node
to the current node, then ask each worker to rate the impor-
tance of the current node’s children. Starting from the root
summary and working her way down to the current node, the
worker can better understand the events she has to rate.

Each crowd task corresponds to a non-leaf node of the
tree. The task interface asks workers the two following ques-
tions for each child of the non-leaf node:

1. Given the overall summary and the summary of this child
node, describe the most important event in this node.

2. Rate the importance of the event you described (1 to 7).

A more straightforward approach would be to ask work-
ers to rate the entire node instead of just the most impor-
tant event. However, there is no forcing function that ensures
workers have read the summaries, and workers ratings’ are
affected by how detailed or brief the summary is. Asking
workers to describe the most important event in the summary
ensures that they have read and thought about it (Kittur, Chi,
and Suh 2008). It also focuses the workers on the content of
the event rather than how concise or not the summary is. Just

as in the upward phase, we use a replication factor r in order
to get more than one rating for each node of the context tree.

We introduce a rating normalization that compensates for
the fact that workers may not correctly balance the impor-
tance of their own subsection against other sections. In ad-
dition, different workers use different ranges on the rat-
ing scale, which makes it more difficult to produce an ag-
gregated ranking. We normalize each child node rating to
[0, µp], where µp is the mean normalized rating that other
workers gave the parent node. In this way, we ensure that
all workers have been normalized to the same range, and
that the rating for a child is no greater than the importance
of the parent, so a subtree cannot be more important than
its parent. For instance, suppose a worker rates three child
nodes 3, 3, and 6, and the normalized rating for the par-
ent node is µp = 0.5. We normalize first child’s rating into
3
6 ∗µp = 0.25, second child’s rating into 3

6 ∗µp = 0.25, and
third child’s rating into 6

6 ∗ µp = 0.5. The final rating for
each child is the average over the r ratings. The downward
phase can run across all nodes in parallel: rating normaliza-
tion can take place after all of the ratings are collected.

Figure 3 gives a sample rating for the mystery novel while
Table 1 depicts the top-5 short-story atoms referring to this
rating; using checkmarks in column CT.

Evaluation
In this paper, we suggest that crowds can successfully cre-
ate hierarchical summaries via context trees, to make deci-
sions requiring global knowledge even though each contrib-
utor can only see a small piece of the whole. In this section,
we evaluate our claim by applying context trees to rate the
importance of 30 atoms in a 104-minute movie and 29 atoms
in a 4193-word story1. We compare context trees to a local
condition where each worker can only see a small number of
atoms and to a global condition where each worker sees the
entire input. We compared these three approaches to ratings
collected by paid contractors who had experience in movie
and novel reviews and saw the entire content before rating.

Method
We recruited workers from Amazon Mechanical Turk
(AMT, www.mturk.com) to rate the importance of atoms

1http://hci.stanford.edu/publications/2014/contexttrees/



Atom G CT
Their commander, Sazerac, sat with them in the waiting room. He was as unhappy as they were. Finally he spoke. “There’s no way I can stop this. But it bothers me. I
wouldn’t have figured you for a shirker, Figueroa.” - “What do you mean?” - “Don’t you realize how they see this?” - “Yes, boss. They know that Bennis and I have two
different stories about last night, and so they think one of us is improperly describing the case. So they think one of us is lying. Which would be a reprimand.” - “NO,
Figueroa. It’s not that minor.” - “Minor! I’ve never had a reprimand and I don’t intend to have one now! Uh. Sir.” Sazerac sighed. “Listen to me. We’re talking separation
from the department. Maybe prosecution.” - “For what?” - “They think you left that man to die in the fire, Figueroa. And made up your story later to cover up. To make
it seem he was dead.” - Bennis groaned. “But he was dead, sir! Figueroa would never- ”

4

There was smoke coming out around the top of the door. Bennis felt the door to see if it was cool, which it was. The last thing he wanted was to start a backdraft. Then
he backed up to take a kick at the door. But that instant it opened and a man came running out. His hair and jacket were on fire, and he was screaming. He didn’t even see
the two cops, but crashed frantically down the stairs. Bennis spun and went after him, knowing Figueroa would put out the emergency call to the dispatcher. He raced
down the stairs three at a time and still couldn’t catch up with the terrified man until, leaping, screaming down the cement steps outside the front door, the man fell. The
fire on his hair and jacket had spread. Bennis rolled him over in the snow three or four times. Then, thinking to chill the charred flesh and prevent further burn damage,
he grabbed up handfuls of snow and slapped it all over the man’s head and back.,

4 4

The hall was still cool and the air in it was fresh, so she pushed the woman out and yelled after her, “Warn your neighbors!” There was no time to make sure she did.
Suze Figueroa saw Bennis coming up the stairs. She yelled, “There’s a man inside.” On hands and knees she crawled back in, touching the hot wall to make sure where
she was going. She found the man, but at the same instant she and Bennis heard a baby start to scream. Bennis was next to her now and he slapped the man’s cheek,
but the man didn’t move. Figueroa felt the man’s forehead. Smoke swirled above him, but he was lifeless and cold. The baby screamed louder, from a back bedroom. “I
gotta get the kid,” she said to Bennis. She wasn’t sure he could hear over the roar of the fire, but then she found him following her as they crawled to the bedroom. “How
many kids?” she yelled. There was just one crib. Bennis stood up, grabbed a little girl out of the crib, put her solidly under one arm, and ran like a quarterback for the
front door. Suze stayed to check for another child.

4 4

He and Wardron held each other’s eyes for two or three seconds. Figueroa said, “Sir, may I ask what the circumstances were that led up to the fire? We came into a
situation midway-” - “Which is no excuse.” - “I’m not suggesting that it is. But the fire obviously started in that apartment, and there were three adults inside who didn’t
seem to have made any effort to put it out. Why was Mr. Molitor lying in the middle of the living room floor? If he’d been shot, for instance, I would think I’d be entitled
to know that. It certainly wasn’t the smoke that killed him. He was down on the floor where the air was good.” - “I don’t suppose there’s any reason not to tell you. We
have a reasonably full picture, from the statement of the woman and the statements of the neighbors.” The Molitors had begun fighting in the afternoon-a husband, his
wife, and the wife’s brother. Fighting and drinking, and drinking and fighting. Among the burned remnants of their apartment were dozens of beer cans and the fragments
of two bottles that had contained scotch.,

4

Wardron added, “The entire building was engulfed when the fire department finally made it. Shortly after that, the top three floors of the structure collapsed into the
basement. What was left of Mr. Molitor looked a lot like a blackened pipe cleaner.” Figueroa had been staring at the tabletop. “Wait!” she said suddenly. She knew
that wasn’t the way to talk to the brass, and said in a quieter voice, “If you’ll give me a minute, to go get something, I think I can explain what happened.” She got up.
Wardron said, “You can explain it right here.” - “If I may leave for just a minute, sir, I can demonstrate.” - “One minute, then.”

4

Figueroa took two Styrofoam cups from the table that held the coffee urn and was back in less than a minute with two cups of water. “Would you put the fingers of your
left hand in one of these and the fingers of your right hand in the other, Deputy Wardron?” - “No. Explain to me what you think you’re trying to do.” - “Well maybe
Commander Sazerac will, while I explain. We can always repeat it.” Sazerac, intrigued, did as she said. “One cup is hot water and one is cold. On the night of the fire,
Officer Bennis had patted snow all over the brother, outdoors, and then ran back into the burning apartment. While he was doing that, I was pulling the woman out of the
kitchen. She was hot to the touch and felt like she was starting to blister. When I came back, I felt along the hot wall. The instant Officer Bennis returned from outside,
we both touched Mr. Molitor.”,

4 4

Commander Sazerac said, “I begin to see.” - “Mr. Molitor was dead, but only ten to twenty minutes dead, so his skin was probably about the temperature of mine today.
Commander, will you use both hands to touch my forearm?” Sazerac did so. He smiled. “Amazing. Your arm feels warm to my right hand and cold to my left.” Sazerac
turned to Wardron. “The same arm,” he said. “And it feels entirely different.” He gestured to Wardron. “Want to try it?” Figueroa and Bennis sat in their squad car. Bennis
said, “Reminds me of this case I had once.” Figueroa sighed loudly, but Bennis knew she liked his stories. “Guy decided to rob a fraternity house late at night, on a night
when there had been a late snow. Flat, untouched snow leading up to the door. So he says to himself ’If I walk in backward, they’ll think it was somebody from inside
who stole the stuff, because there won’t be any tracks leading in.’ ” - “Not a bad plan.”

4

Table 1: Top-5 atoms for the novel Hard Feelings, from the ground truth (column G) and from context trees (column CT).

in the movie and the short story. The short story, Hard
Feelings, was described previously. For our second dataset,
the movie The Master Plan, workers produced the following
top-level summary: “Kristie is a teen aged girl caught in the
middle of an old conflict between her scientist grandfather
and her fundamentalist father. She appears to be deeply re-
ligious herself, but is constantly shut down and drowned out
when she tries to discuss her beliefs with anyone. Her sit-
uation comes to a head when her grandfather dies alone,
shortly after her father has forbidden her to ever see or
speak to him again. She finds comfort in her own faith, but
her (also deeply religious) mother is shocked when she hears
that faith articulated in terms of heaven being better than
earth. The movie ends with Kristie dealing with the conflict
between her own belief and understanding and that of oth-
ers.”

In the local condition, each worker is presented with a

small portion of the full movie/story – four consecutive
atoms – and is asked to give a 7-point Likert rating for
the importance of the atoms she was presented with. Each
worker can only do this task once. On the other hand, in the
global condition, we paid workers to watch the whole movie
or story and rate all the atoms. In many situations, a global
condition is impractical — thus motivating context trees —
but it is important to establish the global condition as an op-
timal result. In both the global and local conditions, each
atom is rated by four workers and its final importance rating
is the average of the four responses. The context tree used a
replication factor, r, of four workers.

Are the benefits of context trees entirely from the upward
phase, which generates the top-level summary? How much
does the rating adjustment in the downward phase matter?
To answer these questions, we include an additional ablation
condition, which stops halfway through the context tree: we



provide the same root summaries used by our context tree
runs but do not execute the downward phase. Instead, we ask
workers directly for a 7-point Likert rating of each atom’s
importance, given the top-level summary. In other words,
after the upward phase, the ablation condition will run the
same task with local condition with the additional inclusion
of the top-level summary from the context tree.

For all approaches, each node’s final rating is the aver-
age over four workers’ ratings. However, so that we might
understand stability in this evaluation, we collected ten, in-
stead of just four, ratings per node. Then, we generate

(
10
4

)
=

210 different outcomes (samples) by picking every possible
combination of four ratings. For example, one context tree
sample might only include the second, sixth, ninth, and tenth
workers’ ratings in the downward phase. This sampling pro-
cess takes place only in the downward phase. Since written
word and voting of the best summaries is used in the upward
phase, we expect the quality of the best summaries in each
tree node to be approximately the same across different runs
of the upward phase.

For the upward phase of context trees, the price we set
for a bottom layer task that involved the atoms, was $1.50
for the movie and $0.70 for the story. A higher layer task in
the upward phase includes, in addition, the reading of sum-
maries from the lower layer and requires more work. Hence,
a higher layer task was priced at $3.00 for the movie, and
$1.40 for the story. All downward-phase tasks were priced
at $1.50 for the movie and $0.70 for the story. These val-
ues were tuned to optimize quality and throughput. With the
above pricing and four answers per task, the overall cost of
running context trees was $210 for the movie and $70 for the
story. On the other hand, the overall cost for local was $60
for the movie and $22 for the story, and for global, $80 and
$40, respectively. We required that workers completing the
tasks have at least a 97% approval rating on over 500 tasks
and live in the United States.

Ground truth We constructed ground truth importance
ratings for each atom by recruiting 4 experienced freelancers
from Elance (www.elance.com) to consume the entire film
and story and then rate each atom. Doing so allows us to
distinguish the quality of the global condition, which used
AMT and where workers may slack, from a platform where
we trust the output and could specifically hire workers who
have experience with movie reviews. Workers sorted the top-
15 atoms in each story based on their importance. Any atoms
that were not included in the top-15 tied in the last position
of the list. The overall cost for the Elance reviews was $160
for the movie and $80 for the story.

The average Spearman correlation across the 6 pairs of
raters is 0.743 for the story and 0.855 for the movie, indicat-
ing a strong agreement between raters’ rankings. The corre-
lation was higher for the movie because it had more atoms
clearly serving artistic purposes rather than plot; all raters
ranked these atoms at the bottom. Our ground truth consists
of the averaged ranked list of atoms from the 4 raters.

Measures We measure the precision at k (P@k) and
Spearman’s rank correlation between the sorted list of atoms
each method produces and ground truth. Precision at k mea-
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Figure 4: P@k: Context trees’ performance is close to the
global condition where workers see the entire content, when
they can choose k > 5 atoms. Context trees’ improvement
over only local views is between 50% and 300%.

sures the percentage of scenes that agreed with the ground
truth ranking of top-k scenes.

Results
We first quantify the quality of context trees compared to
the local condition where workers have limited insight into
the larger story and to the global condition where the AMT
workers have supposedly seen the entire film or read the en-
tire mystery novel. Figure 4(a) depicts, for the movie, P@k
on the y-axis and k ∈ [1, 15] on the x-axis. All datapoints are
the average P@k over the 210 samples for each approach.

Context trees’ improvement over the local condition is be-
tween 200% and 300% when k is below 9, and between 50%
and 100% for k ∈ [9, 15]. In other words, context trees were
particularly effective when fewer scenes had to be selected.
Moreover, context trees’ precision is very close to global for
k > 4. The average standard deviation across samples for
all k was 0.136 for context trees, 0.110 for local, 0.141 for
global, and 0.132 for ablation.

Figure 4(b) depicts the P@k (means over 210 runs) for
the story. Context trees’ improvement over local is not as
high as in the movie, still, when k is lower than 12, context
trees precision is 50% higher than local on average. In ad-
dition, context trees’ margin to global remains below 0.05
for k > 7. Note also that all approaches have a higher pre-
cision for almost all k values, compared to the movie. This
improvement is because it is more difficult to realize which
atoms contribute to the plot when watching the movie com-
pared to reading the story, especially when having just a lo-
cal view. The average standard deviation across all k for the
story was 0.127 for context trees, 0.119 for local, 0.105 for
global, and 0.145 for ablation.

The ablation condition performs near the precision of con-
text trees for the story, but remains much lower than con-
text trees for the movie — further evidence that the movie
dataset is more difficult. Specifically, in Figure 4(a), abla-
tion’s precision sits between the precision for the local and
context tree condition. Since a video is worth a thousand (or
maybe a million) words, the top-layer summary inevitably
leaves out a number of important plot details. In this case,
the benefit of applying the downward phase can be substan-
tial. On the other hand, the top-layer summary for the story
mentions briefly almost all of the important pieces of the
plot and, hence, workers can rate accurately the importance
of each atom in the ablation condition. The benefits of the



downward phase are also measured by the correlation with
the ground truth rankings in the next section, and are further
emphasized in the puzzle experiment to come.

When k < 6, the precision of all approaches is low. In
both cases, this is because the top five atoms are all criti-
cal elements of the plot, roughly equivalently important. So,
there is significant disagreement on their ordering, and it is
more difficult for any approach to do well on average.

In order to examine the statistical significance of our re-
sults, we computed bootstrapped confidence intervals for
the difference in P@6 between each pair of conditions. We
chose P@6 as the dependent variable because it represents
significant extractive compression ( 6

30 = 20%). Bootstrap-
ping allows us to avoid prohibitive costs while testing these
differences by repeatedly sampling from the 210 samples
per condition. In our bootstrap, we computed 1000 boot-
strap estimates using 100 samples to generate each estimate.
We used 99.2% confidence intervals, which corresponds to
p = .05 adjusted using Bonferroni correction to take into ac-
count familywise error across six comparisons. All pairwise
differences are statistically significant (e.g., the confidence
interval does not contain 0.0) except for the difference be-
tween global and context trees for the movie, and the differ-
ence of context trees and ablation for the story.

Effect of the number of ratings Figures 5(a) and 5(b) plot
the average Spearman rank correlation between each condi-
tion and the ground truth when 2, 4, 6, and 8 ratings are used
for each atom or tree node. For both the movie and the story,
context trees increases its correlation with the ground truth
at a higher rate, compared to global and local, as the num-
ber of ratings rises. These results suggest that once context
trees have enough ratings for each node, they are practically
equivalent to global. Once again the results suggest that the
movie is a more challenging dataset: local does not improve
with more ratings, and ablation and context trees are sepa-
rated by a significant margin in Figure 5(a).

Cost To gain this increase in effectiveness, context trees
require more work. The cost of context trees depends on the
values of the replication factor, r, the branching factor, b,
and the size of the content to be summarized. Here we pro-
vide a simple analytical evaluation for the cost of context
trees. A single atom reaches the root of the tree, b atoms
reach the children of the root, b2 atoms reach the children
of the children of the root, and so on. Initially, let us as-
sume that there are n = bm atoms. Hence, workers need to
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Figure 5: Spearman rank correlation with the ground truth
rankings. Context trees’ correlation increases more rapidly
than other approaches as more ratings become available.

watch/read n atoms in the bottom of the tree and
∑m−1

i=0 bi

atoms on the higher layers of the tree. Overall, the total num-
ber of atoms workers read/watch in the upward phase is:
n +

∑m−1
i=0 bi = n + bm−1

b−1 = n + n−1
b−1 . In general, we

assume that the time commitment for reading and writing
summaries during the upward phase must be approximately
the same with the time needed to read/watch the most rep-
resentative atoms. Therefore, the overall effort to read and
write the summaries is approximately the same with the ef-
fort to read/watch

∑m−1
i=0 bi atoms.

In the downward phase, we again assume that the effort to
describe the most important event of a node and rate it, is ap-
proximately the same with writing a summary for that node.
Overall, the effort needed for the downward phase is approx-
imately the effort needed to read/watch

∑m−1
i=0 bi atoms, for

the higher layers of the tree, plus the effort to read the initial
n atoms in the leaves of the tree.

Taking also into account the replication factor r, the total
effort for context trees to summarize n atoms of T minutes
each, is T ∗ r ∗ (2n+ 3

∑m−1
i=0 bi) = 2Trn+ 3Trn−1

b−1 . On
the other hand, techniques such as local need a single pass
over the n atoms. Therefore, when we ask the opinion of r
workers, local requires Trn man-hours. For instance, when
r = 4, T = 3 min, n = 30, and b = 3, for a rate of $10/hour,
local costs $60, while context trees cost 120+87 =$207. In
the general case, we can say that for a b close to 4, the cost
of context trees is three times the cost of local.

Hierarchical Pattern Detection
Context trees offer the opportunity to crowdsource complex
new tasks that require global understanding. Summarization
is an obvious application, but context trees also allow large
groups to work on other information tasks where useful data
can be passed up the hierarchy, assembled, and then passed
back down to inform local decisions. Stacked multi-layer
puzzles, for example, become feasible with this approach.

We thus crowdsourced a puzzle solution to a 462,000-
piece puzzle that operates simultaneously at three stacked
levels of hierarchy: encoded within a 680×680 grid of words
is a 34 × 34 grid of numbers, and encoded within that grid
of numbers is a picture. Figure 6 shows a 5 × 5 portion of
the grid at the bottom layer of the puzzle. There are two
word sequences that appear: a) horse, dog, cat, giraffe, and
b) cloud, rain, sun, mist, snow. Any word that is highlighted
as part of a sequence turns on a “pixel” in the middle layer.
The other pixels remain off in the middle layer. In this ex-
ample, the turned-on pixels draw the letter “S” in the middle
layer. The digits and letters from the middle layer form, in
turn, arithmetic and letter sequences. In the 7× 7 portion of
the middle layer, in Figure 6, two sequences appear: a) 3, 5,
7, 9, 11, 13, 15, 17, 19, and b) D, F, H, J, L. As in the bot-
tom layer, the sequences turn on or off the respective pixels
for the next layer. In this case, the pixels turned-on form the
racket of the tennis player in the top layer image in Figure 6.

This puzzle has some similarities with summarization
tasks: the objective is to incrementally pass along impor-
tant “bits” of information that shape higher layers’ views.
Then, the top-layer image can help workers in the lower lay-
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Figure 6: Hierarchical puzzle: In the bottom layer workers are asked to detect sequences of words. In the 5-by-5 segment
shown here, one worker detects an animal-related sequence, while another worker detects a weather-related sequence. The two
sequences form letter “S” in the middle layer. In the middle layer, one worker detects a sequence of odd numbers, while another
worker detects a sequence of odd letters. The two sequecens form the racket of the tennis player in the top layer image.

ers refine their guesses. Nevertheless, there is an important
difference between summarization for media content and the
puzzle task: it is much more time-consuming for a single hu-
man to find the top-layer image in such a puzzle than figure
out the plot of a movie or novel. With the movie or novel, a
human will just need a single pass to figure out the plot. With
the puzzle, the process is far more iterative and nonlinear.

Procedure
Each level of the puzzle asks workers to find patterns of el-
ements. The user interface for the bottom layer is given by
the “sequences interface” in Figure 7: workers indicate the
word sequences they detect using checkboxes; in this case
a worker detected a clothes-related sequence (pants, shirt,
etc.) and a student-related sequence (books, school, etc.).

Each layer’s checkbox puzzle encodes a grid of pixels.
Every checkbox, when checked, turns on a corresponding
pixel at the next higher level of the puzzle. So, patterns at
each level produce pixel patterns that look like lines, curves,
and diagonals at the next level up. These shapes combine to
form the elements in that next level of the hierarchy.

The next step is for workers to vote on which worker’s
solution to promote upwards. Workers inspect the bitmask
images produced by the checkboxes in adjacent grid sec-
tions. This interface is depicted in Figure 7, by the “voting
interface”: there are four adjacent 10 × 10 grid segments
(upper left, upper right, lower left, lower right), each with
four outcomes from different workers. Using radio buttons,
a worker selects the bitmask image for each grid segment
that is best — the interface shows how the four selected im-
ages fit together to create a symbol, a letter ’S’ in Figure 7.
(This voting task corresponds to selecting the best summary
written by a worker for a specific part of a movie/novel.)

Combining the images from the voting task in Figure 7
produces the middle layer of the puzzle. For example, the ’S’
letter in Figure 7, becomes an entry in the puzzle’s middle
layer; just like in Figure 6. We switch back to the sequences
interface, and we ask workers to detect sequences of num-
bers and letters. The middle layer of Figure 7 depicts the
sequences interface, where the numbers and letters are the
outcome of the voting interface. Once again, workers iden-
tify patterns with the checkboxes to produce the lines and
curves that form the top layer — the final solution to the

puzzle, an image — and complete the upward phase.
Since some of the word sequences in the bottom layer are

difficult to detect, and since some sequences split between
tasks (atoms), the upward direction produces a noisy out-
come with several pixels or entire line segments missing.

The compounding noise and difficulty from the middle
layer make the top layer even more difficult. The imperfec-
tions become apparent when comparing the outcome after
the upward phase in the top layer of Figure 7 to the true ten-
nis player icon in Figure 6.

The downward phase percolates these noisy results back
down to the lower levels and gives workers the opportunity
to fix any mistakes. Workers rate the importance of each item
(rating interface in Figure 7), indicating how important an
element is for figuring out what the top-layer image shows.
For example, a number/letter that is part of the sequence
forming the racket or the ball is extremely important, while a
letter that does not form any sequence is not important at all.
Through the ratings, workers correct for missing sequences
or misidentified sequences that may alter the meaning of the
image, for example making the tennis player icon look like a
badminton icon. This effect can be seen in the final outcome
in Figure 7, where each “pixel” of the bitmap has an inten-
sity proportional to its importance rating. In the top layer in
Figure 7, the racket and the torso of the tennis player are
largely missing, but after the downward phase they become
much clearer, as the final outcome in Figure 7 shows.

Conclusion
Context trees combine many local views of a large input
space to create a global view that can be consumed at sev-
eral levels of detail. By having the big picture in mind, con-
tributors can provide a meaningful answer about the impor-
tance of a scene in a movie, the importance of a paragraph
in a novel, or detect hidden patterns in a multi-layer puzzle.
Context trees suggest that it would be possible to crowd-
source shorter versions of long articles, videos, or books,
and let users filter information from the constantly expand-
ing web of creative content. However, they are also a step
toward solving the more general problem of crowdsourcing
globally informed actions when no individual can see the
entire decision space. Such a point of view opens opportuni-
ties in distributed cognition, crowd agents, and mobilizing a
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Figure 7: Context trees applied to the hierarchical puzzle:
local puzzle solutions percolate up to create a draft top-level
solution, then pass back down to fix the local puzzles.

large group to act with one purpose.
A general limitation of context trees is that the atoms

and their summaries must remain below each worker’s
time/cognition limit for a single task. If the branching fac-
tor b is high, a worker may get overwhelmed by looking at
many atoms or child summaries and produce a low quality
summary as a result. However, a larger b does allow each
worker to see a larger percentage of the overall storyline,
which gives them more context to create a good summary.
Future systems might be able to analytically find the optimal
b for a given task. In addition, context trees are limited to do-
mains where it is possible for workers to create summaries
that require less time to read or consume than the raw atoms.

There are many opportunities for more powerful hierar-
chical representations than the ones used here. For example,
we envision that it might be possible to solve complex plan-

ning problems with context trees. Many participants could
begin by designing local solutions, then percolating their
ideas upward to test if the solutions are globally consistent
(Zhang et al. 2012). The overall form of the proposed solu-
tions could then filter back down to inform local decision-
making. In this way, context trees could enable crowdsourc-
ing to scale to extremely complex domains.
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