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Abstract

There are multiple cues in an image which reveal what

action a person is performing. For example, a jogger has

a pose that is characteristic for jogging, but the scene (e.g.

road, trail) and the presence of other joggers can be an ad-

ditional source of information. In this work, we exploit the

simple observation that actions are accompanied by con-

textual cues to build a strong action recognition system. We

adapt RCNN to use more than one region for classification

while still maintaining the ability to localize the action. We

call our system R∗CNN. The action-specific models and the

feature maps are trained jointly, allowing for action specific

representations to emerge. R∗CNN achieves 90.2% mean

AP on the PASAL VOC Action dataset, outperforming all

other approaches in the field by a significant margin. Last,

we show that R∗CNN is not limited to action recognition. In

particular, R∗CNN can also be used to tackle fine-grained

tasks such as attribute classification. We validate this claim

by reporting state-of-the-art performance on the Berkeley

Attributes of People dataset.1

1. Introduction

Consider Figure 1 (a). How do we know that the per-

son highlighted with the red box is working on a computer?

Could it be that the computer is visible in the image, is it

that the person in question has a very specific pose or is it

that he is sitting in an office environment? Likewise, how

do we know that the person in Figure 1 (b) is running? Is

it the running-specific pose of her arms and legs or do the

scene and the other people nearby also convey the action?

For the task of action recognition from still images, the

pose of the person in question, the identity of the objects

surrounding them and the way they interact with those ob-

jects and the scene are vital cues. In this work, our objective

is to use all available cues to perform activity recognition.

Formally, we adapt the Region-based Convolutional Net-

work method (RCNN) [11] to use more than one region

1Source code and models are available at https://github.com/

gkioxari/RstarCNN

Figure 1. Examples of people performing actions.

when making a prediction. We call our method R∗CNN.

In R∗CNN, we have a primary region that contains the per-

son in question and a secondary region that automatically

discovers contextual cues.

How do we select the secondary region? In other words,

how to we decide which region contains information about

the action being performed? Inspired by multiple-instance

learning (MIL) [31, 21] and Latent SVM [9], if I is an im-

age and r is a region in I containing the target person, we

define the score of action α as

score(α; I, r) = w
α

P ·φ(r; I) + max
s∈R(r;I)

w
α

S ·φ(s; I), (1)

where φ(r; I) is a vector of features extracted from region

r in I , while w
α
P and w

α
S are the primary and secondary

weights for action α respectively. R(r; I) defines the set of

candidates for the secondary region. For example, R(r; I)
could be the set of regions in the proximity of r, or even the

whole set of regions in I . Given scores for each action, we

use a softmax to compute the probability that the person in

r is performing action α:

P (α|I, r) =
exp(score(α; I, r))∑

α′∈A
exp(score(α′; I, r))

. (2)

The feature representation φ(·) and the weight vectors

w
α
P and w

α
S in Eq. 1 are learned jointly for all actions
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Figure 2. Schematic overview of our approach. Given image I , we select the primary region to be the bounding box containing the person

(red box) while region proposals define the set of candidate secondary regions (green boxes). For each action α, the most informative

secondary region is selected (max operation) and its score is added to the primary. The softmax operation transforms scores into probabilities

and forms the final prediction.

α ∈ A using a CNN trained with stochastic gradient de-

scent (SGD). We build on the Fast RCNN implementation

[10], which efficiently processes a large number of regions

per image. Figure 2 shows the architecture of our network.

We quantify the performance of R∗CNN for action

recognition using two datasets: PASCAL VOC Actions [7]

and the MPII Human Pose dataset [2]. On PASCAL VOC,

R∗CNN yields 90.2% mean AP, improving the previous

state-of-the-art approach [28] by 6 percentage points, ac-

cording to the leaderboard [1]. We visualize the selected

secondary regions in Figure 3 and show that indeed the sec-

ondary models learn to pick auxiliary cues as desired. On

the larger MPII dataset, R∗CNN yields 26.7% mean AP,

compared to 5.5% mean AP achieved by the best perform-

ing approach, as reported by [25], which uses holistic [32]

and pose-specific features along with motion cues.

In addition to the task of action recognition, we show

that R∗CNN can successfully be used for fine-grained tasks.

We experiment with the task of attribute recognition and

achieve state-of-the-art performance on the Berkeley At-

tributes of People dataset [4]. Our visualizations in Figure 8

show that the secondary regions capture the parts specific to

the attribute class being considered.

2. Related Work

Action recognition. There is a variety of work in the field

of action recognition in static images. The majority of the

approaches use holistic cues, by extracting features on the

person bounding box and combining them with contextual

cues from the whole image and object models.

Maji et al. [20] train action specific poselets and for each

instance create a poselet activation vector that is classified

using SVMs. They capture contextual cues in two ways:

they explicitly detect objects using pre-trained models for

the bicycle, motorbike, horse and tvmonitor categories and

exploit knowledge of actions of other people in the image.

Hoai et al. [16] use body-part detectors and align them with

respect to the parts of a similar instance, thus aligning their

feature descriptors. They combine the part based features

with object detection scores and train non-linear SVMs.

Khosla et al. [33] densely sample image regions at arbitrary

locations and scales with reference to the ground-truth re-

gion. They train a random forest classifier to discriminate

between different actions. Prest et al. [26] learn human-

object interactions using only action labels. They localize

the action object by finding recurring patterns on images of

actions and then capture their relative spatial relations. The

aforementioned approaches are based on hand-engineered

features such as HOG [5] and SIFT [19].

CNNs achieve state-of-the-art performance on handwrit-

ten digit classification [18], and have recently been applied

to various tasks in computer vision such as image classifi-

cation [17, 28] and object detection [11] with impressive

results. For the task of action recognition, Oquab et al.

[23] use a CNN on ground-truth boxes for the task of ac-

tion classification, but observe a small gain in performance

compared to previous methods. Hoai [15] uses a geomet-

rical distribution of regions placed in the image and in the

ground-truth box and weights their scores to make a single

prediction, using fc7 features from a network trained on the

ImageNet-1k dataset [6]. Gkioxari et al. [12] train body part

detectors (head, torso, legs) on pool5 features in a sliding-

window manner and combine them with the ground-truth

box to jointly train a CNN.

Our work is different than the above mentioned ap-

proaches in the following ways. We use bottom up region

proposals [30] as candidates for secondary regions, instead

of anchoring regions of specific aspect ratios and at specific

locations in the image, and without relying on the reference
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provided by the ground-truth bounding box. Region pro-

posals have been shown to be effective object candidates

allowing for detection of objects irrespective of occlusion

and viewpoint. We jointly learn the feature maps and the

weights of the scoring models, allowing for action specific

representations to emerge. These representations might re-

fer to human-object relations, human-scene relations and

human-human relations. This approach is contrary to work

that predefines the relations to be captured or that makes

use of hand-engineered features, or features from networks

trained for different tasks. We allow the classifier to pick

the most informative secondary region for the task at hand.

As we show in Section 4, the selected secondary region is

instance specific and can be an object (e.g., cell phone), a

part of the scene (e.g., nearby bicycles), the whole scene, or

part of the human body.

Scene and Context. The scene and its role in vision and

perception have been studied for a long time. Biederman et

al. [3] identify five classes of relationships (presence, posi-

tion, size, support and interposition) between an object and

its setting and conduct experiments to measure how well

humans identify objects when those relationships are vio-

lated. They found that the ability to recognize objects is

much weaker and it becomes worse as violations become

more severe. More recently, Oliva and Torralba [22] study

the contextual associations of objects with their scene and

link various forms of context cues with computer vision.

Multiple-Instance Learning. Multiple instance learning

(MIL) provides a framework for training models when full

supervision is not available at train time. Instead of accurate

annotations, the data forms bags, with a positive or a nega-

tive label [21]. There is a lot of work on MIL for computer

vision tasks. For object detection, Viola et al. [31] use MIL

and boosting to obtain face detectors when ground truth ob-

ject face locations are not accurately provided at train time.

More recently, Song et al. [29] use MIL to localize objects

with binary image-level labels (is the object present in the

image or not). For the task of image classification, Oquab

et al. [24] modify the CNN architecture [17], which divides

the image into equal sized regions and combines their scores

via a final max pooling layer to classify the whole image.

Fang et al. [8] follow a similar technique to localize con-

cepts useful for image caption generation.

In this work, we treat the secondary region for each train-

ing example as an unknown latent variable. During training,

each time an example is sampled, the forward pass of the

CNN infers the current value of this latent variable through

a max operation. This is analogous to latent parts locations

and component models in DPM [9]. However, here we

perform end-to-end optimization with an online algorithm

(SGD), instead of optimizing a Latent SVM.

3. Implementation

Figure 2 shows the architecture of our network. Given

an image I , we select the primary region to be the bounding

box containing the person (knowledge of this box is given at

test time in all action datasets). Bottom up region proposals

form the set of candidate secondary regions. For each action

α, the most informative region is selected through the max

operation and its score is added to the primary (Eq. 1). The

softmax operation transforms scores into estimated poste-

rior probabilities (Eq. 2), which are used to predict action

labels.

3.1. R∗CNN

We build on Fast RCNN (FRCN) [10]. In FRCN, the

input image is upsampled and passed through the convolu-

tional layers. An adaptive max pooling layer takes as input

the output of the last convolutional layer and a list of regions

of interest (ROIs). It outputs a feature map of fixed size (e.g.

7 × 7 for the 16-layer CNN by [28]) specific to each ROI.

The ROI-pooled features are subsequently passed through

the fully connected layers to make the final prediction. This

implementation is efficient, since the computationally in-

tense convolutions are performed at an image-level and are

subsequently being reused by the ROI-specific operations.

The test-time operation of FRCN is similar to SPPnet

[14]. However, the training algorithm is different and en-

ables fine-tuning all network layers, not just those above

the final ROI pooling layer, as in [14]. This property is im-

portant for maximum classification accuracy with very deep

networks.

In our implementation, we extend the FRCN pipeline.

Each primary region r of an image I predicts a score for

each action α ∈ A (top stream in Figure 2). At the same

time, each region within the set of candidate secondary

regions R(r; I) independently makes a prediction. These

scores are combined, for each primary region r, by a max

operation over r’s candidate regions (bottom stream in Fig-

ure 2).

We define the set of candidate secondary regions R(r; I)
as

R(r; I) = {s ∈ S(I) : overlap(s, r) ∈ [l, u]}, (3)

where S(I) is the set of region proposals for image I . In

our experiments, we use Selective Search [30]. The lower

and upper bounds for the overlap, which here is defined as

the intersection over union between the boxes, defines the

set of the regions that are considered as secondary for each

primary region. For example, if l = 0 and u = 1 then

R(r; I) = S(I), for each r, meaning that all bottom up

proposals are candidates for secondary regions.
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3.2. Learning

We train R∗CNN with stochastic gradient descent (SGD)

using backpropagation. We adopt the 16-layer network ar-

chitecture from [28], which has been shown to perform well

for image classification and object detection.

During training, we minimize the log loss of the pre-

dictions. If P (α | I, r) is the softmax probability that

action α is performed in region r in image I computed

by Eq. 2, then the loss over a batch of training examples

B = {Ii, ri, li}
M
i=1 is given by

loss(B) = −
1

M

M∑

i=1

logP (α = li | Ii, ri), (4)

where li is the true label of example ri in image Ii.

Rather than limiting training to the ground-truth person

locations, we use all regions that overlap more than 0.5 with

a ground-truth box. This condition serves as a form of data

augmentation. For every primary region, we randomly se-

lect N regions from the set of candidate secondary regions.

N is a function of the GPU memory limit (we use a Nvidia

K40 GPU) and the batch size.

We fine-tune our network starting with a model trained

on ImageNet-1K for the image classification task. We tie

the weights of the fully connected primary and secondary

layers (fc6, fc7), but not for the final scoring models. We set

the learning rate to 0.0001, the batch size to 30 and consider

2 images per batch. We pick N = 10 and train for 10K

iterations. Larger learning rates prevented fine-tuning from

converging.

Due to the architecture of our network, most compu-

tation time is spent during the initial convolutions, which

happen over the whole image. Computation does not scale

much with the number of boxes, contrary to the original im-

plementation of RCNN [11]. Training takes 1s per iteration,

while testing takes 0.4s per image.

4. Results

We demonstrate the effectiveness of R∗CNN on action

recognition in static images. We use two datasets, PASCAL

VOC Actions [7] and the MPII Human Pose dataset [2].

4.1. PASCAL VOC Action

The PASCAL VOC Action dataset consists of 10 differ-

ent actions, Jumping, Phoning, Playing Instrument, Read-

ing, Riding Bike, Riding Horse, Running, Taking Photo, Us-

ing Computer, Walking as well as examples of people not

performing some of the above action, which are marked as

Other. The ground-truth boxes containing the people are

provided both at train and test time. During test time, for

every example we estimate probabilities for all actions and

compute AP.

4.1.1 Control Experiments

We experiment with variants of our system to show the ef-

fectiveness of R∗CNN.

• RCNN. As a baseline approach we train Fast R-CNN

for the task of action classification. This network ex-

ploits only the information provided from the primary

region, which is defined as the ground-truth region.

• Random-RCNN. We use the ground-truth box as a

primary region and a box randomly selected from the

secondary regions. We train a network for this task

similar to R∗CNN with the max operation replaced by

rand

• Scene-RCNN. We use the ground-truth box as the pri-

mary region and the whole image as the secondary.

We jointly train a network for this task, similar to

R∗CNN, where the secondary model learns action spe-

cific weights solely from the scene (no max operation

is performed in this case)

• R∗CNN (l, u). We experiment with various combi-

nations of values for the only free parameters of our

pipeline, namely the bounds (l, u) of the overlaps used

when defining the secondary regions R(r; I), where r

is the primary region

• R∗CNN (l, u, nS). In this setting, we use nS > 1
secondary regions instead of one. The secondary re-

gions are selected in a greedy manner. First we select

the secondary region s1 exactly as in R∗CNN. The i-th

secondary region si is selected via the max operation

from the set R(r; I)∩R(s1; I)∩...∩R(si−1; I), where

r is the primary region.

The Random- and Scene- settings show the value of se-

lecting the most informative region, rather than forcing the

secondary region to be the scene or a region selected at ran-

dom.

Table 1 shows the performance of all the variants on the

val set of the PASCAL VOC Actions. Our experiments

show that R∗CNN performs better across all categories. In

particular, Phoning, Reading, Taking Photo perform signif-

icantly better than the baseline approach and Scene-RCNN.

Riding Bike, Riding Horse and Running show the small-

est improvement, probably due to scene bias of the images

containing those actions. Another interesting observation

is that our approach is not sensitive to the bounds of over-

lap (l, u). R∗CNN is able to perform very well even for

the unconstrained setting where all regions are allowed to

be picked by the secondary model, (l = 0, u = 1). In

our basic R∗CNN setting, we use one secondary region.

However, one region might not be able to capture all the

modes of contextual cues present in the image. Therefore,
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we extend R∗CNN to include nS secondary regions. Our

experiments show that for nS = 2 the performance is the

same as with R∗CNN for the optimal set of parameters of

(l = 0.2, u = 0.75).

4.1.2 Comparison with published results

We compare R∗CNN to other approaches on the PASCAL

VOC Action test set. Table 2 shows the results. Oquab

et al. [23] train an 8-layer network on ground-truth boxes.

Gkioxari et al. [12] use part detectors for head, torso, legs

and train a CNN on the part regions and the ground-truth

box. Hoai [15] uses an 8-layer network to extract fc7 fea-

tures from regions at multiple locations and scales inside

the image and and the box and accumulates their scores

to get the final prediction. Simonyan and Zisserman [28]

combine a 16-layer and a 19-layer network and train SVMs

on fc7 features from the image and the ground-truth box.

R∗CNN (with (l = 0.2, u = 0.75)) outperforms all other

approaches by a substantial margin. R∗CNN seems to be

performing significantly better for actions which involve

small objects and action-specific pose appearance, such as

Phoning, Reading, Taking Photo, Walking.

4.1.3 Visualization of secondary regions

Figure 3 shows examples from the top predictions for each

action on the test set. Each block corresponds to a differ-

ent action. Red highlights the person to be classified while

green the automatically selected secondary region. For ac-

tions Jumping, Running and Walking the secondary region is

focused either on body parts (e.g. legs, arms) or on more in-

stances surrounding the instance in question (e.g. joggers).

For Taking Photo, Phoning, Reading and Playing Instru-

ment the secondary region focuses almost exclusively on

the object and its interaction with the arms. For Riding Bike,

Riding Horse and Using Computer it focuses on the object,

or the presence of similar instances and the scene.

Interestingly, the secondary region seems to be picking

different cues depending on the instance in question. For

example in the case of Running, the selected region might

highlight the scene (e.g. road), parts of the human body (e.g.

legs, arms) or a group of people performing the action, as

shown in Figure 3.

Figure 4 shows erroneous predictions for each action on

the val set (in descending score). Each block corresponds

to a different action. The misclassified instance is shown

in red and the corresponding secondary region with green.

For Riding Bike and Riding Horse, which achieve a very

high AP, the mistakes are of very low score. For Jump-

ing, Phoning and Using Computer the mistakes occur due

to confusions with instances of similar pose. In addition, for

Playing Instrument most of the misclassifications are peo-

ple performing in concert venues, such as singers. For Tak-

Figure 4. Top mistakes on the PASCAL VOC Action val set. The

misclassified instance is shown in red, while the selected sec-

ondary region in green.

ing Photo and Playing Instrument the presence of the ob-

ject seems to be causing most misclassifications. For Run-

ning and Walking they seem to often get confused with each

other as well as with standing people (an action which is not

present explicitly in the dataset).

4.2. MPII Human Pose Dataset

The MPII Human Pose dataset contains 400 actions and

consists of approximately 40,000 instances and 24,000 im-

ages. The images are extracted from videos from YouTube.

The training set consists of 15,200 images and 22,900 in-

stances performing 393 actions. The number of positive

training examples per category varies drastically [25]. The

amount of training data ranges from 3 to 476 instances, with

an average of 60 positives per action. The annotations do

not include a ground-truth bounding box explicitly, but pro-

vide a point (anywhere in the human body) and a rough

scale of the human. This information can be used to ex-

tract a rough location of the instance, which is used as input

in our algorithm.

4.2.1 R∗CNN vs. RCNN

We split the training set into train and val sets. We make

sure that frames of the same video belong to the same split

to avoid overfitting. This results in 12,500 instances in train

and 10,300 instances in val. We train the baseline RCNN

network and R∗CNN. We pick (l = 0.2, u = 0.5) due to

the large number of region proposals generated by [30] (on

average 8,000 regions per image).
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AP (%) Jumping Phoning Playing Instrument Reading Riding Bike Riding Horse Running Taking Photo Using Computer Walking mAP

RCNN 88.7 72.6 92.6 74.0 96.1 96.9 86.1 83.3 87.0 71.5 84.9

Random-RCNN 89.1 72.7 92.9 74.4 96.1 97.2 85.0 84.2 87.5 70.4 85.0

Scene-RCNN 88.9 72.5 93.4 75.0 95.6 98.1 88.6 83.2 90.4 71.5 85.7

R∗CNN (0.0, 0.5) 89.1 80.0 95.6 81.0 97.3 98.7 85.5 85.6 93.4 71.5 87.8

R∗CNN (0.2, 0.5) 88.1 75.4 94.2 80.1 95.9 97.9 85.6 84.5 92.3 71.6 86.6

R∗CNN (0.0, 1.0) 89.2 77.2 94.9 83.7 96.7 98.6 87.0 84.8 93.6 70.1 87.6

R∗CNN (0.2, 0.75) 88.9 79.9 95.1 82.2 96.1 97.8 87.9 85.3 94.0 71.5 87.9

R∗CNN (0.2, 0.75, 2) 87.7 80.1 94.8 81.1 95.5 97.2 87.0 84.7 94.6 70.1 87.3

Table 1. AP on the PASCAL VOC Action 2012 val set. RCNN is the baseline approach, with the ground-truth region being the primary

region. Random-RCNN is a network trained with primary the ground-truth region and secondary a random region. Scene-RCNN is a

network trained with primary the ground-truth region and secondary the whole image. R∗CNN (l, u) is our system where l, u define the

lower and upper bounds of the allowed overlap of the secondary region with the ground truth. R∗CNN (l, u, nS) is a variant in which nS

secondary regions are used, instead of one.

AP (%) CNN layers Jumping Phoning Playing Instrument Reading Riding Bike Riding Horse Running Taking Photo Using Computer Walking mAP

Oquab et al. [23] 8 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Hoai [15] 8 82.3 52.9 84.3 53.6 95.6 96.1 89.7 60.4 76.0 72.9 76.3

Gkioxari et al. [12] 16 84.7 67.8 91.0 66.6 96.6 97.2 90.2 76.0 83.4 71.6 82.6

Simonyan & Zisserman [28] 16 & 19 89.3 71.3 94.7 71.3 97.1 98.2 90.2 73.3 88.5 66.4 84.0

R∗CNN 16 91.5 84.4 93.6 83.2 96.9 98.4 93.8 85.9 92.6 81.8 90.2

Table 2. AP on the PASCAL VOC Action 2012 test set. Oquab et al. [23] train an 8-layer network on ground-truth boxes. Gkioxari et

al. [12] use part detectors for head, torso, legs and train a CNN. Hoai [15] uses an 8-layer network to extract fc7 features from regions at

multiple locations and scales. Simonyan and Zisserman [28] combine a 16-layer and a 19-layer network and train SVMs on fc7 features

from the image and the ground-truth box. R∗CNN (with (l = 0.2, u = 0.75)) outperforms all other approaches by a significant margin.

On the val set, RCNN achieves 16.5% mean AP while

R∗CNN achieves 21.7% mean AP, across all actions. Fig-

ure 5 shows the performance on MPII val for RCNN and

R∗CNN. On the left, we show a scatter plot of the AP for

all actions as a function of their training size. On the right,

we show the mean AP across actions belonging to one out

of three categories, depending on their training size.

The performance reported in Figure 5 is instance-

specific. Namely, each instance is evaluated. One could

evaluate the performance at the frame-level (as done in

[25]), i.e. classify the frame and not the instance. We can

generate frame-level predictions by assigning for each ac-

tion the maximum score across instances in the frame. That

yields 18.2% mean AP for RCNN and 23% mean AP for

R∗CNN.

4.2.2 Comparison with published results

In [25], various approaches for action recognition are re-

ported on the test set. All the approaches mentioned use

motion features, by using frames in the temporal neighbor-

hood of the frame in question. The authors test variants of

Dense Trajectories (DT) [32] which they combine with pose

specific features. The best performance on the test set is

5.5% mean AP (frame-level) achieved by the DT combined

with a pose specific approach.

We evaluate R∗CNN on the test set2 and achieve 26.7%

2We sent our results to the authors of [25] for evaluation since test an-

notations are not publicly available.
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Figure 5. Performance on MPII val for RCNN (blue ) and R∗CNN

(brown). Left: AP (%) for all actions as a function of their training

size (x-axis). Right: Mean AP (%) for three discrete ranges of

training size (x-axis).

mAP for frame-level recognition. Our approach does not

use motion, which is a strong cue for action recognition in

video, and yet manages to outperform DT by a significant

margin. Evaluation on the test set is performed only at the

frame-level.

Figure 6 shows the mean AP across actions in a descend-

ing order of training size. This figure allows for a direct

comparison with the published results, as shown in Figure
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Figure 3. Top predictions on the PASCAL VOC Action test set. The instance in question is shown with a red box, while the selected

secondary region with a green box. The nature of the secondary regions depends on the action and the image itself. Even within the same

action category, the most informative cue can vary.

1(b) in [25].

Figure 7 shows some results on the test set. We highlight

the instance in question with red, and the secondary box

with green. The boxes for the instances were derived from

the point annotations (some point on the person) and the

rough scale provided at train and test time. The predicted

action label is overlaid in each image.

Even though R∗CNN outperforms DT, there is still need

of movement to boost performance for many categories. For

example, even though the MPII dataset has a many exam-

ples for actions such as Yoga, Cooking or food prepara-

tion and Video exercise workout, R∗CNN performs badly

on those categories (1.1% mean AP). We believe that a hy-

brid approach which combines image and motion features,

similar to [27, 13], would perform even better.

4.3. Attribute Classification

Finally, we show that R∗CNN can also be used for the

task of attribute classification. On the Berkeley Attributes of

People dataset [4], which consists of images of people and

their attributes, e.g. wears hat, is male etc, we train R∗CNN

as described above. The only difference is that our loss is

no longer a log loss over softmax probabilities, but the cross

 actions
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Figure 6. Mean AP (%) on MPII test for R∗CNN across actions in

descending order of their training size. A direct comparison with

published results, as shown in Figure 1(b) in [25], can be drawn.

entropy over independent logistics because attribute predic-

tion is a multi-label task. Table 3 reports the performance

in AP of our approach, as well as other competing methods.
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Figure 7. Predictions on the MPII test set. We highlight the person in question with a red box, and the secondary region with a green box.

The predicted action label is overlaid.

AP (%) CNN layers Is Male Has Long Hair Has Glasses Has Hat Has T-Shirt Has Long Sleeves Has Shorts Has Jeans Has Long Pants mAP

PANDA [34] 5 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 79.0

Gkioxari et al. [12] 16 92.9 90.1 77.7 93.6 72.6 93.2 93.9 92.1 98.8 89.5

RCNN 16 91.8 88.9 81.0 90.4 73.1 90.4 88.6 88.9 97.6 87.8

R∗CNN 16 92.8 88.9 82.4 92.2 74.8 91.2 92.9 89.4 97.9 89.2

Table 3. AP on the Berkeley Attributes of People test set. PANDA [34] uses CNNs trained for each poselet type. Gkioxari et al. [12] detect

parts and train a CNN jointly on the whole and the parts. RCNN is our baseline approach based on FRCN. Both RCNN and R∗CNN do

not use any additional part annotations at training time. [12] and R∗CNN perform equally well, with the upside that R∗CNN does not need

use keypoint annotations during training.

Figure 8. Results on the Berkeley Attributes of People test set. We

highlight the person in question with a red box, and the secondary

region with a green box. The predicted attribute is overlaid.

Figure 8 shows results on the test set. From the visualiza-

tions, the secondary regions learn to focus on the parts that

are specific to the attribute being considered. For example,

for the Has Long Sleeves class, the secondary regions focus

on the arms and torso of the instance in question, while for

Has Hat focus is on the face of the person.

Conclusion

We introduce a simple yet effective approach for action

recognition. We adapt RCNN to use more than one re-

gion in order to make a prediction, based on the simple

observation that contextual cues are significant when decid-

ing what action a person is performing. We call our sys-

tem R∗CNN. In our setting, both features and models are

learnt jointly, allowing for action-specific representations to

emerge. R∗CNN outperforms all published approaches on

two datasets. More interestingly, the auxiliary information

selected by R∗CNN for prediction captures different con-

textual modes depending on the instance in question.

R∗CNN is not limited to action recognition. We show

that R∗CNN can be used successfully for tasks such as at-

tribute classification. Our visualizations show that the sec-

ondary regions capture the region relevant to the attribute

considered.
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