
Contextual Contracts for Component-Oriented Resource

Abstraction in a Cloud of HPC Services

Wagner Guimarães Al-Alam1, Francisco Heron de Carvalho Junior1

1Pós-Graduação em Ciência da Computação (MDCC)

Universidade Federal do Ceará (UFC)

Campus Universitário do Pici, Bloco 912 – Fortaleza – CE – Brazil

{wgalalam,heron}@lia.ufc.br

Abstract. The efforts to make cloud computing suitable for the requirements of

HPC applications have motivated us to design HPC Shelf, a cloud computing

platform of services for building and deploying parallel computing systems for

large-scale parallel processing. We introduce Alite, the system of contextual

contracts of HPC Shelf, aimed at selecting component implementations ac-

cording to requirements of applications, features of targeting parallel computing

platforms (e.g. clusters), QoS (Quality-of-Service) properties and cost restric-

tions. It is evaluated through a small-scale case study employing a component-

based framework for matrix-multiplication based on the BLAS library.

1. Introduction

Cloud computing provides a new execution model based on the pay-as-you-

go paradigm. It allows seamless access to virtualized hardware and software

[Antonopoulos and Gillam 2011, Mell and Grance 2011], enabling a number of emerging

applications. Among them, the relevance of applications with High-Performance Com-

puting (HPC) is increasing, mainly due to the massively parallel processing requirements

of new applications of deep learning and Big Data technologies [Vecchiola et al. 2009,

Parashar et al. 2013, Ben Nun and Hoefler 2019]. However, despite the research initia-

tives addressing the problem of leveraging HPC services through clouds, surveyed by

Netto et al. [Netto et al. 2018], many developers are still reluctant to move their appli-

cations to the clouds. They prefer the full control of available resources offered by on-

premise clusters, since they believe that virtualization of processors and interconnections

may degrade performance. Furthermore, some computational scientists and engineers are

concerned with the loss of control over the place where their applications will run due to

legal restrictions imposed by funding agencies, corporations, and governments.

HPC Shelf is a proposal of a cloud services platform for deploying

component-based parallel computing systems aimed at large-scale parallel process-

ing [de Carvalho Junior et al. 2019]. Through HPC Shelf, application providers de-

velop problem solving environments, so-called applications, for attending a commu-

nity of end users, so-called specialists. The computational requirements of the prob-

lems addressed by applications justify the use of large-scale parallel computing sys-

tems, i.e. comprising a team of two or more clusters or MPPs. HPC Shelf is

component-oriented [Wang and Qian 2005], based on the Hash Component Model

[de Carvalho Junior and Rezende 2013], which makes it possible to expose resources em-

ployed by parallel computing systems, including both hardware and software, in the form

of components, addressing both functional and non-functional concerns.

Parallel computing systems refer to components indirectly, through contextual

contracts, delegating the responsibility of selecting compliant components to a resolu-

tion system. Contextual contracts define a set of requirements that selected components

must satisfy, including application requirements, concerning the functionality required

by the application, and platform requirements, specifying characteristics of the parallel

computing platforms where the component will be instantiated for execution. Also, QoS

(Quality-of-Service) requirements and cost restrictions may be imposed in contracts.

This paper introduces Alite, a system of contextual contracts for HPC Shelf. It is

a framework for the selection and classification of components that comply to contextual

contracts. This paper reports an evaluation of Alite through a small-scale study, using a

component-based framework for matrix-multiplication based on the BLAS (Basic Linear

Algebra Subprograms) library [Dongarra 2002].

The rest of the paper is structured as follows. Section 2 introduces the main foun-

dations and concepts behind HPC Shelf. Section 3 presents Alite. Then, Section 4 eval-

uates the performance of its resolution strategy. Section 5 discuss other research works

related to Alite. Finally, Section 6 summarizes our conclusions and outlines further work.

2. HPC Shelf

HPC Shelf is a cloud computing platform aimed at offering HPC services. Applications

use this services to build solutions for problems described by their users through high-

level interfaces, in the form of component-oriented parallel computing systems based

on Hash [de Carvalho Junior and Rezende 2013], a component model of parallel compo-

nents. Such problems require large-scale parallel processing, engaging of one or more

parallel computing platforms, such as clusters and MPPs.

The parallel computing systems of HPC Shelf comprises a workflow component,

an application component, and a set of solution components of the following component

kinds: virtual platforms , representing distributed-memory parallel computing platforms;

data sources , from which data that interest to applications may be retrieved; computa-

tions , implementing parallel algorithms for exploiting the features of a class of virtual

platforms; connectors , which couple computations and data sources placed in distinct

virtual platforms; and bindings of two kinds: service bindings , which connect pairs

of a user and a provider port belonging to components of any kind; action bindings ,

which bind action ports of a set of computations, connectors and the workflow compo-

nent. Parallel computing systems refer to their components through contextual contracts,

specifying a set of requirements to guide the selection of proper implementations. Alite

is the system of contextual contracts herein proposed. It is presented in Section 3.

Through a service binding, a user component consumes a service offered by a

provider component. In turn, action bindings are used for orchestration of computations

and connectors by the workflow component. For that, the ports of an action binding

carry a common set of action names. Components activate actions in their action ports by

referring to action names. An activation for an action n in a given port p remain blocked

until a pending activation of n exists in each port connected to p through an action binding.

Components have a life-cycle action port connected to workflow with the fol-

lowing action names: resolve, for selecting a component implementation based on a

Figure 1. A MapReduce Parallel Computing System

contextual contract; deploy, for deploying a selected component in a virtual platform;

instantiate, for creating an instance of the component; run, for executing a compo-

nent instance; and release, for freeing the resources used by a component instance.

A connector may play two roles in a parallel computing system. They may or-

chestrate computations and connectors, through action binding synchronization, or they

may give the support for choreographs among computations, connectors and data sources

through service bindings. For that, they comprise a set of facets, each one placed in a

virtual platform where a component it couples is placed, allowing direct communication.

Computation components are associated with a virtual platform where they will

execute, forming a system component. The notion of system component is central in

HPC Shelf, where a computation component may be developed under strong assumptions

about the characteristics of the virtual platform where it will be instantiated.

The application component intermediates the communication between the so-

lution components and the application itself, through service ports aimed at providing

inputs, receiving outputs, managing intermediary data, monitoring components, etc.

Figure 1 depicts the architecture of a parallel computing system of

a component framework we have developed for MapReduce computations

[Rezende and de Carvalho Junior 2018], representing a three-stage MapReduce

computation applied for enumerating triangles in a graph. The graph is obtained from

a data source component (source) and the output is sent to application. The reducer

components are computations, whereas the shuffler ones are connectors. Each reducer is

placed on a distinct virtual platform. The figure emphasizes action and service bindings.

The architecture of HPC Shelf is based on the following three elements: Fron-

tend, Core and Backend. The Frontend is SAFe (Shelf Application Framework)

[de Carvalho Junior et al. 2019], a framework for building and running parallel comput-

ing systems, using an API (currently, only in C#) or SAFeSWL (SAFe Scientific Work-

flow Language). The Core manages the catalog where developers and maintainers regis-

ter components and their life-cycle. Also, it implements Alite, the system of contextual

contracts introduced in Section 3. Applications access the Core services for resolving

contextual contracts and control the life-cycle of the selected components. Once instanti-

ated, components are directly orchestrated by applications. The Backend is a service that

each maintainer offer to the Core for instantiating virtual platforms. Once instantiated,

virtual platforms may communicate directly with the Core for instantiating components.

〈contextual signature〉 ::= ‘[’ 〈constraint list〉 ‘]’ | ε
〈constraint list〉 ::= 〈constraint〉 ‘,’ 〈constraint list〉 | 〈constraint〉
〈constraint〉 ::= 〈contextual parameter〉 | 〈parameter binding〉
〈parameter binding〉 ::= 〈parameter id〉 ‘==’ 〈parameter id〉
〈parameter id〉 ::= PARAMETER ID (‘-’ PARAMETER ID)

∗

〈contextual parameter〉 ::= PARAMETER ID 〈subtyping direction〉 COMPONENT ID

〈subtyping direction〉 ::= ‘:>′ | ‘<:′ | ‘=′

〈contextual contract〉 ::= ‘[’ 〈argument list〉 ‘]’

〈argument list〉 ::= 〈argument〉 (‘,’ 〈argument〉)∗
〈argument〉 ::= 〈parameter id〉 ‘=’ COMPONENT ID| 〈parameter id〉 ‘=’ PARAMETER ID

Figure 2. An abstract syntax for contextual signatures and context contracts.

3. Alite: A Contextual Contract System for Resource Abstraction

Alite is based on HTS (Hash Type System) [de Carvalho Junior et al. 2016], the compo-

nent type of system HPE (Hash Programming Environment) , a component-based plat-

form for parallel programming for clusters [de Carvalho Junior and Rezende 2013]. From

HTS, Alite inherits the concepts of abstract components, contextual signatures and con-

textual contracts. An abstract component represents a set of components that implement

the same software concern under different assumptions about application requirements

and execution environments. Such assumptions are represented by a contextual signature,

defined by a set of context parameters. A contextual contract is a partial assignment of

context arguments to context parameters of an abstract component. A context parameter

is defined by a name and a variable, for referring to it, a bound, represented by a con-

textual contract, and a direction. The bound of a context parameter defines a restriction

on the set of context arguments that may be assigned to it in a contextual contract. In

turn, the direction may be either covariant (<:) or contravariant (:>). It is covariant if

the parameter denotes an assumption that the component makes about the contextual envi-

ronment, where the contextual environment is defined as the application to which it serves

and the virtual platform where it executes. In turn, it is contravariant when it denotes an

assumption that the contextual environment makes about the component.

The specification of an abstract component also includes a set of units and a set

of inner components, since they are required by the Hash component model. Each inner

component is typed by a contextual contract, possibly making reference to context pa-

rameters of the host component through their variables. However, for the purposes of this

paper, we concentrate only on contextual signatures, ignoring units and inner components.

Figure 2 presents an abstract syntax for contextual signatures, where we have attempted

to use self-explained names for grammar variable, to make it easier to understand.

Alite extends the instantiation types of HTS to define contextual contracts, adding

classes of context parameters and component kinds for representing numerical domains.

3.1. Classes of Context Parameters

Components are developed to attend application requirements in regard to the concern

they address, by exploiting the features of a class of virtual platforms for optimizing

performance and satisfying QoS (Quality-of-Service) requirements imposed by the ap-

plication, subject to cost restrictions. For that, each context parameter is classified as an

application, platform, QoS or cost parameter. Such a characterization of context parame-

ters will be useful for the resolution strategy introduced in Section 3.3.

Applications may impose statically, through contextual contracts of parallel com-

puting systems, QoS requirements and cost restrictions that must be satisfied by the se-

lected components. In turn, the components reached by the resolution procedure may

calculate QoS and cost arguments dynamically, according to the arguments of the contex-

tual contract under resolution, using performance and cost models.

3.2. Quantifier Components: Numerical Valuations for Context Parameters

For supporting numeric valuations in context parameters, Alite introduces a new kind of

quantifier components, with four predefined domains, covering integer and real numbers:

INT ↓ and REAL ↓, for direct subtype relation, i. e. n <: m ⇔ n ≤ m, where n and m are

quantifiers, and INT ↑ and REAL ↑, for inverse subtype relation, i. e. n <: m ⇔ m ≤ n.

Thus, let N and N ′ be two quantifiers of type INT ↓ (REAL ↓). N ′ may only be used

when a quantifier N is required (N ′ <: N) if N ′ ≤ N (direct relation). In an analogous

way, if they are quantifiers of type INT ↑ (REAL ↑), it is possible only if N ′ ≥ N (inverse

relation). It is assumed that INT ↓⊂ REAL ↓ and INT ↑⊂ REAL ↑. Also, +∞ and −∞
are the top quantifiers of INT ↓ (REAL ↓) and INT ↑ (REAL ↑), respectively, i.e. they are

supertypes of any quantifier in their respective domains. In what follos, we present some

examples to provide more intuition about numerically qualified context parameters.

Firstly, let a covariant context parameter representing the efficiency of a parallel

algorithm, measured in the interval [0.0, 1.0]. A computation component that ensures

efficiency of 0.7 (70%) may be used in a context where it is required an efficiency of 0.6

(60%), since 0.7 <: 0.6 by convariance. So, its bound is 0.0 and its domain is REAL ↑.

Now, let max processing nodes be a contravariant parameter representing the

maximum number of processing nodes recommended for a computation component in

the virtual platform where it is placed. If max processing nodes = N , it could be se-

lected in a context where it is required a computation with max processing nodes = M ,

where M ≤ N , so that max processing nodes of the selected component could not be

violated. Thus, the contextual bound is +∞ and the domain is INT ↓. Analogously, for

the minimum number of nodes, the bound and domain would be 1 and INT ↑, respectively.

In an analogous way, a virtual platform whose processing nodes have N cores

must be selected in a context where it is required a virtual platform with less than N

cores, so that it will have enough cores to attend the contractual requirements. Thus, for

a context parameter that represents the number of cores offered by the processing nodes

of a virtual platform, the limit would be 1 and the domain would be INT ↑ too.

In a virtual platform component, a covariant context parameter for the intercon-

nection latency between the nodes of the virtual platform has also INT as its domain and

+∞ as its bound, so that a virtual platform with a lower latency (better) than the required

by the contract may be selected. It is worth note that if cost restrictions are applied through

context parameters, they cannot be violated despite the use of a more efficient platform.

Finally, let a parameter for the computing capability of the GPUs offered by the

nodes of a virtual platform, restricting the CUDA version supported by accelerated com-

putation components. Its domain is INT ↑, since a virtual platform with GPUs of com-

Figure 3. Dependencies between Classes of Context Arguments

puting capability 5 (higher value) could be used where computing capability 4 is required

(lower value). A computation component that is selected to execute on such a virtual plat-

form is implemented under the assumption of a computing capability less or equal than 4,

so that it is safe to select a virtual platform with a computing capability of 5.

3.3. Resolution Strategy

For a given a contextual contract A, Alite applies a resolution procedure comprising two

main steps: selection and classification. In selection, a list of compliant components is

generated, in such a way that their contextual contracts are subtypes of the inquired con-

textual contract. For computation components, selection comprises the following steps:

1. Using the resolution algorithm of HTS [de Carvalho Junior et al. 2016] restricted

to application and platform context parameters, Alite finds the computation com-

ponents that comply to A. In what follows, they are A1,A2, . . . , and Am.

2. Each selected computation component with contract Ai is associated to a platform

component with contract Pi, for i ∈ {1, . . . ,m}, receiving arguments (contextual

constraints) from both the application and the component.

3. For each Pi, for i ∈ {1, . . . ,m}, use the resolution algorithm of HTS to calculate
{

Pj
i
j∈{1,...,n}}. They are the sets contracts of compatible platforms for each Ai.

4. Consider a set of pairs 〈c, p〉 representing candidate system components, where

c = Ai and p ∈
{

Pj
i

j∈{1,...,n}}, for some i ∈ {1, . . . ,m}. Each pair attends

the constraints imposed by the application, the virtual platform required by the

computation, and the virtual platform assigned to it. Now, the pairs that satisfy the

restrictions imposed by QoS and cost context arguments must be filtered.

5. Let 〈c, p〉 be a candidate system component. The context arguments of p are ap-

plied to the platform context parameters of c so that it is possible to take arguments

for all the QoS parameters of c. Then, the QoS arguments of c determine the QoS

arguments of p. In turn, the QoS arguments of p determine the cost arguments of

p. Finally, the QoS and cost arguments of p determines the cost arguments of c.

Figure 3 illustrate the dependency among context parameter classes of c and p.

6. Eliminate all pairs 〈c, p〉 such that some QoS and cost arguments do not satisfy the

restrictions imposed in A, using the subtyping relation.

7. The remaining 〈c, p〉 pairs form the set of compliant system components with

respect to A, which forms the input for the classification process.

In classification, the selected system components are ranked according to a re-

source allocation policy imposed by HPC Shelf. For example, it may prefer energy-

efficient components, but the application may try to minimize execution costs subject to

an execution time threshold. A classification criteria may vary over time and depends

on the nature of the parallel computing system, involving QoS and cost context parame-

ters. Thus, HPC Shelf must have its own global resource allocation policies, which may

matrix type domain float point precision subroutine name

GENERALMATRIX

REAL SINGLE SGEMM

REAL DOUBLE DGEMM

COMPLEX SINGLE CGEMM

COMPLEX DOUBLE ZGEMM

SYMMETRICMATRIX

REAL SINGLE SSYMM

REAL DOUBLE DSYMM

COMPLEX SINGLE CSYMM

COMPLEX DOUBLE ZSYMM

TRIANGULARMATRIX

REAL SINGLE STRMM

COMPLEX SINGLE CTRMM

COMPLEX DOUBLE ZTRMM

HERMITIANMATRIX
COMPLEX SINGLE CHEMM

Complex DOUBLE ZHEMM

Table 1. Matrix-matrix multiplication subroutines of BLAS

.

evolve over time, but it must allow applications to influence the ranking of system com-

ponents. We propose a classification framework supporting different resource allocation

policies, which will be exemplified, in Section 4, with a particular ranking method.

Contextual Parameters for Ranking A new class of context parameter is now intro-

duced, so-called ranking context parameters. They are predefined in HPC Shelf, and

calculated dynamically according to a ranking function applied over QoS and cost param-

eters. Like any context parameter, their values could be quantifiers or qualifiers. In the

last case, the values may define ranking levels. An application provider, possibly based

on requirements imposed by specialist users, may control the ranking method by choos-

ing one or more ranking context parameters to provide arguments. For that reason, HPC

Shelf must expose clearly to providers the meaning of each ranking context parameter.

4. Case Studies

The efficiency (resolution time) and effectiveness (quality of classification) of the Alite’s

resolution strategy have been evaluated through a small-scale case study using a compo-

nent framework based on the BLAS subset of matrix multiplication subroutines. Also,

we have specified a component tuned to a specific virtual platform contract and registered

platforms for three maintainers, CENAPAD-UFC, CENAPAD-RJ, and a local cluster,

with various combinations of platform parameters, according to the presence of process-

ing accelerators (MIC or GPU), number of processing nodes, processor types, and mem-

ory amount, leading to 16 different profiles.

The resolution time is measured by forcing Alite to compute over all possible

system components. Also, a set of multi-criteria decision-making (MCDM) strategies

available in the MCDM library of R language have been selected to classify the list of

candidate system components: Weighted Product Model (WPM), Technique for Order

of Preference by Similarity to Ideal Solution (TOPSIS) and Multi-criteria Optimization

and Compromise Solution (VIKOR) [Tzeng and Huang 2011]. They are compared with

manual classification performed by three HPC specialists. We have chosen MCDM meth-

ods based on rank calculation due to the higher overhead of strategies based on pairwise

comparisons, such as AHP and PROMETHEE. However, Alite does not impose a specific

method. So, other alternatives may be used in a particular implementation of HPC Shelf.













name :> BLAS3 MM,

k size <: INT ↓, n size <: INT ↓, m size <: INT ↓,

matrix type <: MATRIXTYPE, domain <: REALORCOMPLEX, precision <: SINGLEORDOUBLE,

platform <: CLUSTER,

flop count <: INT ↓, estimated time <: 0:INT ↑, power <: 0:INT ↑, cost <: 0:INT ↑













Figure 4. BLAS3 MM Component Signature

BLAS3 MM





k size = 100, n size = 100, m size = 100,

matrix pattern = GENERICMATRIX, domain = REAL, precision = DOUBLE,

platform = CLUSTER, node accelerator = NO-ACELERATOR





Figure 5. Contextual Contract of BLAS3 MM

4.1. A Framework for Matrix Multiplication

Matrix multiplication is a common operation in linear algebra computations. In this eval-

uation, we employ the matrix-matrix multiplication subroutines of Scalable LAPACK

(ScaLAPACK) [Blackford et al. 1997], a well-known parallel implementation of BLAS.

Table 1 lists the subroutines which correspond to component implementations of

BLAS3 MM, the abstract component whose contextual signature is presented in Figure

4. Table 1 shows how three context parameters of BLAS3 MM are combined to select

a component implementation (subroutine) based on the matrix type (general, symmetric,

triangular or hermitian), domain type (real or complex) and float point precision (single or

double), respectively. Indeed, Figure 5 exemplifies a contextual contract for selecting an

implementation of BLAS3 MM to compute over 100×100×100 double-precision float-

point matrices of real numbers in a cluster without acceleration in nodes. DGEMM could

be a selection, according to Table 1. Also, suppose that CENAPAD-UFC-MICRO is the

virtual platform contract selected to host DGEMM. Figure 6 shows the contract that

results by combining the required contract, the contract of DGEMM, and the contract of

CENAPAD-UFC-MICRO, the selected virtual platform, where the values of QoS and

cost parameters are calculated through a performance model, as explained below.

DGEMM calculates C = αA ∗ B + βC, where α and β are scalar, Am×k and

Bk×n are input matrices and Cm×n is a matrix of input/output. For our purposes, it is

implemented through a block-based approach [Grama et al. 2003]. To calculate the QoS

context arguments of DGEMM, we present two equations for communication overhead

















k size = 100, n size = 100, m size = 100,

matrix type = GENERICMATRIX, domain = REAL, precision = DOUBLE,

platform = CENAPAD-UFC-MICRO, totalGFlops = 1000000.0,

network word rate = 1.0E-10, tcomm = 9.587386437626905E-6,

parallel time = 0.040015829583691064,

power = 15.206015241802604, cost = 2.184544168312736

















Figure 6. A Contextual Contract of BLAS3 MM

Load A B C

1 0.12s (0) 3.80s (35) 3.75s (35)

2 0.12s (0) 22.03s (203) 22.19s (201)

3 0.12s (0) 216.43s (2007) 217.45s (2005)

Table 2. Execution time and Number of Selected Candidate Systems

and parallel execution time. In Equation 1, p is the number of processors, D is the size

of double-precision values (in bytes), tw is the per-word transfer time, calculated by the

inverse of the rate of words per second, and ts is the communication startup time.

Tcomm = 2log(p)(D ∗ tw + ts) +
(km(

√
p−1)tw)√
p

+
(kn(

√
p−1)tw)√
p

+ 2tslog(
√
p) (1)

In Equation 2, Ci is the processing capacity of the platform.

Tp =
(m×n×k

p
∗4)

Ci
+ (m×n×k

p
× 8× tm) + Tcomm (2)

The power consumption and execution cost is calculated by dividing the execution

time by the total power consumption per time and the running cost per hour, respectively.

4.2. Experimental Results

The computer used in the experiments has a Intel Core i5-2500 processor with 3.30GHz

clock, 4 cores, and 8GB of memory. The operating system is Ubuntu 14.04.4 LTS.

In order to evaluate the resolution time, we define three BLAS3 MM contracts:

A, B, and C. While A has no compatible platform, avoiding most of the computational

work of the resolution algorithm, B and C restrict some attributes and no attribute, re-

spectively. For each contract, we define a resolution load by varying platforms profiles

registered in the Core to 15 profiles in load A, 100 in load B and 1000 in load C.

Table 2 shows a resolution time of 3.62 minutes for contracts B and C over 1000
platforms. Between parenthesis, it is shown the size of the yielded lists of system candi-

dates. These results evidence that Alite may be suitable for a big set of platform profiles

even running in a non-parallel non-optimized prototype implementation. So, by exploring

the parallelism of the resolution algorithm, as well as optimizing algorithm and data struc-

ture implementations, ALITE could perform multiple resolutions in a reasonable time.

For evaluating the classification strategy, we have used three MCDM methods:

WPM, Topsis and VIKOR. They are compared with classifications performed by three

HPC specialists, identified by P1, P2 and P3. The weights used with classification meth-

ods were 0.14, 0.29 and 0.57 for execution cost, power consumption and execution time as

well all arrangements of its weights, generating 6 different classifications. Besides these

variations of weights, we also made a classification with weight 0.33 for each parameter

and another three combinations where one parameter has weight 1, summing 10 cases.

Table 3 shows the values calculated by Alite for execution cost, power consump-

tion and execution time of DGEMM CPU. It also shows the classifications performed

by the three HPC specialists (P1, P2 and P3) and automatic methods (TOPSis, Vikor and

Execution Power Execution

System Cost Consumption Time P1 P2 P3 TOPSIS VIKOR WPM

0 2.18 15.21 0.04 4 4 8 7 6 4

1 2.09 15.22 0.02 3 3 4 4 4 3

2 2.04 15.24 0.01 2 2 2 2 2 2

3 2.03 15.28 0.01 1 1 1 1 1 1

4 7.97 15.20 0.04 15 14 7 9 8 15

5 5.45 18.41 0.04 8 8 10 10 10 8

6 5.51 18.41 0.04 9 9 11 11 11 9

7 5.51 18.41 0.04 10 10 12 12 12 10

8 5.59 16.80 0.08 11 11 13 13 13 11

9 5.59 16.80 0.08 12 12 14 14 14 12

10 5.65 16.80 0.08 13 13 15 15 15 13

11 5.45 16.81 0.04 7 7 9 8 9 7

12 5.36 16.83 0.02 6 6 5 5 5 6

13 5.32 16.88 0.01 5 5 3 3 3 5

14 15.25 48.81 0.00 16 15 6 6 7 14

Table 3. Values of Execution Cost, Energy Consumption and Execution Time

WPM). One may notice a correlation between P1 and P2 classifications with the clas-

sification using WPM. In turn, the classification made by P3 has found a more evident

correlation with TOPsis and Vikor.

Most of the methods manually used by the specialists used the lexicographic or-

dering (P1 and P2), ignoring the effect of compensation between alternatives. This com-

pensation occurs when one or more values are bigger than the difference in weight, influ-

encing the ranking. In the case of P3, he normalizes the values, not suffering the effects

of compensation. This is more visible when comparing the criteria with equal weights,

where P3 got the the same classification than TOPsis and Vikor. When comparing only

one parameter, the resultant classification is similar through all cases and methods.

By the analysis of the correlation matrix, we note that the MCDM methods repli-

cate specialists choices, evidencing that WPM, Topsis, and Vikor may be used to classify

candidate systems. Furthermore, other ranking methods could be used by the inclusion of

an R language connector, providing a set of implementations of ranking methods.

5. Related Works and Contributions

The problem of selecting component implementations in component-based software sys-

tems has been studied since the 1990’s. Among the proposed methods and tools address-

ing this problem, Alite has the matching of components representing parallel computa-

tions and parallel computing platforms as a distinguished feature.

Pande, Garcia and Pant have defined Pliability, a new metric to deal with compo-

nent selection in a CBSE environment by involving a cost-benefit analysis and a set of

qualitative parameters in order to apply the proposed metric, using Integer Programming

for obtaining solutions [Pande et al. 2013]. In the work of Yazir et al. the PROMETHEE

method of MCDA is used to dynamically allocate resources in a cloud. Using a dis-

tributed strategy, they use MCDA to evaluate the benefits of migrating a VM or not. They

conclude that their strategy was promising regarding scalability, feasibility, and flexibility

[Yazir et al. 2010]. The work of Vralsen, Mendes and Reed has introduced the terms ap-

plication signature model and performance contracts to define and monitor applications to

execute on a grid computer that has a dynamic nature [Vraalsen et al. 2001]. Lee, Mered-

ith, and Vetter have developed COMPASS (Code Originated Models of Performance via

Automatic Source Scanning). It is aimed at assisting the design of performance models for

analysis of parallel programs. It uses OpenARC (Open Accelerator Research Compiler)

to generate the application performance model. Also, it uses the Aspen language, which

has a set of tools to deal with performance equations [Lee et al. 2015]. COMPASS is an

example of tool that demonstrates the feasibility of creating precise performance models

of parallel programs for calculating QoS and cost parameters of computation and platform

components of HPC Shelf. Mariani et al. employ machine learning to predict the perfor-

mance for HPC applications running in clouds [Mariani et al. 2018]. Also, Cunha et al.

have used machine learning to help the placement of jobs in clouds [Cunha et al. 2017].

In this context, Amalarethinam and Beena have published a survey in cloud scheduling,

comparing many job schedule strategies [Amalarethinam and Beena 2014].

6. Conclusions and Further Work

In this paper, we introduce Alite, the contextual contract system of HPC Shelf. It defines

a resolution strategy comprising selection and classification of components representing

resources of parallel computing systems, taking into account application requirements,

architectural features of parallel computing platforms, QoS requirements and cost restric-

tions. We evaluate Alite using a case study with matrix-multiplication components based

on BLAS. The evaluation evidences that it is efficient for a reasonable set of contracts

regarding resolution time. With respect to classification, the MCDM methods have been

effective, leading to results that do not present significant discrepancies compared to a

classification made by three human HPC specialists.

This work is an innovative contribution to context-sensitive allocation of system

resources in cloud-based applications. Contextual contracts are able to represent the con-

text as environmental constraints that guide allocation. In particular, the approach in-

troduced here applies, in an unprecedented way, notions of component orientation and

type safety to define a specific notion of contextual abstraction about system components

(software+hardware) designed to meet specific requirements of HPC systems.

Further works will evaluate Alite for real scenarios, using a large-scale case study.

For instance, we are working on component frameworks for virtual platforms of exist-

ing IaaS infrastructures, such as Amazon EC2, Google Compute Platform, and Microsoft

Azure, which will be used with application frameworks we have developed, such as the

MapReduce framework and Gust [Rezende and de Carvalho Junior 2018]. We are also

interested in evaluating other classification strategies, particularly that ones based on ex-

ecution histories of components, maybe using machine learning techniques.

References

Amalarethinam, D. G. and Beena, T. L. A. (2014). Cloud scheduling-a survey. International Journal of

Computer Applications, 97(13).

Antonopoulos, N. and Gillam, L. (2011). Cloud Computing: Principles, Systems and Applications. Com-

puter Commmunications and Networks. Springer.

Ben Nun, T. and Hoefler, T. (2019). Demystifying Parallel and Distributed Deep Learning: An In-depth

Concurrency Analysis. ACM Computung Surveys, 52(4):65:1–65:43.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling,

S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C. (1997). ScaLAPACK User’s Guide.

Society for Industrial and Applied Mathematics (SIAM).

Cunha, R. L., Rodrigues, E. R., Tizzei, L. P., and Netto, M. A. (2017). Job placement advisor based on

turnaround predictions for hpc hybrid clouds. Future Generation Computer Systems, 67:35 – 46.

de Carvalho Junior, F. H. and Rezende, C. A. (2013). A Case Study on Expressiveness and Performance of

Component-Oriented Parallel Programming. J. of Parallel and Distributed Computing, 73(5):557–569.

de Carvalho Junior, F. H., Rezende, C. A., Silva, J. C., Al Alam, W. G., and de Alencar, J. M. U. (2016).

Contextual Abstraction in a Type System for Component-Based High Performance Computing Plat-

forms. Science of Computer Programming, 132:96–128.

de Carvalho Junior, F. H., Silva, J. C., and Dantas, A. B. O. (2019). A Scientific Workflow Management

System for Orchestration of Parallel Components in a Cloud of Large-Scale Parallel Processing Services.

Science of Computer Programming, 173:95–127.

Dongarra, J. (2002). Basic Linear Algebra Subprograms Technical Forum Standard I. International Journal

of High Performance Applications and Supercomputing, 16(2):115–199.

Grama, A., Gupta, A., Karypis, J., and Kumar, V. (2003). Introduction to Parallel Computing. Addison-

Wesley.

Lee, S., Meredith, J. S., and Vetter, J. S. (2015). COMPASS: A Framework for Automated Performance

Modeling and Prediction. In Proceedings of the 29th ACM on International Conference on Supercom-

puting, ICS, pages 405–414.

Mariani, G., Anghel, A., Jongerius, R., and Dittmann, G. (2018). Predicting cloud performance for hpc

applications before deployment. Future Generation Computer Systems, 87:618 – 628.

Mell, P. and Grance, T. (2011). The NIST Definition of Cloud Computing. Technical Report 800-145, Com-

puter Security Division, National Institute of Standards and Technology, U. S. Depart. of Commerce.

Netto, M. A. S., Calheiros, R. N., Rodrigues, E. R., Cunha, R. L. F., and Buyya, R. (2018). HPC Cloud for

Scientific and Business Applications: Taxonomy, Vision, and Research Challenges. ACM Computing

Surveys, 51(1):1–29.

Pande, J., Garcia, C. J., and Pant, D. (2013). Optimal component selection for component based software

development using pliability metric. SIGSOFT Softw. Eng. Notes, 38(1):1–6.

Parashar, M., AbdelBaky, M., Rodero, I., and Devarakonda, A. (2013). Cloud Paradigms and Practices

for Computational and Data-Enabled Science and Engineering. Computing in Science Engineering,

15(4):10–18.

Rezende, C. A. and de Carvalho Junior, F. H. (2018). MapReduce with Components for Processing Big

Graphs. In XIX Simpósio de Sistemas Computacionais de Alto Desempenho (WSCAD’2018).

Tzeng, G.-H. and Huang, J.-J. (2011). Multiple attribute decision making: methods and applications.

Chapman and Hall/CRC.

Vecchiola, C., Pandey, S., and Buyya, R. (2009). High-Performance Cloud Computing: A View of Scien-

tific Applications. In 10th International Symposium on Pervasive Systems, Algorithms, and Networks

(ISPAN’09), pages 4–16. IEEE.

Vraalsen, F., Aydt, R. A., Mendes, C. L., and Reed, D. A. (2001). Performance Contracts: Predicting and

Monitoring Grid Application Behavior. In Lee, C. A., editor, Grid Computing — GRID 2001, pages

154–165, Berlin, Heidelberg. Springer Berlin Heidelberg.

Wang, A. J. A. and Qian, K. (2005). Component-Oriented Programming. Wiley-Interscience.

Yazir, Y. O., Matthews, C., Farahbod, R., Neville, S., Guitouni, A., Ganti, S., and Coady, Y. (2010). Dy-

namic resource allocation in computing clouds using distributed multiple criteria decision analysis. In

2010 IEEE 3rd International Conference on Cloud Computing, pages 91–98.

