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Contextual Correlation Preserving Multi-View

Featured Graph Clustering
Tiantian He∗, Yang Liu∗, Senior Member, IEEE, Tobey H. Ko, Keith C.C. Chan, and Yew-Soon Ong, Fellow, IEEE

Abstract—Graph clustering, which aims at discovering sets of
related vertices in graph structured data, plays a crucial role
in various applications such as social community detection and
biological module discovery. With the huge increase in the volume
of data in recent years, graph clustering is used in an increasing
number of real-life scenarios. However, the classical and state-
of-the-art methods, which consider only single-view features or
a single vector concatenating features from different views and
neglect the contextual correlation between pairwise features, are
insufficient for the task, as features that characterize vertices
in a graph are usually from multiple views and the contextual
correlation between pairwise features may influence the cluster
preference for vertices. To address this challenging problem, we
introduce in this study a novel graph clustering model, dubbed
Contextual Correlation Preserving Multi-View Featured Graph
Clustering (CCPMVFGC), for discovering clusters in graphs with
multi-view vertex features. Unlike most of the aforementioned
approaches, CCPMVFGC is capable of learning a shared latent
space from multi-view features as the cluster preference for
each vertex and making use of this latent space to model the
interrelationship between pairwise vertices. CCPMVFGC uses an
effective method to compute the degree of contextual correlation
between pairwise vertex features, and utilizes view-wise latent
space representing the feature-cluster preference to model the
computed correlation. Thus, the cluster preference learned by
CCPMVFGC is jointly inferred by multi-view features, view-wise
correlations of pairwise features, and the graph topology. Accord-
ingly, we propose a unified objective function for CCPMVFGC
and develop an iterative strategy to solve the formulated opti-
mization problem. We also provide the theoretical analysis of the
proposed model, including convergence proof and computational
complexity analysis. In our experiments we extensively compare
the proposed CCPMVFGC with both classical and state-of-the-
art graph clustering methods on eight standard graph datasets
(six multi-view and two single-view datasets). The results show
that CCPMVFGC achieves competitive performance on all eight
datasets, which validates the effectiveness of the proposed model.
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I. INTRODUCTION

MANY real-world data can be represented as graphs

in which the data samples and their interrelationships

can be readily represented by terminologies such as ver-

tices (nodes) and edges (links). For example, a social graph

can be used to model the users (vertices/nodes) and their

friendship (edges/links) in a social networking site. With the

huge increase in data in recent years, knowledge discovery

from graph-structured data has attracted much interest from

the learning community. Unlike graphs that are generated

randomly, real-world graphs possess latent structures with

cohesive latent features shared among the vertices. Graph

cluster (community) is an important latent feature of the

graphs, as it reveals information that could be useful in

various applications. Thus, an increasing number of studies

have recently aimed at discovering graph clusters [22], and

many analytical applications in areas such as biology [19],

collaborative recommendations [28], and social networks [24],

[53] have emerged that use the technique.

Graph clustering aims at discovering sets of related vertices

in graphs, and has long been a challenging problem. To unfold

the set of subgraphs with vertices that share similar latent

features, both model-based and heuristic-based representative

approaches attempt to maximize the topological similarity

shared by the vertices within each cluster using different types

of topological information, which can be either the edges in

the graph, or edge weights that reveal the topological similarity

between the connected vertices. For example, the Clauset-

Newman-Moore algorithm (CNM) [8] and fast unfolding [5]

are two classical heuristic approaches based on modulari-

ty optimization [32]. Model-based methods, such as the S-

tochastic Block Models (SBM) [36], Communities through

Directed Affiliations (CoDA) [54], and semi-supervised matrix

factorizations [55] are also able to discover graph clusters

using edge information. Other typical approaches, including

Normalized Cut (NCut) [38], Affinity Propagation [13], and

Hidden Community Detection [17], are able to perform graph

clustering using edge weights.

In addition to graph topology, the content data in graphs,

e.g., profiles describing social network users in social graphs

or fingerprints describing functions of biological units in

biological graphs, can be considered as vertex features that

characterize the vertices from a semantic perspective. Attempts
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Fig. 1. Schematic illustration of the idea behind the proposed Contextual
Correlation Preserving Multi-View Featured Graph Clustering (CCPMVFGC).

to discover clusters in the graphs have been made by uti-

lizing vertex features rather than the topological information

carried by graph data. For example, k-means clustering [29]

is capable of discovering clusters in the graph utilizing vertex

features. Multi-assignment clustering (Mac) [12] is a typical

probabilistic generative model for discovering graph clusters

where vertex features are binary values.

Rather than solely using graph topology or vertex features,

many recent approaches consider both when performing graph

clustering tasks. Here, a set of features are involved to char-

acterize the vertices alongside the topological information, so

that Attributed Graphs/Networks (AGs) [6], [19] are defined,

to distinguish from those graphs containing only the topo-

logical information. In AGs, clusters with vertices sharing

similar vertex features and topological information are of great

interest.

AG clustering, which has edges and vertex features as two

separate data views, can be considered as a special case of

co-learning, and is typically solved through the following

two methodologies. First, a new graph can be constructed

where edges are weighted using an appropriate similarity

measure, considering both topology and features between

pairwise vertices, and then a common clustering model, such

as Expectation-Maximization Clustering [4] or Markov clus-

tering [25], [56], is used to unfold the clusters in the newly

constructed graph. Second, a co-learning model can be built

to infer a low dimensional latent space shared by the edge

structure and vertex features. Many machine learning models

have been adapted so they can discover such shared latent

spaces. Inspired by topic modeling [7], several model-based

approaches, such as Relational Topic Models (RTM) [7] and

Block Latent Dirichlet Allocation (BlockLDA) [3], have been

proposed to learn a low dimensional latent space hidden

in both graph topology and vertex features. Communities

from Edge Structure and Node Attributes (CESNA) [53],

General Bayesian framework for Attributed Graph Clustering

(GBAGC) [52], and Circles [31] are three probabilistic gen-

erative models that are able to learn a latent space compactly

representing the cluster preference for each vertex, regarding

feature and structural similarity. In addition to probabilistic

models, other techniques such as matrix factorization and evo-

lutionary optimization have also been used for AG clustering.

For example, Mining Interesting Sub-Graphs (MISAGA) [19]

and Fuzzy Structural Pattern discovery for Graph Analytics

(FSPGA) [18] are two approaches that can discover clusters in

AG using edge and content similarity between vertices. More

recently, multiobjective genetic algorithm for attribute graphs

(MOGA-@net) [33] was proposed which utilizes evolutionary

approach to uncover clusters in AG through maximizing

connectivity and similarity of node attributes in clusters.

In today’s hyper-connected networked economy, data with

multi-view vertex features are easily accessible. Using the

online social network as an example, as depicted in Figure 1, a

graph can be modeled using the social network with the users

modeled as vertices and their friendship modeled as edges.

In addition to these basic elements, additional information

such as social tags, comments, and personal hobbies of each

user can all be utilized to characterize the vertices. Under this

circumstance, an AG can be further redefined as a multi-view

featured graph (MVFG), where the vertex features used to

characterize the vertices are derived from more than one view.

Despite the availability of data, there is a lack of effective

approaches for discovering clusters in real graphs with multi-

view features or modeling graph edges using multi-view

features, given that features from different views may impact

both the edge and cluster preferences of each vertex in the

graph. While the problem of graph clustering with multi-

view vertex features has not been extensively investigated,

multi-view learning in general has recently been the focus

of much attention [51] and has been widely studied in many

tasks such as image segmentation and clustering [1], [43]–

[46], image retrieval [47], [49], object recognition [14], [15],

and social media analytics [26], [27]. Moreover, the role

of vertex features in graph clustering has not been fully

explored. Most previous approaches to AG clustering consider

the similarity of features associated with pairwise vertices, but

neglect the contextual concurrency between different vertex

features, which may potentially indicate an intimate relation-

ship between a pair of vertices whose features are disparate.

Thus, to take advantage of the growing volume of multi-view

featured data in today’s networked economy, properly defining

graph clustering problems in a multi-view featured setting, and

developing effective approaches to further explore the role of

feature correlations in graph clustering, are of great benefit.

In this paper, we propose a novel graph clustering model

called Contextual Correlation Preserving Multi-View Featured

Graph Clustering (CCPMVFGC) as an effective solution to

the multi-view featured graph clustering problem. Figure 1

illustrates how CCPMVFGC works to discover clusters in

a social graph with multi-view vertex features. Representing

the multi-view vertex features and edge as independent data

matrices, i.e., Fi (i = 1, 2, 3) and Y as shown in the figure,

CCPMVFGC assumes the edge structure Y is generated by

the vertex-cluster preference V, which is a shared latent

space learned from F
is. In addition, CCPMVFGC constructs

another matrix in each view, i.e. X
i (i = 1, 2, 3), repre-
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senting the contextual correlation between pairwise features

and assumes such correlations are generated by the view-

wise latent space representing the feature-cluster contributions.

Given such assumptions, the learning of cluster preference V

may effectively acquire the view-wise effect of vertex features,

and be regularized by contextual correlations between pairwise

features, so that more meaningful clusters are expected to be

uncovered. Note that the problem tackled by CCPMVFGC

in this paper is fundamentally different from the problem

of clustering in heterogeneous graphs [40], which aims at

discovering clusters in a set of graphs having multi-type

vertices and edges. The graph data dealt by CCPMVFGC,

however, have single-type vertices and edges but multi-view

vertex features.

The contributions of this paper are summarized as follows:

• We propose CCPMVFGC, which is a novel and generic

model that combines graph clustering with multi-view

learning, to perform the clustering task in the multi-view

featured graph. Unlike previous methods, CCPMVFGC

attempts to learn the feature-cluster preference in each

view from both vertex features and their contextual

correlations, so that such preference can well capture the

contextual interdependency of features in each cluster,

and induce the model to infer similar cluster preferences

for those vertices sharing more correlated features.

• We design a unified objective function for CCPMVFGC

and develop an iterative strategy to solve the formulated

optimization problem. In addition, we provide the theo-

retical analysis of the proposed model, including conver-

gence proof and computational complexity analysis.

• We extensively compare the proposed CCPMVFGC with

both classical and state-of-the-art graph clustering meth-

ods on eight standard graph datasets. The results show

that CCPMVFGC performs the best on most datasets,

which validates the effectiveness of the proposed method.

The remainder of this paper is organized as follows. In

Section II, we present the details of the proposed method,

including the notations, the formulation, the proposed objec-

tive function, and the optimization procedure. In Section III,

we analyze the algorithmic properties of the proposed method,

including the algorithm convergence and computational com-

plexity. Section IV provides a series of experiments on eight

standard graph datasets to demonstrate the behavior of the pro-

posed method and validate its effectiveness. In Section V, an

in-depth discussion is conducted to distinguish CCPMVFGC

from approaches that learn another latent feature in AG, known

as vertex embedding. Finally, we conclude the paper and

discuss the future work in Section VI.

II. MULTI-VIEW FEATURED GRAPH CLUSTERING

PRESERVING CONTEXTUAL CORRELATION

In this section, we elaborate the proposed Contextual Cor-

relation Preserving Multi-View Featured Graph Clustering

(CCPMVFGC) model. First we introduce the mathematical

notations used in this paper. We then present two important

components of the proposed model, i.e., the view-wise con-

textual correlation preserving feature clustering and interre-

lationship modeling, and formulate the objective function of

TABLE I
NOTATIONS USED BY CCPMVFGC

Notation Meaning

n Number of vertices
m Number of features

mi Number of features in view i

d Number of views of vertex features
k Number of clusters to be discovered
Y Vertex adjacency/interrelationship matrix

F
i Node-feature matrix in view i

X
i Feature correlations in view i

V n×k latent space representing vertex-cluster preference

U
i mi × k latent space representing feature-cluster pref-

erence in feature view i

α, λ Model parameters

CCPMVFGC. Finally, we develop an iterative strategy to solve

the formulated optimization problem.

A. Notations

Given a graph composed of n vertices, |E| edges, d views

of vertex features, with view i containing m
i features, and∑d

i=1 m
i = m, we use two binary matrices Y ∈ {0, 1}n×n

and F
i ∈ {0, 1}mi

×n to represent whether two vertices are

connected and whether a vertex has a corresponding feature

in view i, respectively. In addition, we use a non-negative real

matrix X
i with the size mi ×mi to represent the contextual

correlations between pairwise features in view i. To model the

graph clustering problem, CCPMVFGC uses the n× k latent

space V, and the mi×k latent space Ui to represent the shared

vertex-cluster preference, and the feature-cluster contributions

in view i, respectively. The (i, j)-th element of a matrix Y is

denoted as Yij . The Frobenius norm is denoted as ‖·‖F and

the trace operation is denoted as tr(·). Table I summarizes the

notations used in this paper.

B. Contextual Correlation Preserving View-wise Feature Clus-

tering

Vertex features from different views and their correlations

may have view-wise effects influencing both the interrela-

tionship modeling and the cluster preferences. To effectively

acquire such latent effects from multi-view vertex features,

for each view, CCPMVFGC first constructs an additional

matrix representing the contextual correlations between these

features using a word-embedding approach, and then attempts

to infer two latent spaces (V and U
i), representing the vertex-

cluster preference and feature-cluster contributions in view i,

respectively.

1) Identifying the correlations between pairwise features:

As the correlations between pairwise features may reveal

whether a pair of features is coinstantaneously observed with a

high frequency, which may affect the latent feature preference

for each cluster, CCPMVFGC considers the correlations to

uncover more meaningful cluster structure in the attributed

graph. Empirically, feature correlations can be captured via

many approaches, such as canonical correlation analysis [30]
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and sparse dictionary learning [48], which are computation-

ally demanding yet. To avoid such additional computation-

al burden, CCPMVFGC uses the shifted point-wise mutual

information (SPMI) method [23] to directly compute the

contextual correlations between each pair of features. Then,

the obtained contextual correlations between each pair of

vertex features can be normalized using the negative entropy

of the corresponding feature pairs. Given two features, say fj
and fk in view i, the contextual correlation between them can

be calculated as:

X
i
jk =

{
PMI(fj ,fk)
H(fj ,fk)

if PMI(fj , fk) ≥ logδ,

0 otherwise,

PMI(fj , fk) = log
obs(fj , fk) · |obs|

obs(fj ,+) · obs(fk,+)
,

H(fj , fk) = −log
obs(fj , fk)

|obs| ,

(1)

where obs(fj , fk), |obs|, and obs(fj ,+) denote the number of

observations in which fj and fk are associated with the same

vertex, the total number of observations in which two features

are both associated with the same vertex, and the number of

observations that fj correlates to other features, respectively.

Note that the contextual correlation X
i
jk, represented by the

quotient of mutual information between fj and fk by the

negative entropy of p(fj , fk), can be simplified by canceling

out the same factor p(fj , fk) from both the numerator and the

denominator for a concise representation.

By varying the value of δ, the obtained X
i
jk is equivalent

to the value inferred via word2vec with a negative sampling

value of δ [23]. Accordingly, CCPMVFGC is able to model

the feature-cluster preference U
i using both view-wise vertex

features F
i and their contextual correlations X

i, so that a U
i

with more feature interdependence is expected to be learned. In

this study, δ is simply set to 1 to allow CCPMVFGC to capture

more correlations between vertex features in the clustering

process.

2) View-wise feature clustering: Given F
i and X

i in each

feature view, CCPMVFGC assumes that X
i is generated by

the product of U
i and U

iT , and that Fi is generated by the

product of Ui and V
T . Thus we have X

i
jk = [Ui

U
iT ]jk+φjk

and F
i
jk = [Ui

V
T ]jk+ξjk, where φjk and ξjk denote the error

terms. Accordingly, the view-wise feature clustering problem

can be formulated as minimizing the following cost function:

O1=
∑

i

[
∥∥Fi −U

i
V

T
∥∥2
F
+
∥∥Xi −U

i
U

iT
∥∥2
F
+Ω(Ui), (2)

where Ω(Ui) =
∑

i

∑
j(
∑

k U
i
jk)

2 is the regularization term

for controlling the sparseness of U
i. Compared with the

traditional L1 norm regularizer, Ω(Ui) could further improve

the sparsity of each row in U
i [20], so that the learned U

i
jk

for features unrelated to certain clusters will approach zero.

By minimizing the cost function in Eq. (2), CCPMVFGC

can obtain a shared optimal preference between n vertices and

k clusters, and a view-wise preference between mi features in

view i and k clusters, respectively.

C. Interrelationship Modeling

Interrelationship modeling is an essential component in

graph clustering, as the edge structure is the cornerstone of

graph data. An appropriate modeling method may faithfully

reveal the relationship between the latent cluster preference

and the original edge structure.

Typically, interrelationship modeling is conducted by as-

suming the edge structure is generated by the latent space.

Although such approach is effective to some extent, it is

vulnerable to noisy edges, e.g., edges that connect vertices

whose local structures are different. Inspired by diffusion

theory [9], we propose the following re-weighting method to

make the graph structure robust to noisy data:

Dij =

{
[YT

Y+Y]ij
2di

+
[YT

Y+Y]ij
2dj

if Yij = 1,

0 otherwise,
(3)

where di denotes the degree of vertex i in the graph and

Dij measures the mutual diffusion in terms of local structure

between connected vertices pairs. When two vertices, say vi
and vj are connected, Dij is computed by summarizing the

bi-directional probabilities in which the shared local structure

is propagated from an end point to another. The computed

D is then used to re-weight the corresponding edges in Y,

i.e., Yij = Dij , thereby the existence of linkage and its

corresponding structural propagationality are incorporated into

the newly constructed Y.

Given O1 in Eq. (2), CCPMVFGC attempts to learn a

shared latent space V from various views. Additionally, we

assume that the interrelationship between any pair of vertices

is generated by V and V
T , i.e., Yij = [VV

T ]ij+γij ,

where γij denotes the error term. Thus, the interrelationship

modeling used by CCPMVFGC is formulated as minimizing

the following cost function:

O2 =
∥∥Y −VV

T
∥∥2
F
. (4)

By minimizing O2 in Eq. (4), the learning of the shared latent

space V is also influenced by edge structure Y of the AG.

D. Objective Function

Integrating O1 and O2 with balancing parameters and

constraints, the unified objective function of CCPMVFGC can

be defined as follows:

minimize

O =
∑

i

[
∥∥Fi −U

i
V

T
∥∥2
F
+
∥∥Xi −U

i
U

iT
∥∥2
F
]

+ α
∥∥Y −VV

T
∥∥2
F
+ λΩ(Ui),

subject to V ≥ 0,Ui ≥ 0,

(5)

where α, and λ are balancing parameters used to control the

relative significance of interrelationship and feature correlation

modeling and the sparseness of U
i in the learning process.

By minimizing the unified objective function in Eq. (5), the

optimal cluster preferences for all the n vertices can be learned

from multi-view vertex features and graph topology, and the

learning process is also regularized by contextual correlations

of multi-view vertex features.
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The proposed objective function demonstrates that CCP-

MVFGC is fundamentally different from previous approaches

to AG clustering and standard multi-view learning methods. C-

CPMVFGC is distinguished from previous methods for graph

clustering as it uses a generic and flexible objective function to

model the clustering problem in AGs. CCPMVFGC attempts

to model the interrelationship between pairwise vertices using

the latent space V learned from multi-view features, and

such latent space is regularized to consider more impacts

brought by the view-wise correlated features. Such a learning

scheme is novel to AG clustering. In addition, the model

structure of CCPMVFGC is flexible as it can be configured

according to the number of vertex feature views. Therefore,

CCPMVFGC can be regarded as a generic framework for

clustering in AGs. CCPMVFGC is also different from standard

approaches to multi-view learning as it emphasizes the role

of interrelationship modeling. Last but not the least, unlike

the representative multi-view unsupervised learning approach-

es [43]–[46] proposed for modeling image/vision data, which

may consider the artificially constructed edge structure as

one of the regular feature views, CCPMVFGC is an effective

approach which is specifically designed to discover clusters in

real-graphs in which the edge structure is deduced empirically

rather than constructed artificially. By generating the edge

structure information using latent space learned from multi-

view vertex features, the proposed model can better represent

the structure of the real-world graph through leveraging the

graph topology via multi-view vertex feature learning. In other

words, CCPMVFGC is capable of generating an edge between

two vertices that share correlated features in all views.

E. Model Optimization

The objective function in Eq. (5) is non-convex. Fortunately,

it is convex with respect to V or U
i when the other one is

fixed. Therefore, we utilize an iterative strategy to optimize

V and U
i in an alternating manner until convergence. The

details of the iterative strategy are described as follows.

1) Updating V: Let ηjk be the Lagrange multiplier for

Vjk ≥ 0, the Lagrange function for latent variables in V is

given as follows:

L(V, η) = O − tr(ηTV). (6)

Taking the derivative w.r.t. to V and according to KKT

conditions, we can obtain the following element-wise equation

system:

∂L

∂Vjk

= 4α[VV
T
V]jk−4α[YV]jk

+2
∑

i

[VU
iT
U

i − F
iT
U

i]jk − ηjk = 0,

ηjk ·Vjk = 0, ηjk ≥ 0.

(7)

Solving ηjk in the first equation in (7) and substituting it in

the second equation, we have the following:

[4αVV
T
V−4αYV

+2
∑

i

VU
iT
U

i − F
iT
U

i]jk ·Vjk = 0. (8)

Through some mathematical transformations, Eq. (8) can be

equivalently rewritten as follows:

[4αVV
T
V+

∑

i

VU
iT
U

i]2jk ·V4
jk=[[

∑

i

VU
iT
U

i]2jk

+8α[VV
T
V]jk ·[2αYV +

∑

i

F
iT
U

i]jk]·V4
jk.

(9)

By solving Eq. (9), the rule for updating V can be obtained

as follows:

Vjk ← Vjk ·

√√
∆jk − [

∑
i VUiTUi]jk

√
4α[VV

T
V]jk

,

∆jk=[
∑

i

VU
iT
U

i]2jk

+[8αVV
T
V]jk[2αYV+

∑

i

F
iT
U

i]jk.

(10)

2) Updating U
i: Similarly, we can obtain the rules for

updating U
i. Given the corresponding terms containing U

i

in Eq. (5), optimizing the latent variables in U
i is equivalent

to optimizing the following objective function:

O(Ui) =
∥∥∥F̃i −U

i
Ṽ

∥∥∥
2

F
+
∥∥Xi −U

i
U

iT
∥∥2
F
,

F̃
i = [Fi

0m×1] Ṽ = [
V√
λ11×k

],
(11)

where 0 is an m-dimensional column vector with all entries

being zero and 1 is a k-dimensional row vector with all entries

being one. Let σi
jk be the Lagrange multiplier for U

i
jk ≥ 0,

the Lagrange function for latent variables in U
i is given as

follows:

L(Ui, σi) = O(Ui)− tr(σiT
U

i). (12)

Taking the derivative w.r.t. to U
i and according to KKT

conditions, we can obtain the following element-wise equation

system:

∂L

∂Ui
jk

= 4[Ui
U

iT
U

i]jk−4[Xi
U

i]jk

+2[Ui
Ṽ

T
Ṽ − F̃

i
Ṽ]jk − σi

jk = 0,

σi
jk ·Ui

jk = 0, σi
jk ≥ 0.

(13)

Similar to the procedure of obtaining the updating rule of V,

we can obtain the updating rule for Ui:

U
i
jk ← U

i
jk ·

√√
Φjk − [2UiṼT Ṽ]jk
√
8[UiUiTUi]jk

,

Φjk=[2Ui
Ṽ

T
Ṽ]2jk

+[16Ui
U

iT
U

i]jk ·[4Xi
U

i+2F̃i
Ṽ]jk.

(14)

By iteratively updating the latent variables in V and U
i

according to Eqs. (10) and (14), respectively, the objective

function in Eq. (5) can finally converge, which is proved in

the following section. The optimization procedure of CCP-

MVFGC is summarized in Algorithm 1. Note that we optimize

U
i before V to improve the efficiency of the optimization

process. The view-wise terms used to optimize V, including

VU
iT
U

i and F
iT
U

i can be computed immediately after the
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Algorithm 1: Contextual Correlation Preserving Multi-

View Featured Graph Clustering (CCPMVFGC)

Input: Attributed Graph Data: Y, {Fi}di=1

Output: Cluster preference for each vertex: V;

View-wise feature-cluster contribution: {Ui}di=1

1 Compute {Xi}di=1 by Eq. (1);

2 for i← 1 : d do

3 Initialize U
i;

4 end

5 Initialize V;

6 t← 0;

7 while t < Tmax do

8 t← t+ 1;

9 for i← 1 : d do

10 Update U
i by Eq. (14);

11 end

12 Update V by Eq. (10);

13 Compute objective value O(t) by Eq. (5);

14 if O(t−1) −O(t) ≤ ǫ then

15 break;

16 end

17 end

18 Identify cluster label for each vertex using V;

optimization of each U
i, so that an extra loop to compute these

terms can be saved. As the optimization procedure adopted

by CCPMVFGC is iterative in nature, changing the order of

optimizing U
i and V in each iteration will not affect the

convergence of the model.

III. ALGORITHMIC ANALYSIS OF CCPMVFGC

In this section, we analyze the algorithm convergence and

the computational complexity of the proposed method.

A. Convergence Analysis

To prove the convergence of the algorithm, we make use

of one property of an auxiliary function that is also used

in the proof of the Expectation-Maximization algorithm [10].

The property of the auxiliary function is described as follows.

If there exists an auxiliary function satisfying the conditions

that Q(x, x′) ≥ F (x) and Q(x, x) = F (x), then F is non-

increasing under the following updating rule:

x(t+1) = argmin
x

Q(x, x(t)). (15)

The equality F (x(t+1)) = F (x(t)) holds if and only if x

is a local minimum of Q(x, x′). By iteratively updating x

according to Eq. (15), F will converge to the local minimum

xmin = argminx F (x ). By defining an appropriate auxiliary

function for O, we can demonstrate the convergence of the

proposed method.

1) Convergence analysis on V: First, we show the conver-

gence of the value of O in Eq. (5) when updating V according

to Eq. (10). Here, we only need to consider the terms in Eq. (5)

that are related to the latent variables in V. Thus, we have

OV = α
∥∥Y − VVT

∥∥2
F
+
∑

i

∥∥Fi −U
i
V

T
∥∥2
F
, (16)

where OV denotes the sum of terms in Eq. (5) that are related

to the variables in V. Further eliminating the terms that are

irrelevant to V, Eq. (16) can be further rewritten as:

OV = α · tr(VV
T
VV

T )− 2α · tr(YVV
T )

+
∑

i

tr(VU
iT
U

i
V

T )− 2
∑

i

tr(FiT
U

i
V

T ). (17)

According to the Lemma 2 in [42], we have

− 2α · tr(YVV
T ) = −2α · tr(VT

YV)

≤ −2α[tr(V′T
YZ) + tr(ZT

YV
′T ) + tr(V′T

YV
′)],

− 2
∑

i

tr(FiT
U

i
V

T )=−2
∑

i

tr(VT
F

iT
U

i)

≤ −2
∑

i

tr(ZT
F

iT
U

i)+tr(V′T
F

iT
U

i),

Zjk = V
′

jklog
Vjk

V′

jk

.

(18)

It is apparent that two inequalities will become equalities when

Vjk = V
′

jk. According to the Lemmas 6 and 7 in [42], we

have:

tr(VU
iT
U

i
V

T ) ≤ tr(V′
U

iT
U

i
P

T ),

α · tr(VV
T
VV

T ) ≤ α · tr(V′
V

′T
V

′
R

T ),

Pjk =
V

2
jk

V′

jk

,Rjk =
V

4
jk

V′3
jk

.

(19)

Similar to Eq. (18), the equality holds when Vjk = V
′

jk. Based

on Eqs. (18) and (19), the auxiliary function used to prove the

convergence of Eq. (16) can be defined as:

Q(V,V′)=α·tr(V′
V

′T
V

′
R

T )+
∑

i

tr(V′
U

iT
U

i
P

T )

− 2α[tr(V′T
YZ) + tr(ZT

YV
′T ) + tr(V′T

YV
′)]

− 2
∑

i

tr(ZT
F

iT
U

i)+tr(V′T
F

iT
U

i).

(20)

According to Eq. (20), for any element in V, say Vjk, the

auxiliary function can be written as:

Q(Vjk,V
′

jk) = α[V′
V

′T
V

′]jkRjk − 4α[YV
′]jkZjk

+
∑

i

[V′
U

iT
U

i]jkPjk − 2
∑

i

[FiT
U

i]jkZjk.
(21)

As Eq. (21) is an auxiliary function w.r.t. Vjk, Q(Vjk,V
′

jk) ≥
OVjk

, where OVjk
denotes the terms in the objective function

related to Vjk and an updating rule can be derived via

Eq. (15). Taking the derivative of Eq. (21) w.r.t. Vjk and

letting it equal zero, we have:

V
(t+1)
jk = argmin

Vjk

Q(Vjk,V
′

jk)

⇒
∂Q(Vjk,V

′

jk)

∂Vjk

=

4α[V′
V

′T
V

′]jk
V

3
jk

V′3
jk

+2
∑

i

[V′
U

iT
U

i]jk
Vjk

V′

jk

− 4α[YV
′]jk

V
′

jk

Vjk

− 2
∑

i

[FiT
U

i]jk
V

′

jk

Vjk

=0.

(22)
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Eq. (22) can be equivalently rewritten as:

2α[V′
V

′T
V

′]jkV
4
jk − 2α[YV

′]jkV
′4
jk

+
∑

i

[V′
U

iT
U

i]jkV
′2
jkV

2
jk−

∑

i

[FiT
U

i]jkV
′4
jk=0. (23)

Using the quadratic formula, we have

V
2
jk =

V
′2
jk

√
∆jk −

∑
i[V

′
U

iT
U

i]jkV
′2
jk

4α[V′V′TV′]jk
,

∆jk=[
∑

i

V
′
U

iT
U

i]2jk

+[8αV′
V

′T
V

′]jk[2αYV
′+

∑

i

F
iT
U

i]jk.

(24)

Thus, we can obtain the following:

V
(t+1)
jk ← V

′

jk ·

√√
∆jk −

∑
i[V

′UiTUi]jk
√
4α[V′V′TV′]jk

. (25)

As shown in Eq. (25), the updating rule toward minimizing

Q(Vjk,V
′

jk) is equivalent to the updating rule in Eq. (10).

As Q(Vjk,V
′

jk) is an auxiliary function of OVjk
, OVjk

is

non-increasing when Vjk is updated according to Eq. (10).

2) Convergence analysis on U
i: Next, we will prove the

convergence of Eq. (5) when it is updated using the rule in

Eq. (14). Similar to the construction of the auxiliary function

for Vjk, we define the following auxiliary function for Ui
jk:

Q(Ui
jk,U

i′
jk)=[Ui′

U
i′T

U
i′]jkR

′

jk−4[Xi
U

′]jkZ
′

jk

+ 2[Ui′
Ṽ

T
Ṽ]jkP

′

jk − 2[F̃i
Ṽ]jkZ

′

jk,

Z
′

jk = U
i′
jklog

U
i
jk

Ui′
jk

,P′

jk =
U

i2
jk

Ui′
jk

,R′

jk =
U

i4
jk

Ui′3
jk

.

(26)

As the proof that Eq. (26) is an auxiliary function w.r.t. Ui
jk

is similar to what Eqs. (18)-(21) demonstrate, we omit the

details of the proof. As Eq. (26) is an auxiliary function of

U
i
jk, we can verify the updating rule w.r.t. Ui

jk by finding the

local minimum of Eq. (26):

U
i(t+1)
jk = argmin

Ui
jk

Q(Ui
jk,U

i′
jk)

⇒ U
i(t+1)
jk ← U

i′
jk ·

√√
Φjk − [2Ui′ṼT Ṽ]jk

√
8[Ui′Ui′TUi′]jk

.

(27)

As shown in Eq. (27), the updating rule toward minimizing

Q(Ui
jk,U

i′
jk) is the equivalent to the updating rule in Eq. (14).

As Q(Ui
jk,U

i′
jk) is an auxiliary function of O w.r.t. Ui

jk, O is

verified to be non-increasing when U
i
jk is updated according

to Eq. (14).

Based on the above proof, we have

O(V(0),Ui(0)) ≥ O(V(1),Ui(0)) ≥ O(V(1),Ui(1))

≥ · · · ≥ O(V(Tmax),Ui(Tmax)),
(28)

where O shows a non-increasing trend in each iteration. Thus,

CCPMVFGC is able to converge in a finite number of steps

when the latent variables in U
i and V are updated according

to Eqs. (14) and (10), respectively.

B. Computational Complexity Analysis

Based on the updating rules shown in Eqs. (14) and (10),

we can obtain the computational complexity of CCPMVFGC

as follows. Given Eq. (10), updating all the latent variables in

V follows the order of O(n2k + nk2 + nm(k2 + k)). Given

Eq. (14), updating all the latent variables in each U
i follows

the order of O(2mi(k2+nk)+(mi2+mi)k2). Therefore, the

overall complexity of CCPMVFGC is O(n2k + nmk2).

IV. EXPERIMENTS AND ANALYSIS

In this section, we conduct a series of experiments on real-

world graph datasets to validate the effectiveness of CCP-

MVFGC against other classical and state-of-the-art methods.

A. Experimental Setup

1) Baselines for Comparison: We selected ten classical or

state-of-the-art approaches as baselines, including NCut [38],

AP [13], CNM [32], CoDA [54], k-means [29], CESNA [53],

CP-SI [25], CP-PI [25], MISAGA [19], and CoNMF [1].

NCut, AP, CNM, and CoDA are four representative ap-

proaches based on graph topology. NCut is a classical spectral-

based method for graph clustering, which performs the task

via assigning vertices sharing higher structural similarity into

the same cluster. AP is able to discover clusters in the

graph by maximizing the structural diffusion between each

cluster center and other cluster members. CNM is a typical

method for community detection which is based on modularity

optimization. CoDA is a state-of-the-art algorithm for graph

clustering, which performs the task via symmetric probabilistic

matrix factorization.

k-means is a classical clustering method, which is able

to discover graph clusters using the concatenation of vertex

features from multiple views.

CESNA, CP-SI, CP-PI, and MISAGA are four state-of-the-

art approaches to AG clustering. CESNA is a probabilistic

generative model, which learns a shared latent space as cluster

preference for each vertex from edge structure and vertex fea-

tures of an AG. CP-SI and CP-PI are two effective approaches

to AG clustering. They first compute the weight of each

edge based on different content propagation models, and then

perform Markov clustering in the transition matrix constructed

using the edge weights. Therefore, clusters discovered by CP-

SI and CP-PI are those whose vertices propagate similar vertex

features. MISAGA is an effective method able to learn a shared

latent space from the edge structure and pairwise similarity of

vertex features.

In addition to the aforementioned graph clustering ap-

proaches, we also selected CoNMF as a baseline, to demon-

strate the differences between the proposed model and generic

approaches to multi-view clustering. Although it does not

have functions such as interrelationship modeling or feature

correlation modeling, CoNMF is still an effective multi-view

clustering approach and is able to learn a shared latent space

from multi-view vertex features represented as multiple data

matrices. Given its model structure, it is also closely related

to clustering methods based on tensor decomposition.
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In our experiments, we used the source codes of all the base-

lines provided by the authors for implementation. Algorithms

including AP, CNM, and CESNA do not need any predefined

parameter before they run. Therefore, we ran them directly

without assigning parameters. NCut, CoDA, k-means, CP-SI,

CP-PI, and MISAGA need to pre-determine model parameters

before they are executed, so we used the settings recommended

in the corresponding papers. For the number of clusters, i.e.,

k, which have to be predetermined in NCut, CoDA, k-means,

CoNMF, CP-SI, CP-PI, and MISAGA, we set it to be equal

to the number of ground-truth clusters of the testing dataset.

For the proposed CCPMVFGC, we set α = 10, β = 0.5, and

λ = 1. The setting of k in CCPMVFGC is the same as that

in the baselines. All of the experiments were performed on a

workstation with 4-core 3.4GHz CPU and 16GB RAM and

all approaches were executed 10 times to obtain a statistically

steady performance.

2) Dataset Description: We used eight real-world graphs

with verified ground-truth clusters as testing datasets, five

of which are social graphs extracted from different social

networking sites while the other three are biological graphs

collected from protein-protein interaction networks related to

Saccharomyces cerevisiae. These real-world graphs have

different sizes and different numbers of vertex feature views.

The detailed descriptions of these eight datasets are as follows.

The datasets Caltech [41], Ego− facebook [31], Twitter

[53], Googleplus− sub, and Googleplus [31] are five social

graphs whose vertices and edges represent the social network-

ing users and the friendship between them, respectively.

Caltech (Cal) is a college social graph extracted from

the social networking users in the California Institute of

Technology. There are 769 vertices, 16656 edges and 53 vertex

features representing the users, the social ties between them,

and their profiles, respectively. In the Cal dataset, there are

10 large groups verified according to the college dorm system

[41], which can be used as ground-truth clusters to evaluate

the clustering performance of different approaches.

Ego − facebook (Ego) is a social graph extracted from

facebook.com. This dataset contains 4039 vertices, 88234

edges, and 1283 features which represent the Facebook users,

the friendship, and the user profiles, respectively. There are

191 social circles that have been verified as ground-truth

clusters.

Twitter is constructed based on a snapshot of the online

social networking site twitter.com. In this dataset, there are

3687 vertices and 49881 edges, representing Twitter users and

their social ties, respectively. In addition, 20905 features are

collected from two sources, including social tags and locations,

to characterize 3687 Twitter users.

Googleplus (Gplus) and Googleplus − sub (Gp-sub) are

two social graphs constructed based on the users from google-

plus.com. Specifically, Gplus-sub is a sub-set of Gplus, which

contains 8725 vertices, 972899 edges, and 5913 features,

representing the users of googleplus, their social relationship,

and their content characterizations, respectively. The vertex

information on Gplus is extract from 107614 users on the

social networking site. There are 3755989 edges and 13966

features in this dataset. The vertex features in both Gplus

TABLE II
STATISTICS OF DATASETS USED IN EXPERIMENTS. SOC OR BIO

REPRESENTS WHETHER THE DATASET IS A SOCIAL OR BIOLOGICAL

GRAPH.

Dataset Type n |E| m d k

Cal Soc 769 16656 53 1 10

Ego Soc 4039 88234 1283 1 191

Twitter Soc 3687 49881 20905 2 242

Gp-sub Soc 8725 972899 5913 5 130

Gplus Soc 107614 3755989 13966 5 463

CLS Bio 1620 9064 2042 3 200

KRG Bio 2674 7075 3064 3 200

DIP Bio 4579 20845 4237 3 200

and Gplus-sub are collected from five sources: jobs, locations,

institutions, universities, and identity information. Thus, there

are five views of features in these two datasets. Gplus-sub

and Gplus contain 130 and 463 social circles, respectively,

which have been verified in previous studies and can be used

as ground-truth clusters.

Unlike the five aforementioned graphs, which are con-

structed based on social data, Collins (CLS) [39], Krogan

(KRG) [39], and DIP [50] are three biological graph-

s used to describe the interactions between proteins relat-

ed to Saccharomyces cerevisiae. In these three datasets,

vertices, edges and vertex features represent proteins, the

protein-protein interactions, and associated Gene-Ontology

(GO) terms [2], respectively. Here, GO terms are collect-

ed from three different views, i.e., biological processes,

cellular components, and molecular functions. Specifi-

cally, there are 1620 vertices, 9064 edges, and 2042 vertex

features in CLS, 2674 vertices, 7075 edges, and 3064 vertex

features in KRG, and 4579 vertices, 20845 edges, and 4237

vertex features in DIP. To evaluate the clustering performance

on these three datasets, we used the golden standard of real

protein complexes, which are stored in the CYC2008 database

[34]. There are 200 laboratory-verified protein complexes that

are used as ground-truth clusters. Note that, compared with

the five social graphs, the edge structures of CLS, KRG,

and DIP are much sparser. Therefore, using different types of

graphs can validate the robustness of different approaches. The

statistics of these testing datasets are summarized in Table II.

3) Evaluation Metrics: For performance evaluation, we

selected two widely used metrics, i.e., the Normalized Mutual

Information (NMI) [19] and the Accuracy (Acc) [35]. The

NMI measures the overall accuracy of the matches between

detected clusters and the ground-truth. A larger value of NMI

indicates a better matching between the detected clusters

and the ground-truth. Unlike NMI , the Acc measures the

accuracy of individually detected clusters. A larger value of

Acc indicates a better matching between each detected cluster

and the ground-truth.. The larger the Acc values of all clusters

detected by an algorithm, the better the performance of an

algorithm. The properties of these two evaluation metrics

enable them to evaluate the effectiveness of an approach in a

complementary manner, so that all the clustering approaches
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TABLE III
CLUSTERING PERFORMANCE EVALUATED BY NMI (%). THE BEST PERFORMANCE ON EACH DATASET IS HIGHLIGHTED IN

BOLD. * INDICATES THAT CCPMVFGC SIGNIFICANTLY OUTPERFORMS THE CORRESPONDING BASELINE ACCORDING TO Z-TEST.
♯ INDICATES AN APPROACH THAT IS EITHER HEURISTIC-SEARCH BASED OR ABLE TO REACH A STEADY STATE, THEREBY NO

STANDARD DEVIATION IS COLLECTED.

Approaches
Datasets

Cal Ego Twitter Gp-sub Gplus CLS KRG DIP

NCut 41.113* 53.646* 48.421* 12.915* – 74.251* 79.418* 82.687*
(±1.027) (±0.162) (±0.367) (±0.588) – (±0.432) (±0.102) (±0.114)

AP 38.133* 57.093* 54.264* 40.769 – 75.552* 84.418* 84.350*
(±0.066) (±0.059) (±0.105) (±0.480) – (±0.742) (±0.340) (±0.707)

CNM♯ 42.298* 48.266* 35.485* 11.847* 7.554* 83.759* 78.571* 74.796*

CoDA 33.517* 55.505* 60.878* 18.900* 15.126 88.318 85.429* 76.314*
(±1.543) (±1.066) (±0.559) (±1.044) (±1.022) (±0.602) (±1.934) (±0.707)

k-means 21.064* 40.461* 14.929* 39.735 – 86.987 82.190* 80.757*
(±0.102) (±0.818) (±1.429) (±1.393) – (±0.128) (±0.977) (±0.106)

CoNMF 30.903* 48.366* 54.025* 25.435* 18.811 83.499* 86.022* 87.440*
(±0.310) (±0.482) (±1.462) (±0.135) (±0.680) (±0.496) (±0.053) (±0.895)

CESNA 39.259* 57.513* 46.588* 21.817* 10.164* 51.348* 74.123* 77.286*
(±1.578) (±1.119) (±0.155) (±0.601) (±0.694) (±0.045) (±0.027) (±0.148)

CP-SI♯ 21.505* 48.510* 49.752* 21.929* – 84.698 84.909* 86.598*

CP-PI♯ 21.616* 48.981* 48.538* 24.663* – 81.388* 82.115* 87.499*

MISAGA 29.774* 56.452* 65.329 21.553* 10.245* 86.344 86.749* 87.952*
(±0.036) (±0.538) (±0.226) (±1.158) (±1.158) (±0.304) (±0.059) (±0.223)

CCPMVFGC 61.791 67.650 71.983 45.378 23.877 90.373 91.505 91.527
(±1.234) (±0.241) (±0.294) (±0.317) (±0.545) (±0.200) (±0.166) (±0.338)

Improvement(%) 46.085 17.626 10.185 11.305 26.931 2.323 5.482 4.065

can be evaluated comprehensively.

In addition to the direct comparison between the perfor-

mance of CCPMVFGC and that of other algorithms in our

experiments, we also verified whether CCPMVFGC statisti-

cally outperforms other compared baselines by carrying out

statistical tests. Specifically, we performed a single-sided z-test

to determine whether CCPMVFGC significantly outperforms

other baselines at the 95% confidence level.

B. Clustering Performance Comparison

Social community detection in social graphs and functional

module identification in biological graphs are two significant

applications of graph clustering. In our experiment, we used

the aforementioned five social graphs and three biological

graphs to test the effectiveness of all of the eleven approaches.

As the ground-truth clusters of all the eight testing datasets

have been verified in previous studies, we are able to validate

the clusters discovered by different approaches against the

ground-truth. The experimental results (in terms of NMI and

Acc) of all algorithms are summarized in Tables III and IV.

When NMI is considered, CCPMVFGC outperforms all

other baselines in both social and biological graph datasets. In

six datasets out of eight, the proposed approach significantly

outperforms the second best by at least 5%. Specifically, in the

Cal dataset, CCPMVFGC outperforms CNM by 46.085%. In

the Ego dataset, the proposed approach outperforms CESNA

by 17.626%. In the Gp-sub, the improvement against NMI

is 11.305%, when CCPMVFGC is compared with the second

best approach, i.e., AP. In Gplus, which is the largest dataset

in our experiments, we were unable to obtain results of

approaches such as NCut, AP, CP-SI, CP-PI, and k-means,

as these were not designed to run and perform in large-scale

datasets. In this largest dataset, CCPMVFGC outperforms

CoNMF by 26.931%.

When using the Acc metric, CCPMVFGC still performs

robustly. It can outperform all of the baselines in seven

datasets, except in KRG, where CoDA performs the best. In

five datasets, the proposed model outperforms other baselines

by more than 5%. Specifically, when detecting social commu-

nities in Cal and Gp-sub, CCPMVFGC outperforms AP by

25.965% and 20.205%, respectively. In Gplus, CCPMVFGC

outperforms CoNMF by 32.226%. When discovering function-

al module in datasets CLS and DIP, CCPMVFGC outperforms

MISAGA by 15.999% and AP by 20.984%, respectively.

Additionally, we carried out a z-test to determine whether

CCPMVFGC significantly outperforms other baselines at the

95% confidence level. In Tables III and IV, an asterisk is given

alongside the result if the proposed CCPMVFGC significantly

outperforms the corresponding baseline on a specific dataset.

As shown in the tables, CCPMVFGC has a statistically

significant improvement when compared with other baselines

in most of the testing datasets. For example, when NMI

is considered, CCPMVFGC significantly outperforms all the

baselines in the Cal, Ego, KRG and DIP datasets. It also

significantly outperforms most of the baselines in the remain-

ing four datasets. When evaluating using Acc, CCPMVFGC

significantly outperforms all the baselines in the Cal, Gp-

sub,CLS, and DIP datasets and also achieves a significant

improvement when compared with most of the baselines in

the remaining four datasets: Ego, Twitter, Gplus, and KRG.

From the experimental results in terms of NMI , Acc

and the z-test, we can observe that CCPMVFGC is effective

in AG clustering. The multi-view learning scheme used by

the model allows it to capture view-wise impacts on the



IEEE TRANSACTIONS ON CYBERNETICS 10

TABLE IV
CLUSTERING PERFORMANCE EVALUATED BY Acc (%). THE BEST PERFORMANCE ON EACH DATASET IS HIGHLIGHTED IN BOLD.

* INDICATES THAT CCPMVFGC SIGNIFICANTLY OUTPERFORMS THE CORRESPONDING BASELINE ACCORDING TO Z-TEST. ♯
INDICATES AN APPROACH THAT IS EITHER HEURISTIC-SEARCH BASED OR ABLE TO REACH A STEADY STATE, THEREBY NO

STANDARD DEVIATION IS COLLECTED.

Approaches
Datasets

Cal Ego Twitter Gp-sub Gplus CLS KRG DIP

NCut 37.451* 44.689* 42.121* 26.705* – 22.037* 7.949* 4.695*
(±1.756) (±0.520) (±0.122) (±0.183) – (±0.524) (±0.037) (±0.098)

AP 45.774* 41.619* 56.453* 57.996* – 27.284* 18.699* 12.929*
(±0.065) (±0.025) (±0.488) (±0.946) – (±0.370) (±0.748) (±0.001)

CNM♯ 30.949* 37.979* 40.136* 28.410* 9.603* 33.025* 12.042* 3.451*

CoDA 37.824* 52.091 66.537 34.735* 17.705* 35.193* 26.000 8.362*
(±0.839) (±1.597) (±2.545) (±2.221) (±4.109) (±0.596) (±2.947) (±0.193)

k-means 14.954* 29.116* 28.343* 16.252* – 33.398* 12.789* 8.167*
(±0.130) (±0.248) (±1.180) (±0.521) – (±0.154) (±0.374) (±0.109)

CoNMF 26.268* 38.945* 50.344* 23.035* 48.207 31.084* 17.166* 10.465*
(±0.325) (±0.161) (±1.497) (±0.431) (±0.596) (±0.621) (±0.306) (±0.442)

CESNA 38.429* 46.124* 51.340* 24.038* 26.783* 4.539* 5.508* 2.600*
(±0.794) (±1.118) (±0.350) (±0.025) (±0.441) (±0.007) (±0.184) (±0.035)

CP-SI♯ 15.735* 37.905* 51.587* 25.616* – 31.467* 15.299* 9.085*

CP-PI♯ 14.434* 36.915* 51.179* 23.381* – 26.319* 4.833* 9.528*

MISAGA 25.618* 45.159* 68.619 53.009* 37.271 35.419* 18.102* 10.340*
(±0.650) (±0.718) (±0.203) (±0.550) (±1.299) (±0.318) (±0.001) (±0.175)

CCPMVFGC 57.659 53.830 71.274 69.714 63.742 41.086 24.488 15.642
(±1.470) (±0.451) (±0.364) (±0.320) (±0.550) (±0.308) (±0.001) (±0.313)

Improvement(%) 25.965 3.338 3.869 20.205 32.226 15.999 – 20.984

cluster preference for each vertex. In addition, CCPMVFGC

benefits from the modeling of view-wise correlations of vertex

features, as it can regularize the model to infer similar cluster

preferences for vertices sharing highly correlated features from

all of the views.

C. Parameter Sensitivity Analysis

We investigate the parameter sensitivity in this section

to understand how the variation of α and λ, leading to

different relative weights between interrelationship and fea-

ture modeling, and the sparseness of each U
i, respec-

tively, will impact the clustering performance. Specifical-

ly, we set α = [0.1, 0.5, 1, 5, 10, 20, 50, 100] and λ =
[0.001, 0.01, 0.1, 1, 5, 10, 50, 100], and run CCPMVFGC on

all datasets. We then evaluate the clusters discovered by

CCPMVFGC using different settings of α and λ in terms of

NMI and Acc. We present the results obtained from dataset

Cal in Fig. 2, as an example, to show how the clustering

performance of CCPMVFGC is impacted by different settings

of model parameters. As depicted in Fig. 2, both NMI and

Acc perform robustly when the value of α is relatively large,

e.g., α ≥ 5. While, varying the value of λ does not impact

the clustering performance much. According to the results of

sensitivity analysis shown in Fig. 2, the performance of the

proposed CCPMVFGC is relatively robust under a wide range

of parameter combinations. For simplicity, we set α = 10 and

λ = 1 in all our experiments.

D. Model Convergence in Testing Datasets

In addition to the theoretical analysis on model convergence,

we also investigated the convergence speed of CCPMVFGC

Fig. 2. Sensitivity analysis of CCPMVFGC with respect to the parameter α
and λ in Cal dataset

on real graph datasets. Specifically, we recorded the objective

function value of CCPMVFGC for the first 300 iterations on

all eight datasets. In addition, we recorded the performance

of CCPMVFGC (in terms of NMI) every 50 iterations to

investigate whether the clustering performance also converges

along with the convergence of model optimization. As depicted

in Fig. 3, the objective function of CCPMVFGC converges to

a stable value in less than 200 iterations on all datasets, show-

casing CCPMVFGC’s capacity to attain the desired clustering

results efficiently. Along with the model convergence, the

clustering performance of CCPMVFGC also becomes stable,

which demonstrates an approximate synchronization between

model convergence and learning performance.

E. Running Time on Model Optimization

In addition to the previous experiment on model conver-

gence, we further tested the computational efficiency of the

proposed approach by recording the overall running time

on model optimization on all the datasets, and compared it
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Fig. 3. Model convergence on testing datasets.

Fig. 4. Scalability comparisons among iteration based methods

with that obtained by other representative graph clustering

approaches based on iterative optimization, including CoDA,

CESNA, and MISAGA. The results are shown in Fig. 4.

We can observe that CCPMVFGC is comparable to CoDA,

which is an efficient approach for performing clustering

on massive graphs. In large datasets, such as the Gp-sub

and Gplus, the overall optimization time of CCPMVFGC is

less than that of all the other baselines. Through investigat-

ing the complexity and convergence speed of CCPMVFGC

and different baselines, we may gain insights of the pro-

posed model’s scalability as compared to other approaches.

In terms of computational complexity, CoDA, CESNA, and

MISAGA follow the order of O(3n2k), O(3n2k+3nmk), and

O(4n2k+4nk2+4n2k2), respectively, whereas the complexity

of CCPMVFGC is O(n2k+nmk2), as mentioned in Section

III.B. It is obvious that the complexity of the proposed model

is jointly dominated by n and m. While the computational

time of all the compared baselines are dominantly determined

by n. Thus, it is reasonable that CCPMVFGC costs slightly

more time on model optimization in datasets such as Twitter,

CLS, and DIP, whose m is close to, or larger than n. On the

contrary, CCPMVFGC is very efficient on large datasets, such

as Gp-sub and Gplus, due to the following reasons. Firstly, the

value of m is much smaller than n in those massive datasets,

thereby the complexity of all the approaches is dominantly

determined by n. For example, as shown in Table II, there are

107,614 vertices (n) in Gplus, which is about 9 times larger

than that of the vertex features (m). Secondly, CCPMVFGC

Fig. 5. The structure of a social community detected by CCPMVFGC in the
Twitter dataset and the corresponding view-wise feature correlations in the
community. The community matches well with a social circle in the ground-
truth database and only three vertices were missed by the model.

is able to converge in fewer iterations, while its optimization

time in each iteration is approximately equal to, or just slightly

longer than the baselines’ running time. For instance, the

total optimization time used by CCPMVFGC with the Gplus

dataset is 4005.9 seconds, which is 2319.1 seconds faster than

that of CoDA. In summary, the proposed model’s capacity

for fast convergence and the acceptable running time in each

iteration together make CCPMVFGC an efficient approach for

discovering clusters in massive graph data.

F. Case Study: Detailed Analysis of the Discovered Cluster

To further investigate whether the proposed model is able

to learn an appropriate cluster preference that is affected

by graph topology, multi-view vertex features, and the cor-

relations between multi-view vertex features, we conducted

a detailed analysis on discovered clusters and provided a

concrete example.

In the Twitter dataset, a cluster containing 48 members is

discovered by CCPMVFGC. Its structure is depicted on the

left side of Fig. 5. This discovered cluster well matches a

true social circle (ground-truth). As the figure shows, all the

vertices in this clusters are densely connected, which indicates

they have a locally cohesive graph topology.

In addition to the analysis of structural properties, we

also investigated whether the vertices in the same cluster

share similar features in different views, and whether those

cluster features learned by CCPMVFGC had correlations to

some extent. The cluster features learned by the model and

the features shared by a pair of cluster members are listed

in Table V, and the correlations of features in this cluster,

including cluster features learned by CCPMVFGC and those

possessed by the enumerated members, are shown on the right

side of Fig. 5. As the table shows, this cluster has two views

of ”themes”, which are related to environmental conservation

and zoology, respectively. Therefore, the vertices in this cluster

should also possess similar or related features to such view-

wise themes. CCPMVFGC is able to assign such vertices into

the group during the clustering process. As shown in the table,
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TABLE V
VIEW-WISE CLUSTER FEATURES LEARNED BY CCPMVFGC. THE FEATURES SHARED BY THE CLUSTER AND ITS MEMBERS

ARE HIGHLIGHTED IN BOLD.

Cluster Feature in View 1 Cluster Feature in View 2

#EarthDay #animal #iguana #rescued #NOAA #birds #Conservation @sandiegozoo @twitter @ZooBorns @BrooklynMuseum
#shark #Google #NOAA #Science #water #Volunteer @Hollywood @twittermedia @youtube @zoos aquariums

#EarthDay #ocean #FF #ff #shark @sandiegozoo @zoos aquariums @HuffPostGreen @NatGeo
@PhoenixZoo @MontereyAq @ZooAtl

Features Shared by 15532765 and 14750983 in View 1 Features Shared by 15532765 and 14750983 in View 2

there are a number of features from two views shared by both

two vertices, i.e., 15532765 and 14750983, and a proportion of

them, e.g., #EarthDay in view 1 and @sandiegozoo in view 2,

are also the cluster features learned by the model, which means

CCPMVFGC preserves the feature similarity of vertices.

CCPMVFGC is also able to learn feature-cluster contribu-

tions that preserve high contextual correlations in each view

as cluster ”themes.” As demonstrated on the right side of

Fig. 5, the correlations between pairwise features (denoted

by the links between vertices) in this cluster appear very

frequently, despite these features being different. For example,

the normalized correlation between #iguana and #animal in

view 1 and that between @NatGeo and @MontereyAq in view

2 are 1.000 and 0.744, respectively, which are relatively high

according to Eq. (1). Using U
i to model Xi, the features that

are highly correlated are more likely to have a high preference

to the same cluster. Thus, the learning of the vertex-cluster

preference V is also affected by the learning of U
i, and

the vertices sharing pairs of contextually correlated features

are more likely to have the similar cluster preference, despite

such features always being different. The multi-view learning

mechanism and the consideration of contextual correlations

between view-wise vertex features enable CCPMVFGC to

discover clusters that are structurally cohesive and correlated

with respect to features from different views, and therefore are

accurately matched with the ground-truth.

V. DISCUSSION: CCPMVFGC AND VERTEX EMBEDDING

IN ATTRIBUTED GRAPHS

In addition to learning clusters in AG by means of spe-

cialized unsupervised approaches, theoretically, clusters in AG

can also be uncovered in the manner of clustering vertex

embeddings (vertex representations), which encodes the vertex

features into the low-dimensional vector spaces [37]. As an-

other latent feature in graphs, vertex embedding can be learned

by many effective approaches, such as random walk [11]

and graph convolutional neural networks (GCNNs) [16], [21].

Though drawing much attention recently, the technique of

learning vertex representations is not adopted in CCPMVFGC

due to a few reasons. Firstly, the technique of vertex embed-

dings was rarely used in AG clustering previously as it is

primarily a technique for supervised learning tasks, such as

node classification and link prediction, in AG. Whereas the

graph clustering task in the proposed model is unsupervised

learning. Secondly, the discovered clusters are rather difficult

to analyze through vertex embedding methods as the features

characterizing the clusters cannot be learned automatically.

Lastly, many embedding approaches, especially those based on

different neural network models, are incapable of dealing with

massive AG data [16]. Different from the approaches to vertex

embeddings, in this manuscript, we attempt to develop a model

targeting specifically to simultaneously uncover graph clusters

leveraging the multi-view vertex features and learn the features

characterizing the discovered clusters, rather than an approach

to simply learn better vertex representations in AG. To achieve

this goal, we propose CCPMVFGC, an effective and efficient

model for discovering clusters in AG with multi-view vertex

features. Given the aims and functionalities of CCPMVFGC

and vertex embedding in AG, it is said that CCPMVFGC is

fundamentally different from most approaches to AG vertex

embedding.

VI. CONCLUSIONS

In this paper, we propose a novel model referred to as

Contextual Correlation Preserving Multi-View Featured Graph

Clustering (CCPMVFGC) for discovering clusters in attributed

graphs. Unlike previous approaches, CCPMVFGC uses an

effective multi-view learning scheme that allows for modeling

the structural relationship between pairwise vertices using

the latent space learned from multi-view vertex features, so

that the latent cluster preference is jointly learned by both

graph topology and view-wise vertex features. In addition,

CCPMVFGC utilizes the latent feature cluster preference to

model the contextual correlations between pairwise vertex

features. Therefore, the learned cluster features and cluster

members are more contextually correlated, which enables the

proposed model to discover more meaningful clusters in the

attributed graph. CCPMVFGC was tested on a number of real-

world graph datasets and compared with both classical and

state-of-the-art approaches. The experimental results indicate

that CCPMVFGC is capable of revealing clusters in graphs

constructed by different types of real-world data with high

accuracy, and also in a computationally efficient manner. In the

future, we will further improve the efficiency of CCPMVFGC

by developing a model based on parallel computing, and

improve the effectiveness of CCPMVFGC by allowing the

model to consider cross-view feature correlations.
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