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The introduction of multilevel modeling to periodontal
research (1–3) has provided a new way of exploring old
problems (4). Until multilevel modeling became an
option it was usually necessary to aggregate the site-
based recordings into subject-based summary statistics to
fulfill basic requirements for valid statistical inference,
but multilevel modeling permits statistical analyses that
make explicit use of the natural hierarchy existing in
most clinical periodontal data, with sites nested in teeth
that are nested in subjects (1, 5–7). Although such
accounting for the natural hierarchy has sometimes
caused a change in the interpretation of the results (1, 4,
6), multilevel modeling in periodontal research seems so
far mainly to have served the purpose of taking into
account the site–tooth–subject correlation structure
using a population-averaged approach (5, 8–14) in which
the heterogeneity is considered a nuisance parameter.
Only little attention has been paid to the estimated var-
iance components (1, 13–15), and the heterogeneity of
the responses has rarely been a focus of interest.
However, multilevel modeling can fruitfully be

extended beyond the subject level to explore, or to
account for – as appropriate, the effects of clustering
above and beyond the subject level. Two situations seem

particularly suitable for such uses of multilevel analysis:
in periodontal epidemiology, the sampling methods used
often involve sampling of clusters somewhere in the
study subject-identification process (16–18). Even the
end-stage selection of study subjects may be based on
clusters – for example, when including in the study all
students in a school (19, 20), in a class (21), or in a
household (22, 23) – and such clustering might well be
important for the interpretation of the study results.
However, the perhaps most intriguing use of multilevel
modeling in periodontal epidemiology is for the identi-
fication or assessment of contextual effects. Contextual
effects are effects that are not directly captured by sub-
ject-level attributes or covariates (24, 25), and could
reflect the effects of the norms, values, and beliefs
prevailing in the individuals� social context (26), or
certain characteristics of the physical environment in
which the individual is living. A good example of a
contextual effect is the influence of safe walking envi-
ronments for the walking activity of older adults (27).
Contextual effects have been reported for oral health

outcomes, and the residents of disadvantaged neighbor-
hoods are more likely to assess their oral health as only
fair or poor, compared with similar persons in more
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The aim of this study was to assess and quantify the random effects resulting from
clustering in the following individual-level periodontal outcomes: presence of clinical
attachment loss of ‡ 1 mm (CAL1), presence of clinical attachment loss of ‡ 3 mm
(CAL3), and presence of necrotizing ulcerative gingivitis (NUG); or in the following
class-level periodontal outcomes: number of students with CAL1, number of students
with CAL3, and number of students with NUG. Mixed-effects logistic regression
analysis was used to model these outcomes among 9,162 adolescents in 310 classes in
98 schools spread over 20 communes in the Province of Santiago, Chile, who had been
examined for clinical attachment level and NUG, and had completed questionnaires
on oral health-related behaviors. The results of all six analyses demonstrated statis-
tically significant random effects, which in all analyses were particularly related to the
schools, whereas the class effects were smaller and the commune random effects were
almost negligible. The random effects were quantified using the median odds ratio
(MOR), and the class-level MOR ranged between 1.05 and 1.51, whereas the school-
level MOR values ranged from 2.07 to 2.39. The results of the study demonstrate the
potential of the application of multilevel modeling to periodontal epidemiologic data,
over and beyond the conventional use of the technique to account for the intrinsic
sites–teeth–subject hierarchy in periodontal data.
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advantaged neighborhoods, even after adjustment for
subject-specific socioeconomic factors (28–30). While the
results of Bower et al. (31) did not confirm the presence
of contextual effects related to deprivation in hard clin-
ical outcomes, such as the number of sound teeth or the
presence of one or more pockets ‡ 4 mm among Scottish
adults, the results presented by Sanders et al. (32) have
demonstrated considerable neighborhood contextual
effects in the perhaps hardest clinical outcome of them
all: the number of teeth retained. This study convincingly
demonstrated that poor persons benefit from living in
affluent neighborhoods, whereas wealthier persons do
not lose their oral health advantages when living in poor
neighborhoods (32). Several explanations were offered
for these findings, including greater availability of dental
services in wealthy neighborhoods, greater accessibility
of nutritious foods in wealthy neighborhoods, or an
undermining effect of area deprivation on the social
capital, creating disorder, mistrust, and social exclusion
of people living in poor neighborhoods (32).
We have previously reported the findings of a large

periodontal epidemiological study carried out among
Chilean adolescents (21). The study participants were
identified using cluster sampling, but at the time of
reporting the study results, multilevel modeling tech-
niques were not available to us. As some information is
available about the cluster-defining units, we decided to
undertake a secondary analysis of the data. The purpose
of the present study was therefore to model epidemio-
logical data that cluster in school classes, schools, and
communes with different socioeconomic profiles, with a
view to assess and quantify the variation in three subject-
level periodontal-disease outcomes that can be attributed
to unmeasured or latent variables at the three data
hierarchies.

Material and methods
The data originate in a cross-sectional study carried out (21)
for the purpose of identifying cases of early periodontitis
among adolescents, 12–21 yr of age, from the Province of
Santiago, Chile. The Province of Santiago, which had a

population of about five million at the time of the study,
comprised 32 communes, in which 618 schools embrace the
school grades corresponding to adolescence. At the time of
planning the study it was estimated that 9,200 adolescents
would have to be examined in order to identify the appro-
priate number of cases for an ensuing case–control study
(33). The target sample size was obtained by means of a
complex two-stage random-cluster sampling procedure,
with a random selection of schools comprising the stage-1
sampling and a random selection of classes within schools
comprising the stage-2 sampling (21, 34). The target sample
size in each school was 100 adolescents, and at least three
different classes were included from each school. However,
it was not always possible to fulfill the minimum require-
ment of 100 students per school because there were too few
students in the appropriate age range, and in 24 schools
fewer than 80 students were available for the present study.
A total of 9,162 adolescents in 310 classes in 98 schools in

20 communes were given a clinical examination, consisting
of the direct recording of the clinical attachment level (in
mm) in six sites in the first and second molars and in the
incisors (21). The gingival tissue was also examined, and
necrotizing ulcerative gingivitis was recorded as present if
one or more gingival areas displayed signs of such lesions
(35). Sociodemographic information on each student was
obtained by means of a questionnaire, which among others
contained questions on toothbrushing habits, smoking
habits, time since last dental visit, diabetic status, parental
income, and parental level of education. The data collection
was carried out during March–May 2000 by four examiners
who worked together two-and-two in the schools. In case of
the absence on a particular day of one of the examiners, the
principal investigator (RL) acted as a substitute. The inte-
rexaminer and intra-examiner reliabilities of the clinical
recordings have been extensively described in a previous
publication (36).
Two sets of statistical analyses were performed: one in

which the subject was the basic unit of analysis; and one in
which the class was the basic analytical unit. In the subject-
level analyses, three outcomes were analyzed: presence of
clinical attachment loss ‡ 1 mm (CAL1); presence of clinical
attachment loss ‡ 3 mm (CAL3); and presence of necroti-
zing ulcerative gingivitis (NUG). All three subject-based
outcome variables were coded as 1 = present/0 = not
present. Table 1 shows the distribution of the study subjects
and the distribution of the three outcomes across the
implicit study hierarchies.

Table 1

Distribution of the study population and the three outcome variables according to the sampling hierarchy

Level Estimate

Number of students

Total With CAL ‡ 1 mm With CAL ‡ 3 mm With NUG

Commune Median 308 230.5 18.5 26
IQR 185–671.5 132.5–486 4.5–32 11.5–41
Range 62–1212 28–920 063 (0–86)

School Median 94.5 67 2 4
IQR 80–112 46–82 1–7 2–10
Range 10–152 9–136 0–23 0–27

Class Median 31 21 1 1
IQR 23–38 13–28 0–2 0–3
Range 4–48 1–43 0–12 0–11

Subject – 9,162 6,342 409 618

CAL, clinical attachment loss; IQR, interquartile range; NUG, necrotizing ulcerative gingivitis.
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The selection of covariates for the present analyses was
chiefly based on the results of previous analyses (21, 34, 35).
Hence, the covariates considered were age (continuous
variable centered at 16 yr); gender (1 = boy/0 = girl);
toothbrushing less than twice per day (1 = yes/0 = no);
smoking (1 = daily smoker/0 = occasional smoker or
non-smoker); last dental visit > 1 yr ago (1 = yes/
0 = no); being diabetic (1 = yes/0 = no); paternal income
‡ Chilean Pesos ($) 300,000 (1 = yes/0 = no); and
paternal education at least university or technical level
(1 = yes/0 = no). For parental income and education the
non-responses were recoded as 0. Because the main
purposes of the analyses were to identify the variance
components corresponding to class, school, and commune,
we also included the examiner as a covariate to account for
the way in which examiner teams had been distributed
among the schools. Table 2 shows the distribution of the
covariates across the implicit study hierarchies.

For the purpose of the subject-level analyses we fitted
random-intercept logistic-regression models of the form:

log it½PðYijk ¼ 1jxijk; 1class; 1school; 1communeÞ�
¼ b1 þ b2 � x2ijk þ b3 � x3ijk þ � � � þ bp �xpijk
þ 1class þ 1school þ 1commune

where xijk is the vector of subject-level covariates in across
individuals i, schools j, and communes k; and the terms
V class, V school, and V commune denote the random effects at
class level, school level, and commune level, respectively.
For the purpose of the class-level analyses the above

outcomes were summed over classes, yielding the outcome
variables �Number of students with CAL1�, �Number of
students with CAL3�, and �Number of students with NUG�.
Similarly, covariates were aggregated over classes and the
following covariates were considered: mean age (continuous
variable centered around 15 yr); number of boys in class;
number of students whose father had an income of
‡ $300,000; number of students whose father had a uni-
versity or technical education; and number of students
examined by each examiner. We elected to reduce substan-
tially the number of covariates for the class-level analyses
compared with the subject-level models because of the much
smaller number of analytical units available for the class-
level analysis (310 vs. 9,162). The excluded covariates were
those with the smallest anticipated effect. The models fitted
in the class-level analyses were random-intercept logistic-
regression models of the form:

PðYclass ¼ d jxclassij; 1class; 1school; 1communeÞ

¼
nclass

d

� �
� ðPclassÞd � ð1� PclassÞ1�d;

with

log itðPclassÞ ¼ b1 þ b2 � x2ij þ b3 � x3ij þ � � �
þ bp � xpij þ 1class þ 1school þ 1commune

where Yclass denotes the number of students in the class with
the outcome of interest; xclassij is the vector of class-level
covariates in school i in commune j; nclass is the number of
students in the class; and Pclass is the probability of a student
having the outcome of interest. The terms V class, V school, and
V commune denote the random effects at class level, school
level, and commune level, respectively. These random effects
follow a normal distribution with a mean value of 0 and a
variance that can be estimated. The statistical significance of
the random effects was tested using the likelihood-ratio test.
Both the subject-level and the class-level models were

fitted using the Stata (37, 38) procedure �xtmelogit� for
multilevel mixed-effects logistic regression. This Stata

procedure uses maximum-likelihood estimation. For the
class-level models, we used binomial response probabilities
and nclass as the binomial denominator. The fit of the esti-
mated models was evaluated using the postestimation pro-
cedure �predict� to obtain the predicted probability of
Yijk = 1, which was compared with the observed value of Y
at each of the three random-effects levels: class, school, and
commune. When the model is correctly specified, the pre-
dicted probabilities of Yijk = 1 will approximate the
observed proportions with Y = 1 at each of the class,
school, and commune levels. This was checked graphically
by plotting the differences between the observed proportions

Table 2

Distribution of the subject-level covariates aggregated according
to the three hierarchies in the analysis

Covariate

Level of aggregation

Subject
n = 9,162

Class
n = 310

School
n = 98

Commune
n = 20

Age (yr)
Median 0.16 0.41 0.18 0.27
Range )3.0 to 5.3 )1.8 to 3.7 )0.9 to 2.2 )0.7 to 1.6

Percentage boys
Median 50.8 50.0 49.7 50.8
Range – 0–100 0–100 23.9–74.0

Percentage with income ‡ $300,000 (father)
Median 39.1 34.6 35.3 32.1
Range – 0–100 0–95.8 4.4–79.0

Percentage with university/technical education (father)
Median 30.5 27.8 26.6 22.2
Range – 0–100 0–90.1 2.4–75.5

Percentage brushing teeth less than twice daily
Median 29.3 28.1 29.9 29.3
Range – 0–80 8.2–58.2 12.9–52.4

Percentage last visit to dentist > 1 yr ago
Median 47.1 46.7 46.7 50.6
Range – 0–100 12.5–73.3 19.0–70.1

Percentage smoking daily
Median 24.9 25.0 23.7 24.1
Range – 0–100 7.5–60.0 16.1–36.3

Percentage diabetics
Median 0.6 0.0 0.0 0.1
Range – 0–16.7 0–8 0–2.4

Percentage examined by examiner 1
Mean 23.9 25.3 25.0 22.4
Range – 0–100 0–100 0–51.6

Percentage examined by examiner 2
Mean 22.9 22.1 22.8 21.6
Range – 0–83.3 0–58.2 0–51.1

Percentage examined by examiner 3
Mean 24.9 24.6 24.5 26.7
Range – 0–100 0–80.0 0–54.5

Percentage examined by examiner 4
Mean 24.2 24.2 24.0 26.1
Range – 0–100 0–76 0–51.6

Percentage examined by stand-in examiner
Mean 4.1 3.8 3.7 3.2
Range – 0–100 0–47.9 0–12.5
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and the predicted probabilities. In addition, we evaluated
the fit of the estimated models by simulating the responses
based on the estimated models, and graphically comparing
the simulated responses of each of 20 simulations with the
observed responses.
The interpretation of the fixed effects and the random

effects estimated based on the above models is not
straightforward (39). Hence, the estimated random effects
are conditional on the particular set of covariates considered
in the fixed part of the logistic models, just as the fixed-
effects estimates, b, have class, school, and commune-
specific interpretations. Larsen et al. (39, 40) suggested that
the random effects at a given level, say class, should be
reported in the form of the median odds ratio (MOR) be-
tween the unit at higher propensity and the unit at lower
propensity, given the fixed effects. The MOR is always ‡ 1.
If the MOR is 1, there is no variation between clusters;
whereas if there is considerable between-cluster variation
the MOR will be large. If we consider two students, each
with the same given covariate pattern, from two randomly
chosen different classes in the same school – hence also in
the same commune – we can use the MOR to quantify the
class-level variation. Phrased differently, the MOR may be
understood to quantify, in odds ratio units, the hetero-
geneity between classes caused by unmeasured or latent
covariates operating at the class level.
In the present study we are not seeking primarily to

estimate fixed effects, and it should be borne in mind that
it is inappropriate merely to exponentiate the estimated
fixed-effect b-values and interpret the results as odds
ratios from a conventional logistic regression analysis.
Hence, the exp(bi) value for the above-mentioned
three-level model represents the odds ratio for the
association between the outcome Y and exposure Xi,
conditional on the subjects being from the same class
(and thereby also from the same school and the same
commune), and having the same values of the remaining
covariates.
The schools included in the present study comprise a mix

of private and publicly run schools, and the school-based
annual tuitions and fees vary from 0 to over 1 million
Chilean Pesos (CLP). For the purpose of exploring a possible
association with the estimated random effects, we grouped
the tuitions and fees in four-fourths – < CLP60,000;
CLP60,000–CLP149,000; CLP150,000–CLP760,000; and
> CLP760,000 – and explored the distributional charac-
teristics of the random effects across these groups. Similarly,
based on the year 2000 survey of the socioeconomic char-
acteristics of the Chilean provinces (41), we calculated, for
each commune in the Province of Santiago, a commune
socioeconomic level based on three indicators: the average
income; the average number of years of education; and the
proportion of unemployed in the workforce. Each of these
was scored from 1 (lowest third in socioeconomic position)
to 3 (highest third in socioeconomic position), and the scores
were summed to form a composite indicator of commune
socioeconomic position. This was subsequently used to
form three groups of communes, of lower, middle, or higher
socioeconomic position.

Results

The results of the multilevel mixed-effects logistic
regression of the subject-based outcome, presence of
CAL1, clearly indicated notable random effects at both

the class level and the school level (Table 3), indicating
considerable heterogeneity in the presence of CAL1 at
both class level and school level. Hence, the MOR con-
trasting two students having the same covariate pattern,
but originating from two different classes in the same
school, amounted to a MOR = 1.51, whereas two stu-
dents having the same covariate pattern, but originating
from different schools in the same commune, were con-
trasted by a MOR of 2.39. Both of these random effects
were statistically significant, as indicated by the likeli-
hood ratio test, at P < 0.0001. The random effect for
CAL1 at the commune level was minute and statistically
insignificant. Considering the outcomes �presence of
CAL3� and �presence of NUG�, it was evident that the
main random effect occurred at the school level
(MOR = 2.25 and MOR = 2.24, respectively). Both
class-level and commune-level random effects were sta-
tistically insignificant, although the class-level contribu-
tion to the median odds ratio contrast was in an order of
magnitude of 20–31%, and the commune-level contri-
butions were in an order of magnitude of 14–26%
(Table 3).
The estimated fixed effects generally indicated that

higher age, brushing teeth less than twice a day, and
having had the last visit to the dentist more than a year
ago were associated with higher odds for the presence of
CAL1, presence of CAL3, and presence of NUG;
whereas having a father with a high income and a high
level of education was associated with lower odds of the
presence of any of the three outcomes. Daily smoking
tended to be negatively associated with the outcomes,
while being male and reporting being diabetic did not
appear to be associated with the outcomes. The examiner
had variable, and sometimes considerable, effects on the
outcomes (Table 3).
Even though the class-level outcomes �number of stu-

dents with CAL1, CAL3 or NUG� were modeled using
fewer covariates in the fixed-effects part of the models,
the results concerning the random effects and their
distribution among the class, school, and commune
hierarchy essentially confirmed the results obtained in
the subject-level analyses. Hence, for the outcome
�number of students in class with CAL1�, considerable
and statistically significant random effects corresponding
to the class level (MOR = 1.46) and school level
(MOR = 2.12) were found, whereas the commune-level
random effect was negligible (Table 4). For the outcomes
�number of students in class with CAL3 or NUG�, the
only significant random effects were observed at the
school level (MOR = 2.07 and MOR = 2.10, respec-
tively). The fixed-effects portion of the models indicated
a positive association between higher age and a higher
proportion of students with the outcome, whereas a
higher proportion of students with high paternal income
and education were associated with a lower proportion
of students with the outcome in question. The examiner
effects were variable, but considerably less marked, than
the age effect (Table 4).
Figures 1 and 2 show the distribution of the random

effects estimated in the subject-based model for the
CAL1 outcomes according to the four levels of
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school-based tuitions and fees (Fig. 1) and the three
levels of the composite indicator of commune socioeco-
nomic position (Fig. 2). The school-level random effects
were clearly related to the school-based tuitions and fees
in a gradient-like manner. The relationship between the
random effects and the composite indicator of commune
socioeconomic position was less clear, and only the
school-level random effect seemed to be associated.

Discussion

The results of the present analysis clearly indicate the
presence of contextual effects, predominantly related to
the school level. The observation that the commune level
did not appear to be a major source of random effects is
perhaps not so surprising, taking into account the actual
size of the communes. The smallest commune had about
70,000 inhabitants, whereas the largest commune had
more than 400,000 inhabitants, and considerable within-
commune heterogeneity is to be expected for communes
of this size. Unfortunately, whereas we have plenty of
data characterizing a vast number of commune-level
socioeconomic indicators, we do not have information
that characterizes the schools any further than by the
information on the requested annual tuitions and fees.

Plausible, but speculative, explanations for the observed
school-level random effects include neighborhood effects
related to the school catchment area, effects related to
the school�s particular philosophical or religious attach-
ment, or effects related to the schools� main orientation
towards technical or academic disciplines, all of which
may influence the collective norms, values, and beliefs
prevailing in a given school.
Care should always be exercised when interpreting the

results of multilevel mixed-effects logistic regression
analyses. First of all it should be noted that the esti-
mated random effects shown in Tables 3 and 4 are
conditional on the fixed effects and on the adopted
hierarchical structure. That is to say, the random effects
are random effects, given the particular selection of
covariates associated with the fixed effects, represented
by the subject-level covariates in Table 3 and the class-
level covariates in Table 4. It is thus possible that
additional or different subject-level and class-level
covariates might have resulted in different random-ef-
fects estimates. This observation hinges on the contin-
ued discussion of the relative merits of multilevel
analysis vs. conventional individual single-level analysis
(24). Critics of the use of multilevel analysis models
argue that if context or group-level characteristics affect
the health of individuals, they must somehow manifest

Table 3

Results of fitting the subject-based three-level random-effects models to the following outcomes: presence of CAL1; presence of CAL3; or
presence of NUG

Random effects

CAL1 CAL3 NUG

r2 SE r2 SE r2 SE

Class 0.1861 0.0401 0.0769 0.0686 0.0358 0.0515
School 0.6512 0.1402 0.6483 0.2076 0.6779 0.1637
Commune 0.0053 0.0627 0.2174 0.1803 0.1106 0.1135

MOR for the OR comparing two randomly chosen: MOR MOR MOR

Students in different classes | fixed effects, school, commune 1.51 1.30 1.20
Students in different schools | fixed effects, commune 2.39 2.25 2.24
Students in different communes | fixed effects 2.40 2.52 2.38

Subject level – fixed effects b SE(b) b SE(b) b SE(b)

Age centered at 16 yr 0.18 0.03 0.18 0.05 0.08 0.04
Boy )0.07 0.06 0.01 0.12 0.00 0.10
Paternal income ‡ $300,000 )0.10 0.06 )0.35 0.15 )0.15 0.12
Paternal university/technical education )0.12 0.07 )0.01 0.16 )0.24 0.13
Brushing teeth less than twice daily 0.11 0.06 0.21 0.12 0.16 0.10
Last visit to dentist more than 1 yr ago 0.17 0.05 0.30 0.11 0.27 0.09
Smoking daily )0.12 0.06 0.05 0.12 )0.22 0.11
Diabetic 0.16 0.33 0.51 0.51 0.55 0.41
Examiner 1 1.45 0.19 )1.61 0.25 0.23 0.25
Examiner 2 0.20 0.18 )2.19 0.27 )1.25 0.28
Examiner 3 )0.09 0.17 )1.82 0.26 0.19 0.26
Examiner 4 0.73 0.18 )1.34 0.25 )0.44 0.27

The random effects for class, school, and commune are described in terms of their variance (r) and standard errors (SE). The median
odds ratio (MOR) describes the contrast that arises from comparing two individuals with the same covariate patterns between classes,
between schools, and between communes. The b values denote the logistic regression coefficients for the fixed part of the models
fitted.
CAL1, presence of clinical attachment loss of ‡ 1 mm; CAL3, presence of clinical attachment loss of ‡ 3 mm; NUG, necrotizing
ulcerative gingivitis.
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themselves in people�s bodies and operate via individual-
level processes. This clearly implies that if enough
individual-level covariates are measured, the group-level
or contextual effects would disappear. However, this is
not to say that we should strive to find the causes of the
outcome only at the individual level. Returning to the
results of the study by Sanders et al. (32), demon-

strating that living in an affluent neighborhood confers
a reduction in the excess risk of tooth loss among poor
people, one might conceivably be able to introduce
individual-level variables measuring, for example, the
dental attendance patterns and the intake of various
nutritious foods into the regression equations and
thereby effectively eliminate the evidence for the

Table 4

Results of fitting three-level random-effects models to the following class-based outcomes: number of students with CAL1; number of
students with CAL3; and number of students with NUG

Random effects

Number of students in class with

CAL1 CAL3 NUG

r2 SE r2 SE r2 SE

Class 0.1576 0.0369 0.0539 0.0642 0.0025 0.0446
School 0.4664 0.1059 0.5522 0.1841 0.6059 0.1497
Commune 0.0298 0.0545 0.0511 0.0964 0.0757 0.0913

MOR for the OR comparing two randomly chosen: MOR MOR MOR

Classes | fixed effects, school, commune 1.46 1.27 1.05
Classes in different schools | fixed effects, commune 2.12 2.07 2.10
Classes in different communes | fixed effects 2.16 2.07 2.20

Class level – fixed effects b SE(b) b SE(b) b SE(b)

Mean age centered at 16 yr 0.1471 0.0350 0.1846 0.0605 0.0373 0.0454
No. of boys )0.0003 0.0067 0.0052 0.0090 )0.0052 0.008
No. with paternal university/technical education )0.0136 0.0153 )0.0037 0.0271 )0.0743 0.0226
No. with paternal income ‡ $300,000 )0.0120 0.0131 )0.0778 0.0246 0.0229 0.0196
Examiner 1 0.0399 0.0144 0.0310 0.0214 0.0047 0.0173
Examiner 2 )0.0267 0.0134 )0.0113 0.0216 )0.0154 0.0176
Examiner 3 )0.0114 0.0140 )0.0005 0.0198 0.0171 0.0166
Examiner 4 )0.0170 0.0128 0.0360 0.0189 )0.0199 0.0151
Stand-in examiner 0.0057 0.0207 0.0787 0.0231 0.0045 0.023

The random effects for class, school, and commune are described in terms of their variance (r2) and standard errors (SE). The median
odds ratio (MOR) describes the contrast that arises from comparing two classes with the same covariate patterns between classes,
between schools, and between communes. The b values denote the logistic regression coefficients for the fixed part of the models
fitted.
CAL1, presence of clinical attachment loss of ‡ 1 mm; CAL3, presence of clinical attachment loss of ‡ 3 mm; NUG, necrotizing
ulcerative gingivitis.

Fig. 1. Box-plots showing the distribution of the random-
effects estimates for the subject-based logistic models estimated
for the outcome �Having CAL ‡ 1 mm� according to the
quartile levels of the contextual variable �School-based tuitions
and fees� (see the text for definitions). CAL, clinical attachment
loss.

Fig. 2. Box-plots showing the distribution of the random-
effects estimates for the subject-based logistic models estimated
for the outcome �Having CAL ‡ 1 mm� according to the levels
of the contextual variable �Commune socioeconomic level� (see
the text for definitions). CAL, clinical attachment loss.
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contextual neighborhood effects. However, if such an
approach is taken, it is not a scientifically motivated
decision, but a rather political/philosophical decision
fuelled by a strong belief in people�s ability to make
rational and informed choices based on their personal
assessment of the available evidence on all pros and
cons. However, this �victim-blaming� approach (42) has
limited scientific credibility, and it is common sense that
a person�s dental-attendance pattern is likely to be
influenced by the availability and accessibility of dentists
sufficiently nearby, just as a person�s intake of junk food
clearly depends on the availability in the local area of
shops or restaurants selling such foods.
Another aspect that may affect group-level random

effects is related to confounding. Suppose an unknown
individual-level variable exists that is related to the dis-
ease outcome and does not represent an intermediary
step in the causal pathway linking a group-level char-
acteristic to the disease. If such is the case, group-level
effects will clearly be confounded by this unknown con-
founder. This is no different from the problem of
unmeasured confounding in conventional single-level
analysis. If, by contrast, the above hypothetical individ-
ual-level variable is in fact an intermediary step in the
causal pathway linking a group-level characteristic to the
disease, group-level effects will be attenuated if this
variable is included in the analysis as a potential con-
founder. As is well known from conventional single-level
analysis, the issue of confounding is not a statistical issue
but a problem that can only be resolved through better
insight into the determinants of the disease outcome and
their mode of action.
Just as care must be exercised in the interpretation of

the random effects, there is no simple interpretation of
the fixed effects because these are contingent on the
random effects. In fact, the application of a multilevel
model is another way of stating that the lower-level
covariate estimates, in the present study represented by
the individual-level (Table 3) or class-level (Table 4)
covariate estimates, are themselves random variables (39)
rather than fixed parameters. Larsen et al. (39) and
Larsen & Merlo (40) have suggested the use of the
interval odds ratio (IOR) to overcome the problem that
the random effects are unobserved. The a-level IOR may
be interpreted as showing that the odds ratio for a given
fixed effect (e.g. gender) for two randomly chosen sub-
jects is contained in the IOR with a probability of a. The
IOR is a prediction interval (not to be confused with a
confidence interval), which reflects the influence of the
random effects on the odds ratio for a given fixed effect.
In the present study, we did not calculate such intervals
because we were primarily interested in assessing the
random effects.
In conclusion, the results of the present study have

demonstrated the feasibility of the use of multilevel
modeling approaches to the assessment of contextual
effects in periodontal epidemiological data. Our results
suggest that multilevel modeling has an important role
to play, over and beyond its more traditional use to
account for the intrinsic sites–teeth–subject hierarchy,
and may fruitfully be used to explore contextual effects

that may explain the variation in the periodontal out-
comes.
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nacional (CASEN 2000). Santiago, Chile: Ministerio de Plan-
ificación y Cooperación División Social, 2002; Available at:
http://www.mideplan.cl.

42. Watt RG. From victim blaming to upstream action: tackling
the social determinants of oral health inequalities. Community
Dent Oral Epidemiol 2007; 35: 1–11.

554 Lopez et al.


