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Abstract—We propose a new programming model with support
for alternation, imperfect information, and recursion. We model
imperfect information with the novel programming construct of
urgency annotations that decorate the (angelic and demonic)
choice operators and control the order in which the choices have
to be made. Our contribution is a study of the standard notions
of contextual equivalence for urgency programs. Our first main
result are fully abstract characterizations of these relations based
on sound and complete axiomatizations. Our second main result
is to settle their computability status. Notably, we show that the
contextual preorder is (2h−1)-EXPTIME-complete for programs
of maximal urgency h when the regular observable is given as
an input resp. PTIME-complete when the regular observable is
fixed. Our findings imply new decidability results for hyper model
checking, a prominent problem in security.
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I. INTRODUCTION

We propose the new programming construct of urgency

annotations for alternating (angelic and demonic) choices.

Alternating choices are usually resolved in program order [1].

Urgency annotations decorate the choice operators with a

natural number that defines when a choice has to be made:

the higher the urgency, the sooner. The lower urgency choices

remain unresolved in the program term until all higher urgency

choices have been made. Urgency thus models imperfect

information by an out-of-program-order execution of choices.

Consider an example, where we underline the next choice:

(t ∧1 f).(l ∨2 r) → (t ∧1 f).l → f.l .

The demonic choice ∧1 of urgency 1 is resolved only after the

angelic choice ∨2 of urgency 2, although it is written earlier

in the program text. Intuitively, the demonic choice is able to

react to the angelic choice, and indeed urgency programs have

a semantics in terms of game arenas. Besides alternation and

urgency, our programming model supports recursion.

The idea of urgency annotations goes back to the recent

work on hyperproperties for expressing security requirements

[2]. A hyperproperty P for a language L over an alphabet Σ
takes the form of an alternation

∀w1 ∈ L. ∃w2 ∈ L . . . Qwn ∈ L. w1 ⊕ . . .⊕ wn ∈ P .

Here, ⊕ is the convolution and P is a language over Σn.

The standard way of model checking hyperproperties is by

repeatedly composing the program behind L with itself [3],

[4]. Urgencies implement the mechanism of self-composition

in a new way, by executing choices out-of-program-order. The

advantage is that the urgent choices are harmonized with the

control flow, while the quantifiers in hyper model checking are

resolved without synchronization. As we show, this harmony

yields decidability results for analyzing urgency programs even

in the presence of recursion, while hyper model checking is

undecidable despite visibility assumptions [5]. In Appendix J,

we argue that the harmony enforced by urgency programs is

justified from an application perspective.

We found it important to understand the impact of the new

urgency annotations on the program semantics. We define the

semantics of urgency programs in the standard way as con-

textual equivalence [6]. The notion of contextual equivalence

depends on the level of detail at which we intend to observe the

program behavior. We consider two standard definitions [7]:

p ≃ q if ∀O .∀c[•]. c[p] ⇓ O iff c[q] ⇓ O

p ≃O q if ∀c[•]. c[p] ⇓ O iff c[q] ⇓ O .

The former definition quantifies over observables, and this

is what we call contextual equivalence. The latter fixes an

observable, like termination or reaching an error, and we

refer to it as O -specialized contextual equivalence. Due to

the alternation in urgency programs, observing is defined in

a game-theoretic way: c[q] ⇓ O means Eve has a winning

strategy in the arena [[c[q]]] when O ⊆ Σ∗ is the objective.

Our first contribution are full abstraction results. We show

that contextual equivalence and its specialized variant coincide

with congruence relations that do not quantify over contexts or

observables. The congruences are defined axiomatically, and

one may also say we axiomatize the contextual equivalences.

An important insight is that imperfect information distributes

over perfect information. In the example,

(t ∧1 f).(l ∨2 r) ≃ (t ∧1 f).l ∨2 (t ∧1 f).r

≃ (t.l ∧1 f.l) ∨2 (t.r ∧1 f.r) .

The full abstraction results rely on several ingredients. For

soundness, we establish a context lemma limiting the set of

contexts we have to consider in the proof. For completeness,

we first show that programs can be brought into a normal form

that eliminates recursion and orders choices according to their

urgency, similar to the last term in the two equations above.

Then we devise characteristic contexts that tell apart programs

which are not related axiomatically. There is a grain of salt:

for the specialized contextual equivalence, completeness needs
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a side condition on the observable. It is liberal and met by the

observables typically used [7].

Our second contribution is to settle the computability status

of the two contextual equivalences and their preorder variants.

The main finding is that the specialized contextual preorder

is (2h − 1)-EXPTIME-complete for programs of maximal

urgency h when the regular observable is given as an input

resp. PTIME-complete when it is fixed. To circumvent the

above side condition on the observable, the algorithm does not

rely on the full abstraction result but iterates through contexts.

To get the upper bound right, an important idea is to factorize

the set of contexts. We equate contexts c[•] that have the same

solution space: the same set of programs p so that c[p] ⇓ O .

The challenge is to handle the factorization algorithmically.

We show how to represent solution spaces explicitly using the

novel concept of characteristic terms.

The remainder of the work is structured as follows. After an

introduction to urgency programs, we state the full abstraction

results in Section III, followed by the proofs of soundness,

normalization, and completeness. In Section VII, we state the

decidability and complexity results, followed by the upper and

the lower bound proofs. We discuss related work in Section X

and conclude in Section XI. Details missing in the main text

and further results can be found in the appendix.

II. PROGRAMMING MODEL

Throughout the development, we fix a natural number h > 0
for the maximal urgency in programs, a finite alphabet Σ of

terminal symbols with typical elements a, b, c and a finite or

infinite set of non-terminals N with elements A,B,C. Each

non-terminal has a so-called defining program term given by

the function E : N → T.

The set T of program terms (of urgency up to h over Σ, N )

is defined by the grammar

p ::= a | skip | err | A | p.p |
u∨

P |
u∧

P .

Terminal symbols represent program commands with visible

behavior, skip is a command without visible effect, and err

aborts the computation unsuccessfully. Non-terminals model

recursive functions, we have concatenation, and angelic (∨u)

as well as demonic (∧u) choice of urgency 0 < u ≤ h. We

use lu to mean ∨u or ∧u, infix notation for binary choices,

and
Ìu

p for
Ìu{p}. An action is a term A or

Ìu
P .

Terms that contain actions are called active. Terms that do not

contain actions are called passive. Passive terms are words over

Σ ∪ {skip, err}, and we also call them word terms w ∈ W.

To avoid brackets, we let concatenation bind stronger than

choices. Choices range over non-empty but possibly infinite

sets of terms. Infinitary syntax requires care to make sure

set and game-theoretic concepts remain sound. We moved

the corresponding lemmas to Appendix A and B to keep the

presentation light. The motivation for infinitary syntax will be

given at the end of the section. We lift the notion of urgency

from choices to program terms and define urg : T → N by

urg(skip) = urg(err) = urg(a) = 0 urg(A) = h

urg(p.q) = max{urg(p), urg(q)} urg(
u

ì

P ) = u .

A context c[•] (of maximal urgency h over Σ and N ) is

a term that contains at most one occurrence of the fresh

non-terminal •. The set of all contexts is denoted by C.

The expression c[p] refers to the term obtained from c[•] by

replacing • with the term p. A term q is a subterm of p if

there is a context c[•] with p = c[q]. A subterm is called

outermost if it is not enclosed by a choice. For example, p is

outermost in p.q but not in (p ∨u q).r . The leading subterm

lead(p) of a term p is defined as the outermost action with

the highest urgency. If several outermost actions have this

urgency, then the leftmost of them is leading. Passive terms do

not have leading subterms. Where helpful, we will underline

a subterm that contains the leading subterm. Note that p.q
implies urg(p) ≥ urg(q) and p.q implies urg(q) > urg(p).
We denote the unique context enclosing the leading subterm

lead(p) in p by enp [•] ∈ C. We have p = enp [lead(p)].

if (x < y) { r = mem[x]; /* now do work on r */ }

Listing 1: Branch prediction.

Consider the program in Listing 1. We present two models

for it that explain the influence of branch prediction on the

program semantics. The first is the term (t ∧1 f).(l ∨1 r).
It captures the program semantics without branch prediction.

The terminals t, f ∈ Σ stand for the outcome of x < y.

The terminals l, r ∈ Σ stand for the corresponding branches.

The choice (t ∧1 f) is demonic (or owned by player Adam),

because the program has no influence on the outcome of the

condition. The choice (l ∨1 r) is angelic (or owned by Eve),

because it is up to the program and its execution environment

to execute a branch. Since the urgencies coincide, the choices

are made from left to right. Eve can thus see the outcome of

the condition and select the correct branch.

The second model is (t∧1f).(l ∨2 r) from the introduction.

Given the higher urgency of the angelic choice, Eve is forced

to decide on a branch before seeing the outcome of the

condition. Adam can thus enforce a branch prediction error.

The latter example is the essence of the Spectre attack [8].

The attacker trains the processor to speculate on a branch

guarded by a condition on pointer x, with an address held

by x that does not satisfy the guard. The speculation then loads

information from this unexpected address, and the information

remains in the cache even though the speculation is undone.

A. Semantics

Given that our programming model has alternation, the

operational semantics of a term is not a plain transition system

but a game arena [[p]] = (T, p, own,→) in which positions are

owned by player Eve or player Adam. The set of positions

is the set of all terms. The initial position is the given term.

The ownership assignment own : T → {Eve,Adam} returns



the owner of the leading subterm, own (p) = own (lead(p)).
Adam owns the demonic choices, own

(∧u
P
)
= Adam , and

Eve owns the angelic choices, own
(∨u

P
)
= Eve . We also

give skip, err, terminals, and non-terminals to Eve. This has

no influence on the semantics as there will be at most one

move from these positions. The set of moves is defined as the

smallest relation satisfying the following rules:

p ∈ P
Ìu

P → p A → E (A)

lead(p) → q

p → enp [q] .

A move always rewrites the leading subterm. For a choice,

it selects one alternative. For a non-terminal, it inserts the

defining term. We define succ(p) = {q | p → q}. It is

worth noting that the game arena has perfect information.

Imperfect information is modeled through choices, and they

are eventually resolved.

The operational semantics is intensional in that it gives

precise information about the program state at runtime. From

a programming perspective, what matters is the result of a

computation or, more generally, the observable behavior of

the program. Due to Adam’s influence, the observable behavior

will rarely be a single word but rather a language O ⊆ Σ∗.

We write p ⇓ O to mean that Eve can enforce termination

and the result will be a word from O , no matter how Adam

plays. We make this precise.

Our notion of observable behavior is based on concepts

from game theory. We refer to a language O ⊆ Σ∗ as a

reachability objective for the game arena [[p]]. A play in this

arena is a maximal (finite or infinite) sequence of positions

π = p0, p1, . . . that starts in the given term, p0 = p, and

respects the moves of the game arena, pi → pi+1 for all i. If

the play ends, the result is a word term w ∈ W. We interpret it

as an element of the monoid with zero (Σ∗∪{err}, . , skip, err).
Here, skip is the unit, often denoted by ε, and err is the zero.

We use
∗
= to denote the monoid equality. Eve wins the play

when w ∈ O , meaning there is v ∈ O so that w
∗
= v.

Otherwise, Adam wins the play. In particular, Adam wins all

infinite plays and all plays exhibiting err /∈ Σ.

A positional strategy for Eve is a function σ : T → T so

that q → σ(q) for all terms q owned by Eve that admit further

rewriting. Since we are interested in reachability objectives, we

can use positional strategies without loss of generality [9]. A

play π is conform to σ if for all i with own (pi) = Eve and

succ(pi) 6= ∅ we have σ(pi) = pi+1. Eve wins objective O ,

if she has a strategy σ so as to win all plays that are conform

to this strategy. This is what we denote by p ⇓ O .

For the branch prediction example, the operational seman-

tics of (t∧1f).(l∨1r) and (t∧1f).(l∨2r) is given in Figure 1.

Rectangular nodes are owned by Adam, circular nodes by Eve.

We also use rectangular nodes with rounded corners where the

ownership does not matter. The objective for correct branch

prediction is O = {t.l, f.r}. We have (t ∧1 f).(l ∨1 r) ⇓ O

but (t ∧1 f).(l ∨2 r) 6⇓ O .

(t ∧1 f).(l ∨1 r)

t.(l ∨1 r)

t.l t.r

f.(l ∨1 r)

f.l f.r

(t ∧1 f).(l ∨2 r)

(t ∧1 f).l

t.l f.l

(t ∧1 f).r

t.r f.r

Fig. 1: The game arenas [[(t∧1f).(l∨1r)]] and [[(t∧1f).(l∨2r)]].
The objective is given in gray.

B. Contextual Preorder

The notion of observable behavior is not compositional: we

may have p ⇓ O if and only if q ⇓ O for all objectives O , yet

the two terms behave differently when placed into a context.

In our example, (l∨1 r) ⇓ U if and only if (l∨2 r) ⇓ U for all

objectives U ⊆ Σ∗. When inserting the terms into the context

c[•] = (t ∧1 f).• , however, we have the difference discussed

above. This is a common problem, and the way out is to

consider the largest congruence that lives inside observational

equivalence. It is more elegant to work with a precongruence

and define the congruence of interest as a derived notion.

Definition 1: The contextual preorder � ⊆ T×T between

urgency terms is defined by p � q , if

∀c[•] ∈ C. ∀O ⊆ Σ∗. c[p] ⇓ O implies c[q] ⇓ O .

Fix an objective O ⊆ Σ∗. The O -specialized contextual

preorder �O ⊆ T×T is defined by p �O q , if

∀c[•] ∈ C. c[p] ⇓ O implies c[q] ⇓ O .

The contextual equivalence is then ≃ = � ∩ �, and the

O -specialized contextual equivalence is ≃O = �O ∩ �O .

In the example, we have (l ∨2 r) � (l ∨1 r) and so by

congruence (t ∧1 f).(l ∨2 r) � (t ∧1 f).(l ∨1 r). The reverse

does not hold, consider context • and objective {t.l, f.r} from

above. Note that p � q implies p �O q for every O .

With OTerm = Σ∗ as the objective, we can use the

specialized contextual equivalence to study the termination

behavior of programs. We can also introduce a letter loc so

that p ⇓ OReach with OReach = Σ∗.loc.Σ∗ observes visits

to a specific location. Contextual equivalence is more precise

and takes into account all objectives. Both notions are also

motivated by verification, where contextual equivalence gives

information about which information can be abstracted away

from an urgency term without an influence on the objective,

similar to how bisimilarity preserves CTL∗ properties [10].

The motivation for an infinite set of non-terminals and

infinitary terms is to model parameterized functions in a simple

yet general way. The idea is to introduce a non-terminal for

each instantiation of the function’s formal parameters by actual

values, inspired by value passing in process algebra [11].

III. FULL ABSTRACTION

We define a precongruence ⊑ ⊆ T×T on program terms

that neither quantifies over contexts nor objectives but relates



terms solely based on their syntactic structure. The relation is

defined through a set of axioms that should be understood

as explaining the interplay between the operators in our

programming model. The main finding is that this axiomatic

precongruence coincides with the contextual preorder, and we

also say that we axiomatize (in a sound and complete way)

the contextual preorder. This is our main theorem.

Theorem 1 (Full Abstraction 1): p ⊑ q if and only if p � q .

We also have a corresponding result for the O -specialized

contextual preorder. In this setting, a complete axiomatization

is considerably more difficult to obtain because, intuitively, we

have to understand the concatenation behavior of language O .

Our solution is partial in that we impose a side condition on

the objective: it should be right-separating, a notion we will

define in a moment when we have more technicalities at hand.

It is always sound to reason with the precongruence.

Theorem 2 (Full Abstraction 2): p ⊑O q implies p �O q .

If O is right-separating, then also p �O q implies p ⊑O q .

Luckily, the objectives of interest are right-separating.

Lemma 1: OTerm and OReach are right-separating.

We understand the concatenation behavior of an objective

with the help of a syntactic precongruence relation [12] over

the monoid Σ∗ ∪ {err}. It may relate terminal words to err in

case they cannot be extended to a word from the objective.

Definition 2: The syntactic precongruence induced by O

on Σ∗ ∪ {err} is defined by w ≤s
O v, if

∀x, y ∈ Σ∗. x.w.y ∈ O implies x.v.y ∈ O .

An objective is then right-separating, if the concatenation from

left in the above definition is not needed to distinguish words.

Formally, we define ≤r
O on Σ∗ ∪ {err} by w ≤r

O v, if

∀y ∈ Σ∗. w.y ∈ O implies v.y ∈ O .

Definition 3: Objective O is right-separating, if ≤s
O = ≤r

O .

The syntactic congruence ∼=s
O = ≤s

O ∩ ≥s
O induced by

the objective O = {t.l, f.r} from the example has the classes

Σ∗ ∪ {err}/∼=s
O
= {{skip}, {t}, {f}, {l}, {r}, {t.l, f.r}} plus

a class for the remaining words.

Intuitively, right-separating objectives allow us to evaluate

the O -specialized contextual preorder by using contexts •.r
that only append to the right. For arbitrary objectives, we have

to consider contexts s . • .r and it is difficult to understand the

interplay between high urgencies in r and low urgencies in s .

We now give the two axiomatizations and explain them on

an intuitive level. Recall that a precongruence is a reflexive

and transitive relation that is preserved when inserting related

terms into the same context.

Definition 4: The axiomatic precongruence ⊑ ⊆ T × T

is the least precongruence satisfying the axioms in Figure 2

except (S). The O -specialized axiomatic precongruence ⊑O

on terms is the least precongruence satisfying all axioms in

Figure 2. We use ≡ for ⊑ ∩ ⊒ and ≡O for ⊑O ∩ ⊒O .

With the axioms given in Figure 2a, the choice operators

span a completely distributive lattice on each urgency. The

monotonicity axiom (L1) is not covered by the precongruence

but implements an infinite replacement. The axiom has a side

(a) Lattice

∀i ∈ I. pi ⊑ qi
(L1)

Ìu{pi | i ∈ I} ⊑
Ìu{qi | i ∈ I}

(L2) ∨u

i∈I

∧u
Pi ≡

∧u

f :I→PI

∨u{f(i) | i ∈ I}

urg(p) ≤ u
(L3)

p ∧u (p ∨u q) ≡ p p ∨u (p ∧u q) ≡ p

(L4)
Ìu

i∈I

Ìu
Pi ≡

Ìu ⋃

i∈I Pi

urg(p) ≤ u
(L5)

p ⊑ p ∨u q

(b) Distributivity

urg(p) < u
(D1)

p.(
Ìu Q) ≡

Ìu{p.q | q ∈ Q}

urg(p) ≤ u
(D2)

(
Ìu

Q).p ≡
Ìu{q.p | q ∈ Q}

(c) Least element

(B1)
err ⊑ p

(d) Specialization

w ≤s
O v

(S)
w ⊑O v

(e) Normalization

v < u
(N) ∨v Ìu

Q ≡
∨v Ìv

Q

(f) Monoid

w
∗
= v

(M)
w ≡ v

(g) Fixed point

(FP)
A ≡ E (A)

∀A ∈ N. E (A){N/pN} ⊑ pA
(LFP)

B ⊑ pB

Fig. 2: Axioms defining ⊑ and ⊑O .

condition that can be found Appendix A. Due to this axiom,

nodes in our proof trees may have an infinite degree. Yet,

every path is guaranteed to be finite. To see the premise in

axiom (L5), consider p = (t ∧2 f) and context •.(l ∨2 r).
Then in p.(l ∨2 r) Eve wins while in (p ∨1 p).(l ∨2 r) she

loses, similar to Figure 1. For (L3), the reasoning is similar.

As a consequence of the lattice axioms, one can derive the

dual rules of (L2) and (L5). Distributivity (L2) states that

the order of choices can be changed by considering all choice

functions f : I →
⋃

i∈I Pi with f(i) ∈ Pi for all i ∈ I ,

denoted by f : I → PI .

The distributivity in (D1) captures the essence of imperfect

information: concatenation to the left distributes over choice,

provided the internals of the term are invisible because the

choice has a higher urgency. The distributivity from the right

in (D2) is similar but takes into account that the leading

subterm for equal urgencies is leftmost. This clean interplay

between imperfect information and choice came as a surprise



to us and we consider these laws an important contribution.

A string with err 6∈ Σ is the most disadvantegous term for

Eve, because it belongs to no objective O ⊆ Σ∗.

The monoid axiom (M) refers to word terms w, v ∈ W.

We interprete them in the monoid Σ∗ ∪ {err} and inherit

the equality there, denoted by
∗
= above. The equality strips

brackets and skip, and interprets err as zero.

The normalization axiom (N) reflects the fact that only

the outermost choice operator determines the urgency of a

term. Towards soundess, note that once the outer choice with

urgency u is resolved, we are sure that the context to the left

has urgency strictly smaller than u and the context to the right

has urgency at most u. Hence, the inner choice is the next to

be resolved, independent of whether its urgency is u or v ≥ u.

The fixed-point axiom (FP) allows us to rewrite non-

terminals to their defining terms. The axiom (LFP) allows us

to rewrite non-terminals to a prefixed point, using Knaster &

Tarski’s characterization of least fixed points as least prefixed

points [13]. Here, we let pN denote a vector of terms with

one entry pA per non-terminal A ∈ N , and use {N/pN} for

the substitution of all non-terminals by these terms.

Recall that Axiom (S) only plays a role in the definition

of the specialized axiomatic congruence, and that it depends

on the objective O of interest (this is a family of axioms).

The axiom relates word terms w, v ∈ W as prescribed by the

syntactic precongruence. It thus incorporates the equality in

the monoid Σ∗ ∪ {err}, similar to axiom (M).

We state two more useful proof rules, which follow from

the axioms, Appendix G:

∀A ∈ N. pA ⊑ A
(REP)

q{N/pN} ⊑ q

urg(p) ≤ u
(L6)

p ≡
Ìu

p .

In the running example, we claimed that (l∨2 r) � (l∨1 r).
We now prove this axiomatically and derive

l ∨2 r
(L5)
⊑ (l ∨1 r) ∨2 (l ∨1 r) =

2∨

(l ∨1 r)
(L6)
≡ l ∨1 r .

By (L5), we have l ⊑ l ∨1 r and r ⊑ l ∨1 r, which we

can apply to subterms due to congruence. The equality holds

because choices range over sets.

The next sections are devoted to proving the axiomatization

sound (Section IV) and, with the help of a normal form result

(Section V), complete (Section VI).

IV. SOUNDNESS

Soundness is the left-to-right implication in Theorem 1

and Theorem 2: the axiomatic precongruence implies the

contextual preorder, and likewise for the specialized case:

Proposition 1 (Soundness): p ⊑ q implies p � q and

p ⊑O q implies p �O q .

This section is devoted to proving Proposition 1. Proving

soundness is difficult because it requires us to reason over all

contexts. If p ⊑O q is an axiom, then we need to show that

c[p] ⇓ O implies c[q] ⇓ O for all c[•] ∈ C. We first develop a

proof technique for soundness that allows us to reduce the set

of contexts we have to consider, and in a second step prove

the axioms sound.

A. Proof Technique

To define the contexts that have to be considered, we

introduce some terminology. We say that term p is immediate

for context c[•] ∈ C, if c[p] ∈ W or c[p] is active and p

contains the leading subterm in c[p], denoted by c[p]. If this is

not the case, we call p paused for c[•]. As the names suggest,

immediate terms get rewritten in the next move while paused

terms do not. To give an example, term
∨2

P is immediate for

context •.
∧1

Q but paused for contexts •.
∧3

Q and
∨2{•, q}.

In the last context, • is enclosed by a choice. No term will be

immediate for such a context.

To prove axioms p ⊑O q sound, we rely on this lemma.

Lemma 2 (Proof Technique): If c[p] ⇓ O implies c[q] ⇓ O

for all contexts c[•] ∈ C where at least one of p or q is

immediate, then p �O q .

The proof of Lemma 2 relies on an observation: a paused

term does not change the outcome of a move in the context.

Lemma 3: Consider terms p and q that are paused for

context c[•]. Then, own (c[p]) = own (c[q]) and there is a set

of contexts D ⊆ C so that succ(c[p]) = {d [p] | d [•] ∈ D}
and succ(c[q]) = {d [q] | d [•] ∈ D}.

Proof Sketch: If a term is paused for a context, then one

of the following will hold: the context variable • is enclosed

by a choice, the term has a lower urgency than the leading

term in the context, or the urgencies coincide but the context

variable is placed to the right of the context’s leading term.

Therefore, both terms must be owned by the same player.

The argumentation also shows that the moves result in similar

(equal up to the inserted term) sets of successors.

Proof of Lemma 2: Assume Eve wins O from c[p]. Then

she does so in at most β-many moves, where β is an ordinal

that is guaranteed to exist by results in Appendix B. To be

clear, even for transfinite β, Eve wins each play after a finite

number of moves. The ordinal β limits the size of the game

arena reachable from c[p] when she plays according to her

strategy. We show c[q] ⇓ O by transfinite induction on β. The

base case is simple, yet instructive. If β = 0 then c[p] ∈ O ,

meaning c[p] ∈ W. Then p is immediate for context c[•], and

the premise yields c[q] ⇓ O .

In the inductive case, it will make no difference whether β is

a limit ordinal or a successor ordinal, so we will not distinguish

the two. We have c[p] ⇓ O . If p or q is immediate for c[•],
then the premise of the lemma already tells us c[q] ⇓ O .

Therefore, assume both terms are paused for c[•]. Intuitively,

we will see that Eve can copy her strategy from c[p] to c[q]
(until the inserted term becomes immediate). Since both terms

are paused for c[•], we can apply Lemma 3. It shows that, after

insertion, the owner is the same, own (c[p]) = own (c[q]), and

also gives a set of contexts D ⊆ C capturing the successors.

Let own (c[p]) = own (c[q]) = Eve . Then, there must be a

context d [•] ∈ D so that Eve wins d [p] in β′ < β moves. By

the induction hypothesis, d [q] ⇓ O . Moreover, Eve can play

c[q] → d [q] and win. If own (c[p]) = own (c[q]) = Adam,



then for all d [•] ∈ D, Eve must win d [p] in β′ < β turns. By

the induction hypothesis, we get d [q] ⇓ O for all d [•] ∈ D.

This is exactly succ(c[q]), so we have c[q] ⇓ O as well.

B. Soundness Proof

We are now prepared to prove the axioms sound. Using

Lemma 2, all proofs share a common approach: we fix an

objective and pick a context that is immediate for at least one

term in the axiom. Then, we unroll the game arena for a few

moves until it reveals the winning implication we are after.

We restrict our attention to the more insightful arguments and

defer the details to the appendix.

The proofs make use of the two properties of immediate

terms given in the next lemma. They immediately follow from

the definition of the successor relation.

Lemma 4: Let term p be immediate for context c[•]. Then

we have own (c[p]) = own (p). If urg(p′) ≥ urg(p), then also

term p′ is immediate for c[•].
Proof of Proposition 1 (Soundness): Axiom (D1): We

consider binary choices owned by Eve, the generalization to

choices over arbitrary sets and also Adam’s case are similar.

For urg(p) < u, the axiom says that p.(q ∨u r) ⊑ p.q ∨u p.r
and vice versa. The goal is thus to show

p.(q ∨u r) ≃ p.q ∨u p.r .

Consider an objective O and let c[•] be a context for which

at least one of p.(q ∨u r) or p.q ∨u p.r is immediate. The

urgencies of both terms are u. This means that not only one

but actually both terms are immediate for c[•] and, moreover,

the owner of c[p.(q ∨u r)] and c[p.q ∨u p.r ] is Eve, Lemma 4.

The first moves in the game arenas are thus done by the same

player and have the same result:

c[p.q ∨u p.r ]

c[p.q ] c[p.r ]

c[p.(q ∨u r)]

c[p.q ] c[p.r ]

As a consequence, it is straightforward to translate winning

strategies between the game arenas and we get the equivalence

c[p.(q ∨u r)] ⇓ O if and only if c[p.q ∨u p.r ] ⇓ O .

Axiom (LFP): The proof makes heavy use of substitution.

For the sake of readability, we use qN for q{N/pN}. We also

extend this notation to contexts and write dN [•] for the context

obtained from d [•] ∈ C by replacing all non-terminals A ∈ N
(different from •) by pA.

Assuming E (A)
N ⊑ pA holds for all A ∈ N , the axiom

yields B ⊑ pB . We proceed by an (outer) induction on the

ordinal height of proof trees. The induction hypothesis yields

E (A)
N � pA for all A ∈ N . We have to show B � pB .

Consider an objective O and a context d [•] for which pB or B
is immediate. We prove that d [B] ⇓ O implies d [pB ] ⇓ O with

a detour. If Eve wins O from B, she does so in β-many moves,

with β an ordinal, Appendix B. We apply transfinite induction

on β to establish the following more general statement. For

all contexts c[•] and all terms p, if Eve wins O from c[p] in β

moves, then she wins O from c[pN ]. Letting c[•] = d [•] and

p = B gives us the desired conclusion.

The base case β = 0 is trivial: the term c[p] must be a

word term and hence c[p] = c[pN ]. Before moving on with

the inductive step, we make a remark. Since the urgency of

non-terminals is maximal, we have urg(A) ≥ urg(p) for all

non-terminals A and all terms p. Moreover, the urgency of

a term is monotonic in the urgency of its subterms, so in

particular urg(q) ≥ urg(qN ) holds.

In the inductive step, let p be a term and c[•] be a context

so that Eve wins O from c[p] in β moves. We first consider

the case that p is paused for c[•]. Since urg(p) ≥ urg(pN ),
Lemma 4 tells us that pN is also paused for c[•]. Similar to

the proof of Lemma 2, we can use the induction hypothesis

to argue that Eve wins O from c[pN ]. It is worth noting

that in the paused case the move will change the surrounding

context, which is why we strengthened the inductive statement

to universally quantify over contexts.

Assume p is immediate for c[•]. Let q = lead(p) be the

leading subterm and recall that p = enp [q], the term can be

written as the unique context enclosing the leading subterm

with the leading subterm inserted. The substitution distributes

to all subterms and we also have pN = en(p)
N
[qN ]. Showing

that Eve wins from c[pN ] thus means to show that she wins

from c[en(p)
N
[qN ]]. Since q is leading in p, it is a choice

or a non-terminal. We begin with the choice, q =
Ìu Q. We

argue that qN must be immediate for c[en(p)N [•]]. To see

this, note that p is immediate for c[•] and so q is immediate

for c[enp [•]]. The substitution distributes over the choice and

we have (
Ìu

Q)
N

=
Ìu{rN | r ∈ Q}. This shows

urg(q) = urg(qN ). For the outermost actions in c[enp [•]],
the substitution can only lower the urgencies.

The fact that qN is immediate for c[en(p)
N
[•]] yields

succ(c[en(p)
N
[qN ]]) = {c[en(p)N [rN ]] | q → r}

= {c[sN ] | p → s}.

We also have succ(c[p]) = {c[s ] | p → s}. Similar to the

proof of Lemma 2, Eve wins from c[s ] in β′ < β turns for

all/one s ∈ succ(p), depending on the owner of c[p]. For every

successor s , the induction hypothesis tells us that c[s ] ⇓ O

implies c[sN ] ⇓ O . Since the owner of both c[p] and c[pN ] is

the owner of the choice l, Eve can copy her strategy.

It remains to consider the case that q is a non-terminal A.

Then, c[enp [A]] can only be played into c[enp [E (A)]] and Eve

wins from this position in β′ < β moves. By the induction

hypothesis, c[enp [E (A)]
N
] is also won by Eve. We can write

this term as c[en(p)N [E (A)N ]]. The hypothesis of the outer

induction yields E (A)
N � pA. Therefore, Eve must also win

from c[en(p)
N
[pA]] = c[enp [A]

N
] = c[pN ].

V. NORMALIZATION

As a first step towards proving completeness, we now show

that each term can be brought into a normal form using the

axiomatic congruence. Normalization is a standard approach in



completeness proofs. New here is the treatement of alternation

and urgency.

The normal form eliminates non-terminals and orders the

interplay between concatenation and choice: a normal form

term is a tree of height 2h (with h the maximal urgency) that

repeatedly alternates between Eve’s and Adam’s choices while

decreasing the urgency. The leaves of the tree are terminal

words, skip, or err. We define the normal form terms by

induction on the urgency: NF 0 = Σ∗ ∪ {err} and for u > 0

ANF u = {
u∧

P | ∅ 6= P ⊆ NF u−1}

NF u = {
u∨

P | ∅ 6= P ⊆ ANF u} .

The base case terms are all owned by Eve. In an ANF u

term, Adam chooses over NF u−1 terms. In an NF u term, Eve

chooses over such ANF u terms owned by Adam. The main

result of this section is the following.

Proposition 2: There is a function nf : T → NF h so that

for all terms p we have nf(p) ≡ p.

We illustrate the normal form computation on the branch

prediction example. Let h = 2 and consider (t∧1f).(l∨2r). We

use the distributivity of concatenation over choice for terms of

lower urgency, and afterwards add the missing unary choices:

(t ∧1 f).(l ∨2 r)

(D1)
≡ (t ∧1 f).l ∨2 (t ∧1 f).r

(D2)
≡ (t.l ∧1 f.l) ∨2 (t.r ∧1 f.r)

(L6)
≡ [∧2 ∨1 (t.l ∧1 f.l)] ∨2 [∧2 ∨1 (t.r ∧1 f.r)] .

By generalizing the example, we get:

Lemma 5: For any term p ∈ T without non-terminals, we

can find nf(p) ∈ NF h with p ≡ nf(p).
We show in more detail how to normalize non-terminals.

Lemma 6: For all non-terminals A ∈ N , we can find a

nf(A) ∈ NF h with nf(A) ≡ A.

Proof: We proceed by a transfinite Kleene iteration. By

induction on α, we construct normal form terms A(α) ∈ NF h

for all non-terminals A and all ordinals α. We write p(γ) to

denote p{N/N (γ)}, where N (γ) refers to a vector of terms

that has A(γ) as its A component. We let A(0) = nf(err) and

for all α > 0:

A(α) = nf(

h∨

{E (A)(β) | β < α}) .

In both cases, we rely on the normalization from Lemma 5.

We claim that A(β) ⊑ A(α) ⊑ A for all ordinals β < α.

By definition, the alternatives available to Eve in A(β) are

contained in the alterantives available to her in A(α). The

former precongruence A(β) ⊑ A(α) then follows from a simple

application of (L1),(L4), and (L5).

With a transfinite induction we show that for all ordinals α
and for all non-terminals A we have A(α) ⊑ A . For the base

case, we already have A(0) ≡ err ⊑ A. For the inductive case,

let α be an ordinal so that for all ordinals β < α and all non-

terminals A we have A(β) ⊑ A. Using (REP), we see that

E (A)
(β) ⊑ E (A). So we can apply (L1) to get

h∨

{E (A)
(β) | β < α} ⊑

h∨

E (A)
(L6)
≡ E (A)

(FP)
≡ A .

It remains to show that A ⊑ A(γ) for some ordinal γ. The

largest ⊑-chain of strictly increasing elements in NF h has

size |ANF h|. Then the largest such chain in N → NF h has

size |N ||ANF h|. As a chain forms a well-ordered set, there

is an ordinal γ having at least this size. This means we have

A(γ) ≡ A(γ+1) for all non-terminals, and

E (A)(γ+1)
(L5)
⊑ E (A)(γ) ∨h

h∨

{E (A)
(β) | β < γ}

(L4)
≡

h∨

{E (A)
(β) | β < γ + 1} ≡ A(γ+1) ≡ A(γ) .

Applying (LFP), we get A ⊑ A(γ) for all A ∈ N .

Proposition 2 follows from Lemma 5 and Lemma 6. Let p

be the term of interest. With Lemma 6, we compute a normal

form term nf(A) ≡ A for every non-terminal A ∈ N . We use

these normal form terms to replace the non-terminals in p,

denoted by p{N/nf(N)}. This needs repeated applications of

(L1) and congruence. Finally, we apply Lemma 5 to normalize

the latter term and obtain nf(p{N/nf(N)}) ≡ p.

VI. COMPLETENESS

The main result in this section is the completeness of the

axiomatic precongruence.

Proposition 3 (Completeness): p � q implies p ⊑ q .

The proof relies on two results. The first is the completeness

of the specialized axiomatic precongruence.

Proposition 4 (Completeness, Specialized Case): For a

right-separating objective O ⊆ Σ∗, p �O q implies p ⊑O q .

The second result is the existence of an objective for which

Axiom (S) does not add any relations. Formally, we call an

objective O domain shattering, if ⊑ = ⊑O holds.

Lemma 7 (Existence): There is a domain-shattering and

right-separating objective.

Given the two results, the argument for completeness is this.

Let O ⊆ Σ∗ be the domain-shattering and right-separating

objective from Lemma 7. We have

�
Definition

⊆ �O

Prop. 4

⊆ ⊑O

Shattering

= ⊑
Soundness, Prop. 1

⊆ � .

This shows the desired ⊑ = �.

A. Completeness Proof, Specialized Case

To show Proposition 4, fix a right-separating O ⊆ Σ∗.

With the normalization in Proposition 2 and soundness of the

axiomatic precongruence in Proposition 1, it is sufficient to

show completeness for terms in normal form. For p, q ∈ NF h,

we want to show that p 6⊑O q implies p 6�O q by giving

a context that tells them apart. This, however, is difficult

as it requires us to understand precisely when the axiomatic

congruence fails.



Our way out is to define a less flexible preorder that is easier

to handle. The domination preorder ⊆O only relates normal

form terms of the same urgency and owned by the same player.

It is defined by induction on the urgency. For w, v ∈ NF 0,

we have w ⊆O v if w ≤s
O v. For u > 0, we set

u∧

P ⊆O

u∧

Q if ∀s ∈ Q. ∃r ∈ P. r ⊆O s

u∨

P ⊆O

u∨

Q if ∀r ∈ P. ∃s ∈ Q. r ⊆O s .

Proposition 4 holds with the following lemma.

Lemma 8: Let O be right-separating and p, q ∈ NF h. Then

p �O q implies p ⊆O q and p ⊆O q implies p ⊑O q .

Proof: We focus on the former implication, the latter is

simple. The implication trivially holds for terms p that are

minimal in the domination preorder. We will need information

about the shape of these minimal terms. In urgency zero,

minimal are all terms w ≤s
O err, meaning there is no chance

to extend w to a word in O . For higher urgencies u > 0, terms
∨u

P are minimal where all elements in P are minimal. Terms
∧u P are minimal where an element in P is minimal.

To show the implication for terms p and q where p is not

minimal, we use characteristic contexts. Given a normal form

term p, we construct a context cp [•] so that for all normal

form terms q of the same urgency as p and owned by the

same player we have:

cp [q] ⇓ O iff p ⊆O q . (1)

The implication from p �O q to p ⊆O q indeed follows.

Since p ⊆O p, we obtain cp [p] ⇓ O by Equivalence (1). The

assumption p �O q now yields cp [q] ⇓ O . Hence, again by

Equivalence (1), we have p ⊆O q . For the maximal urgency,

we need a special treatment.

It remains to give the construction of cp [•]. It will have the

shape •.tp where tp is again in normal form. We proceed by

induction on the urgency u and need a special case for the

maximal urgency h.

Base Case p ∈ NF 0. We define

tp =

1∧

{y ∈ Σ∗ | p.y ∈ O} .

The set is non-empty as p is not minimal. Moreover, for every

normal form term q of urgency zero, Equivalence (1) holds

by the definition of ≤s
O .

Inductive Case p =
∨u

P ∈ NF u, u < h. We define

tp =

u+1∧

{tr | r ∈ P not minimal} .

Note that we can increase the urgency because u < h. A

non-minimal r is guaranteed to exist in P by the assumption

that
∨u

P itself is not minimal. To prove Equivalence (1), we

consider
∨u

Q ∈ NF u and argue as follows:

(

u∨

Q).(

u+1∧

{tr | r ∈ P not minimal}) ⇓ O

iff ∀r ∈ P not minimal. ∃s ∈ Q. s .tr ⇓ O

{I.H.} iff ∀r ∈ P not minimal. ∃s ∈ Q. r ⊆O s

iff ∀r ∈ P. ∃s ∈ Q. r ⊆O s

iff

u∨

P ⊆O

u∨

Q .

The inductive case for p =
∧u

P ∈ ANF u, u ≤ h, is similar.

Special Case NF h: Since the urgency h + 1 is not allowed,

we are not able to construct the context in the way we did

above. Instead, we show that for p, q ∈ NF h with p 6⊆O q ,

there is a term r ∈ ANF h where p.tr is won by Eve and q.tr
is won by Adam. This yields p 6� q .

Let p =
∨h P and q =

∨hQ both in NF h with p 6⊆O q .

By definition of the domination preorder, there is r ∈ P so

that for all s ∈ Q we have r 6⊆O s . The term r cannot be

minimal, and hence tr is guaranteed to exist. We claim that

Eve wins O from p.tr while Adam wins O from q.tr . Note

that the leading terms are p.tr resp. q .tr . To see that Eve wins

from p.tr , let her choose r ∈ P ⊆ ANF h to reach r .tr . Since

r ⊆O r , Equivalence (1) yields r .tr ⇓ O . To see that Adam

wins from q .tr , let Eve choose s ∈ Q ⊆ ANF h. As r 6⊆O s ,

Equivalence (1) implies that Eve loses from s .tr .

B. Construction of Domain-Shattering Objectives

We show Lemma 7, namely that there are right-separating

and domain-shattering objectives. For |Σ| > 1, we take

O = {w.wreverse | w ∈ Σ∗} .

For Σ = {a}, we let O = {a(n
2) | n ∈ N}. It is known that

these objectives have a syntactic congruence with singleton

classes. Even the syntactic precongruence is the reflexive

relation, ≤s
O = ∼=s

O . We give the details in Appendix F,

together with the prove that the relations are right-separating.

VII. DECIDABILITY AND COMPLEXITY

We study the decidability and complexity of checking the

contextual preorder and its specialized variant. To this end, we

leave the setting of infinitary syntax and call p finitary, if it

refers to a finite set of non-terminals (N,E ) and all defining

terms E (A) as well as p itself have finite syntax trees. We

make the decision problem parametric in the relation R to be

checked, and will instantiate R with ≃, ≃O , and �O :

h-DEC-R

Given: Finitary p, q over Σ, (N,E ) of urgency h.

Problem: Does p R q hold?

The first finding is that already the contextual equivalence is

undecidable. The proof is by a reduction from the equivalence

problem for context-free languages and the result continues

to holds if we fix an alphabet with at least two letters. A

consequence is that also the specialized contextual equivalence

is undecdable for domain-shattering objectives.



Proposition 5: h-DEC-≃ and h-DEC-≃O with O domain

shattering are undecidable for every h.

Recall that the language w.wreverse is domain shattering, so

already context-free objectives lead to undecidability.

Our main result in this section is that for regular objectives

the specialized contextual preorder is decidable. We can also

give the precise complexity, for which we measure the size of

the input in the expected way as |p| + |q| + |Σ| + |E |. The

size of the defining equations is |E | =
∑

A∈N 1 + |E (A)|.
The size of a term is |skip| = |err| = |a| = |A| = 1 and

|p.q | = 1 + |p| + |q| |
u

ì

P | = 1 +
∑

p∈P

|p|.

Theorem 3: Let h be an urgency. For every regular O 6= ∅,

the problem h-DEC-�O is PTIME-complete.

It is worth noting that the result does not expect the objective

to be right-separating. We can indeed decide the specialized

contextual preorder �O for all regular objectives O . Moreover,

the lower bound holds no matter which objective is chosen.

It is natural to define a variant h-DEC-�∗ of the problem

in which also the objective is part of the input and given as a

deterministic finite automaton (Σ,Q , i , δ,F ). In this case, we

use |O | to refer to |Σ|+ |Q |. The following result shows the

dramatic influence that the objective has on the complexity.

Theorem 4: h-DEC-�∗ is (2h− 1)−EXPTIME-complete.

A consequence is that we can also solve the problem of

making an observation, denoted here as h-DEC-⇓ and assumed

to have almost the same input as h-DEC-�∗.

Corollary 1: h-DEC-⇓ is (2h− 1)−EXPTIME-complete.

We use this in Appendix J to derive new decidability results

for hyper model checking.

VIII. UPPER BOUND

We prove the upper bounds claimed in Theorems 3 and 4

through the following statement.

Proposition 6: Given finitary terms p and q and a regular

objective O as a DFA, deciding p �O q can be done in time

(|p| + |q|+ |E ||N |) · exp2h−1(O(|O |2)).

The undecidability result in Proposition 5 shows that the

normal form for the axiomatic congruence from Section V is

insufficient as a basis for algorithms. The problem is that the

normal form terms are typically infinite, and therefore difficult

to handle computationally. The source of infinity can be found

in the base case: already NF 0 = Σ∗ ∪ {err} is infinite, and

this propagates upwards. We realize that the O -specialized

axiomatic congruence admits a more refined normal form that

is guaranteed to yield finite terms (and finitely many of them).

The key idea is to factorize NF 0 using Axiom (S).

We define the set of O -specialized normal form terms by

induction on the urgency. The base case SNFO
0 = Σ∗

err/∼=s
O

are

classes of words in the syntactic congruence ∼=s
O = ≤s

O ∩ ≥s
O

induced by O . For u > 0, the definition is almost as before:

SANFO
u = {

u∧

P | ∅ 6= P ⊆ SNFO
u−1}

SNFO
u = {

u∨

P | ∅ 6= P ⊆ SANFO
u }.

Note that since O is regular, the set SNFO
0 and so all SANFO

u

and SNFO
u are guaranteed to be finite [12]. This is precisely

where regularity comes in. Another aspect is that we change

the alphabet to having ∼=s
O -congruence classes as letters. This

can be fixed by working with a representative system, meaning

we represent every ∼=s
O -class by one of its elements.

We adapt the normalization process from Section V to

compute a term in the O -specialized normal form. Only the

base case changes, for the inductive cases we merely study the

complexity. Interestingly, the overall normalization takes time

2h-fold exponential only in the size of the objective, using the

common definition exp0(x) = x and expu+1(x) = 2expu(x).

Lemma 9: Given a finitary term p and a regular objective

O ⊆ Σ∗ as a DFA, we can compute nfO(p) ∈ SNFO
h with

nfO(p) ≡O p in time (|p|+ |E ||N |) · exp2h−1(O(|SNFO
0 |)).

We have |SNFO
h | = exp2h(O(|SNFO

0 |)).
The result already allows us to decide the O -specialized

contextual preorder as follows. Since we cannot assume the

objective to be right-separating, the algorithm cannot rely on

a full abstraction result. Instead, we have to evaluate p �O q

directly, by iterating over contexts. What makes this possible

is the combination of our proof technique for soundness in

Lemma 2 and the O -specialized normal form just introduced.

With Lemma 2, we do not have to iterate over all contexts to

show p �O q , but only over contexts of the form r .• .s . With

Lemma 9, the terms r and s can be normalized.

Corollary 2: Consider a regular O and finitary p, q . Then

p �O q if and only if for all c[•] = r . • .s with r ∈ SNFO
h−1,

s ∈ SNFO
h we have nfO (c[p]) ⇓ O implies nfO(c[q]) ⇓ O .

Unfortunately, the algorithm formulated in the corollary

is slower than the promised upper bound by two exponents

because SNFO
h contains exp2h+1(O(|O |2)) many terms. To

overcome the problem, the first step is to reduce the number

of contexts that have to be considered. The idea is to factorize

the contexts along their solution spaces. The solution space of

a context is the set of terms p for which c[p] ⇓ O holds. When

checking the specialized preorder �O , the job of a context c[•]
is to disprove p �O q by showing c[p] ⇓ O and c[q] 6⇓ O .

Hence, when two contexts have the same solution space, it

suffices to consider one of them.

What makes the solution space equivalence algorithmically

interesting is that (i) it is coarse enough to save an exponent

and (ii) we can directly compute with equivalence classes of

contexts. The key insight behind both statements is that the

solution space of a context can be represented in a convenient

way: it is the ⊑O -upward closure of a so-called characteristic

term. This is a novel concept that deserves a definition.

Definition 5: Term p is characteristic for c[•] wrt. O ⊆ Σ∗,

if for all q ∈ T we have c[q] ⇓ O if and only if p ⊑O q .



We will show that there are only exp2h(O(|O |2)) many

characteristic terms for contexts of the form r .• .s . Moreover,

we can compute the characteristic terms directly, without

building up the corresponding contexts. This saves an exponent

in the complexity: we modify the algorithm in Corollary 2 to

iterate through characteristic terms rather than contexts.

We save another exponent in the runtime of our algorithm by

a more compact representation of the terms in O -specialized

normal form. One exponent in the size of SNFO
h is inherited

from the base case, where already |SNFO
0 | = exp1(O(|O |2)).

We use the fact that each class of the syntactic congruence can

be represented by a function Q → Q between the states of the

objective DFA [12]. The key idea is to see these functions

as sets of pairs and decompose them into their elements. We

simulate a function, say for letter a, by letting Eve choose a

state change (p, q) with δ(p, a) = q . We thus represent the

congruence class [a] ∈ Σ∗
err/

∼=s
O by an angelic choice of

urgency 1 over letters from the alphabet Q ×Q . Since the ob-

jective is given by a deterministic automaton, Adam does not

gain any knowledge by seeing Eve’s choice. The low urgency,

in turn, makes sure Eve can see the full run of the DFA up

to the current position when making her choice, and she will

lose if she picks inconsecutive transitions. The modification

propagates to the normal form terms, and requires a (simple)

modification of the objective. The new objective tr(O) has

a syntactic congruence with an exponentially smaller index,

namely |SNF
tr(O)
0 | = O(|O |2).

To argue about the complexity, we start with the compact

term representation before introducing characteristic terms.

A. Compact Term Representation

Recall that the idea behind our compact term representation

is to translate syntactic congruence classes [a] : Q → Q

into angelic choices over state changes. With a representative

system for the syntactic congruence, we can assume the source

alphabet is Σ rather than Σ∗
err/

∼=s
O . The translation of term p

over Σ is the term tr(p) over the alphabet Q 2 defined by

tr(a) =

1∨

{(p, q) | δ(p, a) = q} tr(err) = err

tr(
u

ì

P ) =
u

ì

{tr(p) | p ∈ P} tr(skip) = skip

tr(p.q) = tr(p).tr(q) tr(A) = A ,

and we also translate the equations, Etr(A) = tr(E (A)). The

new alphabet calls for a translation of the objective. The DFA

tr(O) is obtained from O by modifying the transitions and

adding a failure state ⊥. We let tr(δ)(p, (q, r )) = r if p = q and

tr(δ)(p, (q, r )) = ⊥ if p 6= q . The accepting and initial states

remain the same. The translation is faithful when it comes to

our notion of observable behavior.

Lemma 10: p ⇓ O if and only if tr(p) ⇓ tr(O).
By combining Lemma 10 and Corollary 2, we can decide

the specialized contextual preorder p �O q by checking

whether c[tr(p)] ⇓ tr(O) implies c[tr(q)] ⇓ tr(O) for all

contexts tr(s).• .tr(t) with s ∈ SNFO
h−1 and t ∈ SNFO

h . The

problem with this algorithm is that, for complexity reasons, we

cannot work with an explicit translation of terms in specialized

normal form. To overcome the problem, an attempt would

be to generalize the above set of contexts to all s . • .t with

s ∈ SNF
tr(O)
h−1 and t ∈ SNF

tr(O)
h . However, the set SNF

tr(O)
h

contains terms over the new alphabet Q 2 that do not result

from a translation of an SNFO
h term. Unfortunately, these

extra contexts may, incorrectly so, disprove the specialized

contextual preorder of interest.

Our solution is to come up with a direct construction for the

image of SNFO
h under nftr(O) ◦ tr, the translation followed by

a normalization. This is the appropriate subset of SNF
tr(O)
h

over which we should form contexts. The idea behind the

construction is to explicitly translate the urgency 1 terms in

specialized normal form, and build up the higher orders in the

standard way. We define the translated O -specialized normal

form terms (with u > 1) by

TNF
tr(O)
0 = SNF

tr(O)
0 TNF

tr(O)
1 = nftr(O)(tr(SNF

O
1 ))

TANF tr(O)
u = {

u∧

P | ∅ 6= P ⊆ TNF
tr(O)
u−1 }

TNF tr(O)
u = {

u∨

P | ∅ 6= P ⊆ TANF tr(O)
u } .

The set of contexts we should iterate over is thus

Ctr(O) = {r . • .s | r ∈ TNF
tr(O)
h−1 and s ∈ TNF

tr(O)
h } .

The argumentation leads to the following algorithm for check-

ing the specialized contextual preorder.

Proposition 7: Consider a regular objective O and finitary

terms p, q . Then p �O q if and only if for all c[•] ∈ Ctr(O),

we have that c[tr(p)] ⇓ tr(O) implies c[tr(q)] ⇓ tr(O).
The benefit of Proposition 7 over Corollary 2 is that the

translated normal form terms are in tr(O)-specialized normal

form, TNF
tr(O)
h ⊆ SNF

tr(O)
h , so we inherit the size bound.

Lemma 11: |TNF
tr(O)
h | ≤ exp2h(O(|Q |2)).

B. Characteristic Terms

With Proposition 7, we need to iterate over 2h-exponentially

many contexts. We now eliminate another exponent by factor-

izing the contexts with the help of characteristic terms. Recall

that term p is characteristic for context c[•] wrt. tr(O), if its

⊑tr(O)-upward closure is the solution space of the context: for

all q we have p ⊑tr(O) q if and only if c[q] ⇓ tr(O).
For the contexts c[•] ∈ Ctr(O) we just defined, giving Adam

a choice over the solution space yields a characteristic term:

χ(c[•]) =

h∧

{p ∈ SNF
tr(O)
h−1 | c[p] ⇓ tr(O)} . (2)

To see that the term is characteristic indeed, we rely on the

domination preorder introduced in the completeness proof.

Lemma 12: Term χ(c[•]) is characteristic for c[•] ∈ Ctr(O)

wrt. tr(O) and can be computed in time exp2h−1(O(|Q |2)).
Proof: To prove that χ(c[•]) is characteristic, consider

term p =
∨h

i∈I

∧h Pi in tr(O)-specialized normal form. As p

is immediate for c[•], we get c[p] ⇓ tr(O) if and only if there

is an index i ∈ I so that for all q ∈ Pi we have c[q] ⇓ tr(O).
This can be shown to be equivalent to the domination preorder



∨h ∧h{p ∈ SNF
tr(O)
h−1 | c[p] ⇓ tr(O)} ⊆tr(O)

∨h

i∈I

∧h
Pi. For

the terms at hand, this domination preorder is equivalent to
∧h{p ∈ SNF

tr(O)
h−1 | c[p] ⇓ tr(O)} ⊑tr(O)

∨h

i∈I

∧h
Pi, even

if the objective is not right-separating.

To compute the characteristic term, we have to check, for

every term p ∈ SNF
tr(O)
h−1 , whether c[p] ⇓ tr(O) holds.

Such a check requires a normalization of c[p], followed

by a polynomial-time evaluation of the resulting term. The

normalization takes time |c[p]| · exp2h−1(O(|Q |2)), Lemma 9.

The dominating factor in |c[p]| is the size of the TNF
tr(O)
h

term in the context, which is bounded by exp2h−1(O(|Q |2)).
There are exp2h−2(O(|Q |2)) terms p we have to go through.

The overall runtime is thus bounded by exp2h−1(O(|Q |2)).
Let χ(Ctr(O)) = {χ(c[•]) | c[•] ∈ Ctr(O)} denote the set

of characteristic terms. As these terms belong to SANF
tr(O)
h ,

we inherit the following bound.

Lemma 13: |χ(Ctr(O))| ≤ exp2h−1(O(|O |2)).
Compared to Lemma 11, there are exponentially fewer

characteristic terms than contexts. To decide p �O q , we thus

intend to iterate over all x ∈ χ(Ctr(O)) and check whether

x �tr(O) p implies x �tr(O) q . We will use the domination

preorder for these checks.

Lemma 14: Given terms p, q ∈ SNF
tr(O)
h , we can decide

p ⊆tr(O) q in time |p| · |q|.
There is a last obstacle: we do not know the characteristic

terms, like we did not know the translated normal form

terms above. Going through all contexts and determining the

characteristic terms is prohibitively expensive. Generalizing

from χ(Ctr(O)) to SANF
tr(O)
h is incorrect. The way out is to

give a direct construction of the characteristic terms.

The key insight behind the direct construction is that the

characteristic terms satisfy the following equation, where we

have s ∈ SNF
tr(O)
h−1 , T ⊆ SANF

tr(O)
h , and c[•] = s . • .

∨h
T :

χ(c[•]) ≡tr(O)

h∧

{χ(s . • .t) | t ∈ T } . (3)

The equation follows from Equation (2), Appendix I. The

impact of Equation (3) may not be immediate: we still have

to make sure to construct the characteristic term for every set

T ⊆ SANF
tr(O)
h . What the equation does is to give us an

inductive formulation of the characteristic terms which allows

us to compute the set of all characteristic terms in a fixed point.

We first construct the characteristic terms for singleton sets

|T | = 1. Then we conjoin the characteristic terms as prescribed

by Equation (3) to obtain the characteristic terms for sets of

size |T | ≤ 2. We repeat the latter conjunction until we reach

a fixed point. Throughout the process, we work up to ≡tr(O).

With Lemma 13, the sets we compute with have size at most

exp2h−1(O(|O |2)). Moreover, we are guaranteed to reach the

fixed point after at most exp2h−1(O(|O |2)) steps. To state the

correctness, define for P ⊆ SNF
tr(O)
h−1 and Q ⊆ SANF

tr(O)
h :

X(P,Q) =
⋃

s∈P,T⊆Q

{χ(s . • .
h∨

T )} .

Lemma 15: χ(Ctr(O)) = X(TNF
tr(O)
h−1 ,TANF

tr(O)
h ). The

set can be computed in time exp2h−1(O(|O |2)).
The following proposition yields the overall algorithm.

Proposition 8: Consider a regular O and finitary p, q . Then

p �O q if and only if for all x ∈ X(TNF
tr(O)
h−1 ,TANF

tr(O)
h ),

we have that x ⊆tr(O) nftr(O)(p) implies x ⊆tr(O) nftr(O)(q).
The domination preorder is sound for checking the axiomatic

preorder even for objectives that fail to be right-separating

because we have characteristic terms on the left. The time for

computing the characteristic terms is given in Lemma 15. The

normalization is Lemma 9, and we make use of the fact that

the syntactic congruence of tr(O) has size quadratic in |Q |.
By Lemma 14, the comparison takes quadratic time. This

concludes the proof of Proposition 6.

IX. LOWER BOUND

We prove the lower bound given in Theorem 4 with a

reduction from context-bounded multi-pushdown games, a

concurrent programming model the complexity of which is

well-understood [14], [15]. The proof of the lower bound given

in Theorem 3 can be found in Appendix H.

A. Multi-Pushdown Games

We introduce multi-pushdown games trimmed to our needs.

A b-context-bounded 2-stack pushdown game (b-2PDG) is a

tuple (Q ,E , p0,F ,Γ, δ) consisting of a finite set of states Q ,

a set of states E ⊆ Q owned by Eve, an initial state p0, a

set of goal states F ⊆ Q , a stack alphabet Γ, and a set of

transitions δ ⊆ Q × Op × Q . Transitions are annotated by a

stack operation from Op = Γ × Γ≤2 ∪ {nx}. With (a, w),
we pop a from and push w to the active stack. With nx, we

change the active stack, called a context switch. We assume

there is a bottom of stack symbol $ ∈ Γ that is never removed.

The semantics of a b-2PDG is a game arena (CF ,→, own)
with a reachability objective CFF for Eve. The positions are

configuration from CF = Q ×[0, b]×Γ∗×Γ∗. A configuration

(p, k, s1, s0) stores the current state p, the number of context

switches k that have occurred so far, and the contents of the

two stacks. Stack s0 is active after an even number of context

switches, stack s1 is active when k is odd. The owner and

moves are defined as expected, there are no context switches

beyond b, and we assume there are no deadlocks. The objective

is CFF = F ×{b}×Γ∗×Γ∗, meaning we reach a goal state

and have exhausted the context switches. Plays, strategies, and

winning are defined like for urgency programs. The task is to

decide whether Eve has a strategy to win from (p0, 0, $, $).
Theorem 5: [15] b-2PDG are (b−2)−EXPTIME-complete.

B. Reduction

The reduction is in two steps, we first reduce 2PDG to the

problem of making an observation:

Proposition 9: Given a (2h+1)-2PDG PD, we can compute

in poly time p over Σ and (N,E ) of maximal urgency h and

an objective DFA O so that Eve wins PD if and only if p ⇓ O .

We now reduce the problem of making an observation to the

specialized contextual equivalence. Indeed, p ⇓ O is the same



as to check χO (•) �O p, where χO (•) is the characteristic

term of the empty context formed for objective O . The

problems is that the characteristic term may be exponential.

We utilize the trick from Section VIII-A.

Lemma 16: Given p over Σ and (N,E ), and objective O ,

we can compute in poly time χtr(O)(•), tr(p), and tr(O) so

that p ⇓ O if and only if χ(•) �tr(O) tr(p).
We sketch the proof of Proposition 9. We encode positions

(p, k, x . . . $, y . . . $) of the 2PDG as urgency terms

Hw. g.xu . . . $u.@
︸ ︷︷ ︸

s1

. h.yv . . . $v.@
︸ ︷︷ ︸

s0

.

Stack symbols x ∈ Γ are represented by terms xu of urgency u.

Terminal @ marks the end of a stack content encoding. The

terms g and h represent the history of the play. Finally, Hw

implements context switches. The construction controls w, u,

and v so that the top of the active stack is leading.

The top of the active stack allows the game to proceed as

. . . g. (
∨

p∈Q

ì

t∈δp,x

〈t〉u)

︸ ︷︷ ︸

Rewritten from xu

. . . $u.@ . . . → . . . g.〈t〉ux . . . $u.@ . . .

Eve selects the current state p ∈ Q . Then the player owning

this state selects the next transition. We use δp,x ⊆ δ to

denote the set of transitions from state p with top of stack

symbol x. The set is non-empty because the 2PDG does not

deadlock. The term 〈t〉u of the chosen transition contains

terminals which join history g to record the state change and

the urgency u. The objective O is a product DFA that reads the

terminals for each urgency separately and enforces consistency

with the 2PDA transitions.

Push/pop operations modify the active stack encoding in

the expected way. For context switches, the leading term

must swap the stack. To implement this, we use a decrement

processs on the now no longer active stack. We define stack

symbols xu as 〈→ st〉u.r ∨u 〈→ nx〉u.xu−1, where r is the

choice of the next transition explained above. The decrement

process relies on the alternative 〈→ nx〉u.xu−1, which replaces

xu by xu−1. A snapshot of the decrement process is

Progression of the leading term

. . . g ′.〈nx〉 . . . 〈→ nx〉.xu−1
i−1

︸ ︷︷ ︸

Urgency u−1

.xu
i . . . $

u@ . . .

The terminals 〈→ st〉, 〈→ nx〉, 〈nx〉, and @ allow the

objective to check the decrement process for correctness.

Each urgency simulates two contexts. Since we do not need

to access the odd stack before the first context switch, we only

generate this stack when it is first accessed. This allows us to

simulate three contexts with the maximal urgency. In total, the

construction simulates 2h+ 1 contexts with urgency h.

X. RELATED WORK

We motivated urgency annotations through hyperproperties.

Hyper model checking remains decidable if one language is

context-free and the others are regular [5]. We can model this

fragment with urgency programs. Gutsfeld et al. [16] propose

asynchronous hyperproperties and prove positive results for

model checking under bounds on asynchrony and context

switching. We believe we can capture this fragment as well,

but leave a thorough study to future work. Urgency programs

can also serve as a recursive game model with imperfect

information. This is interesting because the canonical push-

down games with imperfect information [17] are known to

be undecidable even under strong restrictions [18]. Compared

to game models with perfect information, our normal form in

Section V resembles Walukiewicz’s procedure summaries [19],

though urgency calls for new techniques.

The goal of effective denotational semantics [20], [21] is

to derive from a specification O a denotational semantics DO

so that DO(p) answers the question of whether program p

satisfies specification O . Salvati and Walukiewicz studied the

expressiveness of extremal fixed point semantics [22], [23]

and succeeded in giving an effective denotational semantics

that captures the higher-order model-checking problem [24].

Grellois and Melliès developed a link between the intersection

type system for higher-order model checking [25] and models

of linear logic [26], which they generalized [27], [28] to

solve logical reflection [29] and selection problems [30], [31].

Satisfying a specification means p ⇓ O , so there is a close link

to our axiomatization of the specialized contextual preorder:

in Appendix M, we show how our axiomatization induces a

denotational semantics that is effective for finitary programs. A

comparable construction does not appear in the above works.

It is interesting because it guides the study to the interplay

between the operators. Urgencies are also new.

The study of contextual equivalence [6] has lead to the

development of game semantics [32], [33]. Game semantics

make explicit the interaction of a program with its environment

and, in their operational formulation, take the form of a

language [7]. Our approach to full abstraction only refers to

the program term, though there is an idea of iteration behind

axiom (LFP). The language-theoretic understanding of game

semantics has been the basis for deciding contextual equiva-

lence of third-order programs [34]. We decide the specialized

contextual preorder by explicitly evaluating the observable in

a carefully chosen set of contexts.

Urgency annotations are related to prorities in process

algebra [35]. The key difference is that priorities preserve

the program order while urgencies do not. Out-of-program-

order execution is needed for modeling hyperproperties. At

the same time, it brings a new form of unbounded memory to

the semantics (the unresolved choices) that our axiomatization

explains how to handle. Also alternation [1] (angelic and

demonic choice) is not common in process algebra. Indeed,

we have not found a study of alternation from the perspective

of contextual equivalence. It is the special case of our work

when the urgency is h = 1.

Our context lemma for proving soundness has relatives

in process algebra and semantics [36]. Characteristic objects

(here, contexts and terms) have appeared as early as [37]. Our

contribution is to adapt the general idea to our setting.



XI. CONCLUSION AND FUTURE WORK

We presented urgency annotations for alternating choices as

a new programming construct. Urgency annotations allow the

choices to execute out-of-program-order and were designed

to capture the hyperproperties recently popular in security.

Our contribution was a study of the standard notions of

contextual equivalence for urgency programs. We gave sound

and complete axiomatizations and showed that the specialized

contextual preorder (for a regular observable) is (2h − 1)-

EXPTIME-complete if the observable is part of the input resp.

PTIME-complete if it is fixed. These result can be used to

obtain new computability results for game models and program

synthesis tasks with imperfect information and recursion.

Urgency programs are defined over finite words, and the

next step is to extend them to infinite words. The challenge is

to get the semantics of right. If we define the semantics via

infinite unrollings, then it is unclear how to ever switch from

choices with higher to choices with lower urgency. Instead, it

seems appropriate to work with program terms that contain an

ω-operator and can be rewritten a finite number of times. This,

however, calls for a different set of algebraic techniques [38].
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APPENDIX

A. Handling Infinitary Syntax

For the development of the section, we call a term an h-

term when no choice subterm has urgency higher than h and

the expansion of each non-terminal is an h-term. Infinitary

syntax requires care to make sure that set theoretic concepts

remain sound. The problem lies on the unbounded nature of

the choice operator. If we were to allow choices to range over

arbitrary sets of terms, the class of all terms would no longer

form a set. To see this, suppose that the class of terms with

unbounded choice were a set T. Then, we could build the

term
∨u

T ∈ T, which contradicts the Axiom of Regularity.

But for our development in the paper, it is a convenience to

have T as a set and not be distracted by subtle differences of

classes and sets. For this reason, we impose a restriction on

the terms, that does not hinder our developments. It is defined

over the structural depth of a term, which is

depth(A) = depth(a) = depth(err) = depth(skip) = 0

depth(p.q) = max{depth(p) + 1, depth(q) + 1}

depth(
u

ì

P ) = sup{depth(p′) + 1 | p′ ∈ P} .

The notion of structural depth lifts naturally to defining

assignments (N,E ). We let depth(E ) be the smallest limit

ordinal strictly greater than depth(E (A)) for all A ∈ N . So,

whenever the paper mentions the set of all terms T, we refer,

in fact, to restriction TE = {p | depth(p) < depth(E )}. The

set of permitted contexts CE is defined in the same way, as

contexts are defined as terms built from (N ⊎ {•},E ). We

let CE = {c[•] | depth(c[•]) < depth(E )}, and drop the

subscript from this set as well. This restriction indeed does

not hinder our development. All definitions we apply to terms

can be expressed as context free replacements and the set TE

is closed under such replacements. The only exceptions build

Axioms (L1) and (LFP), for which we present side conditions

so to stay in the restricted set TE .

Lemma 17: Let (N,E ) be a defining assignment to h-terms.

For all p ∈ TE and all c[•] ∈ CE , c[p] ∈ TE .

Proof: Proof is by an induction on the structure of c[•].
Let p ∈ TE and let α = depth(E ). Note that depth(p) < α.

The case c[•] = p ∈ TE is clear, since c[•] = c[p]. For the

case c[•] = •, depth(c[p]) = depth(p) < α.

For the concatenative inductive case, let c[•] = q.d [•]. The

case c[•] = d [•].q is analogous. Since depth(c[•]) < α, we

also have depth(d [•]) < α and depth(q) < α. Applying the

induction hypothesis yields depth(d [p]) < α. And since α is a

limit ordinal, also depth(q)+1 < α and depth(c[p]) + 1 < α.

For the choice inductive case, let c[•] =
Ìu{d [•]}∪Q. We

have depth(c[p]) = sup({depth(d [p]) + 1} ∪ {depth(q) | q ∈
Q}). This is equal to the maximum of depth(d [p]) + 1 and

sup{depth(r) + 1 | r ∈ Q}. We know that depth(c[•]) < α.

So, sup{depth(r) + 1 | r ∈ Q} ≤ depth(c[•]) < α. Per

definition, we also have depth(d [•]) < α. We apply the

induction hypothesis to get depth(d [p]) < α and due to α
being a limit ordinal, depth(c[p]) < α.

An important implication of Lemma 17 is that the successor

relation is well defined for TE . All rewriting has the form

c[
Ìu

P ] → c[p] with p ∈ P or c[A] → c[E (A)] for

some context c[•] with depth(c[•]) < depth(E ). Then, the

successors have depth(c[p]) < depth(c[
Ìu P ]) < depth(E )

for all p ∈ P , and depth(E (A)) < depth(E ) for all A ∈ N .

1) Axiom Side Conditions on Depth: The restriction to TE

also restricts the axiom system to terms only in TE This

affects Axioms (L1) and (FP).

For Axiom (L1), note that
Ìu

TE 6∈ TE .

∀i ∈ I. pi ⊑ qi
(L1)

Ìu{pi | i ∈ I} ⊑
Ìu{qi | i ∈ I}

So to keep terms in TE , we impose the following side condi-

tion to Axiom (L1): sup{depth(pi) + 1 | i ∈ I} < depth(E )
and sup{depth(qi) + 1 | i ∈ I} < depth(E ). This results in
Ìu{pi | i ∈ I} ∈ TE and

Ìu{qi | i ∈ I} ∈ TE .

For Axiom (FP), note that TE is closed under finite

substitutions, but not under infinite substitutions. However,

N is infinite, so for arbitrary pN , it is not guaranteed that

E (A){N/pN} ∈ TE .

∀A ∈ N. E (A){N/pN} ⊑ pA
(LFP)

B ⊑ pB

To ensure that the substituted term is part of TE , we require

depth(E (A){N/pN}) < depth(E ) for all A ∈ N . In fact, the

requirement is already implicitly stated by the axiom. The pre-

condition requires E (A){N/pN} ⊑ pB and ⊑ ⊆ TE × TE .

So, depth(E (A){N/pN}) < depth(E ) is already required by

the axiom implicitly.

B. Strategy Tree Bounds

Let G = (V, v, own, E) be a game arena with reachability

objective O ⊂ V and σ : V → V be a winning strategy for

Eve from starting position v ∈ V . Consider the subgraph T of

(V,E) reachable from v, where for all v ∈ V owned by Eve

only the successor σ(v) is part of T . Since σ is a winning

strategy, all paths from v in T must reach the objective in

finitely many steps, i.e. T is a tree and every branch is finite.

We prove in a second, that this is sufficient to obtain an ordinal

α to bound the depth of T . If Eve has a strategy tree with depth

α, we say that Eve wins in α turns.

The existence of uniform positional strategies results in an

important property. If Eve wins from v ∈ V in α turns, then

there must be a w ∈ E(v) from which Eve wins in γ < β
turns, if own (v) = Eve. If own (v) = Adam, Eve wins from

all w ∈ E(v) in αw < α turns.

It remains to prove that the absence of an infinite branch is

sufficient to obtain α. Let T = (V,E) be a directed tree and

αV be the smallest ordinal with |V | ≤ |αV |.
Definition 6: A function depth : V → αV is a depth

assignment when depth(v) < depth(w) for all (v, w) ∈ E.

Note that E(v) = ∅ implies depth(v) = sup(∅) = 0.

Lemma 18: If a directed tree T = (V,E) has no infinite

path then T has a depth assignment depth : V → αV .



Proof: We prove the contraposition. Let T = (V,E) be

a directed tree with root r ∈ V . We use Tv = (Vv, Ev)
for the subtree rooted in v ∈ V . The key insight is that

for all v ∈ V , where Tv has no depth assignment, there

must be w ∈ Ev(v) where also Tw has no depth assignment.

To see the validity of this statement, suppose the existence

of v ∈ V where Tv has no depth assignments, while all

w ∈ E(v), Tw have depth assignments depthw. Note that

all Vw are disjoint. Then depth : Vv → αVv
is a depth

assignment, where depth(u) = depthw(u) if u ∈ Vw, and

depth(v) = sup{depth(w) + 1 | w ∈ Ev(v)}. The depth

property is satisfied for all u ∈ Vw and also for v ∈ Vv . So

depth : Vv → α|Vv | is a depth assignment, which contradicts

the assumption.

Let T = (V,E) have no depth assignment. We inductively

construct an infinite sequence of nodes (v0, v1, . . .) with

vi, vi+1 ∈ E and so that Tvi has no depth assignment. The

root is v0 = r and to extend (v0, ..., vn), where Tvn has no

depth assignment, we choose any vn+1 such that Tvn+1
has

no depth assignment either, which we have shown to exist.

C. Soundness: Missing Axiom Proofs

Proofs of the remaining axioms: In all of the soundness

proofs, we conclude with Lemma 2 to generalize from contexts

for which at least one side of the conclusion is immediate, to

all contexts. To avoid repetition, this conclusion is ommitted.

Axiom (N): We only show the case
∨v Ìu Q ≃

∨v Ìv Q
with v < u. Like in the previous proof, both terms are

immediate for the context c[•] of interest. The key is to note

that the inner choice cannot be resolved until the outer choice

has been made. The game arenas are:

c[
∨v Ìu

Q]

c[
Ìu

Q]

· · · c[q], q ∈ Q · · ·

c[
∨v Ìv

Q]

c[
Ìv

Q]

· · · c[q], q ∈ Q · · ·

As before, translation of strategies is straightforward.

Axiom (B1): To show ⊥ � p, note that Eve never wins

from a term c[⊥] and hence the implication is trivial.

Axiom (L1): Assume pi ⊑ qi for all i ∈ I for which also

pi � qi holds. Further let
Ìu{pi | i ∈ I} and

Ìu{qi | i ∈ I}
be valid terms (i.e. they satisfy the depth constraints from

Appendix A). Acquire c[•] for which one of these terms are

immediate. Since urg(
Ìu{pi | i ∈ I}) = urg(

Ìu{qi | i ∈
I}) = u, Lemma 4 tells us that both terms are immediate for

c[•]. Fix an objective O ⊆ Σ∗. Let c[
Ìu{pi | i ∈ I}] ⇓ O . We

have that succ(c[
Ìu{pi | i ∈ I}]) = {c[pi] | i ∈ I}. Then, for

some i ∈ I (l = ∨) [for all i ∈ I (l = ∧)] holds c[pi] ⇓ O .

Since pi � qi, also c[qi] ⇓ O . Thus, c[
Ìu{qi | i ∈ I}] ⇓ O .

Axiom (L4): Let
Ìu

i∈I

Ìu
Pi and

Ìu ⋃

i∈I Pi be terms.

Let c[•] be a context where one, and by Lemma 4 both,

terms are immediate. After one move from c[
Ìu

i∈I

Ìu Pi], the

resulting term is always of the form c[
Ìu

Pi] for some i ∈ I .

Since urg(
Ìu Pi) = u, Lemma 4 states that this term is also

immediate for c[•]. Then succ(c[
Ìu

Pi]) = {c[p] | p ∈ Pi}.

This position is owned by the same player that owns the ini-

tial position, c[
Ìu

i∈I

Ìu
Pi] and the position c[

Ìu ⋃

i∈I Pi].

Then, in two moves, this player reaches
⋃

i∈I{c[p] | p ∈
Pi} = {c[p] | p ∈

⋃

i∈I Pi} from c[
Ìu

i∈I

Ìu
Pi]. We also

have succ(c[
Ìu ⋃

i∈I Pi]) = {c[p] | p ∈
⋃

i∈I Pi}. So it is

straightforward to lift the strategies from one term to the other

easily under any objective.

Axiom (L5): Let p, q ∈ T with urg(p) ≤ u. Acquire a

context c[•] for which one of p or p ∨u q is immediate. If

p is immediate for c[•], since urg(p) ≤ u = urg(p ∨u q),
p ∨u q is also immediate for c[•]. Then, in any case, p ∨u q is

immediate for c[•]. Fix an objective O ⊆ Σ∗ and let c[p] ⇓ O .

Since c[p ∨u q ], Eve can choose p in the inserted choice to

reach c[p] and win, i.e. c[p ∨u q ] ⇓ O .

Axiom (L3): Let p, q ∈ T and let urg(p) ≤ u. We will

only show p ≃ p ∨u (p ∧u q). The proof of the dual statement

is analogous. Fix an objective O ⊆ Σ∗. Acquire a context c[•]
for which one of p or p ∨u (p ∧u q) be immediate. Similarly

to (L5), p ∨u (p ∧u q) is guaranteed to be immediate. Let

c[p] ⇓ O . Then Eve can play c[p ∨u (p ∧u q)] → c[p] and win,

so c[p ∨u (p ∧u q)] ⇓ O as well. Let c[p] ⇓ O not hold. Then

Adam has a winning strategy from c[p], since reachability

games are determined. If Eve were to play c[p ∨u (p ∧u q)] →
c[p], Adam would win from this position. If Eve were to

instead play c[p ∨u (p ∧u q)] → c[p ∧u q ], Adam can play

c[p ∧u q] → c[p] and win. Thus c[p ∨u (p ∧u q)] ⇓ O does

not hold.

Axiom (L2): Let
∧u

i∈I

∨u Pi ∈ T. Per Axiom of choice,

{f | f : I → PI} 6= ∅ and
∨u

f :I→PI

∧u{f(i) | i ∈ I}
is well defined. Let

∨u

f :I→PI

∧u{f(i) | i ∈ I} ∈ T.

Fix an objective O ⊆ Σ∗ and acquire a context c[•] for

which one of
∨u

f :I→PI

∧u{f(i) | i ∈ I} and
∧u

i∈I

∨u
Pi

is immediate. Since both terms have urgency u, Lemma 4

states that both terms are immediate. Per definition, we have

c[
∧u

i∈I

∨u
Pi] ⇓ O if and only if for all i ∈ I , there is a

p ∈ Pi with c[p] ⇓ O . Since we assume axiom of choice,

we can apply Skolemization to get the following equivalent

statement: There is a f : I → PI where for all i ∈ I , c[f(i)] ⇓
O . But this is equivalent to c[

∨u

f :I→PI

∧u{f(i) | i ∈ I}] ⇓

O . Then c[
∨u

f :I→PI

∧u{f(i) | i ∈ I}] ⇓ O if and only if

c[
∧u

i∈I

∨u
Pi] ⇓ O .

Axiom (D2): Let p,
Ìu Q ∈ T where urg(p) ≤ u. Acquire

a context for which at least one, and per Lemma 4 both, of

(
Ìu

Q).p and
Ìu{q.p | q ∈ Q} are immediate. We have

the owner own
(

c[(
Ìu

Q).p]
)

= own
(
c[

Ìu{q.p | q ∈ Q}]
)
.

It follows that we have succ(c[(
ÌuQ).p]) = {c[q.p] | q ∈

Q} due to succ((
Ìu Q).p) = {q.p | q ∈ Q}. Further,

succ(c[
Ìu{q.p | q ∈ Q}]) = {c[q.p] | q ∈ Q} as well. So

under any objective O ⊆ Σ∗, lifting the strategies from one

term to the other is straightforward.

Axiom (M): Let w, v ∈ W with w
∗
= v. Acquire a context

c[•] that is immediate for one of w or v. Since these are both

word terms, the only way one of these terms can be immediate



is if c[•] is a concatenation of terminals and •. Then, we have

c[w]
∗
= c[v]. For an objective O ⊆ Σ∗, we also see that c[w] ⇓

O if and only if c[v] ⇓ O .

Axiom (S): Let O ⊆ Σ∗ be an objective. Let w, v ∈ Σ∗
err be

word terms with w ⊑O v due to w ≤s
O v. Let c[•] be a context

for which one of the words is immediate. As the words have

urgency zero, the context muss be a word as well: c[•] = x.•.y
(ignoring the bracketing) for x, y ∈ Σ∗

err. Assume Eve wins O

from c[w] = x.w.y. Then x.w.y ∈ O . By definition of ≤s
O ,

we get x.v.y ∈ O . So Eve wins O from c[v] as well.

Axiom (FP): Let A ∈ N . Acquire a context c[•] for which

at least one of A or E (A) is immediate. Since urg(A) = h ≥
E (A), Lemma 4 tells us that A is guaranteed to be immediate.

The term c[A] has exactly one successor, c[E (A)]. Then under

any objective O ⊆ Σ∗, c[A] ⇓ O if and only if c[E (A)] ⇓ O .

D. Normalization

We provide the proof for Lemma 5. The function nf(p)
is defined by induction. For p being a terminal or skip, err,
we use (L6) to introduce a sequence of 2h choices over

singleton sets and arrive at a aterm nf(p) ≡ p in normal form.

For a concatenation or choice, we recursively normalize the

operands and then invoke specialized functions that rely on

the operands being normalized:

nf(p.q) = nfconc(nf(p).nf(q))

nf(
u

ì

P ) = nfchoice(
u

ì

{nf(p) | p ∈ P}) .

Lemma 19: Let R ⊆ NF h and r =
Ìu

R. We can find

nfchoice(r) ∈ NF h with nfchoice(r) ≡ r .

Proof: Consider the proof of Lemma 21.

Lemma 20: For p, q ∈ NF h we can find nfconc(p.q) ∈
NF h with nfconc(p.q) ≡ p.q .

Proof: We strengthen the statement and show that for all

urgencies u, if we have normal form terms p, q ∈ NF u, then

we can obtain a normal form in NF u. We proceed by induction

on u. For the base case u = 0, (M) yields p.q
∗
= r ∈ NF 0.

For the inductive case, let u > 0. Then p =
∨u

i∈I

∧u
Pi and

q =
∨u

j∈J

∧u Qj . So we can write:

p.q = (
u∨

i∈I

u∧

Pi).(
u∨

j∈J

u∧

Qj)

2×(D2)
≡

u∨

i∈I

u∧

p′∈Pi

p′.(

u∨

j∈J

u∧

Qj)

2×(D1)
≡

u∨

i∈I

u∧

p′∈Pi

u∨

j∈J

u∧

q′∈Qj

p′.q ′ .

We have p′, q ′ ∈ NF u−1. We apply the induction hypothesis

to obtain nfconc(p′.q ′) ∈ NF u−1

I.H.
≡

u∨

i∈I

u∧

p′∈Pi

u∨

j∈J

u∧

q′∈Qj

nfconc(p′.q ′) .

The term is not in normal form due to the two layers of u

choices. We apply Lemma 19 to obtain a normal form.

E. Completeness: Characteristic Context

The missing inductive case is p =
∧u

P ∈ ANF u. We set

tp =

u∨

{tr | r ∈ P}.

Since p is not minimal, no element r ∈ P is minimal and

hence the tr are guaranteed to exist. To see Equivalence (1),

consider
∧u

Q ∈ ANF u:

(

u∧

Q).(

u∨

{tr | r ∈ P}) ⇓ O

iff ∀s ∈ Q. ∃r ∈ P. s .tr ⇓ O

{I.H.} iff ∀s ∈ Q. ∃r ∈ P. r ⊆O s .

iff

u∧

P ⊆O

u∧

Q.

F. Completeness: Domain Shattering Objectives

Let O = {a(n
2) | n ∈ N} if Σ = {a} and O =

{w.wreverse | w ∈ Σ∗} if |Σ| > 1. We show that for

all w, v ∈ W with w 6
∗
= v, we can find a x ∈ Σ+ with

w.x ∈ O and v.x 6∈ O . This proves that O is right seperating.

In particular, it also showcases that Axiom (S) cannot relate

terms w, v unless w
∗
= v. So it also proves that O is domain-

shattering. This also shows for all w ∈ Σ+ the existence of x
with w.x ∈ O to establish the right seperability of w and ⊥.

Case |Σ| = 1: Let w = ai and v = aj with i 6= j. Then set

x = at
2−i with t = i + j + 1. Obviously, w.x ∈ O . Suppose

aj .at
2−i ∈ O . Then, j + t2 − i = k2 for some k ∈ N. So

j − i = t2 − k2 = (t− k) · (t+ k). i 6= j implies |t− k| ≥ 1.

Note that k, i, j ≥ 0 so we get the contradiction |j − i| <
i+ j < t+ k < |t− k| · |t− k| = |j − i|.

Case |Σ| > 1: Let w = w0w1 . . . wn and v = v0v1 . . . vm.

Let a 6= wm be a terminal. We set x = a.a.wreverse, where

a 6= w|v| if |w| > |v|, a 6= v|w| if |v| > |w|, and a
arbitrary if |w| = |v|. Suppose v.a.a.wreverse ∈ O . Then,

v.a.a.wreverse = w.a.a.vreverse. If |w| = |v|, w = v is a

contradiction. Otherwise, if |v| < |w|, we have (v.a)|v| = a 6=
w|v| = (w.a)|v| for a contradiction. Similarly, if |w| < |v|, the

contradiction is (w.a)|w| = a 6= v|w| = (v.a)|w|.

G. Specialized Normal Form

Before we address the normalization algorithm, we take a

brief detour to prove the utilized proof rules correct. We used

(or will use) the following proof rules, which follow from the

axioms in Figure 2.

∀A ∈ N. pA ⊑ A
(REP)

q{N/pN} ⊑ q

urg(p) ≤ u
(L6)

p ≡
Ìu

p

v < u
(DN) ∧v Ìu Q ≡

∧v Ìv Q



Proof sketch: For (REP), we use (L2) and the congru-

ence rule inductively on the subterms. Utilizing (L3) twice

yields (L6). G follows from

v∧

i∈I

u
ì

Qi

(L6)
≡

v∨ v∧

i∈I

u
ì

Qi

(L2)
≡

v∧

i∈I

v∨ u
ì

Qi

(N)
≡

v∧

i∈I

v∨ v
ì

Qi

(L6)
≡

v∧

i∈I

v
ì

Qi

We now provide a sketch of the normalization algorithm

with the complexity (|p| + |E ||N |) · expO2h−1
1 as given in

Lemma 9.

We use methods from Section V with slight modifications.

To avoid repetition, we only note the modifications that need to

be made, instead of giving a full algorithm. The section takes

the form of constructing modified normalization functions

nfO (.), nfchoiceO (.), and nfconcO (.). We provide lemmas

that reference those in Section V. The nfchoiceO (.) and

nfconcO (.) calls made by nfO(.) are kept the same. Note

that implementing nfchoiceO (.) and nfconcO (.) with time

complexity |p| · expO2h−1 for the input term p means that

nfO (q) is also constructed in |q| · expO2h−1 time, if q has

no non-terminals. For the rest of the section, fix a regular

objective O ⊆ Σ∗, a finite set of non-terminal symbols N ,

and a finitary defining assignment E : N → T.

Lemma 21 (Modifies Lemma 19): Let P ⊆ SNFO
h and

r =
Ìu

P . We can find nfchoiceO(r) ∈ SNFO
h with

nfchoiceO (r) ≡O r in |r | · expO2h−1 time.

Proof: By induction on h. Note that for normalforms in

SNFO
u also have maximal urgency u. In any case of u we

need to normalize a term r =
Ìu

i∈I

∨h Pi. The harder case

is
Ì

=
∧

. We apply (N) if u < h and (L2) to obtain
∨u

f :I→PI

∧u

i∈I f(i) and utilize (L4) to combine the
∧u

i∈I with

the f(i) ∈ SANFO
u :

nfchoiceO (r) =

u∨

f :I→PI

u∧

Qf

where Qf =
⋃
{Q | f(i) =

∧u
Q, i ∈ I}. Naively,

applying Axiom (L2) requires us to enumerate all the choice

functions f : I → PI . However, we do not need to account

for all of them, because after applying (L4) for a single

f , we know that
∧u

Qf ∈ SANFO
u . Knowing this means

that the distribution considers way more functions f (namely
∏

i∈I |Pi| ≥ 2|SNFO
u |) than there can be sets Qf (|SANFO

u |).
Instead, we can use (L4) to split the application of (L2) into

|I| − 1 many single applications of (L2) and keeping the size

of the intermediary results bound by |SANFO
u | = expO2u−1: In

the case of J ⊆ I with |J | = 2, i.e. constant, the number of

functions f : J → PJ is bound by |P1| · |P2| ≤ |SANFO
u |2.

For such an f (with binary co-domain) the union Qf can

be computed in time |SNFO
u−1|

2 as long as the terms f(j)
are in normalform f(j) ∈ SANFO

u . In case of h = u,

1We use expOu for expu(O(|SNF
O
0
|)). Usages of ≤ and = are to be

understood by means of ∈ or ⊆.

this will be the case. Otherwise, u < h and we apply the

induction hypothesis to obtain normalforms equivalent to f(1)
and f(2) before computing Qf . That way, we compute no

more than |I| ≤ |r | many (L4) for splitting, |I| many

(L2) enumerating |SANFO
u−1|

2 ≤ expO2u−1 functions f each,

and for each f we apply (L4) to create the union Qf in

time |SNFO
u |2 ≤ expO2u−2. Together (for h = u):

|I|
︸︷︷︸

(L4)

+ |I| · |SANFO
u |2

︸ ︷︷ ︸

(L2)

· |SNFO
u−1|

2

︸ ︷︷ ︸

(L4),Qf

≤ |r | · expO2u−1

In case of u < h, the right summand changes to

|I| · |SANFO
u |2

︸ ︷︷ ︸

(L2)

·(|SNFO
u−1|

2

︸ ︷︷ ︸

(L4),Qf

+2|SNFO
h−1| · exp

O
2h−3

︸ ︷︷ ︸

I.H.

)

≤ |r | · expO2h−1

Adding singleton choice operators (L6) to reobtain a term in

SNFO
h costs close to no time.

Lemma 22 (Modifies Lemma 20): For any p, q ∈ SNFO
h ,

we can find nfconcO(p.q) ∈ SNFO
h with nfconcO (p.q) ≡O

p.q in expO2h−1 time.

Proof: The proof in Section V proceeds by an induction

on urgency. We change the base case to h = 1 and for both,

base and inductive case, apply (D1) and (D2) as in the proof

of Lemma 20. The application of (D1) creates at most |p|
copies of q , and (D2) creates another |q| copies of each p′.

Call the resulting term s with |s | ≤ 2 · |p| · |q|.
In the base case, p′ and q ′ belong to SNFO

0 . We em-

ploy (FP) and find an x ∈ SNFO
0 with x ∼=s

O w.v. Finding

the syntactical congruence class of w.v can be done in time

(expO0 )k for some fixed k ∈ N by naively checking.

In the inductive case, we apply the induction hypothesis

to normalize the concatenative subterms p′.q ′ into SNFO
h . A

term in SNFO
h term is bound by size |SANFO

h | ≤ expO2h−1.

After applying the induction hypothesis to each pair in s , the

resulting term t has size |t | ≤ 2 · |p| · |q| ·expO
2h−1 = expO2h−1.

In Section V the layers of choices are resolved by invoking

Lemma 19. In our case, we employ the modified Lemma 21

for another |t | · expO2h−1 ≤ (expO2h−1)
2 = expO2h−1.

Lemma 23 (Modifies Lemma 6): For any A ∈ N , we can

find nf(A) ∈ SNFO
h with nf(A) ≡O A in |E | · |N | · expO2h−1

time.

Proof Sketch: We construct an increasing chain of SNFO
h

terms using the same least fixed point construction from

Section V. The constructed term for component A has size at

most |E (A)| ·(expO
2h−1)

2. Per Lemmas 21 and 22, this term is

normalized in |E (A)| · (expO
2h−1)

3 = |E (A)| · expO2h−1 time.

So normalizing all components takes |E | · expO2h−1 time. The

chain converges in at most |N | · |SANFO
h | = |N | · expO2h−1

iterations. So the normalization process takes |E |·|N |·expO
2h−1

time.

We complete the normalization function analogously to

Section V. To calculate nfO (p) for any finitary p ∈ T with

non-terminals, the algorithm first constructs nfO (A) for all

A ∈ N . This takes |E | · |N | · expO2h−1 time. Then, we



let nfO(p) = nfO(p{N/pN}) where pA = nfO (A). The

normalization takes |p| ·expO
2h−1 time per Lemmas 21 and 22.

This concludes the construction of the algorithm and thus

proves Lemma 9.

H. Decidability and Complexity

Proof of Proposition 5: Consider two context free

grammars Gi = (Ni,Ei, Si), i ∈ {0, 1} over some alphabet Σ
and with disjoint sets of non-terminals N1∩N2 = ∅. Note that

each non-terminal has a single production rule of the shape

Ei(A) = w1 | . . . | wn, wi ∈ (N ∪ Σ)∗. We reproduce this

non-deterministic structure by yielding the choice to Eve. We

construct the program-term grammar (N1 ∪N2,E ), where E

is defined via E (A) =
∨1{w1, . . . , wn} for each production

rule of above shape. Kleene iteration yields the normal form

nf(Si) =
∨

1

{
∧

1

w | w ∈ L(Gi)} ≃
∨

1

L(Gi) .

To finish, we utilize �O = � by choosing the shattering

objective O = {w.wreverse | w ∈ Σ∗}. Since �O is the

reflexivity relation on Σ∗ × Σ∗, the domination pre-order

yields
∨

1 L =O

∨

1 M if and only if L = M for any

L,M ⊆ Σ∗. Using Lemma 8, Theorem 2, and that O is

shattering and right-separating, L(G1) = L(G2) if and only

if S1 ≃
∨

1 L(G1) ≃
∨

1 L(G2) ≃ S2.

Proof of Theorem 3: We show that h-DEC-�O is

PTIME-hard (wrt. log-space reductions) by sketching out a

reduction from the Monotonic Circuit Value Problem [39] The

problem consists of assigments of boolean variables Pi≤n to

∨/∧ clauses built out of the variables Pj<i, to true , or to false.

The input is accepted if and only if the variable Pn evaluates

to true. Let non-empty O ⊆ Σ∗ and let w ∈ O . For each

boolean variable Pi, the log-space Turing Machine outputs a

non-terminal Pi and a defining equation E (Pi). The machine

outputs E (Pi) = w if Pi = true, and it outputs E (Pi) = err

if Pi = false. For Pi = Pj0 ∧ . . . ∧ Pjk , the machine outputs

E (P ) =
∧1{Pjl | l ≤ k}. For Pi = Pj0 ∨ . . . ∨ Pjk , it outputs

∨1{Pjl | l ≤ k}. The reduced problem instance asks whether

w �O Pn. By induction on i we show Pi ≡O w if Pi evaluates

to true, and Pi ≡O w and if Pi evaluates to false. Since ≡O

sound, and w 6�O err (with the witnessing context c[•] = •)

this proof suffices.

For the base case, we have P0 = true or P0 = false.

After applying Axiom (FP), we get P ≡O w and P ≡O err

respectively. For the inductive case, we have Pi = true,

Pi = false, Pi = Pj0 ∧ . . . ∧ Pjk , or Pi = Pj0 ∨ . . . ∨ Pjk .

The first two subcases are already handled in the base case.

The latter two cases are dual, so we only handle the ∧-case.

Per Axiom (FP), we have Pi ≡O

∧1{Pjl | l ≤ k}. The

variable Pi evaluates to true, if and only if Pjl evaluates to

true for all l ≤ k. Let all variables evaluate to true. Induction

hypothesis delivers us Pjl ≡O w and thus Pi ≡O

∧1{w}. The

rule Axiom (L6) tells us
∧1{w} ≡O w. Wlog. let a variable

Pj0 evaluate to false. then induction hypothesis delivers us

Pj0 ≡O err and Pjl ≡O w or Pjl ≡O err for all 0 < l ≤ k.

We have Pi ≡O

∧1{err} or Pi ≡O

∧1{err, w}. In the former

case we have Pi ≡O err per Axiom (L6). In the latter case,

the lattice axioms tell us that
∧1{w, err} ≡O err, and thus

Pi ≡O err.

I. Upper Bound

In this section, we handle the omitted proofs from Sec-

tion VIII. Namely, we prove Proposition 7, Lemma 10, the

special case h = 1 in Lemma 15 and we justify Equation (3).

Reasoning for Equation (3): To see Equation (3), note that

by Equation (2) the characteristic term χ(c[•]) is an urgency-

h choice owned by Adam over the set of SNF
tr(O)
h−1 solutions

of c[•]. This set of solutions is the union of the SNF
tr(O)
h−1

solutions for s . • .t with t ∈ T . The reason is that the choice

over T in the context has a higher urgency than the inserted

term. We can thus stratify Adam’s choice into a choice over

t ∈ T followed by a choice of the SNF
tr(O)
h−1 solutions for

s . • .t . Again by Equation (2), this is precisely the right-hand

side of Equation (3).

Proofs of Lemma 10 and Proposition 7: Proofs of these

statements require us to observe the inner workings of terms.

To do so cleanly, we extend the relation
∗
= to terms. The

relation
∗
= on terms is the smallest equivalence relation that

contains
∗
= on W, and the equalities p.(q.r)

∗
= (p.q).r ,

p.skip
∗
= p, skip.p

∗
= p, p.err.q

∗
= err for all p, q, r ∈ T.

Note that this is diffrent than Axiom (M), which allows

us to apply
∗
= to words enclosed by arbitrary contexts. We

also define hd : T → W and tl : T → T. We let

hd(p) = w ∈ W be the concatenation of outermost ter-

minals (including any skip and err) that appear in p before

the leftmost outermost action. If there are no such terms,

hd(p) = skip. We let tl(p) = q be the concatenation of the

remaining outermost actions and commands. If no outmost

action exists in the term, we let tl(p) = skip. Note that

p
∗
= hd(p).tl(p) for all p ∈ T. Finally, we define a set of

quasi-runs QRunw for all w ∈ Σ∗ ∪ {err}. We employ the

notation QRunw for a word term w ∈ W, as a shorthand

for QRunv where v is the monoid element from Σ∗ ∪ {err}.

We let QRunskip = {skip} and QRunerr = {err}. For a word

w = a0 . . . ak−1 ∈ Σ+, the set QRunw contains all terms

of the form (i , p1).(p1, p2) . . . (pn−1, pn).tr(an) . . . tr(ak−1),

where i
a0→ p1 . . . pn−1

an−1

→ pn is a run in the DFA for O .

So an element of QRunw runs the DFA on the prefix of w
up to n and has undetermined transitions in form of the terms

tr(ai) for the remainder of w.

We find it useful to prove a stronger version of Lemma 10.

Lemma 24: Let p ∈ T, r ∈ QRunhd(p) and O ⊆ Σ∗. Then

for all q
∗
= r .tr(tl(p)), p ⇓ O if and only if q ⇓ tr(O).

Assuming Lemma 24 we show Proposition 7.

Proof of Proposition 7: Let O ⊆ Σ∗. Per Corollary 2,

we know that p �O q holds if and only if s .p.t ⇓ O

implies s .q.t ⇓ O for all s ∈ SNFO
h−1 and t ∈ SNFO

h .

We apply Lemma 10 to see that this is equivalent to the

statement tr(s .p.t) ⇓ tr(O) implies tr(s .q.t) ⇓ tr(O) for

all s ∈ SNFO
h−1 and t ∈ SNFO

h . Per definition, we have

tr(s .p.t) = tr(s).tr(p).tr(t) and tr(s .q.t) = tr(s).tr(q).tr(t).



For the moment, assume TNF tr(O)
u = {tr(r) | r ∈ SNFO

u }
(up to ≡tr(O)) for all u ≥ 1 without proof. For h > 1,

this makes the previous statement equivalent with the desired

s .tr(p).t ⇓ O implies s .tr(p).t ⇓ O for all s ∈ TNF
tr(O)
h−1

and t ∈ TNF
tr(O)
h .

Now let h = 1. We show that for all s ∈ SNFO
0 and t ∈

SNFO
1 , there are s ′ ∈ TNF

tr(O)
0 and t ′ ∈ TNF

tr(O)
1 where

s .r .t ⇓ O if and only if s ′.tr(r).t ′ ⇓ tr(O) for all r ∈ SNFO
1 .

We can also conversely find s ∈ SNFO
0 and t ∈ SNFO

1

for all s ′ ∈ TNF
tr(O)
0 and t ′ ∈ TNF

tr(O)
1 with the same

property. Then, the statement s .p.t ⇓ O implies s .q.t ⇓ O

for all s ∈ SNFO
0 , t ∈ SNFO

1 is equivalent to the statement

s ′.tr(p).t ′ ⇓ tr(O) implies s ′.tr(q).t ′ ⇓ tr(O) for all s ′ ∈

TNF
tr(O)
0 , t ′ ∈ TNF

tr(O)
1 . Note that, we have hd(s .p.t) = s

and tl(s .p.t) = p.t . Per Lemma 24, we know that for all rs ∈
QRuns , s .p.t ⇓ O if and only if rs .tr(p.t) ⇓ O . We can let

s ′ = rs = (i , p1)(p1, p2) . . . (pn−1, pn) ∈ TNF
tr(O)
0 ∩ QRuns

where the DFA runs on s from i to pn and t ′ = tr(t).

Finally, we show our assumption TNF tr(O)
u = {tr(r) |

r ∈ SNFO
u } (up to ≡tr(O)) for all u ≥ 1. The inclusion

TNF tr(O)
u ⊆ {tr(r) | r ∈ SNFO

u } follows from the fact that

tr(
Ìu

P ) =
Ìu{tr(p) | p ∈ P} along with the definitions

of TNF tr(O)
u and TANF tr(O)

u . The inclusion {tr(r) | r ∈
SNFO

u } ⊆ TNF tr(O)
u is proven by induction on u. For the

base case, we have TNF
tr(O)
1 = {nf(tr(r)) | r ∈ SNFO

1 }
per definition. For the inductive case, the cases SNFO

u and

SANFO
u are analogous, so we only handle one. Letting

∨u P ∈ SNFO
u , we get nf(tr(

∨u P )) = nf(
∨u{nf(tr(r))} |

r ∈ P ). Induction hypothesis tells us that nf(tr(r)) ∈
TANF tr(O)

u for all r ∈ P , so
∨u{nf(tr(r))} ∈ TNF tr(O)

u .

The proof of Lemma 24 is more involved and relies on the

following Lemmas 25 and 26, which we prove first.

Lemma 25: Let p, q ∈ T with p
∗
= q . Then own (p) =

own (q) and Eve wins from p in β moves if and only if Eve

wins from q in β moves.

Proof Sketch: The definition of ownership already im-

plies own (p) = own (q) for all p, q ∈ T with p
∗
= q . The

remainder of the statement is proven by transfinite induction

on β. The base case follows from the monoid evaluation of

word terms. We sketch out the inductive case. Wlog. we can

only handle one direction of the implication. Let p
∗
= q

and let Eve win from p in β moves. In both terms, the

same i-th concatenation operand (ignoring the bracketing) will

be leading. Then, the successor sets are equal up to
∗
=. If

own (p) = own (q) = Eve, then Eve wins from at least

one p′ ∈ succ(p) in γ < β moves. Here, we can apply

the induction hypothesis to lift the strategy to q . The case

own (p) = own (q) = Adam is dual.

We cal p ∈ T headless if hd(p) = skip. For headless terms,

tr(.) and succ(.) commute.

Lemma 26: For headless p ∈ T, succ(tr(p)) = tr(succ(p)).

Proof: The proof is by (transfinite) structural induction

on p ∈ T. For the base case, we let p = A ∈ N . This is the

only base case, because p is only headless if p = A ∈ N . Per

definition, we have succ(tr(A)) = {tr(E (A))} = tr(succ(A)).
The first inductive case is p =

Ìu
P . Per definition,

tr(
Ìu

P ) =
Ìu{tr(p) | p ∈ P}. And thus, succ(

Ìu{tr(p) |
p ∈ P}) = {tr(p) | p ∈ P} = tr(succ(

Ìu
P )).

The second inductive case is p = q.r . If q is not headless,

then p would not be headless. So we deduce that q must

be headless. A headless term must contain an outermost

choice or a non-terminal, since terms can not be empty. So,

urg(q) ≥ 1. We observe that for all s ∈ T, urg(s) > 0 implies

urg(tr(s)) = urg(s) and urg(s) = 0 implies urg(tr(s)) ≤ 1.

This is clear from the construction of tr(.): Only the urgencies

of urgency 0 subterms change. These get replaced by urgency

1 terms, unless they are err or skip.

The first case is q.r . So, we have urg(q) ≥ urg(r). When

urg(r) = 0, then urg(tr(q)) ≥ 1 ≥ urg(tr(r)). Otherwise for

q to be leading, urg(q) ≥ 1 must hold and

urg(tr(q)) = urg(q) ≥ urg(r) = urg(tr(r)) .

In either case we have tr(q).tr(r). By induction hypothesis,

succ(tr(q)) = tr(succ(q)). This results in succ(tr(q.r)) =
succ(tr(q)).tr(r) = tr(succ(q)).tr(r) = tr(succ(q .r)).

Now let q.r . Since the term q is headless, r has ur-

gency urg(r) > urg(q) ≥ 1. Let r = s .x .t for some

action x . If we are strict, we also need to handle the cases

where r equals to s .x , x .t , and x . We omit them to avoid

repetition. Since urg(x ) = urg(r) > 1, the term x can

only be a choice
Ìu P or a non-terminal A. Both of these

terms are headless, so we apply the induction hypothesis

and obtain succ(tr(x )) = tr(succ(x )). Because urg(x ) >
urg(q.s), the leading subterm is tr(q).tr(s).tr(x ).tr(t). In-

deed, urg(tr(q.s)) ≤ max(1, urg(q.s)) and urg(tr(q.s)) <
urg(tr(x )). Finally, we derive

succ(tr(q.r)) = succ(tr(q.s .x .t))

= tr(q.s).succ(tr(x )).tr(t)

= tr(q.s).tr(succ(x )).tr(t)

= tr(succ(q.s .x .t))

= tr(succ(q.r ))

Proof of Lemma 24: We show both directions by an

induction on the number of moves Eve needs to win.

Forward Direction: Let p ∈ T and r ∈ QRunhd(p).

For the base case, let Eve wins O from p in 0 moves.

Then, hd(p) = p ∈ W and tl(p) = skip. Because Eve

wins, p can not contain err. Then, r ∈ QRunp must be of

the form (i , p1).(p1, p2) . . . (pn−1, pn).tr(an) . . . tr(ak−1). We

know that the word w = a0 . . . an . . . ak−1 that corresponds to

p
∗
= w has a run on the DFA for O . Per definition of QRunp ,

the DFA runs w from i to pn in n − 1 steps, and Eve can

choose the remaining transitions to reach pk ∈ F .

For the inductive case, let Eve reach O from p in β moves.

Per Lemma 25, this also holds from w.q , where w = hd(p)
and q = tl(p). We show that r ⇓ tr(O) for some rw ∈ QRunw
and r

∗
= rw.tr(q). Per Lemma 25, showing this for one such

r suffices. We first observe that Eve has a strategy to reach



r ′w.tr(q) where r ′w ∈ QRunw. In case of urg(q) ≥ 2 we have

rw = r ′w and the leading subterm rw.tr(q) due to urg(rw) ≤
1 < urg(tr(q)). Otherwise, urg(tr(q)) = urg(q) = 1 (it can’t

be 0 because q = tl(p)). If rw ∈ QRunw ∩ W, we already

have rw.tr(q). So let rw ∈ QRunw \ W, i.e. urg(rw) = 1.

Eve resolves each term of the form
∨1{(q, r ) | r ∈ δ(q, a)}

for some a ∈ Σ and extend the determined part of the run

in QRunw. We know that w 6
∗
= err, because Eve wins w.q .

So, per definition of QRunw, Eve can find fitting transitions.

Exhaustive application of this strategy rewrites rw to r ′w ∈
QRunw ∩W for the desired r ′w.tr(q).

We now show r ′w.tr(q) ⇓ tr(O). Let own (w.q) = Eve.

The case own (w.q) = Adam is dual. Remember p = w.q and

w = hd(p), so we have w.q . Then, there is a w.q ′ ∈ succ(w.q)

from which Eve wins in γ < β moves. Since w.q ′
∗
=

w.hd(q ′).tl(q ′), Lemma 25 tells us that Eve also wins from

w.hd(q ′).tl(q ′). We have r ′w.tr(hd(q
′)) ∈ QRunw.hd(q′) =

QRunhd(w.q′), so we can apply the induction hypothesis to

see that Eve wins from r ′w.tr(hd(q
′)).tr(tl(q ′)) in γ turns.

The fact r ′w.tr(hd(q
′)).tr(tl(q ′))

∗
= r ′w.tr(q

′) and Lemma 25

imply that r ′w.tr(q
′) ⇓ tr(O). Since q is headless, Lemma 26

tells us succ(tr(p)) = tr(succ(p)) and thus r ′w.tr(q
′) ∈

succ(r ′w.tr(q)). Then, we also have r ′w.tr(q) ⇓ tr(O). This

concludes this direction of the proof.

Backward Direction: Let p ∈ T, w = hd(p), q = tl(p)
and O ⊆ Σ∗. For the base case, let Eve win rw.tr(q) in 0
moves. Then, tr(q) is a command and this is only possible if

q = skip. Since rw ∈ tr(O), the run rw is accepting in the

DFA for O . So, w = p ∈ O .

For the inductive case, let Eve win rw.tr(q) in β moves for

some rw ∈ QRunw. The first case is rw.tr(q). Then, there is a

term tr(a) in rw, so Eve can simply choose the corresponding

transition in the DFA to extend rw to r ′w ∈ QRunw per

definition of QRunw. Eve then wins from r ′w.tr(q) in γ < β
moves. We can apply the induction hypothesis to see that

Eve wins from w.q , and per Lemma 25 from p. The second

case is rw.tr(q). Let own (rw.tr(q)) = Eve. Again, the case

own (rw.tr(q)) = Adam is dual. Since q is headless, we have

succ(tr(q)) = tr(succ(q)) per Lemma 26. Then, Eve wins

from some rw.tr(q
′) where q ′ ∈ succ(q) in γ < β moves.

Write rw.tr(q
′)

∗
= rw.tr(hd(q

′)).tr(tl(q ′)). As in the previous

direction, we have rw.tr(hd(q
′)) ∈ QRunw.hd(q′). Per defini-

tion, tl(q ′) is headless. We can apply the induction hypothesis

to get that Eve wins from w.hd(q ′).tl(q ′)
∗
= w.q ′ ∈ succ(w.q).

So Eve wins from w.q
∗
= p as well, completing the proof.

Proof of Lemma 15 for h = 1:

Preliminary Facts: Before moving on to the computation of

χ(Ctr(O)) for h = 1, we study SNF
tr(O)
0 more closely.

Lemma 27: The syntactic monoid of tr(O) is SNF
tr(O)
0 =

Q 2 ∪ {err, skip}. Furthermore, the syntactic equivalences

(p, q).(q, r ) ≡tr(O) (p, r ) and (p, q).(s , r ) ≡tr(O) err hold for

all p, q, r , s ∈ Q with q 6= s .

Proof: First we show that Q 2 ∪ {err, skip} ⊆ SNF
tr(O)
0 ,

i.e. that these elements are pairwise not equivalent. It is clear

to see that for any (p, q) ∈ Q 2, (i , p).(p, q).(q, f ) ⇓ O , so we

get (p, q) 6�tr(O) err and thus (p, q) 6⊑tr(O) err per soundness.

It is also clear to see that for any (p, q) 6= (s , r ) ∈ Q 2, we

have (i , p).(p, q).(q, f ) ⇓ tr(O) but (i , p).(s , r ).(q, f ) ⇓ tr(O)
fails to hold since p 6= s or q 6= r . skip is the neutral element

of the syntactic monoid and unless |Q | = 1 it is different from

any (p, q) ∈ Q 2.

Now, we show SNF
tr(O)
0 ⊆ Q 2 ∪ {err, skip}. These are

exactly the terminal symbols, so it will suffice to show that

the set Q 2 ∪{err} is closed under concatenation up to ≡tr(O).

Concatenations that involve err or skip elements are reduced

by Axiom (M) to an element from Q 2 ∪ {err, skip}.

It remains to show the claimed congruences. For that, let

p, q, r , s ∈ Q with q 6= s and let c[•] = s . • .t be a

concatenative context with s , t ∈ W. The first observation

is that c[(p, q).(r , s)] is losing for Eve, since she can not

form a continous run, i.e. she can not reach tr(O). Then,

per Axiom (S) we get (p, q).(s , r ) ≡tr(O) err. An accepting,

continous run needs to have only three properties. Namely,

it must start from i , it must not have discontinuities, and it

must end at some f ∈ F . But, (p, q).(q, r ) and (p, r ) are both

continuous while starting and ending at the same states. So

we see that c[(p, q).(q, r )] is an accepting run if and only if

c[(p, r )] is an accepting run. Thus, (p, q).(q, r ) ≡tr(O) (p, r ).

We define δ[w] = {(p, q) ∈ Q 2 | p
v
→ q, w

∗
= v ∈ Σ+} for

all w ∈ W without err that are not skip.

Lemma 28: tr(w) ≡tr(O)

∨1 δ[w].
Proof: This is done by induction on |w|, the number of

symbols contained in w. For the base case, we have |w| = 1.

Then, tr(w) =
∨1{(p, q) | q ∈ δ(p, w)}. For the inductive

case, let w.v ∈ W unequal to err or skip by
∗
=. Then,

tr(w.v) = tr(w).tr(v)

≡tr(O)

1∨

δ[w].

1∨

δ[v]

Applying (D1) and (D2) and flattening with (L4):

≡tr(O)

1∨

{(p, q).(s , r ) |

(p, q) ∈ δ[w], (s , r ) ∈ δ[v]}

Using Lemma 27 and (L5) to remove inconsistent runs:

≡tr(O) {(p, q).(q, s) |

(p, q) ∈ δ[w], (q, r ) ∈ δ[v]}

≡tr(O)

1∨

δ[w.v]

1) Iterating the Characteristic Terms: Recall that we have

constructed TNF
tr(O)
1 to be the image of SNFO

1 under

nftr(O) ◦ tr. This poses a problem for h = 1. An Adam choice

alone can not represent the image of a SANFO
1 term under

normalization. Namely, for some
∨1

i∈I

∧1 Pi ∈ SNF
tr(O)
1 , we

might not have any p ∈ T with tr(p) ≡tr(O)

∧
Pi. So, if we

naively apply the construction for h = 1, we are forced to

iterate over a substantial subset of SNF
tr(O)
1 . This results in a



exp2(O(|O |2)) time complexity. For this reason, we compute

χ(Ctr(O)) directly, by exploiting the Myhill-Nerode right-

precongruence on the states of the DFA.

Definition 7: For any p, q ∈ Q , we have p ≤N q if and

only if for all w ∈ Σ∗, p
w
→ f ∈ F implies q

w
→ f ′ for some

f ′ ∈ F .

We extend this to pairs of states (p, p′), (q, q ′) ∈ Q 2. We

let (p, p′) ≤N (q, q ′) if and only if p = q and p′ ≤N q ′. We

call a state pair (p, q) dead, if there is no run from q to a

state in F in the DFA for O . For some c[•] ∈ Ctr(O), we call

S(c[•]) = {p ∈ SNF
tr(O)
0 | c[p] ⇓ O} the solution space of

c[•]. Towards computing χ(Ctr(O)), we show two important

facts that expose the relationship between the extended ≤N

and solution spaces of contexts.

First, we show that there is a context c[•] ∈ Ctr(O) for each

not-dead (p, q) ∈ Q 2, where S(c[•]) is the ≤N -upward closure

of (p, q).
Lemma 29: For all (p, q) ∈ Q 2 that is not dead, there is

a c[•] ∈ Ctr(O) with S(c[•]) = {(p′, q ′) ∈ Q 2 | (p, q) ≤N

(p′, q ′)}.

Proof: We claim that c[•] = (q0, p). • .
∧1

w∈P tr(w)

where P = {v | q
v
→ qf ∈ F }. Note that P 6= ∅,

because (p, q) is not dead. For (s , t) ∈ Q 2 with p 6= r ,

c[(s , t)] is losing for Eve, since (q0, p).(s , t) ≡O err per

Lemma 27. Now assume (p, s) ∈ Q 2. We use Lemma 28 and

get c[(p, s)] ≡tr(O) (q0, p).(p, s).
∧1

w∈P

∨1
Rchw. Then, Eve

wins c[(p, s)] if and only if Eve wins (q0, p).(p, s).
∨1

Rchw
for all w ∈ P . This is equivalent to w having a run from s to

some qf ∈ F for all w ∈ P , This is the definition of q ≤N s .

Then, we show that for all c[•] ∈ Ctr(O), the solution spaces

are upward closed.

Lemma 30: Let c[•] ∈ Ctr(O) and (p, q), (p′, q ′) ∈ Q with

(p, q) ≤N (p′, q ′). Then, (p, q) ∈ S(c[•]) implies (p′, q ′) ∈
S(c[•]).

Proof of Lemma 30: Wlog. let (p, q), (p, q ′) ∈ Q 2 with

(p, q) ≤N (p, q ′) and c[•] = (s , t). • .
∨1

i∈I

∧1
w∈Pi

∨1
Rchw.

If s 6= q0 or t 6= p no matter which (p, r ) is inserted to this

context, Eve can never derive a continious run. Now let c[•] =
(q0, p). • .

∨1
i∈I

∧1
w∈Pi

∨1
Rchw and assume that Eve wins

from c[(p, q)]. Then, there is an i ∈ I where for all w ∈ P ,

Eve wins (q0, p).(p, q).
∨1

Rchw. So, there is an i ∈ I where

for all w ∈ Pi, there is a run q
w
→ qf for some qf ∈ F .

The latter part of the statement and (p, q) ≤N (p, q ′) implies

that there also is a run q ′
w
→ q ′f for some q ′f ∈ F . So, from

c[(p, q ′)], Eve plays the same i ∈ I . Let Adam play some

w ∈ Pi. The resulting term is (q0, p).(p, q ′).
∨1

Rchw. So Eve

chooses (q ′, f ′) ∈ Rchw to reach (q0, p).(p, q ′).(q ′, f ′) and

win.

By applying Equation (3) along with Lemma 29 and

Lemma 30, we see that a set X ⊆ SNF
tr(O)
0 is a solution space

if and only if it is an upward closure that does not contain dead

pairs. We can iterate through all left-sides p ∈ Q and right-

sides Q ′ ⊆ Q and build the upward closures, therefore solution

spaces, in exp1(O(|O |2)) time. Recall that for c[•] ∈ Ctr(O),

we had χ(c[•]) =
∧1 S(c[•]) (Equation (2)). So, we can build

{
∧u S(c[•]) | c[•] ∈ Ctr(O)} = {χ(c[•]) | c[•] ∈ Ctr(O)} =

χ(Ctr(O)) in exp1(O(|O |2)) time.

J. Hyperproperties and Urgency

Hyperproperties emerged as a unifying approach to infor-

mation flow and security properties, which cannot be stated

as classical safety or liveness properties on a single trace. A

hyperproperty relates traces and is formulated over a set of

traces rather than a single trace. A novel approach are logics

like HyperLTL [4] to describe hyperproperties. We will stay

more general and define an n-trace hyperproperty to be any

DFA A over (Σn)∗. Note that we consider finite traces rather

than infinite ones. In particular, a hyperproperty talkes about

the relation of traces and does so in a highly synchronized

manner: A set of traces is accepted by A ensures that they

all share the exact same length. To model different traces

of the same system so that the resulting observations are

synchronized is a common problem with hyperproperties. We

will not tackle this issue here, but assume that the traces of a

system K are partitioned into sets of same length. That means

that the set of traces tr(K) ⊆ Σ∗ is partitioned into sets of

traces trl(K) ⊆ Σl of length l ∈ N.

Definition 8: Let K be a system (Kripke structure) with

trace-set tr(K) ⊆ Σ∗. An n-trace hyperproperty A is satisfied

by K, K |= A, if there is l ∈ N such that

∃w1 ∈ trl(K)∀w2 ∈ trl(K) . . . Qwn ∈ trl(K).

n∏

i=1

wi ∈ L(A)

The definition might be non-intuitive at first glance: Only for

a single length l, the set trl(K) has to satisfy the hyperproperty.

Further, every hyperproperty begins to quantify with an ∃
quantifier. This makes it impossible to formulate hyperproper-

ties from the ∀∃-fragment of HyperLTL. However, the ability

to deterministically decide hyperproperties of the above shape

is already sufficient to decide any hyperproperty, including

ones that start with ∀, for which we check its negation.

We show how to model check a hyperproperty by translating

the system K and the hyperproperty A into a term p and an

objective O , such that A is satisfied by K if and only if p ⇓ O .

Intuitively, we model the quantifiers in Definition 8 by the

players. Each quantifier is resolved in one level of urgency

throughout the whole term. Only then, and in knowledge of

the resolution of previous quantifiers, a player resolves the next

quantifier. Formally, we define the terms pi for i ∈ [1, n+ 1]
over the alphabet Σ = δ by induction:

pn+1 = skip pi =

{∨n−i+1
δ.pi+1 i odd

∧n−i+1
δ.pi+1 i even

The final term p is a single non-terminal p = A with E (A) =
skip ∨n p1.A. This lets Eve choose the first trace and while

doing so, she also fixed the length of the considered traces.

For the objective O , we want to capture the hyperproperty

A, which already is a DFA. For the transformation to O we

only need to transform the input alphabet from δn to δ and



make sure the players choose actual traces of the system K.

Technically, for a word w ∈ (Σn)∗, we obtain wi ∈ Σ∗ by

restricting w to the ith component. We define the flattening flat

of a word in (Σn)∗ to Σ∗ inductively by flat(skip) = skip and

flat((t1, . . . , tn).v) = t1 . . . tn.flat(v). We set the set of correct

runs on component i by Oi = {w ∈ (Σn)∗ | wi ∈ tr(K)}.

O = flat(L(A) ∩
⋂

i odd

Oi ∪
⋃

i even

Oi)

Note that |O | is linear in |A|+ |K|.
Theorem 6: K |= A if and only if p ⇓ O .

Proof: By construction, p ⇓ O if and only if there is

l ∈ N with (p1)
l ⇓ O , because unrolling A an infinite number

of times yields the win to Adam.

Next we inspect the terms p(w1, . . . , wm) that can occur

whenever urgency n−m is next to be resolved. Here, wi are

from trl(K) and for odd i are chosen corresponding to the

∃-quantifiers. By construction, p(w1, . . . , wm) has shape

t1,1t2,1 . . . tm,1pm+1 . . . t1,lt2,l . . . tm,lpm+1 .

where wi = ti,1 . . . ti,l.
We prove the statement: Eve wins p(w1, . . . , wm) ⇓ O

if and only if m is even and there is wm+1 ∈ trl(K)
with p(w1, . . . , wm, wm+1) ⇓ O , or m is odd and for all

wm+1 ∈ trl(K) holds p(w1, . . . , wm, wm+1) ⇓ O .

If m is even, then Eve can choose a sequence wm+1 ∈ δl to

transform p(w1, . . . , wm) into p(w1, . . . , wm, wm+1). If she

chooses a word outside trl(K) she loses due to Om+1. Thus,

she wins if and only if there is wm+1 ∈ trl(K) she can choose

and p(w1, . . . , wm, wm+1) ⇓ O .

The case of m odd is similar.

Finally, n = m makes pm+1 = skip, so p(w1, . . . , wn) ⇓ O

if and only if p(w1, . . . , wn) ∈ flat(L(A)) by definition.

The complexity of checking an n-trace hyperproperty

K |= A using this approach is (2n− 1)−EXPTIME bounded

(Corollary 1). This is still far from optimal, considering that n-

trace hyperproperties can be decided in (n−1)−EXPSPACE

[4]. The overhead stems from the shape of normalforms,

which allow for Adam and Eve choices in each layer of

urgencies, while our approach produces only one type of non-

determinism for each urgency. We intend to investigate this

special case in a separate study.

K. Model Checking Hyperproperties for Recursive Programs

Checking hyperproperties on pushdown systems is known

to be undecidable in the general case [5]. But showing it

undecidable does not satisfy the desire to check recursive

programs against hyperproperties. Indeed, a first approach was

proposed directly in [5], where one type of quantifier has to

work with finite state approximations instead of the actual

system. We take a different route to restrict the general setting.

To motivate the restriction, consider the algorithm in Listing 2

for multiplication of high-bit numbers.

1 bit[] KM(bit[] x, bit[] y) {

2 if (len(x) < 64) return (int) x * (int) y;

3

4 mid = len(x) / 2;

5 x1 = x[:mid];

6 y1 = y[:mid];

7 x2 = x[mid+1:];

8 y2 = y[mid+1:];

9

10 z2 = KM(x1, y1);

11 z0 = KM(x2, y2);

12 z1 = KM(x1 + x2, y1 + y2) - z2 - z0;

13

14 return (z2 << 2mid) + (z1 << mid) + z0;

15 }

Listing 2: Karatsuba multiplication.

The algorithm performs a high-bit multiplication of two num-

bers x and y. Instead of naively multiplying 64-bit windows

of the bit streams, the algorithm recursively splits the inputs

in half. It performs 3 multiplications on the half-sized integers

and adds them together for the final result. The actual algo-

rithm needs some more care for bit-overflows, but we shall

ignore it here.

Algorithms like Listing 2 are used by security protocols like

OpenSSL [40]. A known weakness of security protocols are

timing-based attacks [41], [42]. In these attacks, one does not

run the program once to derive a secret. Instead, we measure

its execution time over multiple runs with different controllable

inputs and deduct secret values used by the program from the

measured execution times. So, safety from timing attacks can

be obtained by requiring a 2-trace hyperproperty on KM: For all

traces w, v of KM, their execution time does not differ. We do

not go into modelling details of how to phrase this property

as a DFA A. But we make one crucial discovery when we

want to compare multiple runs of the Karatsuba algorithm: Its

recursion depth is only dependent on the length of x and y,

a parameter that is very often public knowledge. Even more

important, runs of different recursion depth have close to no

chance for a similar execution time. The previously stated

hyperproperty would very likely not be satisfied. But when the

recursion depth parameter is usually known, we instead want

to ask for a different hyperproperty to hold: For all recursion

depths d, and for all traces w, v with recursion depth d, their

execution time does not differ. More generally speaking, the

traces w and v agree on their recursive structure. We utilize

this observation and restrict our check for a hyperproperty A
to sets of traces that agree on their recursive structure.

1) Recursive Programs: We consider the following simple

language, where we abstract away from the actual commands

and focus on the recursion principle of the language.

c ::= a | f() | c.c | if e c:c

f ::= f() -> c.return

We have commands a ∈ Σ to modify the state, function calls

f() and concatenation. Parameters and return values are passed

to/from f by state-manipulation. A program P = (F ,E ) is a

set of function symbols F with a distinguished initial function

main ∈ F and the function definitions E .

2) Semantics and Recursion Structure: We assume the

domain of booleans D = [V → B]. The semantics are kept



arbitrary for expressions [[e]] : D → B and commands [[a]] :
D → D. Semantics of function calls and concatenation are

as expected. if-statements branch left on non-zero evaluation

and right on zero. For the further development, we also require

a special command assume e ∈ Σ. Its semantics operate

on a fresh variable η and are tuned to observe whether an

assume command failed.

[[assume e]](d) =

{

d [[e]](d) = true

d[η 7→ true] [[e]](d) = false

A branching of P is a finite tree t (a prefix closed

subset of N
∗) with a labelling cmd. The labelling assigns

nodes of t commands a, function calls f, and return

statements. The root node is labeled with cmd(ε) = main.

Nodes tn labelled by cmd(tn) = a or return are leaves.

A cmd(tn) = f(n)-labelled node has children corresponding

to one branch of their body c. The set of branches br(c) is

br(a) = {a} br(f()) = {f} br(c1.c2) = br(c1).br(c2)

br(if e c1:c2) = assume e.br(c1) ∪ assume !e.br(c2)

So if w ∈ br(c) is the chosen branch, then tn has |w| children

labelled by the corresponding a, f, or return in w.

A trace of P is a pair (cmd, st) where cmd is a branching

with domain t and st : t → D is a state assignment. Every

node tn is labelled by st(tn) ∈ D, the state of the program

before execution of cmd(tn), st(ε) ∈ D is the input state.

Consider node tn with cmd(tn) = f, so the children are one

branch of its defining body. Its leftmost child tn.0 inherits

the state, st(tn.0) = st(tn). The rightmost child tn.m has

label cmd(tn.m) = return and yields back [[f]](st(tn)) =
st(tn.m). Intermediate children tn.i just carry out their seman-

tics to the next node by st(tn.i+1) = [[cmd(tn.i)]](st(tn.i)).

A recursion structure r for P is a tree labelling r : t → F .

The internal of a tree t is the set int(t) = {tn | tn.0 ∈ t}.

Definition 9: A branching cmd has recursion structure r if

int(dom cmd) = dom r and cmd and r coincide on dom r.

The recursive structure thus identifies runs that differ only in

st and the actual commands executed, but the function calls

are exactly the same. We say (cmd, st) is an r-trace when cmd

has recursion structure r. A recursion structure r is proper, if

there is an r-trace of P .

3) Checking Hyperproperties for similar Recursion Struc-

ture: We define the yield yld(t) of a tree as usual. The

set of trace-observations with recursion structure r is the set

trr(P) = {yld(cmd) | (cmd, st) is an r-trace of P} ⊆ Σ∗.

Definition 10: Let A be an n-trace hyperproperty. A pro-

gram P satisfies A, P |= A, if there is a proper recursion

structure r with

∃w1 ∈ trr(P)∀w2 ∈ trr(P) . . . Qwn ∈ trr(P).

n∏

i=1

wi ∈ L(A)

To present our approach, we assume that programs are

prefix-branching. We call a program P prefix-branching when

function calls are never succeeded by commands a ∈ Σ. For-

mally, we assume the program code stems from the following,

slightly different grammar:

f ::= f() | f .f

c ::= a | c.c

pb9c ::= f | c.pb9c | if e pb9c:pb9c

f ::= f() -> pb9c.return

Note, that this is not only a presentational decision. While

every program P has an equivalent representation in prefix-

branching form, the translation incurs more functions and

thus, fixing a recursion structure may fix more behavior (e.g.

branching beyond function calls) than desired. This means

that we actually restrict our class of programs by enforcing

prefix-branching. We do not exactly know, how impactful the

restriction is for practical code, but our example (Listing 2)

exerts the desired structure (up to parameter passing).

Theorem 7: P |= A is decidable for prefix-branching P .

Similar as for the finite state case, we will translate P
and A into a term p and an objective O . The intent is to

first fix a recursion structure, and then replay the call of a

function f with function body c by the rewriting of a non-

terminal f into a term p(f). Term p(f) basically chooses the

branch through c. For prefix-branching, a branch is a word

from Σ∗F∗. With a fixed recursive structure also the sequence

of function calls in c is fixed. For a fixed sequence of function

calls f = f1 . . .fm the set of available prefixes is captured

by brf (c) ⊆ Σ∗ with

brf (c).f = br(c) ∩ Σ∗.f .

We assume that all command prefixes (the Σ∗ part) in brf (c)
share the same length, brf (c) ⊆ Σl for some l ∈ N.

Similar to the finite state case this is a modelling issue for

synchronization towards A. It can be achieved by introducing

skips to branches too short. Since br(c) is finite, there is only

a finite set of occurring function call sequences f (c) = {f |
brf (c) 6= ∅}. Finally, we define p(f) in a term game (F ,E )
with E (f) = p(f).

p
c,f
n+1(w1, . . . , wn) = flat(w1, . . . , wn)

p
c,f
i (w1, . . . , wi−1) =

{∨n−i+1
wi∈brf (c)

p
c,f
i+1(w1, . . . , wi) i odd

∧n−i+1
wi∈brf (c)

p
c,f
i+1(w1, . . . , wi) i even

p(f) =

n∨

f∈f (c)

p
c,f
1 ().f

It remains to model the objective O . As before, we construct

sets Oi ⊆ (Σn)∗ for i ∈ [1, n].

O = flat(L(A) ∩
⋂

iodd

Oi ∪
⋃

ieven

Oi)

Oi = {w ∈ (Σn)∗ | [[wi]](η) = true}

A command sequence w ∈ Σ∗ operates on the specific finite

domain D. These language is regular because D is finite.

Theorem 8: main ⇓ O if and only if P |= A.



Proof Sketch: Notice that the set of all reachable word

terms from p
c,f
1 is exactly flat(brf (c)

n). So by construction,

playing from main until the term has no more non-terminals

yields a term pr for some recursion structure r, where the

reachable word terms form precisely the set flat(brr(P)n),
where brr(P) = {yld(cmd) | cmd is an r-branching}. As

before, the alternative is that there is an infinite rewriting of

non-terminals, in which case Eve loses. Thus, main ⇓ O if

and only if there is r such that pr ⇓ O .

Next we again inspect the terms p(w1, . . . , wm) that can

occur whenever urgency n−m is next to be resolved (at first,

we have pr = p() with m = 0). This time, wi are from trr(P)
and for odd i are chosen corresponding to the ∃-quantifiers.

By construction, p(w1, . . . , wm) has shape

p
c1,f 1

m+1 (w
1
1 , . . . , w

1
m). . . . .pcl,f l

m+1(w
l
1, . . . , w

l
m) ,

where c1 . . . cl is the depth-first left to right traversal of r.

We prove: p(w1, . . . , wm) ⇓ O if and only if m is even

and there is wm+1 ∈ trr(P) with p(w1, . . . , wm, wm+1) ⇓
O , or m is odd and for all wm+1 ∈ trr(P) we have

p(w1, . . . , wm, wm+1) ⇓ O .

If m is even, then Eve can choose a sequence of branches

wi
m+1 ∈ brf i(ci) which together form the yield of a branching

wm+1 = w1
m+1 . . . w

l
m+1 ∈ brr(P). She does so by trans-

forming p(w1, . . . , wm) into p(w1, . . . , wm, wm+1). If she

chooses a branching which has no trace wm+1 /∈ trr(P) she

loses due to Om+1. Thus, she wins if and only if there is

wm+1 ∈ trr(P) to choose and p(w1, . . . , wm, wm+1) ⇓ O .

The case of m odd is similar.

The final case of n = m implies that the immediate terms

are p
ci,f i

m+1(w
i
1, . . . , w

i
m) = flat(wi

1, . . . , w
i
n) and by definition

of ⇓ for word terms, p(w1, . . . , wn) ⇓ O if and only if

p(w1, . . . , wn) ∈ flat(L(A)).

L. Lower Bound Details

Construction, Objective: The set of terminal symbols Σ
consists of assignments x := val and assertions x=! val of the

variables fu ∈ Q ∪ {−}, su ∈ Q ∪ {−}, and cu ∈ {nxt, sty}
for each 0 < u ≤ h, along with a variable gn ∈ {+,−}.

In the parts of the play, where the urgency of the term is

0 < u ≤ h, variable fu will keep track of the first MPDG

state, the variable su will keep track of the latest MPDG state,

and cu ∈ {nxt, sty} will be used to enforce the correctness

of context switches. The variable gn ∈ {+,−} keeps track of

whether the game has generated the second stack by making

the first context switch. The objective DFA A processes the

updates and assertions on the values of these variables. For

each 0 < u ≤ h, the DFA also keeps an assertion failure flag

erru ∈ {⊥,⊤}, that records whether there has been assertion

failure for fu, su, cu, and gn. If an assertion failure happens

for one of these variables, then erru is irrevocably set to ⊥.

In the initial state i , we have gn = fu = su = −, cu = st,
and erru = ⊤ for all 0 < u ≤ h. The DFA A accepts if and

only if s1 ∈ F , there are no assertion errors (erru = ⊤ for all

0 < u ≤ h), and the latest states are consistent with the first

states (su+1 = fu for all 0 < u < h).

Construction, Assignments: We now move on to the

construction of the defining assignments. Each stack symbol

is represented by a different term for each urgency. The set

of non-terminals is N = {xu
NT | x ∈ Γ, 0 < u ≤ h}. The

representation of an individual stack symbol for urgency u,

wraps the corresponding non-terminal in a unary choice with

urgency u. Formally the representing term is the singleton

choice xu =
∨u xu

NT for all 0 < u ≤ h. This ensures that the

u-representation of a stack symbol has urgency u (remember

that non-terminals have highest urgency). Furthermore, the

term that represent the stack symbol must be the leftmost

action. This allows a concatenation of terms that represent

stack symbols to act like one stack in the MPDG. The defining

assignments E : N → T are laid out below for all xu
NT ∈ N .

We use helper terms to simplify the representation. For all

u ≤ h, v < h, p, q ∈ Q , x ∈ Γ, and w ∈ x≤2 we have:

E (xu
NT ) = (cu =! nx.x

u−1) ∨u (cu =! st.Popux)

Popux =
u∨

p∈Q

su =! p.〈δp,x〉
u 〈δp,x〉

u =
u

ì

t∈δp,x

〈t〉ux

〈(p, x, w, q)〉ux = su := q.wu
0 . . . w

u
n

〈(p, nx, q)〉hx = (gn=! −.gn := +.$h.@.xh) ∨h

(gn=!+.sh := q.ch := nx.xh)

〈(p, nx, q)〉vx = sv := q.cv := nx.xv

@ = c1 := st . . . ch := st

Hu = Hu−1.

u∨

p∈Q

fu := p.su := p

The initial term for the game is simply Hh−1.$h.@. The

terminals 〈→ st〉u and 〈→ nx〉u used in the main paper refer

to the assertions cu =! st and cu =! nx. At context switches

in urgency h, Eve also needs to “guess” whether the second

stack has been generated. In the case where it has not yet been

generated, the correct choice generates it. In the case where

it has already been generated, the correct choice triggers a

context switch in the usual way.

M. Denotational Semantics

We show how to define a denotational semantics based

on our axiomatization. What we find interesting is that, with

the axiomatization at hand, the denotational semantics is a

derived construct: the semantic domain and the interpretation

of function symbols are induced by the axiomatization, yet

the semantics is guaranteed to be fully abstract wrt. contextual

equivalence resp. its specialized variant. The creativity that is

saved in the definition of the semantics of course had to be

invested up front when coming up with the axiomatization. We

found it easier to study an axiomatization than a denotational

semantics, because the problem is narrowed down to under-

standing the interplay between operators as opposed to coming



up with a freely chosen semantic domain. We recall the basics

of denotational semantics before turning to the details.

A denotational semantics for our programming language is

a pair ((D,⊆), I) consisting of a complete partial order (D,⊆)
of semantic elements and an interpretation I : F → Dω → D
that assigns to each function symbol f ∈ F in our language

a monotonic function fI : Dar(f ) → D of the expected arity.

The function symbols F are Σ, {skip, err, .}, and choices of

arbitrary arity with urgency 1 to h. We lift the interpretation to

all terms p and assign them an element D(p) ∈ D, called the

denotational semantics of the term. For recursion-free terms,

the lifting is purely compositional:

D(a) = aI D(p.q) = D(p).ID(q),

and similar for the other function symbols. For the non-

terminals (N,E ), this allows us to understand the defining

equations as a monotonic function

EI : (N → D) → N → D.

The least solution of this function is the denotational semantics

of the non-terminals: D(A) = [lfp.EI ](A) for every A ∈ N .

This is the missing case to define the semantics of arbitrary

program terms again in a compositional way.

We focus on the denotational semantics induced by the

axiomatic congruence. The development for the O -specialized

axiomatic congruence with O right-separating is the same.

If O is not right-separating, we cannot give a guarantee that

the resulting semantics will be fully abstract. The denotational

semantics induced by ≡ is ((D≡,⊑), I≡). The set of semantic

elements is D≡ = T/≡, we factorize the set of terms along

the axiomatic congruence. The complete partial order on

these congruence classes is the one given by the axiomatic

precongruence. It is guaranteed to be well-defined due to the

precongruence. It is guaranteed to stabilize in an ordinal by

the fact that chains are well-ordered sets. The interpretation

of the function symbols is as expected:

aI≡ = [a]≡ [p]≡ .I≡ [q]≡ = [p.q]≡.

Well-definedness holds because ≡ is a congruence, mono-

tonicity holds because ⊑ is a precongruence. The semantics

is fully abstract wrt. contextual equivalence, D(p) = D(q)
iff p � q , which is merely a reformulation of Theorem 1.

We can define other fully abstract semantics by introducing

representative systems on the congruence classes, for example

based on normal forms.
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