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Abstract. In model-driven design, the structure of software is com-
monly specified by meta-models like uml class diagrams. In this paper
we study how graph grammars can be used for this purpose. We extend
context-free hyperedge-preplacement—which is not powerful enough for
this application—so that rules may not only access the nodes attached
to the variable on their left-hand side, but also nodes elsewhere in the
graph. Although the resulting notion of contextual hyperedge replace-
ment preserves many properties of the context-free case, it has consid-
erably more generative power—enough to specify software models that
cannot be specified by class diagrams alone.

1 Introduction

Graphs are ubiquitous in science and beyond. When graph-like diagrams are
used to model system development, it is important to define precisely whether
a diagram is a valid model or not. Often, models are defined as the valid instan-
tiations of a meta-model, e.g, the valid object diagrams for a class diagram in
uml. A meta model is convenient for capturing requirements as it can be refined
gradually. It is easy to check whether a given model is valid for a meta-model.
However, it is not easy to construct valid sample models for a meta-model, and
they give no clue how to define transformations on all valid models. Also, their
abilities to express structural properties (like connectedness) are limited; textual
constraints (e.g., in ocl) have to be used in such cases.

In contrast to meta-models, graph grammars derive sets of graphs construc-
tively, by applying rules to a start graph. This kind of definition is strict, can
easily produce sample graphs by derivation, and its rules provide for a recursive
structure to define transformations on the derivable graphs. However, it shall
not been concealed that validating a given graph, by parsing, may be rather
complex.

General graph grammars generate all recursively enumerable sets of graphs
[19] so that there can be no parsing algorithm. Context-free graph grammars
based on node replacement or hyperedge replacement [8] do not have the power
to generate graphs of general connectivity, like the language of all graphs, of all
acyclic, and all connected graphs etc. From this, we conclude that practically
useful kinds of graph grammars should lie in between context-free and general
ones. Hyperedge replacement is a solid basis for devising such grammars, as it
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has a comprehensive theory, and is very simple: A step removes a variable (rep-
resented as a hyperedge) and glues the fixed ordered set of nodes attached to it
to distinguished nodes of a graph. The authors have been working on several ex-
tensions of hyperedge replacement. Adaptive star replacement [3], devised with
D. Janssens and N. Van Eetvelde, allows variables to be attached to arbitrary,
unordered sets of nodes. Their generative power is sufficient for defining sophis-
ticated software models like program graphs [6]. Nevertheless, they inherit some
of the strong properties of hyperedge replacement. Unfortunately, adaptive star
rules tend to have many edges, which makes them hard to understand—and to
construct. Therefore the authors have devised contextual graph grammars, where
variables still have a fixed, ordered set of attached nodes, but replacement graphs
may be glued, not only with these attachments, but also with nodes occurring
elsewhere in the graph, that have been derived in earlier derivation steps [13]. As
we shall show, their generative power suffices to define non-context-free models.
Typically, contextual rules are only modest extensions of hyperedge replacement
rules, and are significantly easier to write and understand than adaptive star
rules. This qualifies contextual hyperedge grammars as a practical notation for
defining software models. When we add application conditions to contextual
rules, as we have done in [13], even subtler software models can be defined.
Since conditions are a standard concept of graph transformation, which have
been used in many graph transformation systems (see, e.g., progres [18]), such
rules are still intuitive.

This paper aims to lay a fundament to the study of contextual hyperedge re-
placement. So we just consider grammars without application conditions for the
moment, as our major subjects of comparison, context-free hyperedge replace-
ment and adaptive star replacement, also do not have them. With context-free
hyperedge replacement, contextual hyperedge replacement shares deciability re-
sults, characterisations of their generated language, and the existence of a pars-
ing algorithm. Nevertheless, it is powerful enough to make it practically useful
for average structural models. If it is extended by recursive application condi-
tions [11], which allow to express requirements regarding the (non-) existence of
paths in the graph, it reaches the expressiveness of adaptive star grammars.

The remainder of this paper is structured as follows. In Section 2 we introduce
contextual hyperedge replacement grammars and give some examples. Normal
forms for these grammars are presented in Section 3. In Section 4 we discuss some
of their limitations wrt. language generation, and sketch parsing in Section 5.
We conclude with some remarks on related and future work in Section 6.

2 Graphs, Rules, and Grammars

In this paper, we consider directed and labeled graphs. We only deal with ab-
stract graphs in the sense that graphs that are equal up to renaming of nodes
and edges are not distinguished. In fact, we use hypergraphs with a generalized
notion of edges that may connect any number of nodes, not just two. Such edges
will also be used to represent variables in graphs and graph grammars.
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We consider labeling alphabets C = Ċ ⊎ C̄ ⊎X that are sets whose elements
are the labels (or “colors”) for nodes, edges, and variables, with an arity function
arity : C̄ ⊎X → Ċ∗.4

A labelled hypergraph over C (graph, for short) G = 〈Ġ, Ḡ, attG, ℓ̇G, ℓ̄G〉 con-
sists of disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short)
respectively, a function attG : Ḡ → Ġ∗ that attaches sequences of pairwise dis-
tinct nodes to edges so that ℓ̇∗G(attG(e)) = arity(ℓ̄G(e)) for every edge e ∈ Ḡ,5

and labelling functions ℓ̇G : Ġ → Ċ and ℓ̄G : Ḡ → C̄⊎X. Edges are called variables
if they carry a variable name as a label; the set of all graphs over C is denoted
by GC .

For a graph G and hyperedge e ∈ Ḡ, we denote by G− e the graph obtained
by removing e from G. Similarly, for v ∈ Ġ, G − v is obtained by removing v
from G (together with all edges attached to v).

Given graphs G and H, a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserves labels and attachments:

ℓ̇H ◦ ṁ = ℓ̇G, ℓ̄H ◦ m̄ = ℓ̄G, attH(m̄(e)) = ṁ∗(attG(e)) for every e ∈ Ḡ

As usual, a morphism m : G → H is injective if both ṁ and m̄ are injective.
The replacement of variables in graphs by graphs is performed by applying

a special form of standard double-pushout rules [7].

Definition 1 (Contextual Rule). A contextual rule (rule, for short) r =
(L,R), consists of graphs L and R over C such that

– the left-hand side L contains exactly one edge x, which is required to be a
variable (i.e., L̄ = {x} with ℓ̄L(x) ∈ X) and

– the right-hand side R is an arbitrary supergraph of L− x.

Nodes in L that are attached to x are its neigbors,6 whereas the others are
the contextual nodes of L (and of r); r is context-free if it has no contextual
nodes. (Context-free rules are known as hyperedge replacement rules in the lit-
erature [10,2].)

Let r be a contextual rule as above, and consider some graph G. An injective
morphism m : L → G is called a matching for r in G. The replacement of the
variable m(x) ∈ G by R (via m) is the graph H obtained from the disjoint union
of G−m(x) and R by identifying every node v ∈ L̇ with m(v). We write this as
H = G[R/m].

Note that contextual rules are equivalent to contextual star rules as intro-
duced in [13], however without application conditions.

The notion of rules introduced above gives rise to a class of graph grammars.
We call these grammars contextual hyperedge-replacement grammars, or briefly
contextual grammars.

4 A∗ denotes the set of finite sequences over a set A; the empty sequence is denoted
by ε.

5 For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences is defined by
f∗(a1, . . . , an) = f(a1) . . . f(an), for all ai ∈ A, 1 6 i 6 n, n > 0.

6
Bert: Nachbarn brauche ich für replizierbare Teilgraphen.
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Fig. 1. Rules (generating the language of all graphs)
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Fig. 2. A derivation of a graph with the rules in Figure 1

Definition 2 (Contextual Hyperedge-Replacement Grammar). A con-
textual hyperedge-replacement grammar (contextual grammar, for short) is a
triple Γ = 〈C,R, Z〉 consisting of

– a finite labeling alphabet C,
– a finite set R of rules, and
– a start graph Z ∈ GC .

IfR contains only context-free rules, then Γ is a hyperedge replacement grammar.
We let G ⇒R H if H = G[R/m] for some rule (L,R) and for a matching
m : L → G. Now, the language generated by Γ is given by

L(Γ ) = {G ∈ GC\X | Z ⇒∗
R G}.

Contextual grammars Γ and Γ ′ are equivalent if L(Γ ) = L(Γ ′). The classes of
graph languages generated by hyperedge-replacement grammars and contextual
grammars are denoted by HR and CHR, respectively.

Notation (Drawing Conventions for Graphs and Rules). Graphs are
drawn as in Figure 2 and Figure 4. Circles and boxes represent nodes and edges,
respectively. The text inscribed to them is their label from C. (If all nodes carry
the same label, these are just omitted.) The box of an edge is connected to the
circles of its attached nodes by lines; the attached nodes are ordered counter-
clockwise around the edge, starting in its north. The boxes of variables are drawn
in gray. Terminal edges with two attached nodes may also be drawn as arrows
from the first to the second attached node. In this case, the edge label is ascribed
to the arrow.

In figures, a contextual rule r = (L,R) is drawn as L : : =R. Small numbers
above nodes indicate identities of nodes in L and R. L : : =R1|R2 · · · is short
for rules L : : =R1, L : : =R2, . . . with the same left-hand side. Subscripts “n” or
“n|m· · · ” below the symbol : : = define names that are used to refer to rules in
figures of derivations. See Figure 1 and Figure 3.



Contextual Hyperedge Replacement 5

0

D

: : =
h|a|b

0

|

0

D

|

0

⊕

⊖

D D

0

D

1

: : =
g

0

1

Z =
D

Fig. 3. Rules generating unrestricted control flow diagrams

Example 1 (The Language of All Graphs). The rules shown in Figure 1 generate
the set A of loop-free labeled graphs with binary edges. The rule set N (which is
context-free) generates the nodes, and the rule set E inserts the outgoing edges
from a node to another node, which is required to exist in the context. The
derivation in Figure 2 produces a triangular graph with three nodes and edges.

It is well known that the language GC of all graphs over C cannot be defined
by hyperedge-replacement grammars [10, Chapter IV, Theorem 3.12(1)]. Thus,
as CHR contains HR by definition, we have:

Observation 1. HR ( CHR.

Context-free hyperedge-replacement grammars can be used to generate the
sets of all structured and semi-structured control flow diagrams [2], but con-
textual grammars are needed for unrestricted control flow diagrams (that have
unbounded tree-width and can, therefore, not be generated by context-free hy-
peredge replacement).

Example 2 (Control Flow Diagrams). Unrestricted control flow diagrams repre-
sent sequences of low-level instructions according to a syntax like this:

I : : = [ℓ :]halt | [ℓ :]x := E | [ℓ1 :] if E then goto ℓ2 | [ℓ1 :]goto ℓ2

The rules in Figure 3 generate unrestricted flow diagrams. The first three rules,
h, a, and b, generate control flow trees, and the fourth rule g, which is not
context-free, inserts gotos to a program state in the context. In Figure 4, these
rules are used to derive an “ill-structured” flow diagram.

3 Normal Forms of Contextual Grammars

In this section, we study the basic properties of contextual grammars . As it turns
out, these properties are not fundamentally different from the properties known
for the context-free case. This indicates that contextual hyperedge replacement is
a modest generalization of hyperedge replacement that, to the extent one might
reasonably hope for, has appropriate computational properties.

Let us first look at some normal forms of contextual grammars. We say
that a restricted class C of contextual grammars is a normal form of contextual
grammars (of a specified type) if, for every contextual grammar (of that type),
one can effectively construct an equivalent grammar in C.
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Lemma 1. Contextual grammars in which each rule contains at most one con-
textual node are a normal form of contextual grammars.

Proof. Straightforward, by collecting contextual nodes one by one using chain
rules (see below), thus turning all original rules into context-free rules. ⊓⊔

In the context-free case, so-called epsilon rules and chain rules can easily
be removed from a grammar. A similar modification is possible for contextual
grammars. In this context, a rule (L,R) with L̄ = {x} is an epsilon rule if
R = L−x, and a chain rule if R−y = L−x for a variable y ∈ R̄. Note that both
epsilon and chain rules are more general than in the context-free case, because L
may contain contextual nodes. In particular, chain rules can make use of these
contextual nodes to “move” a variable through a graph. In the case of epsilon
rules, the effect of contextual nodes is that the removal of a variable is subject
to the condition that certain node labels are present in the graph.

Lemma 2. Contextual grammars with neither epsilon nor chain rules are a
normal form of contextual grammars that do not generate the empty graph.

Proof Sketch. Assume that Γ = 〈C,R, Z〉 is a contextual grammar, and let
Rchain and Rε be the sets of epsilon and chain rules of Γ , respectively.

We first describe how rules can be composed by, intuitively, applying the
second one to a variable in the first one. For this, consider rules r1 = (L1, R1)
and r2 = (L2, R2), such that R1 contains a variable with the same name as the
variable in L2. We want to be able to combine both rules even if R1 does not
supply r2 with all the necessary contextual nodes. For this to be possible, we
have to enrich L1 with the contextual nodes needed by r2. However, we want to
do this in an economical way. Intuitively, if r1 contains nodes that are isolated
in both L1 and R1 (we call such nodes free), we can just as well use them rather
than introducing even more contextual nodes. This is formalized next, in the
notion of combinators.

A combinator of r1 and r2 is an injective morphism c : L′
2 → R1 such that
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– the graph L′
2 is a subgraph of L2 that includes the variable of L2, and

– no free node of r1 that is outside the image of c has the same label as a node
in L̇2 \ L̇

′
2.

Given such a combinator, the combined rule r1 •c r2 = (L,R) is constructed
as follows: Let r′ = (L′, R′) be obtained from r1 by disjointly adding the nodes
in L̇2 \ L̇

′
2 to L1 and R1 (as isolated nodes). Let c′ : L2 → R′ be the extension

of c to L2 and R′ being the identity on L̇2 \ L̇
′
2. Then R = R′[R2/c

′].
For sets R1,R2 of rules, we let R1 • R2 be the set of all r1 •c r2, for all

r1 ∈ R1, r2 ∈ R2, and suitable combinators c. Moreover, let R•
1 be the closure

of R1 under •c, for arbitrary combinators c. Note that, for sets R1 of chain and
epsilon rules, R•

1 is finite if R1 is.
Now, let us sketch how to remove epsilon rules. For simplicity, we assume

that, for all ξ ∈ X, there is a graph Lξ with the following property: If (L,R) is
a rule in R such that the unique variable in L is labeled with ξ, then L = Lξ.
This can, in fact, be shown to be another normal form of contextual grammars
and is, thus, no restriction.

Now, let k be the maximal number of nodes with the same label in the
graphs Lξ. We observe first that, in every derivation, it can be assumed that
derivation steps using a number of chain rules followed by an epsilon rule occur
only after all steps using other rules. Thus, to know whether an epsilon rule will
finally be applicable to a given variable, it suffices to know how many nodes
of each label will finally be generated. Therefore, we modify Γ in such a way
that it implements a guess-and-verify strategy, where every variable name ξ is
equipped with mappings gξ, lξ : Ċ → [k]. Intuitively, gξ(a) = mmeans that (it has
been guessed that) the graph generated will eventually contain at least m nodes
labeled with a. This information is simply propagated through the derivation.
For the verification part, lξ(a) = n 6 m means that the sub-derivation resulting
from the current variable will generate (i.e., still has to generate) n of these m
nodes. Now, consider the set X0 of all variable names that appear as labels in
the left-hand sides of rules in R•

chain • Rε. In other words, these are the names
of variables for which an epsilon rule (Lξ, Lξ − x) exists. We consider every rule
r = (L : : =, R) such that all names ξ of variables in R satisfy lξ(a) = 0 for all

a ∈ Ċ, and check whether their variables can be eliminated, in this way creating
terminal rules that incorporate the epsilon rules and make them superfluous
(similar to the construction known from the context-free case). To see how this
can be done, let x be a variable in R, labeled with ξ. Then it is safe to delete x
if ξ ∈ X0 and the number of a-labeled nodes in Lξ is at most gξ(a), for all a ∈ Ċ.
If this is the case for a subset V of the variables in R, we add the rule r′ to Γ ,
obtained by removing all variables in V from R. When all such rules have been
added to the grammar, the (now superfluous) epsilon rules are removed.

Finally, let us sketch how to remove the chain rules from Γ , assuming that
it does not contain epsilon rules. For this, the following observation is crucial.
Consider a derivation G0 ⇒R G1 ⇒R · · · ⇒R Gm that consists of m− 1 appli-
cations of chain rules followed by a single application of another rule. Suppose
the variables replaced are x1, . . . , xm, and let 1 6 i1 < · · · < in = m be those
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indices such that xm = xin is a direct descendant of xin−1
, which is a direct de-

scendent of xin−2
, and so on. Then all derivation steps that replace variables in

{xi1 , . . . , xin} can be postponed until after the other m−n steps. This is because
the chain rules do not create nodes that the other rules may use as contextual
nodes. In other words, we can assume that ij = m − n + j for all j ∈ [n]. As a
consequence, we can modify Γ as follows: we add all rules in R•

chain •(R\Rchain)
to R and remove all chain rules. Thanks to the observation above, the language
generated stays the same. ⊓⊔

Note that, unfortunately, it seems that the normal forms of the previous two
lemmas cannot be achieved simultaneously.

Definition 3 (Reducedness of Contexual Grammars). In a contexual
grammar Γ = 〈C,R, Z〉, a rule r ∈ R is useful if there is a derivation of the
form Z ⇒∗

R G ⇒r G′ ⇒∗
R H such that H ∈ GC\X . Γ is reduced if every rule in

R is useful.

Note that, in the case of contextual grammars, usefulness of rules is not
equivalent to every rule being reachable (i.e., for some G′, the part of the deriva-
tion above up to G′ exists) and productive (i.e., for some G, the part starting
from G exists), because it is important that the pairs (G,G′) are the same.

Theorem 1. Reducedness is decidable for contextual grammars.

Proof Sketch. Let us call a variable name ξ useful if there is a useful rule whose
left-hand side variable has the name ξ. Clearly, it suffices to show that it can be
decided which variable names are useful. To see this, note that we can decide
reducedness by turning each derivation step into two, first a context-free step
that nondeterministically “guesses” the rule to be applied and remembers the
guess by relabeling the variable, and then a step using the guessed rule. Then
the original rule is useful if and only if the new variable name recording the guess
is useful.

Assume that the start graph is a single variable without attached nodes.
Then, derivations can be represented as augmented derivation trees, where the
vertices represent the rules applied. Suppose that some vertex ω represents the
rule (L,R), where L contains the contextual nodes u1, . . . , uk. Then ω contains
contextual references (ω1, v1), . . . , (ωk, vk), where each ωi is another vertex of
the tree, and the vi are distinct nodes, each of which is generated by the rule
at ωi and carries the same label as ui. In other words, (ωi, vi) indicates that
the contextual node ui was matched to the node vi generated at ωi. Finally, in
order to correspond to a valid derivation, there must be a linear order ≺ on the
vertices of the derivation tree such that ω ≺ ω′ for all children ω′ of a vertex ω,
and ωi ≺ ω for each ωi as above.

7

Now, to keep the argument simple, assume that every rule contains at most
one contextual node (see Lemma 1), and also that the label of this node differs

7 To be precise, validity also requires that the variable replaced by the rule at ω is not
attached to vi.
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from the labels of all nodes the variable is attached to. (The reader should easily
be able to check that the proof generalizes to arbitrary contextual grammars.)
The crucial observation is the following. Suppose that, for a given label a ∈ Ċ, ωa

is the first vertex (with respect to ≺) that generates an a-labeled node va. Then,
in each other vertex ω as above, if the rule contains an a-labeled contextual node
u, the corresponding contextual reference (ω′, v) can be replaced with (ωa, va)
without invalidating the derivation tree. We can do this for all vertices ω and
node labels a. As a consequence, at most |Ċ| vertices of the derivation tree
are targets of contextual references. Moreover, it should be obvious that, if the
derivation tree is decomposed into s(t(u)), where the left-hand sides of the rules
at the roots of t and u are the same, then s(u) is a valid derivation tree, provided
that no contextual references in s and u point to vertices in t. It follows that, to
check whether a variable name is useful, we only have to check whether it occurs
in the (finite) set of valid derivation trees such that

– all references to nodes with the same label are equal and
– for every decomposition of the form above, there is a contextual reference in

s or u that points to a vertex in t. ⊓⊔

Clearly, removing all useless rules from a contextual grammar yields an equiv-
alent reduced grammar. Thus, we can compute a reduced contextual grammar
from an arbitrary one by determining the largest subset of rules such that the
restriction to these rules yields a reduced contextual grammar.

Corollary 1. Reduced contextual grammars are a normal from of contextual
grammars.

By turning a grammar into a reduced one, it can furthermore be decided
whether the generated language is empty (as it is empty if and only if the set of
rules is empty and the start graph contains at least one variable).

Corollary 2. For a contextual grammar Γ , it is decidable whether L(Γ ) = ∅.

4 Limitations of Contextual Grammars

Let us now come to two results that show limitations of contextual grammars
similar to the known limitations of hyperedge-replacement grammars. The first
of these results is a rather straightforward consequence of Lemma 2: as in the
context-free case, the languages generated by contextual grammars are in NP,
and there are NP-complete ones among them.

Theorem 2. For every contextual grammar Γ , it holds that L(Γ ) ∈ NP. More-
over, there is a contextual grammar Γ such that L(Γ ) is NP-complete.

Proof. The second part follows from the fact that this holds even for hyperedge-
replacement grammars, which are a special case of contextual grammars. For the
first part, by Lemma 2, it may be assumed that Γ contains neither epsilon nor
chain rules. It follows that the length of each derivation is linear in the size of the
graph generated. Hence, derivations can be nondeterministically “guessed”. ⊓⊔
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It should be pointed out that the corresponding statement for hyperedge-
replacement languages is actually slightly stronger than the one above, because,
in this case, even the uniform membership problem is in NP (i.e., the input is
(Γ,G) rather than just G). It is unclear whether a similar result can be achieved
for contextual grammars, because the construction given in the proof of Lemma 2
may, in the worst case, lead to an exponential size increase of Γ .

Theorem 3. For a graph G, let |G| be either the number of nodes of G, the
number of edges of G, or the sum of both. For every contextual grammar Γ , if
L(Γ ) = {H1, H2, . . . } with |H1| 6 |H2| 6 . . ., there is a constant k such that
|Hi+1| − |Hi| 6 k for all i ∈ N.

Proof Sketch. The argument is a rather standard pumping argument. Consider
a contextual grammar Γ without epsilon and chain rules, such that L(Γ ) is
infinite. (The statement is trivial, otherwise.) Now, choose a derivation Z =
G0 ⇒ G1 ⇒ · · · ⇒ Gn of a graph Gn ∈ L(Γ ), and let xi be the variable in Gi

that is replaced in Gi ⇒ Gi+1, for 0 6 i < n. If the derivation is sufficiently long,
there are i < j such that xi and xj have the same label and xj is a descendant
of xi (in the usual sense). Let i = i1 < · · · < ik = j be the indices l, i 6 l 6 j,
such that xl is a descendant of xi. The steps in between those given by i1, . . . , ik
(which replace variables other than the descendants of xi) may be necessary to
create the contextual nodes that “enable” the rules applied to xi1 , . . . , xik−1.
However, in Gj , these contextual nodes do all exist, because derivation steps do
not delete nodes. This means that the sub-derivation given by the steps in which
xi1 , . . . , xik−1 are replaced can be repeated, using xj as the starting point (and
using, in each of these steps the same contextual nodes as the original step).
This pumping action can, of course, be repeated, and it increases the size of the
generated graph by at most a constant each time. As there are neither epsilon
nor chain rules, this constant is non-zero, which completes the proof. ⊓⊔

Corollary 3. The language of all complete graphs is not in CHR.

5 Parsing

In [13], a parser has been briefly sketched that can be used for contextual hy-
peredge replacement grammars with application conditions and, therefore, for
contextual grammars. The following describes what grammar transformations
are necessary before the parser can be applied, and the parser in more detail.

The parser adopts the idea of the Cocke-Younger-Kasami (CYK) parser for
strings, and it requires the contextual grammar to be in Chomsky normal form
(CNF), too. A contextual grammar is said to be in CNF if each rule is either
terminal or nonterminal. The right-hand side of a terminal rule contains exactly
one edge which is terminal, whereas the right-hand side of a nonterminal rule
contains exactly two edges which are variables. Rules must not contain isolated
nodes in their right-hand sides. In the following, we first outline that every
contextual grammar Γ can be transformed into a grammar Γ ′ in CNF so that
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a parser for Γ ′ can be used as a parser for Γ . We then consider a contextual
grammar in CNF and sketch a CYK parser for such a grammar.

If the right-hand side of a rule contains an isolated node, it is either (i) a
contextual node, or (ii) a node generated by the rule, or (iii) attached to the
variable of the left-hand side. In case (i), we simply remove the node from the
rule. However, the parser must make sure in its second phase (see below) that
the obtained rule is only applied after a node with corresponding label has been
created previously. Case (ii) can be avoided if we transform the original rule setR
to R′ where each node generated by a rule is attached to a unary hyperedge with
a new label, say ν ∈ C̄. Instead of parsing a graph G we have to parse a graph
G′ instead where each node is attached to such a ν-edge. Finally, case (iii) can
be avoided by transforming R′ again, obtaining R′′. The transformation process
works iteratively: Assume a rule L : : =R with R containing isolated nodes of
kind (iii). Let x ∈ L̄ with label ξ be the variable in L. This rule is replaced by
a rule L′ : : =R′ where L′ and R′ are obtained from L and R by removing the
isolated nodes of kind (iii) and by attaching a new variable to the remaining
nodes of att(x), introducing a new variable name ξ′ ∈ X. We now search for
all rules that have ξ-variables in their right-hand sides. We copy these rules,
replace all variables labeled ξ by ξ′-variables in their right-hand sides,8 and add
the obtained rules to the set of all rules. This process is repeated until no rule
with isolated nodes is left. Obviously, this procedure terminates eventually. We
assume that the start graph is a single variable labeled ζ, for some ζ ∈ X with
arity(ζ) = ε. Thus, no ζ-edge will ever be replaced by a ζ ′-edge. It is clear that
Z ⇒∗

R′ G iff Z ⇒∗
R′′ G for each graph G ∈ GC\X .

Afterwards, chain rules are removed (see Lemma 2), and the obtained con-
textual grammar is transformed into an equivalent grammar in CNF using the
same algorithm as for string grammars.9 Based on this grammar, the parser an-
alyzes a graph G in two phases. The first phase creates trees of rule applications
bottom-up. The second phase searches for a derivation by trying to find a suit-
able linear order ≺ on the nodes of one of the derivation trees, as in the proof
of Theorem 1.

In the first phase, the parser computes n sets L1, L2, . . . , Ln where n is the
number of edges in G. Each set Li eventually contains all graphs that contain
exactly one variable and that can be derived to any subgraph of G that contains
exactly i edges. Note that these subgraphs may contain contextual nodes, i.e.,
isolated nodes. Set L1 is built by first finding each embedding of the right-hand
side of each terminal rule and adding the isomorphic image of the corresponding
lhs‘ to L1. The remaining sets are then constructed using nonterminal rules. A
nonterminal rule is reversely applied by searching for appropriate graphs s and
s′ in sets Li and Lj , respectively. If a nonterminal rule is reversely applicable,
i.e., if its right-hand side is isomorphic to the union of s and s′ without any of

8 This procedure assumes that no rule contains more than one ξ-edge in its right-hand
side. It is easily generalized to rules with multiple occurrences of ξ-edges.

9 This is possible iff the L(Γ ) does not contain the empty graph which is easily ac-
complished since chain rules have been removed.
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their isolated nodes,10 a new graph s′′ corresponding to the left-hand side of the
rule is added to the set Lk. Note that k = i+j since each graph in a set Li can be
derived to a subgraph of G with exactly i edges. Graph s′′ additionally points
to its child graphs s and s′. Therefore, each instance of the start graph Z in
Ln represents the root of a tree of rule applications and, therefore, a derivation
candidate for G.

The second parser phase tries to establish the linear order ≺. Contextual
nodes are exactly the isolated nodes in graphs within the tree, and any graph
generated previously in the tree must contain a newly generated node with an
appropriate label. This process is similar to topological sorting, and it succeeds
iff a derivation of G exists.

The run-time complexity of this parser highly depends on the grammar since
the first phase computes all possible derivation trees. In bad situations, it is com-
parable to the exponential algorithm that simply tries all possible derivations.
In “practical” cases without ambiguity (e.g., for control flow diagrams, cf. Ex-
ample 2), however, the parser runs in polynomial time. Reasonably fast parsing
has been demonstrated by DiaGen [14] that uses the same kind of parser.

Plump et al. have proposed graph reduction grammars [1]. The form of their
rules R is not restricted; they may delete nodes, and need not have variables.
Instead, they have to satisfy the following semantical condition: R is reductive
if its inverses R−1 have terminating and confluent reductions ⇒∗

R−1 .
Then parsing of a graphG can be done by constructing an arbitrary reduction

sequence G ⇒∗
R−1 Y so that no rule of R−1 applies to Y . G is in the language

of the grammar if and only if Y = Z (up to isomorphism). No backtracking is
needed in this case, and the complexity of (non-uniform) parsing is polynomial
if the reduction sequence has polynomial length. (For a fixed set of rules, the
complexity of a single step is always polynomial.)

This idea can be applied to contextual grammars as well. Monotonicity gives
a simple criterion for termination of contextual rules (saying that every right-
hand side of a rule contains at least one terminal edge or one new node). Then
confluence of the rules’ inverses can be done by checking that their critical pairs
are strongly convergent [15]. So it can be verified mechanically whether a mono-
tonic contextual grammar has reductive rules.

Example 3 (Parsing of Control Flow Diagrams). The rules of Example 2 are
monotonic. The right-hand sides of the rules may overlap in their interface node.
Overlap in interface nodes alone does not lead to a critical pair, because the rules
are still parallelly independent. The right-hand sides of the recursive rules for
assignment and branching may also overlap in the variables on their right-hand
sides. This gives no critical pair either, because the inverse rules cannot be
applied to the overlap: they violate the dangling condition. The rules are thus

10 Furthermore, the parser must check whether the subgraphs of G being derivable from
s and s′ do not have edges in common. This is easily accomplished by associating
each graph in any set Li with the set of all edges in the derivable subgraph of G.
A rule may be reversely applied to s and s′ if the sets associated with s and s′ are
disjoint.
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reductive, and their form reveals that reductions will have at most O(n) steps,
where n is the number of terminal edges in the input graph G.

6 Conclusions

In this paper we have studied fundamental properties of contextual grammars.
They have useful normal forms, namely rules with at most one contextual node,
grammars without epsilon and chain rules, and reduced grammars. With context-
free grammars, they share certain algorithmic properties (i.e., decidability of
reducedness and emptiness, as well as an NP-complete membership problem) and
the linear growth of their languages. Nevertheless, contextual grammars are more
powerful than context-free ones, as illustrated in Figure 5. Let NR, ASR, cCHR,
and cASR denote the classes of graph languages generated by node replacement,
adaptive star replacement, conditional contextual hyperedge replacement, and
conditional adaptive star grammars, respectively. HR is properly included in
NR [8, Section 4.3], as is NR in ASR [3, Corollary 4.9]. The proper inclusion of
HR in CHR is stated in Observation 1. Since the language K of complete graphs
is in NR, Corollary 3 implies that CHR neither includes NR, nor ASR. It is still
open whether ASR includes CHR. K is generated by a cCHR grammar so that
this class includes CHR properly as well. The relations of cCHR to ASR and
cASR are also still open. In Figure 5, F is the language of general flow diagrams
of Example 2. Finally, P denotes the language of program graphs, which has a
cCHR grammar [13] and an ASR grammar [6].

Some work related to the concepts shown in this paper shall be mentioned
here. In [10, Chapter VIII], Annegret Habel discusses context-sensitive hyper-
graph grammars, which correspond to general graph grammars. The rules of
these grammars do not only allow to connect to nodes in the context, but also
to delete nodes and edges in it. This makes them more powerful: The languages
of complete graphs can be defined with such grammars.

Shape analysis is about specification and verification of invariants for pointer
structures in imperative programming languages, e.g., whether a data structure
is a leaf-connected tree. Often, logical formalisms are used for this purpose [17].
The graph reduction grammars mentioned in Section 5 have been proposed for
shape specification as well [1].

Future work on contextual grammars shall clarify the open questions con-
cerning their generative power, and study rules with recursive application condi-

cCHRcCHRcCHR

CHRCHRCHR

cASR ASR NR

HR

K

A

F

P

Fig. 5. Inclusion of languages studied in this paper and in [3,13]
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tions [11]. Furthermore, we aim at an improved parsing algorithm for contextual
grammars that are unambiguous modulo associativity and commutativity of cer-
tain replicative rules.

Acknowledgments. We wish to thank Annegret Habel for numerous useful com-
ments on the contents of this paper.
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