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Abstract

We study contextual multi-armed bandit prob-

lems where the context comes from a metric

space and the payoff satisfies a Lipschitz condi-

tion with respect to the metric. Abstractly, a con-

textual multi-armed bandit problem models a sit-

uation where, in a sequence of independent trials,

an online algorithm chooses, based on a given

context (side information), an action from a set of

possible actions so as to maximize the total pay-

off of the chosen actions. The payoff depends on

both the action chosen and the context. In con-

trast, context-free multi-armed bandit problems,

a focus of much previous research, model situa-

tions where no side information is available and

the payoff depends only on the action chosen.

Our problem is motivated by sponsored web

search, where the task is to display ads to a user

of an Internet search engine based on her search

query so as to maximize the click-through rate

(CTR) of the ads displayed. We cast this prob-

lem as a contextual multi-armed bandit problem

where queries and ads form metric spaces and

the payoff function is Lipschitz with respect to

both the metrics. For any ǫ > 0 we present an

algorithm with regret O(T
a+b+1

a+b+2
+ǫ) where a, b

are the covering dimensions of the query space

and the ad space respectively. We prove a lower

bound Ω(T
ã+b̃+1

ã+b̃+2
−ǫ

) for the regret of any algo-

rithm where ã, b̃ are packing dimensions of the

query spaces and the ad space respectively. For

finite spaces or convex bounded subsets of Eu-

clidean spaces, this gives an almost matching up-

per and lower bound.

Appearing in Proceedings of the 13
th International Conference
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guna Resort, Sardinia, Italy. Volume 9 of JMLR: W&CP 9. Copy-
right 2010 by the authors.

1 INTRODUCTION

Internet search engines, such as Google, Yahoo! and Mi-

crosoft’s Bing, receive revenue from advertisements shown

to a user’s query. Whenever a user decides to click on an ad

displayed for a search query, the advertiser pays the search

engine. Thus, part of the search engine’s goal is to display

ads that are most relevant to the user in the hopes of in-

creasing the chance of a click, and possibly increasing its

expected revenue. In order to achieve this, the search en-

gine has to learn over time which ads are the most relevant

to display for different queries. On the one hand, it is im-

portant to exploit currently relevant ads, and on the other

hand, one should explore potentially relevant ads. This

problem can be naturally posed as a multi-armed bandit

problem with context. Here by context we mean a user’s

query. Each time a query x arrives and an ad y is dis-

played there is an (unknown) probability µ(x, y) that the

user clicks on the ad.1 We call µ(x, y) the click-through

rate (or CTR) of x and y.

We want to design an online algorithm, which given a query

in each time step and a history of past queries and ad clicks,

displays an ad to maximize the expected number of clicks.

In our setting, we make a crucial yet very natural assump-

tion that the space of queries and ads are endowed with a

metric and µ(x, y) satisfies a Lipschitz condition with re-

spect to each coordinate. Informally, we assume that the

CTRs of two similar ads for the same query are close, and

that of two similar queries for the same ad are also close.

Lastly, we assume that the sequence of queries is fixed in

advance by an adversary and revealed in each time step (aka

oblivious adversary).

Clearly, the best possible algorithm—Bayes optimal —

displays, for a given query, the ad which has the highest

CTR. Of course, in order to execute it the CTRs must be

known. Instead we are interested in algorithms that do not

depend on the knowledge of the CTRs and whose perfor-

mance is still asymptotically the same as that of the Bayes

1For simplicity we assume that one ad is displayed per query.
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optimal. More precisely, for any algorithm A, we consider

the expected difference between the number of clicks that

the Bayes optimal receives and A receives for T queries.

This difference is called the regret of A and is denoted by

RA(T ). An algorithm is said to be asymptotically Bayes

optimal if the per-query regret RA(T )/T approaches 0 as

T → ∞ for any sequence of queries.

The standard measure of quality of an asymptotically

Bayes optimal algorithm is the speed of convergence at

which per-round regret approaches zero. Equivalently, one

measures the growth of the regret RA(T ) as T → ∞. The

bounds are usually of the form RA(T ) = O(T γ) for some

γ < 1. Such regret bounds are the standard way of mea-

suring performance of algorithms for multi-armed bandit

problems, for online learning problems and, more broadly,

for reinforcement learning problems.

The main contributions of this paper are 1) a formal

model of the Lipschitz contextual bandit problem on met-

ric spaces, 2) a novel, conceptually simple and clean al-

gorithm, which we call query-ad-clustering, and 3) lower

bounds that show the algorithm is essentially optimal with

respect to regret. In particular, the following theorem states

our results in our contextual bandit model. Note that the

covering dimension of a metric space is defined as the

smallest d such that the number of balls of radius r required

to cover the space is O(r−d). The packing dimension, is

defined as the largest d̃ such that there for any r there exists

a subset of disjoint balls of radius r of size Ω(r−d̃).

Theorem 1. Consider a contextual Lipschitz multi-armed

bandit problem with query metric space (X,LX) and ads

metric space (Y, LY ) of size at least 2. Let a, b be the cov-

ering dimensions of X,Y respectively, and ã, b̃ be the pack-

ing dimensions of X,Y respectively. Then,

• For any γ > a+b+1

a+b+2
, the query-ad-clustering algo-

rithm A has the property that there exists constants

T0, C such that for any instance µ, T ≥ T0 and se-

quence of T queries the regret RA(T ) ≤ C · T γ .

• For any γ < ã+b̃+1

ã+b̃+2
there exists positive constants

C, T0 such that for any T ≥ T0 and any algorithm A
there exists an instance µ and a sequence of T queries

such that the regret RA(T ) ≥ C · T γ .

If the query space and the ads space are convex bounded

subsets of Euclidean spaces or are finite then ã = a and

b̃ = b (finite spaces have zero dimension) and the theorem

provides matching upper and lower bounds.

The paper is organized as follows. In section 1.1 we

discuss related work, and introduce our Lipschitz contex-

tual multi-armed bandit model in section 1.2. Then we in-

troduce the query-ad-clustering algorithm in section 2 and

give an upper bound on its regret. In section 3 we present

what is essentially a matching lower bound on the regret

of any Lipschitz contextual bandit algorithm, showing that

our algorithm is essentially optimal.

1.1 RELATED WORK

There is a body of relevant literature on context-free multi-

armed bandit problems: first bounds on the regret for the

model with finite action space were obtained in the classic

paper by Lai and Robbins [1985]; a more detailed exposi-

tion can be found in Auer et al. [2002]. Auer et al. [2003]

introduced and provided regret optimal algorithms in the

non-stochastic bandit problem when payoffs are adversar-

ial. In recent years much work has been done on very large

action spaces. Flaxman et al. [2005] considered a setting

where actions form a convex set and in each round a convex

payoff function is adversarially chosen. Continuum actions

spaces and payoff functions satisfying (variants of) Lips-

chitz condition were studied in Kleinberg [2005a,b], Auer

et al. [2007]. Most recently, metric action spaces where the

payoff function is Lipschitz was considered by Kleinberg

et al. [2008]. Inspired by their work, we also consider met-

ric spaces for our work. In a follow-up paper by Bubeck

et al. [2008] the results of Kleinberg et al. [2008] are ex-

tended to more general settings.

Our model can be viewed as a direct and strict generaliza-

tion of the classical multi-armed bandit problem by Lai and

Robbins and the bandit problem in continuum and general

metric spaces as presented by Agrawal [1995] and Klein-

berg et al. [2008]. These models can be viewed as a special

case of our model where the query space is a singleton. Our

upper and lower bounds on the regret apply to these mod-

els as well. See section 1.3 for a closer comparison with

the model of Kleinberg et al. [2008].

Online learning with expert advice is a class of problems

related to multi-armed bandits, see the book by Cesa-

Bianchi and Lugosi [2006]. These can viewed as multi-

armed bandit problems with side information, but their

structure is different than the structure of our model. The

most relevant work is the Exp4 algorithm of Auer et al.

[2003] where experts are simply any multi-armed bandit al-

gorithm, and the goal is to compete against the best expert.

In fact this setting and the Exp4 algorithm can be reformu-

lated in our model, which is discussed further at the end of

section 2.

We are aware of three papers that define multi-armed bandit

problem with side information. The first two are by Wang

et al. [2005] and Goldenshluger and Zeevi [2007], how-

ever, the models in these papers are very different from

ours. The epoch-greedy algorithm proposed in Langford

and Zhang [2007] pertains to a setting where contexts ar-

rive i.i.d. and regret is defined relative to the best context-

to-action mapping in some fixed class of such mappings.

They upper bound the regret of epoch-greedy in terms of

an exploitation parameter that makes it hard to compare
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with our bounds.

Regret bounds for reinforcement learning has been stud-

ied by several authors. See, for example, Auer and Ortner

[2007], Even-Dar et al. [2006]. For a general overview of

reinforcement learning see Sutton and Barto [1998].

1.2 NOTATION

Definition 2. A Lipschitz contextual multi-armed bandit

problem (Lipschitz contextual MAB) is a pair of metric

spaces—a metric space of queries (X,LX) of and a met-

ric space of ads (Y, LY ). An instance of the problem is a

payoff function µ : X × Y → [0, 1] which is Lipschitz in

each coordinate, that is, ∀x, x′ ∈ X, ∀y, y′ ∈ Y ,

|µ(x, y)− µ(x′, y′)| ≤ LX(x, x′) + LY (y, y
′). (1)

The above condition can still be meaningful if the metric

spaces have diameter greater than unity, however, we steer

clear of the issue of learning meaningful metrics. In the

above definition, the Lipschitz condition (1) can be equiv-

alently, perhaps more intuitively, written as a pair of Lips-

chitz conditions, one condition for the query space and one

for the ad space:

∀x, x′ ∈ X, ∀y ∈ Y, |µ(x, y)− µ(x′, y)| ≤ LX(x, x′),

∀x ∈ X, ∀y, y′ ∈ Y, |µ(x, y)− µ(x, y′)| ≤ LY (y, y
′).

An algorithm for a Lipschitz contextual MAB is a sequence

A = {At}
∞
t=1 of functions At : (X × Y × [0, 1])t−1 ×

X → Y where the function At maps a history (x1, y1, µ̂1),
(x2, y2, µ̂2), . . . , (xt−1, yt−1, µ̂t−1) and a current query xt

to an ad yt. The algorithm operates in rounds t = 1, 2, . . .
in an online fashion. In each round t the algorithm first

receives a query xt, then (based on the query and the his-

tory) it displays an ad yt, and finally it receives payoff2

µ̂t ∈ [0, 1] which is an independent random variable with

expectation µ(xt, yt). Regret of A after T rounds on a fixed

sequence of queries x1, x2, . . . , xT is defined as

RA(T ) =

[

T
∑

t=1

sup
y′

t
∈Y

µ(xt, y
′
t)

]

−E

[

T
∑

t=1

µ̂(xt, yt)

]

where the expectation is taken over the random choice of

the payoff sequence µ̂1, µ̂2, . . . , µ̂T that the algorithm re-

ceives.

Our results are upper and lower bounds on the regret. We

express those bounds in terms of covering and packing di-

mensions of the query space and the ad space, respectively.

These dimensions are in turn defined in terms of covering

and packing numbers. We specify these notions formally

in the following definition.

2In the case of clicks, µ̂t ∈ {0, 1} where µ̂t = 1 indicates that
the user has clicked on the ad. Our results, however, are the same
regardless of whether the range of µ̂t is {0, 1} or [0, 1].

Definition 3. Let (Z,LZ) be a metric space. Covering

number N (Z,LZ , r) is the smallest number of sets needed

to cover Z such that in each set of the covering any two

points have distance less than r. The covering dimension

of (Z,LZ), denoted COV(Z,LZ), is

inf
{

d : ∃c > 0 ∀r ∈ (0, 1] N (Z,LZ , r) ≤ cr−d
}

.

A subset Z0 ⊆ Z is called r-separated if for all z, z′ ∈ Z0

we have LZ(z, z
′) ≥ r. The packing number M(Z,LZ , r)

is the largest size of a r-separated subset. Packing dimen-

sion of (Z,LZ), denoted PACK(Z,LZ), is

sup
{

d : ∃c > 0 ∀r ∈ (0, 1] M(Z,LZ , r) ≥ cr−d
}

.

In the rest of the paper, when a Lipschitz contextual MAB

(X,Y ) is understood, we denote by a, b the covering di-

mensions of X,Y respectively and we denote by ã, b̃ the

packing dimension of X,Y respectively.

1.3 COMPARISON WITH Kleinberg et al. [2008]

Compared to the results of Kleinberg et al. [2008] whose

bounds are in terms of a metric dependent max-min-

covering dimension, our lower bound might seem contra-

dictory since our bound also applies to a query space con-

sisting of a singleton. However, the important difference

is the non-uniformity over the payoff function µ. Namely,

our bounds do not depend on µ whereas theirs do.

For a fixed metric space (Y, LY ), let µ be the set of all

Lipschitz payoff functions, for any algorithm A, the regret

dimension as defined by Kleinberg et al. [2008] is

sup
µ

inf
d≥0

{

∃T0, ∀T > T0, RA(T ) ≤ T
d+1

d+2

}

.

It is shown that there exists algorithms that achieve any re-

gret dimension strictly greater than the max-min-covering

dimension and no algorithms exist with regret dimension

strictly smaller. The infimum and T0 in the definition of

regret dimension “swallows up” constants that can depend

on the payoff in µ.

On the other hand, the constants in our regret bound do

not depend on the payoff functions. For example, the lower

bound says that there exists constants T0 and C, for all T >

T0, any algorithm A satisfies RA(T ) ≥ C ·T
b̃+1

b̃+2 when the

query space is a singleton and b̃ = PACK(Y, LY ).

2 QUERY-AD-CLUSTERING

ALGORITHM

In this section we present the query-ad-clustering algo-

rithm for the Lipschitz contextual MAB. Strictly speak-

ing, the algorithm represents, in fact, a class of algorithms,

one for each MAB (X,Y ) and each γ > a+b+1

a+b+2
. First
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we present the algorithm and then we prove O(T γ) upper

bound on its regret.

Before we state the algorithm we define several parame-

ters that depend on (X,Y ) and γ and fully specify the al-

gorithm. Let a, b to be the covering dimensions of X,Y

respectively. We define a′, b′ so that a′ > a, b′ > b

and γ > a′+b′+1
a′+b′+2 . We also let c, d be constants such that

the covering numbers of X,Y respectively are bounded as

N (X, r) ≤ cr−a′

and N (Y, r) ≤ dr−b′ . Existence of such

constants c, d is guaranteed by the definition of covering di-

mension.

Algorithm Description: The algorithm works in phases

i = 0, 1, 2, . . . consisting of 2i rounds each. Consider a

particular phase i, at the beginning of the phase, the algo-

rithm partitions the query space X into disjoint sets (clus-

ters) X1, X2, . . . , XN each of diameter at most r where

r = 2−
i

a′+b′+2 and N = c · 2
a′i

a′+b′+2 . (2)

The existence of such partition X1, X2, . . . , XN follows

from the assumption that the covering dimension of X is

a. Similarly, at the beginning of the phase, the algorithm

picks a subset Y0 ⊆ Y of size K such that each y ∈ Y is

within distance r to a point in Y0, where

K = d · 2
b′i

a′+b′+2 . (3)

The existence of such Y0 comes from the fact that the cover-

ing dimension of Y is b. (In phase i, the algorithm displays

only ads from Y0.)

In each round t of the current phase i, when a query xt

is received, the algorithm determines the cluster Xj of the

partition to which xt belongs. Fix a cluster Xj . For each

ad y ∈ Y0, let nt(y) be the number of times that the ad

y has been displayed for a query from Xj during the cur-

rent phase up to round t and let µt(y) be the corresponding

empirical average payoff of ad y. If nt(y) = 0 we define

µt(y) = 0. In round t, the algorithm displays ad y ∈ Y0

that maximizes the upper confidence index

It−1(y) = µt−1(y) +Rt−1(y)

where Rt =
√

4i
1+nt(y)

is the confidence radius. Note

that in round t the quantities nt−1(y), µt−1(y), Rt−1(y)
and It−1(y) are available to the algorithm. If multiple ads

achieve the maximum upper confidence index, we break

ties arbitrarily. This finishes the description of the algo-

rithm.

We now bound the regret of the query-ad-clustering algo-

rithm. In Lemma 4 we bound the regret for a cluster of

queries during one phase. The regret of all clusters during

one phase is bounded in Lemma 5. The resulting O(T γ)
bound is stated as Lemma 6. In proof of Lemma 4 we make

use of Hoeffding’s bound, proof of which can be found in

the book [Devroye and Lugosi, 2001, Chapter 2] or in the

original paper by Hoeffding [1963].

Hoeffding’s Inequality Let X1, X2, . . . , Xn be indepen-

dent bounded random variables such that Xi, 1 ≤ i ≤ n,

has support [ai, bi]. Then for the sum S = X1+X2+ · · ·+
Xn we have for any u ≥ 0,

Pr [|S −E[S]| ≥ u] ≤ 2 exp

(

−
2u2

∑n

i=1(ai − bi)2

)

.

Lemma 4. Assume that during phase i, up to step T , n

queries were received in a cluster Xj . Then, the contribu-

tion of these queries to the regret is bounded as

Ri,j(T ) = E











∑

2i≤t≤min(T,2i+1−1)
xt∈Xj

sup
y′

t∈Y

µ(xt, y
′
t)− µ(xt, yt)











≤ 6rn+K

(

16i

r
+ 1

)

where r is the diameter defined in (2) and K is the size of

the ads space covering defined in (3).

Proof. For i = 0 the bound is trivial. Henceforth we

assume i ≥ 1. Fix an arbitrary query point x0 in Xj .

Let the good event be that µt(y) ∈ [µ(x0, y) − Rt(y) −
r, µ(x0, y) + Rt(y) + r] for all y ∈ Y and all t, 2i ≤ t ≤
min(T, 2i+1−1). The complement of the good event is the

bad event.

We use Hoeffding’s inequality to show that with probability

at most K2−i the bad event occurs conditioned on the val-

ues of nt(y) for all y ∈ Y0 and all t. Since the K2−i bound

does not depend on the values of nt(y), the bad event oc-

curs with at most this probability unconditionally. Consider

any y ∈ Y0 and any t, 2i ≤ t < T , for which nt(y) ≥ 1.

By Lipschitz condition

|E[µt(y)]− µ(x0, y)| ≤ r .

Therefore by Hoeffding’s inequality

Pr [µt(y) 6∈ [µ(x0, y)−Rt(y)− r, µ(x0, y) +Rt(y) + r]]

≤ Pr [|µt(y)−E[µt(y)]| > Rt(y)]

≤ 2 exp
(

−2nt(y)(Rt(y))
2
)

≤ 2e−4i ≤ 4−i

and the same inequality, Pr[µt(y) 6∈ [µ(x0, y) − Rt(y) −
r, µ(x0, y)+Rt(y)+r]] ≤ 4−i, holds trivially if nt(y) = 0
since Rt(y) > 1. We use the union bound over all y ∈
Y0 and all t, 2i ≤ t ≤ min(T, 2i+1 − 1) to bound the

probability of the bad event:

Pr [bad event] ≤ 2i|Y0|4
−i ≤ K2−i. (4)

Recall, that we first conditioned on the values nt(y) and
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Now suppose that the good event occurs. Let R̂ be the

actual regret,

R̂ =
∑

2i≤t≤min(T,2i+1−1)
xt∈Xj

(
sup
y′

t∈Y

µ(xt, y
′
t)− µ(xt, yt)

)
.

Since the algorithm during the phase i displays ads only

from Y0, the actual regret R̂ can be decomposed as a sum

R̂ =
∑

y∈Y0
R̂y where R̂y is the contribution to the regret

by displaying the ad y, that is,

R̂y =
∑

2i≤t≤min(T,2i+1−1)
xt∈Xj
yt=y

(
sup
y′

t∈Y

µ(xt, y
′
t)− µ(xt, y)

)

Fix y ∈ Y0. Pick any ǫ > 0. Let y∗ be an ǫ-optimal

for query x0, that is, y∗ is such that µ(x0, y
∗) ≥ supy∈Y

µ(x0, y)−ǫ. Let y∗0 be the optimal ad in Y0 for the query x0,

that is, y∗0 = argmaxy∈Y0
µ(x0, y). Lipschitz condition

guarantees that for any xt ∈ Xj

sup
y′

t∈Y

µ(xt, y
′
t) ≤ sup

y∈Y

µ(x0, y) + r

≤ µ(x0, y
∗) + r + ǫ

≤ µ(x0, y
∗
0) + 2r + ǫ,

µ(xt, y) ≥ µ(x0, y)− r .

Using the two inequalities the bound on R̂y simplifies to

R̂y ≤ nT (y) [µ(x0, y
∗
0) + 3r + ǫ− µ(x0, y)] .

Since ǫ can be chosen arbitrarily small, we have

∀y ∈ Y0, R̂y ≤ nT (y) [µ(x0, y
∗
0)− µ(x0, y) + 3r] . (5)

We split the set Y0 into two subsets, good ads Ygood and bad

ads Ybad. An ad y is good when µ(x0, y
∗)− µ(x0, y) ≤ 3r

or it was not displayed (during phase i up to round T for a

query in Xj), otherwise the ad is bad. It follows from (5)

and the definition of a good ad that

∀y ∈ Ygood R̂y ≤ 6rnT (y). (6)

For bad ads we use inequality (5) and give an upper bound

on nT (y). To upper bound nT (y) we use the good event

property. According to the definition of the upper con-

fidence index, the good event is equivalent to It(y) ∈
[µ(x0, y) − r, µ(x0, y) + 2Rt(y) + r] for all y ∈ Y

and all rounds t, 2i ≤ i < T . Therefore, the good

event implies that for any ad y when the upper bound,

µ(x0, y) + 2Rt−1(y) + r, on It−1(y) gets below the lower

bound, µ(x0, y
∗
0)− r, on It−1(y

∗
0) the algorithm stops dis-

playing the ad y for queries from Xj . Therefore, in the

last round t when the ad y is displayed to a query in Xj , is

nt−1(y) + 1 = nt(y) = nT (y) and

µ(x0, y) + 2Rt−1(y) + r ≥ µ(x0, y
∗
0)− r.

Equivalently,

2Rt−1(y) ≥ µ(x0, y
∗
0)− µ(x0, y)− 2r.

We substitute the definition of Rt−1(y) into this inequality

and square both sides of the inequality. (Note that both

side are positive.) This gives an upper bound on nT (y) =
nt−1(y) + 1:

nT (y) = nt−1(y) + 1 ≤
16i

(µ(x0, y
∗
0)− µ(x0, y)− 2r)

2 .

Combining with (5) we have

R̂y ≤ nT (y) [µ(x0, y
∗
0)− µ(x0, y) + 3r]

≤ nT (y) [µ(x0, y
∗
0)− µ(x0, y)− 2r] + 5rnT (y)

≤
16i

µ(x0, y∗)− µ(x0, y)− 2r
+ 5rnT (y).

Using the definition of a bad ad we get that

∀y ∈ Ybad R̂y ≤
16i

r
+ 5rnT (y) . (7)

Summing over all ads, both bad and good, we have

R̂ =
∑

y∈Ygood

R̂y +
∑

y∈Ybad

R̂y

≤
∑

y∈Ygood

6rnT (y) +
∑

y∈Ybad

(
16i

r
+ 5rnT (y)

)

≤ 6rn+ |Ybad|
16i

r
(since n ≤ 2i)

≤ 6rn+K
16i

r
.

Finally, we bound the expected regret

Ri,j(T ) = E

[
R̂
]

≤ nPr[bad event] +

(
6rn+K

16i

r

)
Pr[good event]

≤ nK2−i + 6rn+K
16i

r

≤ K + 6rn+K
16i

r
≤ 6rn+K

(
16i

r
+ 1

)
.

Lemma 5. Assume n queries were received up to round T

during a phase i (in any cluster). The contribution of these

queries to the regret is bounded as

Ri(T ) = E


 ∑

2i≤t≤min(T,2i+1−1)

sup
y′

t∈Y

µ(xt, y
′
t)− µ(xt, yt)




≤ 6rn+NK

(
16i

r
+ 1

)
.

where r is the diamter defined in (2), N is the size of the

query covering defined in (2) and K is the size of the ads

space covering defined in (3).
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Proof. Let denote by nj the number of queries belonging

to cluster Xj . Clearly n =
∑N

j=1 nj . From the preceding

lemma we have

Ri(T ) =

N
∑

j=1

Ri,j(T ) ≤
N
∑

j=1

(

6rnj +K

(

16i

r
+ 1

))

≤ 6rn+NK

(

16i

r
+ 1

)

.

Lemma 6. For any T ≥ 0, the regret of the query-ad-

clustering algorithm is bounded as

RA(T ) ≤ (24 + 64cd log2 T + 4cd)T
a
′+b

′+1

a′+b′+2 = O (T γ) .

The lemma proves the first part of Theorem 1.

Proof. Let k be the last phase, that is, k is such that 2k ≤
T < 2k+1. In other words k = ⌊log2 T ⌋. We sum the

regret over all phases 0, 1, . . . , k. We use the preceding

lemma and recall that in phase i

r = 2−
i

a′+b′+2 , N = c ·2
a
′
i

a′+b′+2 ,K = d ·2
b
′
i

a′+b′+2 , n ≤ 2i.

We have

RA(T ) =

k
∑

i=0

Ri(T ) ≤
k

∑

i=0

6 · 2−
i

a′+b′+2 · 2i

+ 2
a
′
i

a′+b′+2 · d · 2
b
′
i

a′+b′+2 ·
(

16i

2−
i

a′+b′+2

+ 1

)

≤
k

∑

i=0

6 · 2i
a
′+b

′+1

a′+b′+2 + 16icd2i
a
′+b

′+1

a′+b′+2 + cd2i
a
′+b

′

a′+b′+2

≤ (6 + 16cdk + cd)

k
∑

i=0

(

2
a
′+b

′+1

a′+b′+2

)i

≤ (6 + 16cdk + cd) 4

(

2
a
′+b

′+1

a′+b′+2

)k

≤ (24 + 64cd log2 T + 4cd)T
a
′+b

′+1

a′+b′+2

= O

(

T
a
′+b

′+1

a′+b′+2 log T

)

= O(T γ).

While the query-ad-clustering algorithm achieves what

turns out to be the optimal regret bound, we note that a

modification of the Exp4 “experts” algorithm Auer et al.

[2003] achieves the same bound (but we discuss the prob-

lems with this algorithm below). Each expert is defined by

a mapping f : {X1, . . . , XN} → Y0 where given a x ∈ X
finds the appropriate cluster Xx and recommends f(Xx).
There are E = (1/ǫb)(1/ǫ

a) such experts (mappings),

and one of them is ǫ-close to the Bayes optimal strategy.

The regret bound Auer et al. [2003] for Exp4 gives us

O(
√
TE logE) to the best expert, which has regret ǫT to

the Bayes optimal strategy, setting ǫ = T−1/(a+b+2) we re-

trieve the same regret upper bound as query-ad-clustering.

However, the problem with this algorithm is that it must

keep track of an extremely large number, E, of experts

while ignoring the structure of our model—it does not ex-

ploit the fact that a bandit algorithm can be run for each

context “piece” as opposed to each expert.

3 A LOWER BOUND

In this section we prove for any γ < ã+b̃+1
ã+b̃+1

lower bound

Ω(T γ) on the regret of any algorithm for a contextual

Lipschitz MAB (X,Y ) with ã = PACK(X,LZ), b̃ =
PACK(Y, LY ). On the highest level, the main idea of the

lower bound is a simple averaging argument. We construct

several “hard” instances and we show that the average re-

gret of any algorithm on those instances is Ω(T γ).

Before we construct the instances we define several param-

eters that depend on (X,Y ) and γ. We define a′, b′ so that

a′ ∈ [0, ã], b′ ∈ [0, b̃] and γ = a′+b′+1
a′+b′+2 . Moreover, if

ã > 0 we ensure that a′ ∈ (0, ã) and likewise if b̃ > 0 we

ensure b′ ∈ (0, b̃). Let c, d be constants such that for any

r ∈ (0, 1] there exist 2r-separated subsets of X,Y of sizes

at least cr−a′

and dr−b′ respectively. Existence of such

constants is guaranteed by the definition of the packing di-

mension. We also use positive constants α, β, C, T0 that

can be expressed in terms of a′, b′, c, d only. We don’t give

the formulas for these constants; they can be in principle

extracted from the proofs.

Hard instances: Let time horizon T be given. The

“hard” instances are constructed as follows. Let r =
α · T−1/(a′+b′+2) and X0 ⊆ X , Y0 ⊆ Y be 2r-separated

subsets of sizes at least c · r−a′

, d · r−b′ respectively.

We construct |Y0||X0| instances each defined by a function

v : X0 → Y0. For each v ∈ Y X0

0 we define an instance

µv : X × Y → [0, 1] as follows. First we define µv for any

(x0, y) ∈ X0 × Y as

µv(x0, y) = 1/2 + max{0, r − LY (y, v(x0))},

and then we make into a Lipschitz function on the whole

domain X × Y as follows. For any x ∈ X let x0 ∈ X0 be

the closest point to x and define for any y ∈ Y

µv(x, y) = 1/2+max{0, r−LY (y, v(x0))−LX(x, x0)}.

Furthermore, we assume that in each round t the payoff

µ̂t the algorithm receives lies in {0, 1}, that is, µ̂t is a

Bernoulli random variable with parameter µv(xt, yt).

Now, we choose a sequence of T queries. The sequence

of queries will consists of |X0| subsequences, one for each

x0 ∈ X0, concatenated together. For each x0 ∈ X0 the

corresponding subsequence consists of M =
⌊

T
|X0|

⌋

(or

M =
⌊

T
|X0|

⌋

+ 1) copies of x0. In Lemma 7 we lower



         491
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bound the contribution of each subsequence to the total re-

gret. The proof of Lemma 7 is an adaptation of the proof

Theorem 6.11 from Cesa-Bianchi and Lugosi [2006, Chap-

ter 6] of a lower bound for the finitely-armed bandit prob-

lem. In Lemma 8 we sum the contributions together and

give the final lower bound.

Lemma 7. For x0 ∈ X0 consider a sequence of M copies

of query x0. Then for T ≥ T0 and for any algorithm A the

average regret on this sequence of queries is lower bounded

as

Rx0
=

1

|Y0||X0|

∑

v∈Y
X0
0

Rv
A(M) ≥ β

√

|Y0|M ,

where Rv
A(M) denotes the regret on instance µv .

Proof. Deferred to the full version of the paper.

Lemma 8. For any algorithm A, there exists an v ∈ Y X0

0 ,

and an instance µv and a sequence of T ≥ T0 queries on

which regret is at least

RA(T ) ≥ C · T γ

Proof. We use the preceding lemma and sum the regret

over all x0 ∈ X0.

sup
v∈Y

X0
0

Rv
A(T ) ≥

1

|Y0||X0|

∑

v∈Y
X0
0

Rv
A(T )

≥
∑

x0∈X0

Rx0
≥ β|X0|

√
MT

= β|X0|
√

|Y0|
⌊

T

|X0|

⌋

≥ β|X0|
√

|Y0|
(

T

|X0|
− 1

)

≥ β
√

|Y0||X0|T − β|X0|
√

|Y0|
(using

√
x− y >

√
x−√

y for any x > y > 0)

= β
√
dr−b′ · cr−a′ · T − βcr−a′

√
dr−b′

= β
√
cd · T

a′+b′+1

a′+b′+2 − βc
√
d · T

a′+b′/2

a′+b′+2

≥ 1

2
β
√
cd · T

a′+b′+1

a′+b′+2 =
1

2
β
√
cd · T γ

(by choosing T0 > (2c)
a′+b′+2

b′/2+1 )

Setting C = 1

2
β
√
cd finishes the proof.

4 CONCLUSIONS

We have introduced a novel formulation of the problem

of displaying relevant web search ads in the form of a

Lipschitz contextual multi-armed bandit problem. This

model naturally captures an online scenario where search

queries (contexts) arrive over time and relevant ads must

be shown (multi-armed bandit problem) for each query. It

is a strict generalization of previously studied multi-armed

bandit settings where no side information is given in each

round. We believe that our model applies to many other real

life scenarios where additional information is available that

affects the rewards of the actions.

We present a very natural and conceptually simple algo-

rithm known as query-ad-clustering, which roughly speak-

ing, clusters the contexts into similar regions and runs

a multi-armed bandit algorithm for each context cluster.

When the query and ad spaces are endowed with a met-

ric for which the reward function is Lipschitz, we prove

an upper bound on the regret of query-ad-clustering and

a lower bound on the regret of any algorithm showing

that query-ad-clustering is optimal. Specifically, the upper

bound O(T
a+b+1

a+b+2
+ǫ) is dependent on the covering dimen-

sion of the query (a) and ad spaces (b) and the lower bound

Ω(T
ã+b̃+1

ã+b̃+2
−ǫ

) is dependent on the packing dimensions of

spaces (ã, b̃). For bounded Euclidean spaces and finite sets,

these dimensions are equal and imply nearly tight bounds

on the regret. The lower bound can be strengthened to
∞

Ω(T γ) for any γ < max
{

a+b̃+1

a+b̃+2
, ã+b+1

ã+b+2

}

. So, if either

ã = a or b̃ = b, then we can still prove a lower bound

that matches the upper bound. However, the lower bound

will hold “only” for infinitely many time horizons T (as op-

posed to all horizons). It seems that for Lipschitz context

MABs where ã 6= a and b̃ 6= b one needs to craft a dif-

ferent notion of dimension, which would somehow capture

the growths of covering numbers of both the query space

and the ads space.

Our paper raises some intriguing extensions. First, we can

explore the setting where queries are coming i.i.d. from

a fixed distribution (known or unknown). We expect the

worst distribution to be uniform over the query space and

have the same regret as the adversarial setting. However,

what if the query distribution was concentrated in several

regions of the space? In web search we would expect some

topics to be much hotter than others. It would be interesting

to develop algorithms that can exploit this structure. As

well, we can use a more refined metric multi-armed bandit

algorithm such as the zooming algorithm Kleinberg et al.

[2008] for more benign reward functions. Further, one can

modify the results for an adaptive adversary with access to

an algorithm’s decisions and is able to change the Lipschitz

reward function in each round.
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Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learn-

ing, and Games. Cambridge University Press, 2006.

Luc Devroye and Gábor Lugosi. Combinatorial Methods

in Density Estimation. Springer, 2001.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action

elimination and stopping conditions for the multi-armed

bandit and reinforcement learning problems. Journal of

Machine Learning Research, 7:1079–1105, 2006.

Abraham D. Flaxman, Adam T. Kalai, and H. Brendan

McMahan. Online convex optimization in the bandit set-

ting: gradient descent without a gradient. In Proceed-

ings of the sixteenth annual ACM-SIAM symposium on

Discrete algorithms (SODA 2005), pages 385–394. Soci-

ety for Industrial and Applied Mathematics Philadelphia,

PA, USA, 2005.

Alexander Goldenshluger and Assaf Zeevi. Performance

limitations in bandit problems with side observations.

manuscript, 2007.

Wassily Hoeffding. Probability inequalities for sums of

bounded random variables. Journal of the American Sta-

tistical Association, 58(301):13–30, 1963.

Robert D. Kleinberg. Nearly tight bounds for the

continuum-armed bandit problem. In Lawrence K. Saul,
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