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Abstract: Recent advances enable data from manufacturing systems to be 
captured and contextualised relative to other phases of the product lifecycle, a 
necessary step toward understanding system behaviour and satisfying 
traceability requirements. Significant challenges remain for integrating 
information across the lifecycle and enabling efficient decision-making. In this 
paper, we explore opportunities for mapping standard data representations, 
such as the Standard for the Exchange of Product Data (STEP), MTConnect, 
and the Quality Information Framework (QIF) to integrate information silos 
existing across the lifecycle. To demonstrate this vision, we describe a 
reference implementation with a contract manufacturer in the National Institute 
of Standards and Technology (NIST) Smart Manufacturing Systems Test Bed. 
Using this implementation, we explore how knowledge generated from 
manufacturing can support lifecycle decision-making. As a case study, we then 
present an interactive prototype correlating the test bed’s data based on the 
context that must be provided for a specific decision-making viewpoint. 
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1 Introduction 

With the emergence of the internet of things (IoT) in product lifecycle management 
(PLM), harnessing knowledge generated by engineering processes has become a primary 
goal. According to a report by McKinsey Global Institute, the manufacturing sector 
“stores more data than any other sector – close to 2 exabytes of new data stored in 2010” 
(Manyika et al., 2011). However, it is widely accepted that until now, manufacturing has 
been far from meeting its true potential in the digital age (Lee et al., 2013). 

A number of challenges impede the aerospace industry from harnessing lifecycle data 
to make informed decisions. One challenge is that ongoing research and development 
efforts have been occurring in silos (in a single lifecycle phase) with little to no relation 
to and compatibility with other lifecycle phases. In manufacturing operations, this is 
evidenced by difficulties relating design information, e.g., Standard for the Exchange of 
Product Data (STEP), machine instructions, e.g., NC-code, real-time machine 
performance, e.g., MTConnect, and inspection results, e.g., Quality Information 
Framework (QIF). 

It is well-accepted that approximately 70% of the total cost of a product’s 
development is committed in the design phase (Ullman, 2010). Hence, developing  
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appropriate knowledge-based models that project downstream information, such as the 
standard information models mentioned above, to the design phase has significant 
potential for enterprises. In addressing these opportunities, this paper: 

1 details appropriate contextualisation at different stages of the lifecycle 

2 presents a reference implementation that enables correlation of design, planning, 
manufacturing, and inspection data as well as an interactive prototype of this 
implementation that is applied to a case study analysing the production of an 
avionics heat sink part 

3 identifies key open research questions and challenges. 

Through our research, we demonstrate opportunities for linking, or ‘threading’, stages of 
the lifecycle together, as well as for improving the overall decision-making workflow. 

2 Background 

Figure 1 presents the portion of the lifecycle that is the focus of this paper; we call this 
portion the manufacturing lifecycle. It encompasses the design, manufacturing, and 
inspection activities. Here, we show a simplified perspective of the data transfer among 
the lifecycle stages. Design transforms digitally-based customer requirements into 
actionable specifications, including geometry, material, and finish specifications. The 
manufacturing phase converts digital instructions into physical products, including waste 
material. The inspection stage then transforms physical product information into digital 
measurements to compare against the original design instructions. In this subsection, we 
review the as-is workflow and decision-making within the manufacturing lifecycle. We 
discuss decisions used in selecting the project to pursue, appropriate management of the 
product lifecycle, and finally the influence imparted on the lifecycle by decisions. 

Figure 1 Manufacturing lifecycle with simplified description of data transfer between each 
lifecycle stage (see online version for colours) 
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2.1 As-is decision-making workflow in aerospace manufacturing 

Many characteristics of aerospace manufacturing, such as low batch sizes and stringent 
geometric requirements, present unique challenges to efforts to improve the existing 
workflow. In this section, we review existing frameworks for PLM. This perspective 
reveals research opportunities for contextualising lifecycle data for better decision-
making. 

2.1.1 Project selection 

One of the first decisions in the product lifecycle of an aerospace project is to determine 
if the project should be undertaken. There are several factors that an organisation may use 
to decide to pursue a project, such as cost, return on investment, competitive advantage, 
and/or customer requirements. However, there is no standard process for determining 
how to decide to undertake a project. Literature from the management domain (Liu and 
Leitner, 2012; Parrino et al., 2005; Smith, 2007) provides recommendations and tools to 
assist the decision-making process, but these are simply rules-of-thumb that require 
subjective review with a broad multi-domain expertise by the decision maker. 

Aerospace organisations adopted the Six Sigma methodology to bring more rigor to 
project selection and execution. Six Sigma’s define, measure, analyse, improve, control 
(DMAIC) approach was the start of a formal method for project execution in an effort to 
control the quality of the product and related processes. To further assist in the decision 
to pursue a project, organisations couple Six Sigma principles with tools such as Pareto 
priority index (PPI), project assessment matrix, analytic hierarchy process (AHP), quality 
function deployment (QFD), and voice of customer (VOC). While all of this brings a 
more formal method to the decision-making process for project pursuits, the decision 
inputs are still subjective, require data and expertise from multiple domains, and are at 
risk of being influenced implicitly and/or explicitly by the decision maker’s biases. 

Dinesh Kumar et al. (2007) proposed applying data envelopment analysis (DEA) to  
Six Sigma project selection. DEA is an objective, linear-programming-based method for 
identifying empirical production functions. DEA is built upon macroeconomic theory. 
The method compares all units in a population on many dimensions simultaneously to 
assist in identifying the empirical frontier. DEA in project selection serves as a way to 
identify the projects that are more likely to result in the maximum benefit. However, 
collecting sufficient data to complete the DEA remains a challenge. The DEA method 
classifies important inputs and outputs for Six Sigma projects. The inputs can be further 
categorised into three categories as proposed by Pande et al. (2014): 

1 business benefits criteria 

2 feasibility criteria 

3 organisation impact criteria. 

DEA remains one of the only proposals for formalising an objective decision-making 
approach in deciding to pursue a project. 

In practice, it remains a challenge to truly assess a project’s quality and viability in its 
early stages. Unexplored opportunities exist in empowering decision-making for project 
selection through empirical historical data. Rather than relying on forecasting models  
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riddled with uncertainty, industry can learn from successes of past projects that exhibit 
similar paths and attributes to those proposed. Connecting data across the lifecycle will 
enable such innovation. 

2.1.2 Lifecycle management 

After project selection, aerospace organisations typically implement a stage-gate 
(Cooper, 2001) or waterfall project management approach. Cooper (2001) developed his 
stage-gate model (shown at the top of Figure 2) to support the success of product 
innovation through the effective and efficient management of the lifecycle process. 
Cooper’s model breaks a project into five stages requiring the passage of a gate before 
proceeding to the next stage. The gates provide quality control to the process by 
incorporating go/no-go decisions at strategic points in the process (Cooper, 2001). The 
waterfall method is similar to the stage-gate model. Other product development methods, 
such as the modified waterfall and spiral model, provide varying degrees of specificity 
and are appropriate depending on domain and context (Munassar and Govardhan, 2010). 
These traditional approaches are popular with aerospace organisations because the phased 
approach with formal approvals is effective in limiting scope creep (Moss and Atre, 
2003). 

Aerospace products are capital intensive due to long manufacturing lifecycles and 
significant regulatory oversight. The break-even and/or return-on-investment points for 
aerospace products often lie several years into the product lifecycle (Buxton et al., 2006). 
Aerospace organisations want to shorten the development cycle time. However, 
shortening the cycle time merely compresses the same number of decisions into a much 
shorter time frame (Johansson et al., 2011). Recent research has suggested either 
improving the ability to make the right decisions the first time and avoid iterations or 
supporting failing early and often to enable success sooner (Kelley and Littman, 2001; 
Schrage, 2000; Thomke, 2001). These strategies increase the risk of decreased quality in 
the process and product, the opposite of Six Sigma’s original intent. In the end, aerospace 
organisations are forced to make decisions earlier using preliminary data and uncertain 
assumptions instead of established facts (Johansson et al., 2011). 

Cooper (2001) recommended representing all critical roles in a product-development 
team from the start of the process. This would improve earlier decisions by ensuring the 
appropriate expertise and knowledge is available at the time of the decision-making. 
Cooper (2001) suggested there are two ways to succeed with products: 

1 doing projects right 

2 doing the right projects. 

We discussed ‘doing the right projects’ in the previous subsection. ‘Doing projects right’ 
requires a process that follows commonly accepted management guides. These guides 
include using teams effectively, doing up-front research before starting development, 
analysing the voice of the customer, and ensuring a stable product definition prior to 
deployment or launch (Cooper, 2001). Therefore, doing projects right requires a certain 
level of knowledge maturity. 

While the stage-gate model and the waterfall approach both provide a good 
foundation for managing product-development activities, they may fall susceptible to a 
lack of cross-domain understanding of types of information that force change to occur 
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during activities – specifically, when changes occur as a result of requirement changes. 
This opens up both the stage-gate and waterfall processes to the risk of continuing to 
mature projects that are no longer the right projects. Recently, standards development 
have begun to focus on defining processes involved in the lifecycle independently from 
the stage in which they are applied, e.g., ISO 15288 (ISO/IEC/IEEE 15288:2015, 2015). 
However, these efforts remain in a nascent stage. 

Figure 2 Examples of the (a) stage-gate process (from Cooper, 2001) and (b) waterfall process 

 

Note: Each process has formal times for review, approval, and sign-off before the process 
may continue. 

2.1.3 Decision influences on the lifecycle 

Regardless of where decisions are made (e.g., design, manufacturing, inspection), the 
major decisions happen at planned, formal times [e.g., preliminary design review (PDR), 
critical design review (CDR), manufacturing planning sign-off]. Minor decisions are 
rarely scrutinised in great detail. Typically, minor-decisions aggregation is only implicitly 
accessed during formal reviews. In addition, there is little cross-domain decision-making. 
Most cross-domain activity is typically a cursory review of decisions during the formal 
reviews. Deep reviews occur only when problems arise. Shortening of cycle time is a 
primary driver for the lack of cross-domain decision-making. 

Several methodologies exist for the purpose of integrating the various lifecycle 
domains. Yet, methodologies such as integrated product and process development 
(IPPD), collaborative product development (CPD), Six Sigma, and design for ‘x’ (DFx), 
often remain siloed within a respective domain because there is a lack of resources, 
manpower, and/or knowledge available to capture necessary data from all the domains 
and utilise the methods completely. Some aerospace organisations have mandated that 
employees be trained in Six Sigma. In particular, design organisations are pushing design 
for Six Sigma (DFSS). However, in reality, the DFSS process and documentation is often 
completed immediately prior to a formal review and approval period instead of 
throughout the entire design activity. This is due to practical challenges related to the lack 
of information and ambiguity in new designs, e.g., unknown failure modes (Gardner and 
Wiggs, 2013). Again, DFSS is driven by the desire to shorten the cycle time and a lack of  
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resources to properly manage downstream processes. These factors lead to decisions 
being made without an understanding of how those decisions affect the remainder of the 
lifecycle. 

The most advantageous time to make a change in a product’s lifecycle is in the early 
stages because there is an inherent flexibility in those decisions being made (Johansson  
et al., 2011). Ullman (2010) states that the more one learns about a product or process, 
the less freedom one has to use what one knows. Salado Diez (2014) shows that every 
decision made early in the lifecycle becomes a constraint on the remainder of the 
lifecycle because each subsequent decision further reduces the compliant solution space. 
Therefore, the best time to make large and significant decisions in the lifecycle is 
typically early in the design phase when the solution spaces are theoretically the largest. 
However, making decisions early in the lifecycle requires decision-making under 
uncertainty. The concepts of error mapping, error budgeting, and uncertainty 
quantification are well understood within the manufacturing and quality domains. The 
engineering analysis and simulation domain also strives to quantify uncertainty. There are 
active standardisation activities in this domain (Heller, 2016) for uncertainty 
quantification, verification, and validation of models. However, the design community is 
not well equipped to manage uncertainty. 

Aerospace organisations typically develop procedures, policies, and guides to assist 
design activities. This assistance is often in the form of paper-based knowledge bases of 
recommendations and requirements for completing different types of designs. The time 
frame for updating a procedure, policy, or guideline in the aerospace industry is typically 
one to two years. This is in part due to the rigorous requirements related to aerospace 
safety set by regulatory agencies (e.g., US Federal Aviation Administration, European 
Aviation Safety Agency). Therefore, it is important for aerospace organisations to 
understand the uncertainties and ambiguities that exist in the lifecycle and to ensure 
decisions account for them (Johansson et al., 2011). 

To move toward a better understanding of uncertainty in the lifecycle, we can ask a 
series of questions. What are all the known potential sources of variation? Where do 
those sources exist within the lifecycle? Can we quantify the uncertainty and variation? 
Can we aggregate those uncertainties across the lifecycle and should we? Lastly, how can 
we control the variations and uncertainty? To answer these questions, a certain level of 
knowledge maturity must be achieved. Johansson et al. (2011) proposed that achieving 
sufficient knowledge maturity could provide decision support that would increase a 
decision maker’s awareness of the knowledge base. This could further support cross-
domain collaborations to identify useful knowledge. For example, the design and 
manufacturing domains could work closely together to ensure design can take advantage 
of manufacturing knowledge during design activities. Hedberg et al. (2017) identified ten 
recommendations for using manufacturing knowledge earlier in the lifecycle, but industry 
needs a way to generate knowledge bases dynamically and the information requirements 
of the lifecycle must be better understood before these ten recommendations can be 
implemented. 

While we understand that we will never remove all uncertainty from the lifecycle, 
especially in design, it is imperative that uncertainty and ambiguity related to the design 
process be identified effectively, efficiently, and explicitly (Stacey and Eckert, 2003). 
Only then would we be able to determine that we are doing the right project, doing the 
project right, and building an understanding of how every decision influences the 
remainder of the lifecycle. The potential benefits include more precise schedules, better 
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cost controls, a solution space optimised for the entire lifecycle, and maximised quality of 
both the product and related processes. 

2.2 PLM-focused efforts to realise the digital thread 

In response to these challenges associated with better understanding data throughout the 
lifecycle there has been a focus over the past 20 years on developing visual exploration 
frameworks and interfaces targeted at the appropriate presentation of knowledge. 
However, the manufacturing domain has not yet fully adopted these latest interface 
development guidelines, such as Pirolli’s information foraging theory Pirolli and Card, 
1999. There have been some promising efforts in closing the gap of adoption. Hedberg  
et al. (2017) proposed three primary research directions to push the manufacturing 
domain forward: 

1 developing dynamic knowledge bases 

2 defining minimum information requirements 

3 supporting interoperability issues. 

These suggestions directly align with needs for adopting best practices and techniques 
from information theory. 

The realisation of dynamic knowledge bases in manufacturing requires formal 
methods for linking across legacy databases at unique stages of the lifecycle. The 
challenge here heavily relates to interoperability issues, not only associated with  
industry-used software packages (e.g., integration of multiple CAD/PDM tools) but also 
with the lifecycle data itself (e.g., integration of STEP and QIF data). One primary 
research focus in relating different manufacturing data representations is improving 
decision-making pipelines for finely tuning computer numerically controlled (CNC) 
machines (Xu and Newman, 2006). For example, Campos and Hardwick (2006) proposed 
a standards-based method for training information across CNC manufacturing. 

Another key challenge is the diversity in roles and perspectives of stakeholders, or the 
primary consumers of lifecycle data. Presenting on-demand, consumable lifecycle data at 
different points in the lifecycle requires a new information model that supports the 
minimum amount of information for a variety of scenarios. A similar research 
opportunity was identified in the bioinformatics community at the onset of the human 
genome project. Le Novère et al. (2005) proposed a minimum information model (MIM) 
for the purpose of biochemical model reuse in drug design simulation. Similarly, Smith  
et al. (2007) presented an upper ontology to support biomedical data integration, 
including all necessary governance and verification protocols. 

As with the medical community, manufacturing requires a coalescence of lifecycle 
perspectives and requirements to identify a similar common information model. 
According to a recent survey of engineering-based industry, most manufacturers perceive 
model-based enterprise (MBE) activities as helpful but find its current practice too costly 
to fully implement in terms of both resources and time (Ruemler et al., 2017). As a result, 
many of the ongoing efforts in industry have focused on developing platforms. Examples 
of projects related to capturing physical information in digital form include GE’s Predix 
(https://www.ge.com/digital/predix) and Siemens Mind Sphere (http://www.siemens. 
com/global/en/home/company/topic-areas/digitalization/mindsphere.html) platforms. 
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Currently, the focus of these efforts is on the creation of a digital twin of what is 
happening in the physical world, i.e., on the manufacturing floor in both of these 
examples. One key value proposition of these efforts is the ability to predict breakdowns 
and proactively maintain machines. Derhamy et al. (2015) categorise key commercial 
software available for implementing IoT infrastructure, including tools such as  
Xively (https://www.xively.com/), ThingWorx (https://www.thingworx.com/), AllJoyn 
(https://allseenalliance.org/framework), and Arrowhead (http://www.arrowhead.eu/). 
These frameworks aim to provide necessary infrastructure agnostic of application domain 
for implementing IoT. It is clear that choosing the right technology for the right domain is 
critical to ensure success. To help bridge the gap between these technologies and 
manufacturing, commercial CAE software has begun to provide IoT driven use cases for 
decision-making. Waurzyniak (2013) reports several commercial efforts, highlighting 
Siemens’s HD-PLM (http://www.lifecycleinsights.com/technology-providers/hd-plm-
siemens-plm/), Dassault Systémes’s Delmia brand (https://www.3ds.com/products-
services/delmia/), and AutodeskPLM 360 suite (https://a360.autodesk.com/). Each of 
these platforms help address specific use cases, yet a unified, fundamental infrastructure 
for such software to communicate across one another is absent. 

Figure 3 Timeline-based depiction of standards work in specified lifecycle stages, including 
design, planning (further separated into two categories), manufacturing, and inspection 
(see online version for colours) 

 

Notes: Though this figure does not incorporate all standards activities in the time horizon, 
it illustrates the importance of knowledge capture and projection to design in the 
manufacturing space. In general, these standards are mostly focused on the arrows 
depicted in Figure 1. 

There have been a wide variety of standards specific to elements of smart manufacturing. 
These efforts are vital for the implementation of the ongoing research efforts described 
above. To maximise the flexibility and responsiveness of manufacturing systems, there 
has been a recent push toward formal standard representations of different aspects of the 
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lifecycle, including geometric and feature-based design, process planning, process 
monitoring, and quality and inspection (Hedberg et al., 2016). These efforts present 
significant opportunities for knowledge reuse throughout the design process. If 
successful, the status quo of sequentially passing information, both physical and digital, 
as depicted in Figure 1 will fundamentally change. Ideally, information will be readily 
available in a consumable form related to a context appropriate for its viewer. 

Figure 3 makes it clear that the advancements in the standards community occur in 
lifecycle ‘siloes’ with a variety of perspectives. As a result, it is essential to incorporate a 
diversity of perspectives reaching across different phases of the lifecycle in the 
development of advanced decision-support interfaces. The plethora of standards in this 
space make it challenging to coalesce a common vision across an organisation. In 
response, ISO 14638 (2015) provides a matrix-based method to help select appropriate 
standards that formalise different aspects of the product lifecycle. This method does not, 
however, offer techniques for formally mapping across various PLM-related standards. In 
other words, the diversity of PLM concepts across the lifecycle can be addressed through 
contextualisation. In this work, our solution focuses on manually combining data to 
provide a decision-making platform that caters to a variety of perspectives across the 
lifecycle, e.g., design, engineering, manufacturing, and inspection. 

3 Contextualisation approach 

The quality of the information extracted from collected data depends on the 
appropriateness of the context developed when curating the data. Contextualisation 
describes the process of combining different types of data and information to provide a 
full and complete perspective of a phenomenon or situation. The challenge when 
considering the product lifecycle (or any domain) is that many different contexts are 
required to address the roles, priorities, and goals of each actor within the system or 
domain of interest. Focusing on the delivery of product within the lifecycle, we can 
consider four broad categories of actors, and subsequently contexts that need to be 
established as described in Table 1. It should be noted, though, that the context needs for 
actors within each of the categories shown in Table 1 may not be uniform. For example, 
production and maintenance personnel in the manufacturing stage often have conflicting 
interests: production generates income when equipment runs whereas maintenance 
creates value when equipment does not run. Thus, one viewpoint of the lifecycle 
influences the context that must be developed to address a question or decision of 
interest. 

No matter what viewpoint of the lifecycle we might consider, the appropriate context 
should enable an understanding of how some discrepancy, error, or impact relates back to 
the focus within the lifecycle stage (defined in Table 1). Manufacturing decisions require 
a curated dataset that relates some impact of interest to process-related information so 
that one can understand the physical reasons driving any observed variations or events. 
For example, if one is interested in minimising the energy consumed by a machine tool, 
then the measured power demand must be related back to process parameters (e.g., speed, 
feed, position). Similarly, design, planning, and inspection decisions require curated 
datasets that relate some impact of interest to information about part features, process 
capabilities, and characteristics, respectively. 
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The contextualisation that we have described focuses on viewpoints within one 
lifecycle stage. This specific focus is what often occurs during decision making across the 
lifecycle. However, we intuitively understand that many (if not all) decisions made in one 
lifecycle stage impact one or more other lifecycle stages. For example, a discrepancy in 
the manufacturing process (e.g., feedrate mismatch during machining) could be due to 
operator error (e.g., accidental feedrate override), poor process planning (e.g., toolpath 
unable to reach commanded feedrate), or inappropriate design (e.g., features that cannot 
be machined without feedrate mismatch). Determining the root causes of such 
discrepancies requires that we develop context by fusing data from design, planning, 
manufacturing, and inspection. This is the objective of the reference implementation that 
we developed in this research. 
Table 1 Four broad categories of actors tasked with the delivery of product within the lifecycle 

with each actor’s focus (the aspect of the product lifecycle that they influence) and 
role (the influence of the actor on the specified aspect) 

Lifecycle stage Broad focus General role 

Design Features Define features – a physical portion of a part or its 
representation in a drawing or digital format  

(ASME Y14.5, 2009) – to meet requirements of form, 
fit, and function (i.e., purpose) of part 

Planning Capabilities Organise a set of capabilities executed through different 
manufacturing processes to create features of part 

Manufacturing Processes Implement manufacturing processes with maximum 
productivity to create features of part 

Inspection Characteristics Compare characteristics – control placed on an element 
of a feature (DMSC, 2014) – of manufactured feature to 

its definition in design 

3.1 Reference implementation 

The challenge when attempting to fuse data from design, planning, manufacturing, and 
inspection is the lack of commercial solutions that enable the integration of systems 
across the product lifecycle. PLM solutions exist, but these are typically expensive, 
inaccessible for many organisations (especially small-and-medium enterprises), and 
focused primarily on engineering and information technology (IT) systems with little to 
no access to operational technology (OT) systems, such as manufacturing equipment. The 
goal of this research is to address the lack of commercial solutions by developing a 
reference implementation that integrates data from silos across the product lifecycle and 
that can be used by all organisations. To do so, we leverage the National Institute of 
Standards and Technology (NIST) Smart Manufacturing Systems (SMS) Test Bed. 

The NIST SMS Test Bed has two major components: the Computer-Aided 
Technologies (CAx) Lab and the Manufacturing Lab. The CAx Lab focuses on IT 
systems for design, planning, inspection, data management, and verification and 
validation. The Manufacturing Lab networks the IT and OT systems of an actual contract 
manufacturer, including machining tools, inspection equipment, and manufacturing 
execution systems. The NIST SMS Test Bed provides the physical infrastructure and data 
needed to design, test, and demonstrate our reference implementation. Figure 4 describes 
the types of data collected by the NIST SMS Test Bed that may be fused by our reference 
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implementation. It also highlights our use of existing data standards, which are necessary 
to fuse data from heterogeneous systems for contextualisation. Three of the data 
standards included in our reference implementation are STEP, MTConnect, and QIF. 

Figure 4 Types of data collected, aggregated, and curated from the NIST SMS test bed  
(see online version for colours) 

 

Notes: We define the lifecycle of manufacturing data into four stages: as-designed, as-
planned, as-executed, and as-measured. Asterisks in the figure denote application 
protocols of ISO 10303. 

3.1.1 Standard for the Exchange of Product Data 

ISO 10303, commonly known as STEP, is an international standard designed to exchange 
digital information, enabling an ever-widening range of engineering software systems to 
interoperate (ISO 10303-1, 1994). STEP, developed through the International 
Organization for Standardization (ISO) by a global consortium of technical experts from 
industry, governments, and academia, provides a robust neutral file format that has the 
potential to save approximately $1 billion (in 2001 dollars) per year by reducing 
interoperability problems in the automobile, aerospace, and shipbuilding industries alone 
(Gallagher et al., 2002). 

STEP is implemented through parts of the standard called application protocols. The 
application protocol used for representing three-dimensional (3D) design models is  
ISO 10303-242:2014 titled ‘Managed Model Based 3D Engineering’ (ISO 10303-242, 
2014). Commonly known as AP242, this standard specifies computable representations 
for several types of 3D model data, including dimensional and geometric dimensioning 
and tolerancing (GD&T) information. This information conveys the design intent and 
functional requirements of the product to the manufacturing domain. The intent is for 
AP242 to support all product and manufacturing information (PMI) needed to 
communicate with manufacturing and inspection planning. A second edition of AP242 
will add new representations for electrical wire harnesses, kinematics, and additional PMI 
(Feeney et al., 2015). 

Another STEP application protocol, ISO 10303-238, or STEP NC, retains design 
information of a given part along with machine executable commands for its build  
(ISO 10303-238, 2007). STEP NC is currently being revised to update its content based 



   

 

   

   
 

   

   

 

   

   338 W.Z. Bernstein et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

on years of implementation experience and to share the architecture and underlying 
geometry and PMI models with STEP AP242. 

3.1.2 MTConnect 

MTConnect is an open-source, read-only, extensible data-exchange standard for 
manufacturing and was originally designed to transform process-related information from 
proprietary to structured-XML formats accessible for monitoring applications 
(MTConnect Institute, 2014). The standard is based on HTTP and provides information 
models and communication protocols to enhance the data-acquisition capabilities of 
manufacturing equipment, systems, and applications and enable a plug-and-play 
environment. Four information models are currently included in MTConnect: devices, 
streams, assets, and errors. These models are the only established common vocabulary 
and structure for manufacturing equipment data. The success of these models has led 
MTConnect to become the primary IoT manufacturing standard for several organisations, 
including General Electric. 

In addition to it being a primary manufacturing data standard, MTConnect was 
selected for our reference implementation for several technical reasons. First, it provides 
an XML information model that is designed to integrate easily with many communication 
protocols. The read-only structure protects manufacturing equipment and systems that 
often cannot be exposed to external networks because of outdated operating systems. 
Finally, the agent-adapter architecture eases implementation. The agent is an HTTP 
server and RESTful interface (Richardson and Ruby, 2008) that implements the 
information model for legacy equipment and serves data to the agent. Through this 
architecture, we can effectively integrate different manufacturing systems and expand our 
data collection efforts. 

3.1.3 Quality Information Framework 

QIF is an ANSI-accredited standard developed by the Dimensional Metrology Standards 
Consortium (DMSC, 2014). The goal of the standard is to provide a normalised method 
in the metrology domain for information gathering and exchange. QIF is freely available 
via an internet download and includes eight parts (DMSC, 2014): 
1 overview 
2 library 
3 model-based definition 
4 plans 
5 resources 
6 rules 
7 results 
8 statistics. 

Several use cases are covered by QIF. One is the enabling of original equipment 
manufacturers (OEMs) to curate and merge inspection data coming from multiple 
internal and external sources (e.g., QIF results, QIF statistics). Another capability of QIF 
is allowing OEMs to provide rules and inspection requirements to suppliers in an 
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interoperable form that can quickly be ingested into supplier metrology systems (e.g., 
QIF rules). A use case for suppliers enables the gathering and sending of quality-related 
data (e.g., QIF plans, QIF results, QIF statistics) to the suppliers’ customers.  
Lastly, both OEMs and suppliers can represent and share their available  
dimensional-metrology-equipment (DME) resources (e.g., calipers, micrometers, 
coordinate-measurement machines) to enable quicker inspection planning and analysis 
(e.g., QIF rules, QIF resources). 

QIF includes normalised XML schema definitions for each part of the standard. This 
could simplify the integration with MTConnect and other technologies to enable a 
holistic analysis of the lifecycle. We used the standard to enable coverage of the quality-
domain portion of the product lifecycle. We view quality data as the link between the 
cyberspace and physical-space. Using QIF to gather quality information in a standard 
form supports the linking and observation of the two spaces by using measurement and 
analysis of the transformations from digital product definitions to physical parts (Hedberg 
et al., 2016; Morse et al., 2016). QIF enables linking the quality results (i.e., QIF results) 
back to the design (i.e., STEP) and manufacturing (i.e., MTConnect) domains. 
Figure 5 Four standard data representations, ISO 10303, ISO 6983, MTConnect, and QIF were 

included in the reference implementation deployed at NIST 

 

Notes: ISO 10303, or STEP, provides all relevant product design information, e.g., 
geometry; ISO 6983, or G-code, provides the process information as-planned, 
including feed rates and spindle speeds; MTConnect provides the actual path and 
speeds of the machine tool; and QIF provides inspection-related information, such 
as the inspection plan and results. 

3.2 Fusing product lifecycle data 

We perform data fusion by first presenting (human readable) and representing (machine 
readable) the appropriate data from design, planning, manufacturing, and inspection. 
Figure 5 provides an example of the machine-readable data collected for the part 
described in Section 4. It is important to note that the correct data items to include from 
each lifecycle stage again depends on the type of question or decision being addressed 
and may not include data from all lifecycle stages. For example, the use case 
demonstrated in Section 4 focuses on potential quality and production scheduling issues 
caused by a manufacturing process that does not perform as planned. The issues created 
in this use case influence all four stages, and potential solutions exist across the lifecycle 
based on the perspective and focus of the actors in each lifecycle stage: 

• (Design) Can the part be redesigned to avoid the need for manufacturing processes 
that do not occur as planned? 
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• (Planning) Can the toolpath be redesigned to minimise the impact of the process 
dynamics that cause process discrepancies? 

• (Manufacturing) Can the operator be supported to make informed changes that 
compensate for any process discrepancies? 

• (Inspection) Can the inspection plan be informed to focus on features impacted most 
by process discrepancies? 

To address these questions, we need data from design, planning, and manufacturing, 
which we have available from the NIST SMS Test Bed (see Figure 4). Please note that 
we have purposefully excluded QIF data from inspection since the use case in Section 4 
focuses on discrepancies in the manufacturing process, which are not caused by any 
decision in inspection but rather may impact decisions to be made during inspection. 
After collecting the appropriate data, we fuse each dataset by visually overlaying the 
three types of data. The visual overlaying process was performed manually through two 
steps: 
1 colouring the as-executed toolpath based on the ratio of the programmed to actual 

process parameters 
2 spatially matching the coloured, as-executed toolpath to the computer-aided design 

(CAD) geometry. 

Areas with large discrepancies between the as-planned and as-executed states can then be 
mapped back to the portion of the toolpath and the feature of the part where they occur. A 
subsequent analysis of the underlying causes of these discrepancies can then be 
conducted as described in Section 4. 
Figure 6 Screenshot of prototype built in Processing 2.0 (see online version for colours) 

 

Notes: Here, we allow for direct manipulation of an STL representation of the test part. 
(A) Time-based plot of the x-coordinate during the build of the part. Here, the user 
can select a specific region of interest via brushing over the plot. (B) Based on the 
user selection, the region of interest is plotted to better display points of interest, 
or anomalies. (C) The 3D object viewer displays the filtered region in light blue 
onto the part. Here, we can see that the area of interest is on the slanted face of the 
part’s fins. 
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4 Case study: demonstration of reference implementation 

To demonstrate the opportunities provided by appropriately contextualising data through 
open standards-based approaches, we present a case study that uses our reference 
implementation to map design, planning, and execution data for an avionics heat sink test 
part as described in Section 3.1. This same part has been used in several other 
demonstrations (Brodsky et al., 216; Trainer et al., 2016). All of the data used in this 
demonstration is available and free for public use on the NISTSMSTest Bed (Hedberg 
and Helu, 2016). The setup information, initial cutting parameters, and cutting constraints 
for the test part were extracted from the technical data packages that are available on 
through the SMS Test Bed. The part was machined on a GF MIKRON HPM600U, which 
is a five-axis simultaneous milling centre. In the course of this exercise, we uncovered 
research opportunities and challenges associated with mapping between different 
perspectives across the lifecycle. Lessons learned from this implementation include a list 
of requirements for amending, appending, and improving any related standards as well as 
evidence for open research opportunities in the domain. 

A prototype software was designed in Processing 2.0 (https://processing.org/), a  
Java-based interface development environment, to demonstrate the type of insight that 
can be drawn from relating different types of design and build information. The prototype 
interface (shown in Figure 6) includes two windows: 

1 an object viewer with the tool path overlay as seen in Figure 7 

2 a control window with a plot of the tool path on the x-axis against the duration of the 
build. 

Figure 7 Visual overlay of MTConnect Data onto STL representation of an avionics heat sink 
part (see online version for colours) 

 

Notes: The color of the each portion of the lines relates to the feed rate ratio, wherein the 
observed feed rate (MTConnect) is divided by the expected feed rate (NC code). 
Here, the deeper the blue the more the feed rate matched expectations. 
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In the control window, the user is able to filter a particular portion of the build based on 
the time and location of the tool path. This information includes a time-series plot of the 
x-coordinates from the MTConnect dataset. The user can query any portion of the build 
of the part by brushing over the desired portion of the time-series data. Once the desired 
area is selected, data relating to that query is emphasised in the object viewer window. 
Additionally, the user is afforded direct manipulation of the 3D part in the object viewer 
via OpenGL. The software also allows for dynamic toggling of the colour-coding 
capability and the tool path visualisation. It should be noted that the prototype, as-is, does 
not handle native STEP files. Here, we converted the reference STEP file to an STL 
using a commercial CAD package. We then scaled the tool path data, gathered via an 
MTConnect agent, to match features on the STL file. 

Using the prototype, we generated Figure 7, illustrating one use case of this exercise. 
In this scenario, the design engineer would like to understand which features on the part 
took the most time to build to uncover opportunities for reducing operating costs. During 
process planning, a set of cutting parameters, including suggested feed rates, was 
specified. Using these values, the engineer can estimate the cost to build the part by 
calculating the amount of time required for each pass. However, in reality, practical 
issues such as the operator avoiding chatter affect the achieved feed rate when cutting 
specific features (Ridwan and Xu, 2013). Here, we apply a color scale representing the 
feed rate ratio to the tool path data. We define the feed rate ratio (fr) as the observed feed 
rate (fo) divided by the expected feed rate (fe). The NC-code was compared with the 
MTConnect data and equation (1) was evaluated. The colourmap shown in Figure 7 was 
then encoded to each recorded point. In this case, we do not consider fr values over 1 
since these passes exceed the expectations of the build. Additionally, many of these cases 
relate to tool changes, which are not of interest from a design perspective. 

min , 1o
r

e

f
f

f

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1) 

While a discrepancy between the observed and expected feed rate is to be expected 
because of the physical limitations of feed axes in a machine tool (e.g., non-infinite 
acceleration), there may still be room for improvement if such limitations can be 
considered during design and planning (see questions in Section 3.2). For example, 
Figures 6 and 7 show that the chamfer feature on the fins of the heat sink had a relatively 
high degree of discrepancy as suggested by fr. Further investigation shows that the build 
time for this feature is eight times longer than the expected build if the machine operated 
exactly as commanded by the G code, which indicates that this feature presents an area of 
potential improvement. This analysis was conducted using the MTconnectR package 
(https://cran.r-project.org/web/packages/mtconnectR/index.html), an open source R 
package that includes functions: 

1 to simulate data, including position data, feed rate, and velocities based on G code 

2 to compare actual and simulated data through chart-based visualisations. 

4.1 Exploring the impact of lifecycle viewpoints 

The use case used to demonstrate our reference implementation focused on sharing 
information about discrepancies in the execution of a manufacturing process with 
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primarily design and planning. It is for this reason that inspection data was not fused. As 
we discussed in Section 3, the types of data that should be collected and fused will 
depend on the perspectives and viewpoints of the relevant actors in the lifecycle and the 
decisions that they must make and questions that they may pose. 

To further consider the impact of lifecycle viewpoints on the context that must be 
provided, we can consider the operate, orchestrate, and originate (O3) Project 
(http://www.uilabs.org/project/o3-operate-orchestrate-and-originate-14-06-05/) funded by 
the Digital Manufacturing and Design Innovation Institute (DMDII) and led by STEP 
Tools. The use case in the O3 Project is to determine the conformance of manufacturing 
processes remotely using inspection results and adjust non-conforming processes using 
applications. Given the goals of this use case, data is required from design, planning, 
execution, and inspection. In fact the solution demonstrated by the O3 project focuses on 
existing industry data standards including AP242 (as designed),Gcode and AP238 (as 
planned), MTConnect (as executed), and QIF (as measured), which matches the standards 
used in our reference implementation at NIST. 

5 Discussion and conclusions 

In Sections 3 and 4, we discussed bringing together data from across the product lifecycle 
to enable observing relationships and building knowledge for making decisions. The 
process of linking the different data and adding context was manual. Manually going 
through the linking process is not ideal. However, there is no clear way to automatically 
link data from across the product lifecycle without some level of human interpretation 
and intervention. This is largely due to features and the identification (ID) of those 
features not being maintained consistently from one data format to the next. 

For example, a hole feature and associated characteristics may be defined in STEP. It 
is difficult to align the fabrication process information, represented in MTConnect, back 
to the STEP file because the feature ID and most feature information is lost in the process 
planning and numerical-control (NC) programming step. MTConnect is able to output 
data about what the machine tool is doing in a time-series, but information is missing to 
enable linking data quickly back to the original design data in STEP. Linking inspection 
data is somewhat easier because QIF and STEP can both represent the features in their 
respective data formats. However, the feature IDs may not be consistent and thus might 
require a reconciliation process between the two domains. 

Enabling such linking between different stages in the product lifecycle would help 
enable a set of powerful scenarios for decision makers. For example, identifying 
relationships between machine parameters and part quality would inform intelligent 
tuning of machining instructions as also suggested by the DMDII O3 Project. 
Furthermore, such a scenario could lead to advanced automated reasoning during the 
design of the product. Given historical data of multiple builds and inspection outcomes, it 
is feasible to suggest that new computer-supported tools could more fully equip 
engineering designers during decision-making. As a result, we believe that emphasis 
should be placed on automatically deriving defect reports that house design, 
manufacturing, as well as inspection data to quicken the development of new enabling 
technologies for the digital thread. 
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Hedberg et al. (2016) and Miller et al. (2017) propose concepts that would enable 
automating the linking of data. Miller et al. (2017) propose defining a MIM for the 
product lifecycle to standardise the information that must flow between each domain of 
the lifecycle. Miller et al. (2017) are conducting a Delphi study to determine the 
information requirements. This study is identifying the information used within specific 
workflows, the capabilities of 3D-CAD models to carry this information, and the 
implications. The MIM would provide standardisation to help industry’s transition to 
model-based design (MBD) by providing a general framework upon which to build. 

Work presented by Miller et al. (2017) could be combined with that of Hedberg et al. 
(2016). Hedberg et al. (2016) propose defining a common element model (CEM), which 
would include and extend the MIM. Hedberg et al. (2016) adopt Semantic Web  
(Berners-Lee et al., 2001) and Linked Data (Berners-Lee, 2006) concepts to dynamically 
link different domain models to generate the CEM. The CEM would include both the 
minimum information that is required to move between domains and the domain-specific 
information. The combination of the MIM and CEM would provide a strategy and 
standard framework for mapping data and information between domains. This would 
greatly enhance the methods we describe in this paper. 

The aim of this paper is to suggest directions to improve the contextualisation of 
manufacturing data for lifecycle decision-making. In light of this challenge, we presented 
a reference implementation through an interactive software prototype that demonstrated 
the importance of contextualising several sets of data across the lifecycle. This 
demonstration presented key open research opportunities that should be explored in more 
detail throughout the community. 
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