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Abstract 

As virtual appliances become more prevalent, we 

encounter the need to stop manually adapting them to 

their deployment context each time they are deployed. 

We examine appliance contextualization needs and 

present architecture for secure, consistent, and 

dynamic contextualization, in particular for groups of 

appliances that must work together in a shared 

security context. This architecture allows for 

programmatic cluster creation and use, as well as 

mitigating potential errors and unnecessary charges 

during setup time. For portability across many 

deployment mechanisms, we introduce the concept of a 

standalone context broker. We describe the current 

implementation of the entire architecture using the 

Virtual Workspaces toolkit, showing real-life examples 

of dynamically contextualized Grid clusters. 

 

1. Introduction 
 

Providers of compute cycles in the cloud, such as 

Amazon EC2 [1] or the Science Clouds [2], enable 

users to acquire on-demand compute resources, usually 

in the form of virtual machines (VMs). To be useful, 

the acquired group of VMs typically still has to be 

configured into a working cluster: common 

applications such as shared file system or a batch 

scheduler have to be configured to reflect the group of 

machines belonging to the cluster domain. In other 

words, the cluster needs to establish its context: share 

the networking information assigned to individual 

VMs when they are deployed (such as IP addresses and 
hostnames) an the security information that is often 

specific to a particular deployment. In short, for the 

virtual cluster to be useful, a configuration phase needs 

to be completed at deployment time.  

This configuration phase can happen in two ways: 

(1) we can deploy an image configured with a basic 

environment, then install and configure the context-

sensitive applications at deployment time [3, 4], or (2) 

deploy fully configured images and adjust the 

configuration of context-sensitive applications after 

deployment. The first option often results in a long 
deployment time for nontrivial systems: the process of 

configuring a real-life scientific cluster may take many 

hours [5]. The second option, while potentially faster, 

typically requires knowledge of the applications that 

have been installed on the VM and is thus carried out 

manually. Both options have the potential to make the 

process of VM deployment long. We argue that by 

coordinating the process of appliance preparation and 
appliance deployment we can provide a generic, 

lightweight, and automated mechanism that will 

quickly deploy fully configured images and adapt them 

to their deployment context.  

In [6] we introduced the term contextualization to 

describe such a process for single VMs. In this paper, 

we provide a more comprehensive discussion of what 

it takes to build and contextualize virtual clusters and 

other complex constructs. We present a detailed 

description of the architecture, discuss the security 

aspects of context creation, and describe how context 
information can be brokered between multiple VMs. 

We analyze two appliance deployment 

implementations: one provided by the Amazon EC2 

service [7], the other by the Nimbus Toolkit [8], and 

describe how the Nimbus Context Broker service can 

work with each to deploy one-click virtual clusters of 

varying complexity. We also illustrate with examples 

how contextualization is used in practice.  

This paper is organized as follows. In Section 2 we 

discuss the roles and responsibilities of appliance 

providers and appliance deployers. Section 3 describes 

a context brokering architecture, compares the features 
of two existing deployer implementations, and 

describes how they can work with the Nimbus Context 

Broker. Section 4 gives examples. Sections 5 and 6 

present related and future work and Section 7 

summarizes the findings. 

 

2. Roles and Responsibilities 
 

Virtual organizations (VOs) [9] bring together 

scientists collaborating to solve problems that require  

a common and consistent set of environments 

customized to satisfy the needs of a VO-specific 

applications. These needs can range from providing a 

software stack capable of supporting VO applications 



to defining levels of isolation and security associated 

with the work in those environments. In order to serve 

the needs of its community, a VO must find ways of 

expressing the required environments  and mapping 

those environments onto resources. 

This goal is hard to achieve in today’s grids because 
the environment configuration is almost entirely in the 

hands of resource providers who configure and 

maintain environments trying to find a compromise 

between the needs of as many VOs as possible. This 

strategy often fails because reconciling the needs of 

different VOs is time-consuming at best and 

impossible at worst: different VOs require environment 

updates in different timeframes and sharing 

relationships are often ad hoc, complex and ill defined.  

The past few years have seen the emergence of 

virtual appliances [10] that define an environment as 

an abstraction independent of its deployment. In doing 
so, appliances decouple the notion of environment 

configuration and maintenance from the notion of their 

assignment to resources. Such appliances no longer 

need to be maintained by the resource providers; they 

can be maintained by the communities that use them, 

and then mapped onto resources. This rethinking of the 

division of labor between the providers and consumers 

of resources adds a new role to the process, that of an 

appliance provider, and new flexibility (provided by 

new software) that allows us to explicitly provision 

environments on available resources.  
Figure 1 shows the interdependencies between the 

different roles: 

• Appliance providers configure environments, take 

responsibility for maintaining them (e.g. applying 

security updates), and guarantee their consistency 

and freshness. In doing so, the appliance providers 

may be assisted by appliance management tools 

[11][] and provide mechanisms for convenient 

updates, versioning, verification, and so forth.  

• Resource providers provide resources with limited 

configuration requirements designed to support 

appliances but no longer to provide end-user 
environments for multiple communities. The same 

appliance may be moved seamlessly between 

open, proprietary, and leased platforms to cope 

with peak demand.  

• Appliance deployers coordinate the mapping of 

appliances onto available resource platforms and  

information exchange between groups of 

appliances to enable them to share information and 

sharing relationships that constitute the context of 

their deployment.  

In a Grid environment, a logical choice for the 
appliance provider is a VO (or representatives 

designated by the VO), since VOs are typically 

associated with a set of well-defined compute 

environment required by a community. To be effective, 

the VOs will need to develop infrastructure or have 

available tools to provide and maintain appliances. 

Introducing the concept of a virtual appliance does not 

necessarily save work; it simply puts work in the hands 

of the party that is most qualified and motivated to do 
it.  

 

Figure 1: Roles and responsibilities: appliance 

deployers map appliances prepared by appliance 

providers onto resources. 

This paper describes the challenges and solutions 

facing the appliance deployer. These can be seen as the 

interplay of two layers: (1) mapping appliances onto 

resources and (2) configuring them to represent 

functional units aware of the surrounding context. We 

addressed (1) in our research in [12, 13]. We now 

focus on (2): the contextualization process. 

 

3. The Contextualization Process 
 

Each appliance is deployed in a specific deployment 

context that may be defined by a Grid, a site, other 

appliances (e.g., when the appliance is part of a 

“virtual cluster” [14]), or all of the above. Since 

appliances are deployed dynamically, each appliance 

deployment instance is potentially associated with a 

different context. For example, the appliance’s IP 
address and hostname may be new or reassigned and  

deployment-specific security data generated. 

Therefore, each time the appliance is deployed, it must 

be able to integrate information about its current 

deployment context in order to function within that 

context. We call this process of adapting an appliance 

to its deployment context contextualization. 

 In [6], we defined an appliance as an environment 

capable of being contextualized (a prerequisite for 

dynamic deployment), that is, an environment that 

defines the required context information 



(contextualization template) and  can integrate this 

information into the appliance so that the appliance 

works in its deployment context. We call the agent 

acting to integrate the contextualization information 

into an appliance the contextualization agent. We also 

described a simple contextualization mechanism that 
allowed us to configure appliances as long as all the 

context information was available. This was achieved 

as a collaboration between the appliance provider and 

appliance deployer and worked as follows. Each time 

an appliance provider put a new application into the 

appliance, they would define what context-dependent 

information was required to make the application work 

(e.g., a Grid service might require a host certificate). 

The appliance provider would then specify the required 

information in the appliance template and write a script 

(contextualization agent) capable of integrating the 

context information into the appliance (e.g., by 
modifying configuration files for an application). The 

appliance deployer would provide the information 

described in the contextualization template at boot 

time, and on boot the contextualization scripts/agents 

would integrate the information into the appliance.  

This method assumed that all of the context 

information was available on boot, that the context did 

not change during the appliance’s deployment, and that 

the deployer of an appliance was the same entity that 

coordinated the context exchange between appliances 

and the larger context. However, these assumptions are 
not necessarily true: if we simultaneously deploy 

several appliances depending on each other for context 

information, not all of the context information will be 

available on boot (i.e., each appliance needs to provide 

as well as consume context information). Also, in 

practice the appliance deployer (e.g., the Amazon’s 

EC2 service) may not be privy to, say, VO-specific 

authorization policy information required by the 

appliance. We therefore extended our model to account 

for those situations. We still assume that context 

integration will occur at boot time (i.e., we provide no 

mechanisms for recontextualization). 
 

3.1. Architecture 
The process of contextualization depends on the 

collaboration of three parties, each potentially in a 

distinct trust domain, and each potentially providing 

information in a different idiom. Figure 2 shows the 

interactions between the appliance and the three 

components. The appliance provider configures the 

appliance, providing the disk image and corresponding 
contextualization template that describes what 

information is required or contributed by the appliance 

toward the establishment of the context (1). The 

appliance deployer start sup the appliance and provides 

some generic appliance information (2). The context 

broker coordinates the exchange of application-specific 

contextualization information (3). 

 

Figure 2: Relationship between appliance provider, 

appliance deployer, and context broker. 

A context broker manages objects describing 

information associated with a specific context. A 

context object captures context information relevant to 

a specific virtual construct (a virtual cluster, 

collaboration, or Grid), serves as an exchange board 

for that information, and defines the security and trust 

for that context. Context information may be provided 
by the client (e.g., an access control list defining 

individuals who can access a virtual cluster), by the 

appliance deployer, by any appliance that exist within 

the context and contribute to it, or from other sources. 

Since we currently assume that all the context 

information will become available within a short time 

after the appliance boots, we require that a context 

object eventually reach a stable state (when all the 

expected information has been provided). At that point 

the information is distributed to the appliances.  

The appliance providers, deployers, and context 
distributors interact as follows (see Figure 2): 

1) The appliance gets configured by the appliance 

provider. As part of the configuration, each 

application participating in the appliance provides 

a script that integrates context information into the 

appliance at boot time and a description of 

contextualization requirements to be put in the 

contextualization template. In addition to this 

application-specific context information, each 

appliance requires generic context information 

(see below). Both the script and the template are 

provided as part of appliance packaging process.  

2) When the appliance is deployed by the appliance 

deployer, it is associated with a specific context 

broker. The deployer delivers to the appliance 

(either via push or pull, see Section 3.2) the 

generic context information including a way to 

contact the context broker. In order to obtain more 

context information, the appliance will contact the 

context broker.  



3) After the appliance is booted, the contextualization 

agents first gather all the context information 

provided by the appliance. They then contact the 

context broker and deposit the information in the 

appliance’s context. After the context reaches a 

stable state, they collect the context information 
the appliance requires.  

The generic context information delivered by the 

deployer is as follows: 

 

a) Network id of the appliance (IP address/hostname) 

b) Address of the context broker  

c) Context identifier  

d) A set of credentials that will allow the appliance to 

prove its identity to the context service and verify 

the identity of the context service.  

Note that b–d are required only if a context broker is 

used (simple appliances, such as base images, may not 
need a context broker at all). In addition, if the context 

broker shares the trust domain with the deployer and 

the appliance, the security information is not needed. 

The model described above illustrates the inter-

relationships among the actors in the contextualization 

process and defines the protocols they need to agree 

on. The contextualization agent needs to be able to 

consume and interpret the context information 

provided by the deployer. The agent also may need to 

be able to contact the context service and provide 

required context information itself. While a variety of 
implementations can be used in all of these cases, 

standards in this area would greatly facilitate the 

adoption of the technology. 

 

3.2. Implementation 
 

We now discuss how the architecture described 

above has been implemented in two systems we are 

familiar with: the Amazon Elastic Compute Cloud 
(EC2) [7] and the workspace service [5].  

 

3.2.1. Delivery of Generic Context Information. 

Both EC2 and the workspace service leverage existing 

contextualization mechanisms to provide basic context 

information to the VM. Specifically, they leverage the 

standard DHCP broadcast call (a part of typical boot 

sequence) to provide an IP address. In EC2’s case two 

addresses are assigned to the same NIC: a private IP 

address and a public IP address. The DHCP request 

returns the private IP; traffic directed to the public IP is 

eventually redirected to the NIC associated with the 
private IP [15]. The workspace service delivers all IP 

address information via a DHCP delivery tool 

described in [6] or via the site’s DHCP service. 

The remaining generic context information can be 

delivered to EC2 instances as follows. For each VM, 

EC2 creates an “instance metadata” structure on startup 

for a group of VMs deployed at the same time – a 
“launch group.” Among others, the metadata contains a 

“user-data” field, allowing the user to provide 

unstructured data (at most 16KB) to be shared among 

all the members of the launch group. The information 

can be provided by an external client via a secure 

HTTPS connection guaranteeing the privacy of the 

data. The VM can read this data via an unsecured 

HTTP GET call; however, since the assumption is that 

the network between the VM and EC2’s data structure 

is secure, user data can be used to convey, for example, 

a private key or another secret. 

The workspace service likewise exposes the means 
for a client to provide context information to a group of 

workspaces via a private HTTPS channel. The 

workspace service conveys this information to the VM 

by “image patching” (putting a file with the required 

information on the VM disk image). The workspace 

service patches the image with a file containing the 

generic context information. At boot time, the 

contextualization agent reads and interprets the 

information in the file.  

Of the three discussed delivery methods, leveraging 

existing mechanisms (DHCP) would clearly be most 
convenient – unfortunately it is not feasible to employ 

it for all applications. We chose image patching in our 

implementation because it is simple for the 

contextualization agent (although not necessarily 

simple for the deployer), because it imposes no 

practical size constraint, and because it can be used 

securely without requiring the network on the 

deployer’s side to be trusted. Providing 

contextualization information via the network (EC2) is 

also simple but it requires a trusted network to share 

secrets, which is not always feasible. In addition, 

contextualization information may be delivered via 
kernel parameters, but this approach may significantly 

limit the size of the information that can be delivered. 

Since both EC2 and the workspace service provide 

a secure delivery channel of unstructured information 

(user data and the image patch, respectively), both can 

be used to convey the generic context information 

including the service URL to the context broker, the 

WSRF key identifying the specific context object, and 

the security information consisting of the public key 

identifying the context broker and a private key 

identifying the context object. 
 

3.2.2. Context Broker Implementation. Neither 

EC2’s user data nor workspace service image patching 



is suitable for the kind of context brokering described 

in Section 3.1. First, both methods work one way only 

(from client via deployer to the VM): neither allows a 

VM to send information back, so that the VM cannot 

share its “provides” information. In addition, both are a 

deployer-specific context mechanism: they rely on the 
assumption that the VM does not need to create a 

security context with deployer because it is within the 

deployer’s domain and this domain creates conditions 

for trusted exchange. In other words, these mechanisms 

cannot be used to broker information across different 

deployers or where we cannot assume the existence of 

a trusted domain. 

To overcome these shortcomings, we implemented 

a context broker to fulfill those tasks. The context 

broker is implemented as a WSRF service that creates 

and manages context objects. A context object is 

created by a client (e.g., by a deployer to assist with the 
creation of virtual cluster or by the end user who wants 

several VMs to share a context). On creation, a context 

object generates a keypair that is used to root a 

trust/security environment for the context: the private 

key of this keypair is conveyed to the VM as part of 

the generic context information along with the public 

key of the context service. The private key identifying 

a context can be obtained by the deployer using the 

HTTPS protocol. A context broker implements two 

operations: (1) “add workspace,” used by a deployer to 

register the IP of a deployed VM as well as the 
contextualization template corresponding to the VM, 

and (2) “add information,” which allows a client to add 

information expressed as an XML document to the 

context. In addition, a client  can also set a flag saying 

that there are no more workspaces and no more 

information to be added to the context.  

The contextualization template is composed of two 

sections: provides and requires. The provides section 

contains a list of labels that describe the role of the VM 

in the context of a specific application (e.g., if a VM is 

an NFS server, it will contain the “nfsserver” label in 

the provides section). The requires section contains a 
list of labels that describe what information is required 

to contextualize the VM (e.g., if a VM is an NFS 

client, it will contain the “nfsclient” label in the 

requires section). Labels are arbitrary, but they must be 

such that the contextualization scripts can interpret 

them.  

On deployment, a VM is passed the generic context 

information described in Section 3.1. When the VM 

boots, the context agent mutually authenticates with 

the context broker using the generic context 

information and provides its identity (VM identity is 
composed of three typed objects: hostname, IP address, 

and public host key). The context broker matches this 

information to the VM’s contextualization template 

and “fills in” the templates by sorting the provides 

information into the requires fields of 

contextualization templates of each VM participating 

in the context. After all the context identity information 

has been received and sorted, the context broker 

releases the templates with filled-in information to the 
waiting contextualization agents. When the context 

broker marks a response to a specific context agent as  

“complete,” that context agent invokes the 

applications-specific contextualization scripts on the 

VM, which integrate the necessary information into 

application configuration. 

Note that our implementation assumes that the VM 

authenticates as a “member of context” only (rather 

than an individual entity) and that the members of 

context are trusted between themselves (i.e., they are 

trusted to identify themselves within the context).  

 

4. Contextualization Examples 
 

We implemented the mechanisms described above 

and released them in 1.3.3 release of our software. We 

successfully used the context broker both in 

conjunction with the Science Clouds workspace 
deployment [2] using workspace-specific mechanisms 

to convey the generic context information and in 

conjunction with Amazon EC2, where we used the 

EC2 user-data to convey the generic context 

information. The techniques proved effective in 

producing “instant virtual clusters” for multiple 

applications, including the high energy physics STAR 

experiment, which ran on 100 nodes on Amazon EC2. 

Below we describe some contextualization examples.  

 

4.1. Network File System (NFS) 
 

Contextualizing NFS enables us to dynamically 

deploy a simple cluster with a shared filesystem. We 

show here a simple example of contextualizing a 

cluster that has two client nodes and one NFS server 

node that exports directories. To keep the example 

simple, we assume that the network can be trusted for 

authentication, that node’s identity is composed of the 

IP address only, and that the volumes to export and 

mount are embedded in the VM contextualization 
scripts. 

NFS VMs are all configured in the same way; 

contextualization consists of annotating which VM will 

play the server role and which will be the clients. For 

example, server node context template looks like this 

(the client’s template looks similar but with the nfs 

labels switched): 
<provides> 

  <identity /> 

  <label>nfsserver</label> 



</provides> 

<requires> 

  <role name=”nfsclient”/> 

</requires> 

During deployment, the identity playing the 

“nfsserver” role will be filled in once it is known, for 

example, with the IP address of 10.0.0.1. An XML 

representation of the node’s provides section in the 

context will now look like the following. 
<provides>      

  <identity><ip>10.0.0.1</ip></identity> 

  <label>nfsserver</label> 

</provides> 

Similarly, the client nodes’ IP addresses (in our 

example, 10.0.0.2 and 10.0.0.3) are filled into their 

respective templates as they become known. 

The information gets sorted and given to each client 

node as follows. 
<requires> 

  <role name=”nfsserver”>10.0.0.1</role> 

</requires> 

and to the server as follows. 
<requires> 

  <role name=”nfsclient”>10.0.0.2</role> 

  <role name=”nfsclient”>10.0.0.3</role> 

</requires> 

The scripts on the client nodes take the “nfsserver” 

IP address and use it to construct the proper line to add 

to the fstab file. The scripts on the head node take each 

“nfsclient” IP address and append an authorization line 

to the exports policy file. Then, the server process and 

client mounts (depending on the role) are started. Since 

we do not assume that the NFS server will be online 

when the client node’s contextualization retrieval 

completes for each mount requirement, the NFS client 
nodes try to mount the volume in a loop that checks 

whether the mount was successful. 

 

4.2. STAR Cluster 
 

To support STAR [16] workloads, we created a 

virtual cluster using a Scientific Linux 4.4 base image, 

VDT [17] packages, and Torque [18]. The OSG 0.6.0 

CE installation was used for the head node template 
image, and the OSG 0.6.0 wn-client installation was 

used for the worker node template image. The virtual 

head node runs a Globus GRAM2 job gateway to a 

localhost Torque server, a GridFTP server [19], and an 

NFS server. The worker nodes run Torque MOM 

processes (processes that sit on each worker node to 

run jobs) and mount NFS directories from the head 

node (OSG's typical $HOME, $APP, and $DATA). 

The head node has two network interfaces, one for its 

Internet addressable processes (GRAM, GridFTP) and 

one for a private network. The worker nodes have one 

interface each, all on the private network. This is a 

typical Grid cluster gateway + NAT setup. 

The contextualization demands in this example are 

more complex. Since the headnode has both a public 

and private IP address, we have to be careful that it is 

the private address of the cluster headnode that gets 
connected to the worker nodes for NFS and Torque. 

Also, using Torque requires contextualization features 

that are new in this example, namely, full identity 

distribution (including SSHd host keys). The 

contextualization process is also used to late-configure 

GRAM and GridFTP to handle identity configuration 

(they both need to be configured with the proper public 

facing fully qualified domain name). 

The headnode’s two network identities are both 

reflected in the provides section (as shown below) in 

order to introduce tags for each. The eth1 tag is given 

to the private interface, and this is indicated in the 
“torqueserver” and “nfsserver” provided roles. Hence, 

anything requiring a match for these roles will get the 

eth1 network identity in response. 
<provides> 

  <identity> 

    <interface>eth0</interface> 

  </identity> 

  <identity> 

    <interface>eth1</interface> 

  </identity> 

  <role interface="eth1"> 

      torqueserver</role> 

  <role interface="eth1">nfsserver</role> 

</provides>       

<requires> 

  <identity /> 

    <role name="torqueclient"   

      hostname="true" pubkey="true" /> 

    <role name="nfsclient" /> 

</requires> 

In the requires section, the “torqueclient” annotation 

indicates that more than the IP address is necessary. 

The hostname is required as well as the SSHd host key 

because SSHd host-based authentication is used with 

Torque and GRAM2 to allow jobs to run. This sets up 

free SSH access from node to node if the source and 

target system account are the same. Again, the worker 

node annotations are similar, with the role labels 

reversed (but no dual networking).  

On boot, each worker node generates an SSHd host 
key, and the agent reports this to the contextualization 

service (using secure channel) with the rest of identity 

information.  

After the contextualization information has been 

retrieved, SSHd on all nodes is configured by 

populating the node’s global “known_hosts” file as 

well as the “hosts.equiv” file (we implement a “many-

to-many” approach to handle nonserial workloads 

where there will be intercommunication among the 



nodes). Further, the /etc/hosts file on each node is 

populated with all known IP address and hostnames. 

This avoids any DNS problems if the site has not 

configured things correctly, especially for reverse 

DNS, which typically affects network security 

software. On the worker nodes, the Torque “server” 
file is populated with the head node hostname, and 

NFS is configured as in the previous example. On the 

headnode, Torque's “nodes” file is populated with all 

of the authorized MOM hostnames, Torque’s “server” 

file is populated with the head node hostname 

(configuring itself as the master), and NFS is 

configured as in the example before. 

GRAM and GridFTP require the public fully 

qualified domain name of the intended contact address 

in order to work correctly with GSI. We found that on 

multi-NIC nodes this was not trivially deduced in a 

startup script. Thus, the contextualization engine helps 
identify the proper hostname for configuring these 

components. On EC2, the public address is not even an 

actual on-board network interface (each EC2 VM is 

behind a NAT and the public address is known only 

via EC2 instance metadata), and so this was especially 

useful in that case. 

 

5. Related Work 
 

One approach to appliance deployment is to only 

partially rely on preconfigured images. In this 

approach, an appliance is deployed by deploying an 

image with as much of a base configuration as possible 

(“golden image”) and installing applications on the fly. 

This approach has been used by VMPlant [3] as well as 

[4]. While for this only generic contextualization is 

sufficient, it makes the appliance deployment 

potentially lengthy.  
The term virtual appliance was introduced by 

Sapuntzakis and Lam [10], and their work describes 

the first attempts at defining contextualization 

information as well as explaining the requirements for 

appliance management. We build on this work, 

generalizing the method and enabling the use of 

generic tools and protocols for configuration 

management.  

Configuration management tools such as LCFG 

[20], Quattor [21], and Bcfg2 [22] are somewhat 

similar to appliance creation and deployment. 
However, they rely on traditional configuration 

techniques and do not (as of now) cleanly separate the 

process of appliance creation and contextualization. 

Much work has also been done in the industry by 

companies that explicitly manage appliances (e.g., 

rPath [23]); we collaborate with those efforts as 

builders of deployer-side software. In particular, the 

Open Virtualization Framework [24] defines high-level 

concepts and best practices similar to the work 

described here; our approach is more detailed and 

serves the specific needs of our community.  

 

6. Future Directions 
 

While our current approach allows us to solve 

current problems (namely, provide a cluster on the fly 

for nontrivial applications), it needs to be refined to 

provide more features. While our implementation 

currently operates on identity information we see 

increasing demand for the exchange of application-
specific data that could be brokered as “blobs” to be 

interpreted by contextualization agents; we are 

currently generalizing the techniques described here to 

accommodate this requirement. Also, virtual clusters 

are only one type of context; in general, virtual 

constructs could span the range from individual VMs 

through clusters to virtual Grids that could potentially 

benefit from a hierarchical organization.  

Further, our methods to date do not address the 

critical issue of recontextualization: redistributing the 

context based on dynamically changing context 
information. The ability to do so would allow us to add 

VMs to a context on the fly, for example, by adding 

new nodes to an MPI computation, or account for 

changes due to, for example, appliance migration. The 

ability to make those changes, however, will require 

tighter collaboration with OS-level tools.  

 

7. Summary 
 

In this paper we described a new technique, called 

contextualization, enabling the dynamic creation of 

functioning virtual constructs aware of their context. 

We discussed two existing implementations providing 

generic contextualization information, their respective 

assumptions and capabilities, and gave examples ofow 

they can be used in conjunction with a context broker 

to deploy virtual clusters. Our purpose in this paper 

was to describe a general solution and a process that 
can be used with any deployer and any appliance 

provider that fulfill the specified conditions of  secure 

transfer of information. Based on this process, we 

highlighted the need for standards on the deployers and 

appliance provider’s side. 

Making contextualization an accepted technology 

will require the collaboration of many branches of 

technology. Besides the obvious ones of appliance 

configuration and deployment, better and more flexible 

methods of context information delivery to appliances 

will need to be developed to allow for 

recontextualization. Further, applications will also need 



to develop the awareness of the potential of 

contextualization in order to leverage it.  

 

Acknowledgements 
 

This work was supported by NSF CSR award #527448 

and, in part, by the MCS Division subprogram of the 

Office of Advanced Scientific Computing Research, 

SciDAC Program, Office of Science, U.S. Department 

of Energy, under Contract DE-AC02-06CH11357. 

 

References 

 

 

 

1. Amazon Elastic Compute Cloud (Amazon 

EC2): http://www.amazon.com/ec2. 

2. Science Clouds: 
http://workspace.globus.org/clouds/. 

3. Krsul, I., A. Ganguly, J. Zhang, J. Fortes, and 

R. Figueiredo. VMPlants: Providing and 

Managing Virtual Machine Execution 

Environments for Grid Computing. in SC04. 

2004. Pittsburgh, PA. 

4. Nishimura, H., N. Maruyama, and S. 

Matsuoka, Virtual Clusers on the Fly -- Fast, 

Scalable and Flexible Installation. CCGrid, 

2007. 

5. Keahey, K., I. Foster, T. Freeman, and X. 
Zhang, Virtual Workspaces: Achieving 

Quality of Service and Quality of Life in the 

Grid. Scientific Programming Journal, 2005. 

6. Bradshaw, R., N. Desai, T. Freeman, and K. 

Keahey. A Scalable Approach to Deploying 

and Managing Virtual Appliances. in 

TeraGrid 2007 Conference. 2007. Madison, 

WI. 

7. Amazon Elastic Compute Cloud (EC2): 

www.amazon.com/ec2. 

8. Virtual Workspaces: 

http://workspace.globus.org. 
9. Foster, I., C. Kesselman, and S. Tuecke, The 

Anatomy of the Grid: Enabling Scalable 

Virtual Organizations. International Journal 

of Supercomputer Applications, 2001. 15(3): 

p. 200-222. 

10. Sapuntzakis, C. and M.S. Lam. Virtual 

Appliance in the Collective: A Road to 

Hassle-free Computing. in 9th Workshop on 

Hot Topics in Operating Systems. 2003. 

11. rBuilder Online: 

http://www.rpath.com/rbuilder/. 
12. Freeman, T., K. Keahey, I. Foster, A. Rana, 

B. Sotomayor, and F. Wuerthwein, Division 

of Labor: Tools for Growth and Scalability of 

the Grids. ICSOC 2006, 2006. 

13. Freeman, T. and K. Keahey, Flying Low: 

Simple Leases with Workspace Pilot. EuroPar 

2008, 2008. 

14. Freeman, T., K. Keahey, B. Sotomayor, X. 

Zhang, I. Foster, and D. Scheftner, Virtual 

Clusters for Grid Communities. CCGrid, 

2006. 

15. Amazon Elastic Compute Cloud. Developer 

Guide. API Version 2008-02-01, in available 

from www.amazon.com/ec2. 

16. The STAR Experiment. 2007: 

www.star.bnl.gov. 

17. Virtual Data Toolkit: http://www.lsc-

group.phys.uwm.edu/vdt/documentation.html. 

18. Torque: 

http://www.clusterresources.com/pages/produ

cts/torque-resource-manager.php. 

19. Allcock, W., GridFTP: Protocol Extensions 

to FTP for the Grid. 2003, Global Grid 
Forum. 

20. Anderson, P. and A. Scobie. Large Scale 

Linux Configuration with LCFG. in 4th 

Annual Linux Showcase and Conference. 

2000. 

21. Quattor: http://cern.ch/quattor. 

22. Desai, N., A. Lusk, R. Bradshaw, and R. 

Evrard. BCFG: A Configuration Management 

Tool for Heterogeneous Environments. in 

IEEE International Conference on Cluster 

Computing (CLUSTER'03). 2003. 

23. rPath: www.rPath.com. 
24. The Open Virtual Machine Format 

(whitepaper for OVF specification version 

0.9). 

 

 




