
 Open access Proceedings Article DOI:10.1109/ESCIENCE.2008.82

Contextualization: Providing One-Click Virtual Clusters — Source link

Kate Keahey, T. Freeman

Institutions: University of Chicago

Published on: 07 Dec 2008 - IEEE International Conference on eScience

Topics: Virtual machine, Contextualization, Context (language use), Grid computing and Software portability

Related papers:

 The Eucalyptus Open-Source Cloud-Computing System

 Xen and the art of virtualization

 Above the Clouds: A Berkeley View of Cloud Computing

 Virtual workspaces: Achieving quality of service and quality of life in the Grid

 The Anatomy of the Grid: Enabling Scalable Virtual Organizations

Share this paper:

View more about this paper here: https://typeset.io/papers/contextualization-providing-one-click-virtual-clusters-
3806y7okxh

https://typeset.io/
https://www.doi.org/10.1109/ESCIENCE.2008.82
https://typeset.io/papers/contextualization-providing-one-click-virtual-clusters-3806y7okxh
https://typeset.io/authors/kate-keahey-3bb2noukvk
https://typeset.io/authors/t-freeman-7gi8iv8ekm
https://typeset.io/institutions/university-of-chicago-3d5e7aat
https://typeset.io/conferences/ieee-international-conference-on-escience-27w2z1ol
https://typeset.io/topics/virtual-machine-1wyvv06f
https://typeset.io/topics/contextualization-m8qg9ppf
https://typeset.io/topics/context-language-use-18vh7dju
https://typeset.io/topics/grid-computing-3slduoxr
https://typeset.io/topics/software-portability-1rgtkq11
https://typeset.io/papers/the-eucalyptus-open-source-cloud-computing-system-2ahud2ixme
https://typeset.io/papers/xen-and-the-art-of-virtualization-vt3kaikb6y
https://typeset.io/papers/above-the-clouds-a-berkeley-view-of-cloud-computing-tkj3etim13
https://typeset.io/papers/virtual-workspaces-achieving-quality-of-service-and-quality-i96jxif2v6
https://typeset.io/papers/the-anatomy-of-the-grid-enabling-scalable-virtual-nmk60m06ru
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/contextualization-providing-one-click-virtual-clusters-3806y7okxh
https://twitter.com/intent/tweet?text=Contextualization:%20Providing%20One-Click%20Virtual%20Clusters&url=https://typeset.io/papers/contextualization-providing-one-click-virtual-clusters-3806y7okxh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/contextualization-providing-one-click-virtual-clusters-3806y7okxh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/contextualization-providing-one-click-virtual-clusters-3806y7okxh
https://typeset.io/papers/contextualization-providing-one-click-virtual-clusters-3806y7okxh

Contextualization: Providing One-Click Virtual Clusters

Katarzyna Keahey
University of Chicago

keahey@mcs.anl.gov

Tim Freeman
University of Chicago

tfreeman@mcs.anl.gov

Abstract

As virtual appliances become more prevalent, we

encounter the need to stop manually adapting them to

their deployment context each time they are deployed.

We examine appliance contextualization needs and

present architecture for secure, consistent, and

dynamic contextualization, in particular for groups of

appliances that must work together in a shared

security context. This architecture allows for

programmatic cluster creation and use, as well as

mitigating potential errors and unnecessary charges

during setup time. For portability across many

deployment mechanisms, we introduce the concept of a

standalone context broker. We describe the current

implementation of the entire architecture using the

Virtual Workspaces toolkit, showing real-life examples

of dynamically contextualized Grid clusters.

1. Introduction

Providers of compute cycles in the cloud, such as

Amazon EC2 [1] or the Science Clouds [2], enable

users to acquire on-demand compute resources, usually

in the form of virtual machines (VMs). To be useful,

the acquired group of VMs typically still has to be

configured into a working cluster: common

applications such as shared file system or a batch

scheduler have to be configured to reflect the group of

machines belonging to the cluster domain. In other

words, the cluster needs to establish its context: share

the networking information assigned to individual

VMs when they are deployed (such as IP addresses and
hostnames) an the security information that is often

specific to a particular deployment. In short, for the

virtual cluster to be useful, a configuration phase needs

to be completed at deployment time.

This configuration phase can happen in two ways:

(1) we can deploy an image configured with a basic

environment, then install and configure the context-

sensitive applications at deployment time [3, 4], or (2)

deploy fully configured images and adjust the

configuration of context-sensitive applications after

deployment. The first option often results in a long
deployment time for nontrivial systems: the process of

configuring a real-life scientific cluster may take many

hours [5]. The second option, while potentially faster,

typically requires knowledge of the applications that

have been installed on the VM and is thus carried out

manually. Both options have the potential to make the

process of VM deployment long. We argue that by

coordinating the process of appliance preparation and
appliance deployment we can provide a generic,

lightweight, and automated mechanism that will

quickly deploy fully configured images and adapt them

to their deployment context.

In [6] we introduced the term contextualization to

describe such a process for single VMs. In this paper,

we provide a more comprehensive discussion of what

it takes to build and contextualize virtual clusters and

other complex constructs. We present a detailed

description of the architecture, discuss the security

aspects of context creation, and describe how context
information can be brokered between multiple VMs.

We analyze two appliance deployment

implementations: one provided by the Amazon EC2

service [7], the other by the Nimbus Toolkit [8], and

describe how the Nimbus Context Broker service can

work with each to deploy one-click virtual clusters of

varying complexity. We also illustrate with examples

how contextualization is used in practice.

This paper is organized as follows. In Section 2 we

discuss the roles and responsibilities of appliance

providers and appliance deployers. Section 3 describes

a context brokering architecture, compares the features
of two existing deployer implementations, and

describes how they can work with the Nimbus Context

Broker. Section 4 gives examples. Sections 5 and 6

present related and future work and Section 7

summarizes the findings.

2. Roles and Responsibilities

Virtual organizations (VOs) [9] bring together

scientists collaborating to solve problems that require

a common and consistent set of environments

customized to satisfy the needs of a VO-specific

applications. These needs can range from providing a

software stack capable of supporting VO applications

to defining levels of isolation and security associated

with the work in those environments. In order to serve

the needs of its community, a VO must find ways of

expressing the required environments and mapping

those environments onto resources.

This goal is hard to achieve in today’s grids because
the environment configuration is almost entirely in the

hands of resource providers who configure and

maintain environments trying to find a compromise

between the needs of as many VOs as possible. This

strategy often fails because reconciling the needs of

different VOs is time-consuming at best and

impossible at worst: different VOs require environment

updates in different timeframes and sharing

relationships are often ad hoc, complex and ill defined.

The past few years have seen the emergence of

virtual appliances [10] that define an environment as

an abstraction independent of its deployment. In doing
so, appliances decouple the notion of environment

configuration and maintenance from the notion of their

assignment to resources. Such appliances no longer

need to be maintained by the resource providers; they

can be maintained by the communities that use them,

and then mapped onto resources. This rethinking of the

division of labor between the providers and consumers

of resources adds a new role to the process, that of an

appliance provider, and new flexibility (provided by

new software) that allows us to explicitly provision

environments on available resources.
Figure 1 shows the interdependencies between the

different roles:

• Appliance providers configure environments, take

responsibility for maintaining them (e.g. applying

security updates), and guarantee their consistency

and freshness. In doing so, the appliance providers

may be assisted by appliance management tools

[11][] and provide mechanisms for convenient

updates, versioning, verification, and so forth.

• Resource providers provide resources with limited

configuration requirements designed to support

appliances but no longer to provide end-user
environments for multiple communities. The same

appliance may be moved seamlessly between

open, proprietary, and leased platforms to cope

with peak demand.

• Appliance deployers coordinate the mapping of

appliances onto available resource platforms and

information exchange between groups of

appliances to enable them to share information and

sharing relationships that constitute the context of

their deployment.

In a Grid environment, a logical choice for the
appliance provider is a VO (or representatives

designated by the VO), since VOs are typically

associated with a set of well-defined compute

environment required by a community. To be effective,

the VOs will need to develop infrastructure or have

available tools to provide and maintain appliances.

Introducing the concept of a virtual appliance does not

necessarily save work; it simply puts work in the hands

of the party that is most qualified and motivated to do
it.

Figure 1: Roles and responsibilities: appliance

deployers map appliances prepared by appliance

providers onto resources.

This paper describes the challenges and solutions

facing the appliance deployer. These can be seen as the

interplay of two layers: (1) mapping appliances onto

resources and (2) configuring them to represent

functional units aware of the surrounding context. We

addressed (1) in our research in [12, 13]. We now

focus on (2): the contextualization process.

3. The Contextualization Process

Each appliance is deployed in a specific deployment

context that may be defined by a Grid, a site, other

appliances (e.g., when the appliance is part of a

“virtual cluster” [14]), or all of the above. Since

appliances are deployed dynamically, each appliance

deployment instance is potentially associated with a

different context. For example, the appliance’s IP
address and hostname may be new or reassigned and

deployment-specific security data generated.

Therefore, each time the appliance is deployed, it must

be able to integrate information about its current

deployment context in order to function within that

context. We call this process of adapting an appliance

to its deployment context contextualization.

 In [6], we defined an appliance as an environment

capable of being contextualized (a prerequisite for

dynamic deployment), that is, an environment that

defines the required context information

(contextualization template) and can integrate this

information into the appliance so that the appliance

works in its deployment context. We call the agent

acting to integrate the contextualization information

into an appliance the contextualization agent. We also

described a simple contextualization mechanism that
allowed us to configure appliances as long as all the

context information was available. This was achieved

as a collaboration between the appliance provider and

appliance deployer and worked as follows. Each time

an appliance provider put a new application into the

appliance, they would define what context-dependent

information was required to make the application work

(e.g., a Grid service might require a host certificate).

The appliance provider would then specify the required

information in the appliance template and write a script

(contextualization agent) capable of integrating the

context information into the appliance (e.g., by
modifying configuration files for an application). The

appliance deployer would provide the information

described in the contextualization template at boot

time, and on boot the contextualization scripts/agents

would integrate the information into the appliance.

This method assumed that all of the context

information was available on boot, that the context did

not change during the appliance’s deployment, and that

the deployer of an appliance was the same entity that

coordinated the context exchange between appliances

and the larger context. However, these assumptions are
not necessarily true: if we simultaneously deploy

several appliances depending on each other for context

information, not all of the context information will be

available on boot (i.e., each appliance needs to provide

as well as consume context information). Also, in

practice the appliance deployer (e.g., the Amazon’s

EC2 service) may not be privy to, say, VO-specific

authorization policy information required by the

appliance. We therefore extended our model to account

for those situations. We still assume that context

integration will occur at boot time (i.e., we provide no

mechanisms for recontextualization).

3.1. Architecture
The process of contextualization depends on the

collaboration of three parties, each potentially in a

distinct trust domain, and each potentially providing

information in a different idiom. Figure 2 shows the

interactions between the appliance and the three

components. The appliance provider configures the

appliance, providing the disk image and corresponding
contextualization template that describes what

information is required or contributed by the appliance

toward the establishment of the context (1). The

appliance deployer start sup the appliance and provides

some generic appliance information (2). The context

broker coordinates the exchange of application-specific

contextualization information (3).

Figure 2: Relationship between appliance provider,

appliance deployer, and context broker.

A context broker manages objects describing

information associated with a specific context. A

context object captures context information relevant to

a specific virtual construct (a virtual cluster,

collaboration, or Grid), serves as an exchange board

for that information, and defines the security and trust

for that context. Context information may be provided
by the client (e.g., an access control list defining

individuals who can access a virtual cluster), by the

appliance deployer, by any appliance that exist within

the context and contribute to it, or from other sources.

Since we currently assume that all the context

information will become available within a short time

after the appliance boots, we require that a context

object eventually reach a stable state (when all the

expected information has been provided). At that point

the information is distributed to the appliances.

The appliance providers, deployers, and context
distributors interact as follows (see Figure 2):

1) The appliance gets configured by the appliance

provider. As part of the configuration, each

application participating in the appliance provides

a script that integrates context information into the

appliance at boot time and a description of

contextualization requirements to be put in the

contextualization template. In addition to this

application-specific context information, each

appliance requires generic context information

(see below). Both the script and the template are

provided as part of appliance packaging process.

2) When the appliance is deployed by the appliance

deployer, it is associated with a specific context

broker. The deployer delivers to the appliance

(either via push or pull, see Section 3.2) the

generic context information including a way to

contact the context broker. In order to obtain more

context information, the appliance will contact the

context broker.

3) After the appliance is booted, the contextualization

agents first gather all the context information

provided by the appliance. They then contact the

context broker and deposit the information in the

appliance’s context. After the context reaches a

stable state, they collect the context information
the appliance requires.

The generic context information delivered by the

deployer is as follows:

a) Network id of the appliance (IP address/hostname)

b) Address of the context broker

c) Context identifier

d) A set of credentials that will allow the appliance to

prove its identity to the context service and verify

the identity of the context service.

Note that b–d are required only if a context broker is

used (simple appliances, such as base images, may not
need a context broker at all). In addition, if the context

broker shares the trust domain with the deployer and

the appliance, the security information is not needed.

The model described above illustrates the inter-

relationships among the actors in the contextualization

process and defines the protocols they need to agree

on. The contextualization agent needs to be able to

consume and interpret the context information

provided by the deployer. The agent also may need to

be able to contact the context service and provide

required context information itself. While a variety of
implementations can be used in all of these cases,

standards in this area would greatly facilitate the

adoption of the technology.

3.2. Implementation

We now discuss how the architecture described

above has been implemented in two systems we are

familiar with: the Amazon Elastic Compute Cloud
(EC2) [7] and the workspace service [5].

3.2.1. Delivery of Generic Context Information.

Both EC2 and the workspace service leverage existing

contextualization mechanisms to provide basic context

information to the VM. Specifically, they leverage the

standard DHCP broadcast call (a part of typical boot

sequence) to provide an IP address. In EC2’s case two

addresses are assigned to the same NIC: a private IP

address and a public IP address. The DHCP request

returns the private IP; traffic directed to the public IP is

eventually redirected to the NIC associated with the
private IP [15]. The workspace service delivers all IP

address information via a DHCP delivery tool

described in [6] or via the site’s DHCP service.

The remaining generic context information can be

delivered to EC2 instances as follows. For each VM,

EC2 creates an “instance metadata” structure on startup

for a group of VMs deployed at the same time – a
“launch group.” Among others, the metadata contains a

“user-data” field, allowing the user to provide

unstructured data (at most 16KB) to be shared among

all the members of the launch group. The information

can be provided by an external client via a secure

HTTPS connection guaranteeing the privacy of the

data. The VM can read this data via an unsecured

HTTP GET call; however, since the assumption is that

the network between the VM and EC2’s data structure

is secure, user data can be used to convey, for example,

a private key or another secret.

The workspace service likewise exposes the means
for a client to provide context information to a group of

workspaces via a private HTTPS channel. The

workspace service conveys this information to the VM

by “image patching” (putting a file with the required

information on the VM disk image). The workspace

service patches the image with a file containing the

generic context information. At boot time, the

contextualization agent reads and interprets the

information in the file.

Of the three discussed delivery methods, leveraging

existing mechanisms (DHCP) would clearly be most
convenient – unfortunately it is not feasible to employ

it for all applications. We chose image patching in our

implementation because it is simple for the

contextualization agent (although not necessarily

simple for the deployer), because it imposes no

practical size constraint, and because it can be used

securely without requiring the network on the

deployer’s side to be trusted. Providing

contextualization information via the network (EC2) is

also simple but it requires a trusted network to share

secrets, which is not always feasible. In addition,

contextualization information may be delivered via
kernel parameters, but this approach may significantly

limit the size of the information that can be delivered.

Since both EC2 and the workspace service provide

a secure delivery channel of unstructured information

(user data and the image patch, respectively), both can

be used to convey the generic context information

including the service URL to the context broker, the

WSRF key identifying the specific context object, and

the security information consisting of the public key

identifying the context broker and a private key

identifying the context object.

3.2.2. Context Broker Implementation. Neither

EC2’s user data nor workspace service image patching

is suitable for the kind of context brokering described

in Section 3.1. First, both methods work one way only

(from client via deployer to the VM): neither allows a

VM to send information back, so that the VM cannot

share its “provides” information. In addition, both are a

deployer-specific context mechanism: they rely on the
assumption that the VM does not need to create a

security context with deployer because it is within the

deployer’s domain and this domain creates conditions

for trusted exchange. In other words, these mechanisms

cannot be used to broker information across different

deployers or where we cannot assume the existence of

a trusted domain.

To overcome these shortcomings, we implemented

a context broker to fulfill those tasks. The context

broker is implemented as a WSRF service that creates

and manages context objects. A context object is

created by a client (e.g., by a deployer to assist with the
creation of virtual cluster or by the end user who wants

several VMs to share a context). On creation, a context

object generates a keypair that is used to root a

trust/security environment for the context: the private

key of this keypair is conveyed to the VM as part of

the generic context information along with the public

key of the context service. The private key identifying

a context can be obtained by the deployer using the

HTTPS protocol. A context broker implements two

operations: (1) “add workspace,” used by a deployer to

register the IP of a deployed VM as well as the
contextualization template corresponding to the VM,

and (2) “add information,” which allows a client to add

information expressed as an XML document to the

context. In addition, a client can also set a flag saying

that there are no more workspaces and no more

information to be added to the context.

The contextualization template is composed of two

sections: provides and requires. The provides section

contains a list of labels that describe the role of the VM

in the context of a specific application (e.g., if a VM is

an NFS server, it will contain the “nfsserver” label in

the provides section). The requires section contains a
list of labels that describe what information is required

to contextualize the VM (e.g., if a VM is an NFS

client, it will contain the “nfsclient” label in the

requires section). Labels are arbitrary, but they must be

such that the contextualization scripts can interpret

them.

On deployment, a VM is passed the generic context

information described in Section 3.1. When the VM

boots, the context agent mutually authenticates with

the context broker using the generic context

information and provides its identity (VM identity is
composed of three typed objects: hostname, IP address,

and public host key). The context broker matches this

information to the VM’s contextualization template

and “fills in” the templates by sorting the provides

information into the requires fields of

contextualization templates of each VM participating

in the context. After all the context identity information

has been received and sorted, the context broker

releases the templates with filled-in information to the
waiting contextualization agents. When the context

broker marks a response to a specific context agent as

“complete,” that context agent invokes the

applications-specific contextualization scripts on the

VM, which integrate the necessary information into

application configuration.

Note that our implementation assumes that the VM

authenticates as a “member of context” only (rather

than an individual entity) and that the members of

context are trusted between themselves (i.e., they are

trusted to identify themselves within the context).

4. Contextualization Examples

We implemented the mechanisms described above

and released them in 1.3.3 release of our software. We

successfully used the context broker both in

conjunction with the Science Clouds workspace
deployment [2] using workspace-specific mechanisms

to convey the generic context information and in

conjunction with Amazon EC2, where we used the

EC2 user-data to convey the generic context

information. The techniques proved effective in

producing “instant virtual clusters” for multiple

applications, including the high energy physics STAR

experiment, which ran on 100 nodes on Amazon EC2.

Below we describe some contextualization examples.

4.1. Network File System (NFS)

Contextualizing NFS enables us to dynamically

deploy a simple cluster with a shared filesystem. We

show here a simple example of contextualizing a

cluster that has two client nodes and one NFS server

node that exports directories. To keep the example

simple, we assume that the network can be trusted for

authentication, that node’s identity is composed of the

IP address only, and that the volumes to export and

mount are embedded in the VM contextualization
scripts.

NFS VMs are all configured in the same way;

contextualization consists of annotating which VM will

play the server role and which will be the clients. For

example, server node context template looks like this

(the client’s template looks similar but with the nfs

labels switched):
<provides>

 <identity />

 <label>nfsserver</label>

</provides>

<requires>

 <role name=”nfsclient”/>

</requires>

During deployment, the identity playing the

“nfsserver” role will be filled in once it is known, for

example, with the IP address of 10.0.0.1. An XML

representation of the node’s provides section in the

context will now look like the following.
<provides>

 <identity><ip>10.0.0.1</ip></identity>

 <label>nfsserver</label>

</provides>

Similarly, the client nodes’ IP addresses (in our

example, 10.0.0.2 and 10.0.0.3) are filled into their

respective templates as they become known.

The information gets sorted and given to each client

node as follows.
<requires>

 <role name=”nfsserver”>10.0.0.1</role>

</requires>

and to the server as follows.
<requires>

 <role name=”nfsclient”>10.0.0.2</role>

 <role name=”nfsclient”>10.0.0.3</role>

</requires>

The scripts on the client nodes take the “nfsserver”

IP address and use it to construct the proper line to add

to the fstab file. The scripts on the head node take each

“nfsclient” IP address and append an authorization line

to the exports policy file. Then, the server process and

client mounts (depending on the role) are started. Since

we do not assume that the NFS server will be online

when the client node’s contextualization retrieval

completes for each mount requirement, the NFS client
nodes try to mount the volume in a loop that checks

whether the mount was successful.

4.2. STAR Cluster

To support STAR [16] workloads, we created a

virtual cluster using a Scientific Linux 4.4 base image,

VDT [17] packages, and Torque [18]. The OSG 0.6.0

CE installation was used for the head node template
image, and the OSG 0.6.0 wn-client installation was

used for the worker node template image. The virtual

head node runs a Globus GRAM2 job gateway to a

localhost Torque server, a GridFTP server [19], and an

NFS server. The worker nodes run Torque MOM

processes (processes that sit on each worker node to

run jobs) and mount NFS directories from the head

node (OSG's typical $HOME, $APP, and $DATA).

The head node has two network interfaces, one for its

Internet addressable processes (GRAM, GridFTP) and

one for a private network. The worker nodes have one

interface each, all on the private network. This is a

typical Grid cluster gateway + NAT setup.

The contextualization demands in this example are

more complex. Since the headnode has both a public

and private IP address, we have to be careful that it is

the private address of the cluster headnode that gets
connected to the worker nodes for NFS and Torque.

Also, using Torque requires contextualization features

that are new in this example, namely, full identity

distribution (including SSHd host keys). The

contextualization process is also used to late-configure

GRAM and GridFTP to handle identity configuration

(they both need to be configured with the proper public

facing fully qualified domain name).

The headnode’s two network identities are both

reflected in the provides section (as shown below) in

order to introduce tags for each. The eth1 tag is given

to the private interface, and this is indicated in the
“torqueserver” and “nfsserver” provided roles. Hence,

anything requiring a match for these roles will get the

eth1 network identity in response.
<provides>

 <identity>

 <interface>eth0</interface>

 </identity>

 <identity>

 <interface>eth1</interface>

 </identity>

 <role interface="eth1">

 torqueserver</role>

 <role interface="eth1">nfsserver</role>

</provides>

<requires>

 <identity />

 <role name="torqueclient"

 hostname="true" pubkey="true" />

 <role name="nfsclient" />

</requires>

In the requires section, the “torqueclient” annotation

indicates that more than the IP address is necessary.

The hostname is required as well as the SSHd host key

because SSHd host-based authentication is used with

Torque and GRAM2 to allow jobs to run. This sets up

free SSH access from node to node if the source and

target system account are the same. Again, the worker

node annotations are similar, with the role labels

reversed (but no dual networking).

On boot, each worker node generates an SSHd host
key, and the agent reports this to the contextualization

service (using secure channel) with the rest of identity

information.

After the contextualization information has been

retrieved, SSHd on all nodes is configured by

populating the node’s global “known_hosts” file as

well as the “hosts.equiv” file (we implement a “many-

to-many” approach to handle nonserial workloads

where there will be intercommunication among the

nodes). Further, the /etc/hosts file on each node is

populated with all known IP address and hostnames.

This avoids any DNS problems if the site has not

configured things correctly, especially for reverse

DNS, which typically affects network security

software. On the worker nodes, the Torque “server”
file is populated with the head node hostname, and

NFS is configured as in the previous example. On the

headnode, Torque's “nodes” file is populated with all

of the authorized MOM hostnames, Torque’s “server”

file is populated with the head node hostname

(configuring itself as the master), and NFS is

configured as in the example before.

GRAM and GridFTP require the public fully

qualified domain name of the intended contact address

in order to work correctly with GSI. We found that on

multi-NIC nodes this was not trivially deduced in a

startup script. Thus, the contextualization engine helps
identify the proper hostname for configuring these

components. On EC2, the public address is not even an

actual on-board network interface (each EC2 VM is

behind a NAT and the public address is known only

via EC2 instance metadata), and so this was especially

useful in that case.

5. Related Work

One approach to appliance deployment is to only

partially rely on preconfigured images. In this

approach, an appliance is deployed by deploying an

image with as much of a base configuration as possible

(“golden image”) and installing applications on the fly.

This approach has been used by VMPlant [3] as well as

[4]. While for this only generic contextualization is

sufficient, it makes the appliance deployment

potentially lengthy.
The term virtual appliance was introduced by

Sapuntzakis and Lam [10], and their work describes

the first attempts at defining contextualization

information as well as explaining the requirements for

appliance management. We build on this work,

generalizing the method and enabling the use of

generic tools and protocols for configuration

management.

Configuration management tools such as LCFG

[20], Quattor [21], and Bcfg2 [22] are somewhat

similar to appliance creation and deployment.
However, they rely on traditional configuration

techniques and do not (as of now) cleanly separate the

process of appliance creation and contextualization.

Much work has also been done in the industry by

companies that explicitly manage appliances (e.g.,

rPath [23]); we collaborate with those efforts as

builders of deployer-side software. In particular, the

Open Virtualization Framework [24] defines high-level

concepts and best practices similar to the work

described here; our approach is more detailed and

serves the specific needs of our community.

6. Future Directions

While our current approach allows us to solve

current problems (namely, provide a cluster on the fly

for nontrivial applications), it needs to be refined to

provide more features. While our implementation

currently operates on identity information we see

increasing demand for the exchange of application-
specific data that could be brokered as “blobs” to be

interpreted by contextualization agents; we are

currently generalizing the techniques described here to

accommodate this requirement. Also, virtual clusters

are only one type of context; in general, virtual

constructs could span the range from individual VMs

through clusters to virtual Grids that could potentially

benefit from a hierarchical organization.

Further, our methods to date do not address the

critical issue of recontextualization: redistributing the

context based on dynamically changing context
information. The ability to do so would allow us to add

VMs to a context on the fly, for example, by adding

new nodes to an MPI computation, or account for

changes due to, for example, appliance migration. The

ability to make those changes, however, will require

tighter collaboration with OS-level tools.

7. Summary

In this paper we described a new technique, called

contextualization, enabling the dynamic creation of

functioning virtual constructs aware of their context.

We discussed two existing implementations providing

generic contextualization information, their respective

assumptions and capabilities, and gave examples ofow

they can be used in conjunction with a context broker

to deploy virtual clusters. Our purpose in this paper

was to describe a general solution and a process that
can be used with any deployer and any appliance

provider that fulfill the specified conditions of secure

transfer of information. Based on this process, we

highlighted the need for standards on the deployers and

appliance provider’s side.

Making contextualization an accepted technology

will require the collaboration of many branches of

technology. Besides the obvious ones of appliance

configuration and deployment, better and more flexible

methods of context information delivery to appliances

will need to be developed to allow for

recontextualization. Further, applications will also need

to develop the awareness of the potential of

contextualization in order to leverage it.

Acknowledgements

This work was supported by NSF CSR award #527448

and, in part, by the MCS Division subprogram of the

Office of Advanced Scientific Computing Research,

SciDAC Program, Office of Science, U.S. Department

of Energy, under Contract DE-AC02-06CH11357.

References

1. Amazon Elastic Compute Cloud (Amazon

EC2): http://www.amazon.com/ec2.

2. Science Clouds:
http://workspace.globus.org/clouds/.

3. Krsul, I., A. Ganguly, J. Zhang, J. Fortes, and

R. Figueiredo. VMPlants: Providing and

Managing Virtual Machine Execution

Environments for Grid Computing. in SC04.

2004. Pittsburgh, PA.

4. Nishimura, H., N. Maruyama, and S.

Matsuoka, Virtual Clusers on the Fly -- Fast,

Scalable and Flexible Installation. CCGrid,

2007.

5. Keahey, K., I. Foster, T. Freeman, and X.
Zhang, Virtual Workspaces: Achieving

Quality of Service and Quality of Life in the

Grid. Scientific Programming Journal, 2005.

6. Bradshaw, R., N. Desai, T. Freeman, and K.

Keahey. A Scalable Approach to Deploying

and Managing Virtual Appliances. in

TeraGrid 2007 Conference. 2007. Madison,

WI.

7. Amazon Elastic Compute Cloud (EC2):

www.amazon.com/ec2.

8. Virtual Workspaces:

http://workspace.globus.org.
9. Foster, I., C. Kesselman, and S. Tuecke, The

Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International Journal

of Supercomputer Applications, 2001. 15(3):

p. 200-222.

10. Sapuntzakis, C. and M.S. Lam. Virtual

Appliance in the Collective: A Road to

Hassle-free Computing. in 9th Workshop on

Hot Topics in Operating Systems. 2003.

11. rBuilder Online:

http://www.rpath.com/rbuilder/.
12. Freeman, T., K. Keahey, I. Foster, A. Rana,

B. Sotomayor, and F. Wuerthwein, Division

of Labor: Tools for Growth and Scalability of

the Grids. ICSOC 2006, 2006.

13. Freeman, T. and K. Keahey, Flying Low:

Simple Leases with Workspace Pilot. EuroPar

2008, 2008.

14. Freeman, T., K. Keahey, B. Sotomayor, X.

Zhang, I. Foster, and D. Scheftner, Virtual

Clusters for Grid Communities. CCGrid,

2006.

15. Amazon Elastic Compute Cloud. Developer

Guide. API Version 2008-02-01, in available

from www.amazon.com/ec2.

16. The STAR Experiment. 2007:

www.star.bnl.gov.

17. Virtual Data Toolkit: http://www.lsc-

group.phys.uwm.edu/vdt/documentation.html.

18. Torque:

http://www.clusterresources.com/pages/produ

cts/torque-resource-manager.php.

19. Allcock, W., GridFTP: Protocol Extensions

to FTP for the Grid. 2003, Global Grid
Forum.

20. Anderson, P. and A. Scobie. Large Scale

Linux Configuration with LCFG. in 4th

Annual Linux Showcase and Conference.

2000.

21. Quattor: http://cern.ch/quattor.

22. Desai, N., A. Lusk, R. Bradshaw, and R.

Evrard. BCFG: A Configuration Management

Tool for Heterogeneous Environments. in

IEEE International Conference on Cluster

Computing (CLUSTER'03). 2003.

23. rPath: www.rPath.com.
24. The Open Virtual Machine Format

(whitepaper for OVF specification version

0.9).

