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ABSTRACT: This is a technical report on the implementation of contex-
tual SOMs of Chinese words. Several new developments are introduced. It
seems that when the words are ordered on the SOM topologically, the order
is not only determined by the word classes, but also the roles of the words as
sentence constituents are reflected in their position on the SOM.
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Contextually Self-Organized Maps of Chinese Words

Teuvo Kohonen

Abstract

This is a technical report on the implementation of contextual SOMs of Chinese words. Several new 
developments are introduced. It seems that when the words are ordered on the SOM topologically, the 
order  is  not  only  determined  by  the  word  classes,  but  also  the  roles  of  the  words  as  sentence 
constituents are reflected in their position on the SOM.

1. Introduction

1.1      Contextual maps

The self-organizing map (SOM) algorithm (Kohonen, 2001) approximates a distribution 
of complex data items in an ordered fashion, using a  finite set of adaptive models that 
have the same format as the items. Usually,  a two-dimensionally ordered array of the 
models,  called  a  map is  developed in  the learning  process.  The dissimilarities  of the 
models are reflected in their geometric distances along the SOM array.

In  text  analysis one may be interested in the statistical  regularities  and similarities of 
local contexts, i.e., patterns formed of successive words (Ritter and Kohonen, 1989). In 
order  to  eliminate  the  effect  of  the  word  forms  on  the  contextual  structures,  and  to 
concentrate  on the word patterns, i.e.,  local  combinations  of the words  only,  without 
paying  attention  to  the  writing  forms  of  the  words  themselves,  one  ought  to  select 
representations for the words that are mutually as uncorrelated as possible. Thus, in order 
to eliminate the effect of the word forms, a random code may be assigned to represent 
each word. However, when using the basic SOM method for the contextual analysis, all 
of the input items ought to be metric vectors, and thus a natural selection for the random 
code would be a high-dimensional Euclidean vector with random elements, the typical 
dimensionality of which is a few hundred. In order that the coding would be independent 
of the directions of vectors, the random numbers ought to be normally distributed. 
 
One  particular  problem  encountered  in  context  analysis  is  that  the  words  in  most 
languages are inflected, and the inflections carry semantic information, too. One naïve 
method is to treat every inflected form as a different word. Another method may be to 
reduce each word to its  base form or word stem,  whereby,  however,  the information 
connected  with the  inflections  is  lost.  Nonetheless  there  also exist  languages  such as 
Chinese, where the words are not inflected at all, and which would then be ideal for the 
context experiments.
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Among the  applications  of  the  self-organizing  map,  relatively  few studies  have  been 
pursued on such  contextual maps (also called the semantic maps or word maps). One 
reason for this may be that the contextual maps have only few practical applications, for 
instance,  in  text  analysis  and  perhaps  as  feature  extractors  in  textual  data  mining. 
Nonetheless the contextual maps have an important role in cognitive linguistics.

A typical contextual map results in the following type of a computing process. Consider a 
piece of natural text regarded as a string of symbols, each symbol standing for a word and 
having been chosen, e.g., as a unique high-dimensional Euclidean vector with randomly 
chosen elements. (For the simplicity of discussion we may regard the punctuation marks 
in sentences as “words,” too.) A (local) contextual feature around a word is then defined 
to consist of  m successive words. These words may be selected in different ways. One 
traditional  choice  is  a  triplet formed  of  three  successive  words,  whereupon  such  a 
contextual feature is associated with the middle word, but experiments have also been 
carried out using only the previous and the next word around a word position to constitute 
the contextual features. In this work I use quintuplets of words as local features. 

As we are usually interested in the statistical features of the text, we may form, e.g., for 
each  word  some  kind  of  averaged  vector-valued  feature over  the  whole  text.  In 
averaging, the metric vectors as symbols for words come in handy. Consider that each 
symbol, corresponding to each different word w were represented by a unique Euclidean 
vector  r =  r(w)  that  is  an  n-dimensional  random  vector  having  the  (0,1)-normal 
distribution. Then the averaged contextual feature x(w) of word w may be defined as the 
3n-dimensional vector concatenated of three parts,

                        x(w)  =  avg i ( [ri–1   ε ri    ri+1] | w) ,                                                  (1)

where avg i ( . | w) means the average over all positions i in the text, on the condition that 
the contextual feature relating to position i belongs to word w (i.e., on the condition that 
ri  is the random-vector representation of word w). The factor ε is a small scalar, and it 
defines the relative weight of the middle part with respect to the left and right parts in the 
feature. One may often select ε = 0. The expression (1) can be justified by the following 
two examples.

The set of expressions {x(w)} shall be used as inputs to an SOM for its training. In order 
to simplify the following explanation, assume tentatively in this subsection that the dot-
product SOM were formed. In it, the matching of the input vector with the various model 
vectors (weight vectors) of the SOM is defined in terms of the dot product. In competitive 
training,  the  winner model is  the one that  has the highest  dot product  with the input 
vector. Every training step involves the updating of the winner model as well as of its 
topological neighbors on the SOM array. 

Example 1. Consider two triplets   x1 = [a c b] and x2 = [a d b], where a, b, c, and d are 
metric-vector representations of words. Let c and d correspond to synonyms or antonyms, 
such as ‘big’ and ‘large‘,  or  ‘big’ and ‘small’  that  may occur with a roughly similar 
probability in an extensive text corpus. Consider also that  x1 and  x2 occur as training 
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inputs to an SOM and will be mapped onto it.  Now, since c and d are uncorrelated, their 
similarity, measured by their dot product (c,  d) is much smaller than (a ,a) or (b,  b). In 
other words, the vectors x1 and x2 match almost perfectly and will be mapped very close 
to each other on the SOM. (If the factor ε in eq.(1) were equal to zero, the matching 
between x1 and x2 would be perfect.) On the other hand, two triplets x1 = [a c b] and x2 = 
[e d f] with e and f different from a and b will be mapped far away from each other.
 
Example 2. Another specific set of inputs to the SOM is a subset 

                                     {xi} = {[a ci b]},  i = 1,2, …, m  ,                                          (2)

where the ci are words, all of which occur in the text with roughly equal probabilities. An 
example  of  such  words  is  a  subset  of  numerals.  However,  since  the  different  ci are 
represented by different random vectors, their mutual dot products are small, whereupon 
the subset of inputs {xi} will be mapped into a narrow cluster on the SOM. 

1.2     Early  history of this work

Contextual SOMs have been constructed since 1989. To the knowledge of this author, all 
of  them have  been  based  on  English  texts,  whereupon  the  words  have  usually  been 
defined exactly as they appeared in the text, i.e., various inflected forms of the same word 
were always regarded as different words. It occurred to this author already around 1994 
that since the Chinese words are not inflected, the contextual maps of Chinese texts might 
be  produced  more  consequently  than  in  many  other  languages.  However,  a  major 
handicap of the automatic computerized processing of Chinese texts is that the words are 
not separated by spaces, but all of the characters (“letters”) of which the Chinese words 
are formed are coalesced within the same sentence into a contiguous string of characters. 
In 1994 we were not aware of any Chinese text corpora segmented into words.

As indicated above, the Chinese words are formed of one or more “letters” called the 
characters.  There  exist  roughly  2000  characters  nowadays.  Words  formed  of  one 
character constitute roughly about 63 per cent of all words. Two-character words make 
up about 34 per cent, three-character words about 2 per cent, and four-character words 
about 1 per cent of the text, respectively. (These figures are from the extensive MCRC 
corpus used in this work.) Words consisting of five or more characters amount to less 
than one in a thousand words. 

My first idea was to make a map of the Chinese characters only, by forming the context 
triplets out of successive characters of the given text. As the first results did not seem 
quite satisfactory, I got another idea of defining the middle part in the triplets of eq.(1) 
alternatively  out  of  one  or  two  successive  characters,  whether  they  represented  real 
words or not, and using  single characters bordering to the middle part on the left and 
right as the other constituents that make up the local context. In this way I hoped that the 
correlations between true words would be reflected stronger in this experiment. In order 
that  both  single  characters  and  double  characters  would  be  involved  in  the  same 
experiment as training data, the training vectors for the SOM had to be produced in two 
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separate passes of the text. In the first pass, all of the triplets of the successive characters 
were recorded, and the first set of input vectors x(w) was constructed as explained above. 
In the second pass, all successive quadruplets of the text were recorded, and the middle 
part of eq.(1) was formed of the middlemost two characters, whereas the first and fourth 
character in the quadruplets were used for the rest of the context. 

The subsets of input vectors x(w) obtained in these two passes were merged and used for 
the training of the SOM. We obtained the source codes of the Chinese texts in electronic 
form from Chinese  newsletters  sent  to  Chinese  students,  who were  studying  abroad. 
These  texts  were  kindly  made  available  to  us  by  Miss  Li  Liu,  who  studied  in  our 
university  at  that  time.  Every  newsletter  started  with  a  list  of  characters  used  in  it, 
together with their alphanumerical codes (not the same as the Unicodes used nowadays), 
so the conversion of the data into the form of eq.(1), and preparation of the Chinese 
characters for the labeling of the SOM were a rather straightforward task. The program 
codes were written by Dr. Jari Kangas in 1994. Of course, no genuine word maps could 
be obtained in this way. However, I have to remind that around 1994 we did not have 
available any automatic segmentation methods that would have partitioned the Chinese 
texts into words, and manual segmentations were neither available to us. Nonetheless, 
since approximately 96 per cent of the Chinese words are formed of either one or two 
characters, there is already a rather strong correlation of the successive single and double 
characters  to  the  true  Chinese  words,  whereby  some  positive  results  were  already 
obtained in the above experiments.  In the series of images shown in Fig. 1 we see parts 
of the SOM thereby produced, with English translations written at the side of the Chinese 
characters or pairs of characters in the case that they represented real words. 

              Fig. 1. Parts of a 750 mm by 600 mm wide map of Chinese characters  
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It turned out that local clusters of the type described in Examples 1 and 2 were indeed 
formed.  However,  no  global  ordering  of  the  SOM  was  yet  visible,  which  is  quite 
understandable due to the obvious defects of the naïve method.

2. The present MCRC experiment

 
2.1   Start of cooperation

At the WSOM 2009 (Workshop on Self-Organizing Maps) held in St. Antonio, Florida, 
U.S.A., I  met  Professor Ping Li of Pennsylvania  University,  and told about my early 
attempts to produce Chinese contextual maps. We both realized that it  would be very 
important  to  start  developing  genuine  word-based  contextual  maps  for  the  Chinese 
language, in order to see whether they would differ from those constructed for English. In 
fifteen years, rather effective automatic segmentation methods for the Chinese language 
had been developed, and the construction of Chinese contextual maps seemed possible. 
What was perhaps even more intriguing, however, was that big Chinese text corpora had 
been segmented manually and even parsed linguistically during that time. One of such 
corpora  is  the  Beijing  Normal  University  Corpus  (Shu  et  al.,  2003),  which  is  an 
electronic, lexically segmented database that contains all of the texts from elementary-
school textbooks used in Beijing. Another corpus, called the MCRC (Modern Chinese 
Research Corpus) (Sun el  al.,  1996),  is  an electronic  collection of text  material  from 
newspapers,  novels,  magazines,  TV  shows,  folktales,  and  other  text  material  from 
modern  Chinese  media.  The  MCRC  contains  about  1’500’000  words  provided  with 
linguistic classification of the words by Dr. Hongbin Xin. I received the MCRC corpus in 
the fall  of  2009, and with the help of  Drs.  Zhirong Yang and Timo Honkela  of  our 
university,  this  material,  which  was  sent  to  us  in  Unicode  form,  was  converted  into 
decimal tables (in order that I could compute the input vectors according to eq.(1) and 
process them using MATLAB scripts, as I shall explain below in more detail).

2.2 New developments of the contextual-map method

As I had practically no knowledge in the Chinese language, I decided to calibrate the 
contextual  SOMs  (that  could  be  constructed  automatically)  according  to  given  word 
classes,  not  by the  individual  words,  as  normally  done.  This  became possible  to  me 
because every word in the corpus was labeled according to some of the 89 linguistic 
classes selected. 

Also,  in  order  to  carry  out  a  number  of  variable  experiments,  I  decided  to  use  the 
MATLAB scripts for writing the program codes. An extra incentive for this choice was 
that an extensive MATLAB software package called the SOM Toolbox, with flexible 
graphic functions, had been developed in our laboratory several years earlier (Vesanto et 
al.,  1999). So it  was quite possible for me to write the scripts and to carry out these 
experiments by myself.
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2.2.1  Hash coding of the vocabulary

I decided to use the whole MCRC corpus for the construction of a SOM, not only any 
subset of the most frequent words. At several stages of computation, I therefore needed a 
lot  of  table  look-ups.  The  MATLAB  does  not  have  any  effective  function  for  the 
processing of symbol  strings. I decided to organize the word vocabulary by the  hash 
coding method, using the Unicode representations of the Chinese characters to represent 
the words, and treating each Unicode as a decimal number.

Many different  hash-coding  schemes  were developed  at  the  time  when the  computer 
memories still had limited capacities (cf. e.g., Kohonen 1980, Chapter 2). After that, a 
vast  increase  in  the  memory  capacities  has  taken  place.  Although  in  this  study  the 
available  memory space was finally limited by the MATLAB system, it  was anyway 
orders of magnitude larger than that of the old memories. Therefore, one of the simplest 
but  anyway  fast  hash  table  organizations,  the  open-addressing  hash  table,  could  be 
implemented easily.  One additional aspect useful in this work was that for an  ad hoc 
database  like  the  present  vocabulary,  where  the  contents  of  the  memory  are  known 
beforehand, one can choose the hash table size and the hashing function in such a way 
that a limit, say, three, can be set to the number of reserve locations needed, and still a 
perfect hash table can be constructed (i.e., every stored item can be found by a maximum 
of four memory accesses). In the MCRC application studied in this work, the size of the 
vocabulary  was  48’191  words,  and  the  hash  table  was  made  to  contain  497’198 
addresses. With the chosen details of the hash table as explained below in more detail, the 
average number of memory accesses per searching operation was approximately 1.14.

The relative number of Chinese words represented by more than four characters, at least 
in the MCRC corpus, is less than 1/1000 of all words, and if such words are neglected in 
the training of a SOM,  the error thereby committed is negligible, regarded as “noise.” 
Therefore, in my experiments, only words consisting of up to four characters were stored 
in the hash table. At each address of the latter  there are six fields, four of which can 
represent  up to  four  characters  of  a  word,  one field  is  needed for  the  indicator  of  a 
collision called the  flag as explained below, and one field  is assigned to indicate  the 
ordinal number (“index”) of the word in the vocabulary, respectively. The Unicode of a 
one-character word will be stored in the first field of the memory location, and the three 
following  fields  shall  contain  the  value  of  zero.  For  two-character  words,  the  two 
Unicodes are stored in the first two fields of the memory location, and the next two fields 
contain the zero value, and so on.

When writing items into the hash table, first the so-called  hash address of each given 
word is computed by the  hashing function, a pseudorandom arithmetic function of the 
word, and a trial is always made first to store the word at the hash address. In this study 
the hashing function was defined as the following. Let the numerical Unicode values of 
the characters of a word be c1, c2, c3, and c4. For one-character words we shall take c2 = c3 

= c4  = 0. The two-character words shall have  c3  = c4  = 0, and the three-character words 
shall have  c4  = 0.  .Let  b1,  b2,  b3, and  b4  represent fixed parameter values. The hashing 
function that defines the hash address is defined as
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                   h = mod (b1 c1 + b2 c2 + b3 c3 + b4 c4, T) + 1 ,                                 (3)

where T = 497’148 is the number of addresses in the hash table.

All of the flags have initially the value of zero. The first entry (word) is stored at the 
address  h,  and the corresponding flag in  the fifth  field  at  the corresponding memory 
address is set to the value of 1, showing that this address will be occupied from this time 
on. 

When storing further entries in the above manner, at first the probability for finding an 
unoccupied  hash  address  is  relatively  large,  close  to  unity,  whereas  with  time  this 
probability is decreased to about .86 in our application. Nonetheless, at any time when 
hitting an occupied hash address (with the flag value 1), the next attempt is to store the 
new entry at the first reserve location defined as   

                  h’  =  mod (h , T) + 1 .                                                                                (4)

If its flag is still equal to 0, the new entry is stored there, and the flag is set to 1. However, 
sooner or later, when adding new entries, we will find that both the hash address and its 
first reserve location will be occupied, whereupon an attempt must be made to store the 
entry at the second reserve location defined as 

                  h’’  =  mod (h’ , T) + 1 .                                                                             (5)

If this place is occupied, too, we must use the third reserve location in analogy with eqs. 
(4) and (5) to store the entry.               

In the traditional  open-addressing hash coding method,  the chain of reserve locations 
must be allowed to grow until the whole hash table is filled up. However, as mentioned 
above, the present application is a special one, because the contents of the hash table are 
fixed and known beforehand. Then, for instance for a vocabulary of 48’191 words and 
taking T = 497’198, and using the parameter values b1 = 250’000, b2 = 250, b3 = 25, and 
b4  = 1, one indeed obtains a hash table where no more than three reserve locations are 
needed, as can be verified numerically. This fact makes the structure and programming of 
the hash table very simple and its operation very fast.

When the whole vocabulary has been organized as a hash table, a quick reading of the 
ordinal  number  of  a  given  word  in  the  vocabulary,  and  other  eventual  information 
associated with it (like quick definition of the random-vector representation of a word as 
will be explained below) will take place in the following operations: 1. Compute the hash 
address for the given search argument word (c1, c2, c3, c4) according to eq.(3). If the word 
stored  at  the  hash  address  is  identical  with  the  search  argument  word,  read  out  the 
associated information (e.g., the ordinal number of the word). 2. However, if the stored 
word and the search argument disagree, compute the address of the first reserve location 
according to eq.(4). If the word found now agrees with the search argument, read out the 
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associated information. 3. In the case that there is still a disagreement, find the address of 
the second reserve location according to eq.(5), and so on.

2.2.2  Construction of the random-vector inputs to the SOM

The MCRC corpus is so large that it would be impossible to store the input file of the 
SOM in the working memory.  Consider that  ten bytes  are needed for each numerical 
variable in MATLAB. If the dimensionality of the input vectors x were equal to 500, and 
if  the  number  of  words  in  the  MCRC  corpus  were  1’500’000,  we  would  need  7.5 
gigabytes of memory capacity for this file only. My solution to avoid storing a large data 
file was to compute the input vectors x(w) during the execution of the training program. 
This is possible, if before the computation of each random vector r = r(w), the random-
number  generator  is  initialized  by the  ordinal  number  of  the  word  w in  the  original 
vocabulary, and this ordinal number, as a function of w, is obtained directly from the hash 
table. This procedure will also bring about an extra advantage, as shall be explained in the 
next  subsection,  namely,  that  the  dimensionalities  of  ri–1, ri,   and ri+1 can  be  selected 
separately and  differently for  each  of  them,  which  will  make  it  possible  to  use  the 
memory capacity more effectively and to reduce the computing time. 

2.2.3  Computation of the SOM

The size of the SOM array was selected  as rather  small,  40 by 50,  in order  to  save 
memory but still  to be able to discern the cluster structures of the word classes on it. 
However, the structure and dimensionality of the input vectors was determined on the 
basis of earlier experiments. It turned out that in my laptop computer, on which I carried 
out all of the experiments, the maximal dimensionality of the input vectors x (and that of 
the model  vectors)  in  this  problem could not  be essentially  higher  than 650.  After  a 
number of experiments I decided to use a context that consisted of five successive words, 
represented by the random vectors ri–2. ri–1, ri ,  ri+1,  and  ri+2 , respectively. The factor ε in 
eq.(1) was taken equal  to  1,  but the dimensionality  of the middle vector  ri was then 
selected correspondingly smaller, equal to 50. The dimensionalities of both  ri–1 and  ri+1 

were 200, and those of ri–2 and ri+2 were equal to 100, respectively. In a number of earlier 
experiments it had turned out that the results are slightly improved if the contexts are 
wider than a triplet, but there is essentially no advantage of using wider contexts than 
word quintuplets. Here ri–1 and ri+1 have the highest weight in determining the dot product 
between the input vector and the model vector.

It is to be noted that if the dimensionalities of the r vectors are selected individually as 
above, a word cannot have a unique random-vector representation any longer. However, 
notice that the r vectors are now generated during the training of the SOM, so the random 
vector  that  represents a  word now depends on the relative  position of the word with 
respect to the middle word ri  . The different dimensionalities will not cause any problem 
in the matching of the input vector with the model vectors, because the representations of 
the words of the input vector and those of the model vector always consequently refer to 
the same relative position where the dimensionalities are the same.
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In  order  to  resort  to  well-documented  SOM  software,  I  decided  to  apply  the  SOM 
Toolbox program package (Vesanto et al., 1999), which is written as MATLAB scripts. 
The linear initialization of the model vectors was used. I also used the batch training 
algorithm with a coarse training  phase followed by a  fine tuning phase.  The training 
vectors x were normalized to unit length. This does not yet mean that the model vectors 
would become exactly normalized, too, but the deviations of their converged values from 
the unit length can be shown to be very small, and at least do not affect the topological 
ordering of the model vectors. When using the normalized input vectors, on the other 
hand,  the  calibration  of  the  SOM (finding  the  clustering  of  the  word  classes  on  it), 
however, could be based on the dot-product matching, and to that end the model vectors 
too were normalized after training.    .

In a recent study (Kohonen, 2009) I found out that if the neighborhood function applied 
during the fine-tuning phase of learning does not change with time, the SOM algorithm 
will  converge in a finite  number  of training cycles.  This property was utilized in the 
present work to guarantee that the SOM had really converged.

2.2.4 Hit diagrams on the SOM

As indicated above, the primary goal in this study was to visualize the relations between 
word classes by the SOM. 

When constructing the SOM, averages of the context vectors  x relating to  each unique 
word in the text were used as training data. In order to be consequent, the calibration of 
the SOM must also be based on similarly defined input vectors, taking only subsets of 
input vectors relating to particular words, word classes, or other subsets of words into 
account.

Also,  when locating the best  match of a particular  word  w on the SOM, the average 
context vector x(w)   relating to it must be used as input.

For a subset of words such as all verbs, all adjectives, all nouns, etc., one may construct 
its hit diagram, i.e., the number of matches of this subset of words with the various SOM 
locations. The number of matches (hits) at a particular SOM location is indicated by gray 
levels. 

Verbs.  Fig.  2  shows  the  distribution  of  all  verbs on  the  SOM.  At  first  sight  their 
distribution may seem rather fragmented and uneven. However, the set of verbs probably 
consists of several subsets that have their own distributions. It may also be necessary to 
point out that there is no principal reason for the contexts being clustered just according 
to the major word classes. It may become more obvious from the continuation that it may 
be the role of the words as sentence constituents that might be better reflected in the word 
order, and thus in the local context. After the discussion of every major word class I shall 
present examples of particular word classes that have a cluster in a particular location on 
the SOM, where the major word class also has a cluster, and this suggests what kind of 
roles the subsets of words of the major class may have in these areas. For instance, close 
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to the upper left corner of the hit diagram of the verbs there is a faint cluster that probably 
represents  predicates,  as  deducible  when compared  with the  corresponding cluster  of 
predicative idioms, shown in Fig. 3. 

There exists an intense and rather round cluster in the middle, which does not correlate 
with the clusters of other words, and might describe, e.g., simple verbs without objects.
   

              Fig. 2.. The hit diagram of all verbs on the SOM.

Predicative  idioms.  The  Chinese  language  has  a  marked  word  class  of  predicative 
idioms. Fig. 3 shows that they are clustered at the top of the SOM, to the left of the 
middle, where many other word classes also have a cluster. It is to be believed that in this 
area, the clusters in the other word classes also have a predicative nature.

              Fig. 3. The hit diagram of predicative idioms.
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Nouns. Fig. 4 is the hit diagram of all nouns. It is essentially a broad belt surrounding the 
distribution of the verbs, but one can also discern certain interesting details in it. First, the 
region in the middle of the SOM, where the verbs have a big round cluster,  is  quite 
empty.  So at least in this region the verbs and the nouns are segregated. Close to the 
upper left corner there is a weak cluster that almost coincides with that of the predicative 
idioms. It seems plausible that this cluster represents nouns related to the predicatives.

              Fig. 4. The hit diagram of all nouns. 
  
Somewhat to the left and down from the middle there is a broad area where different 
kinds of  names are mapped. This can be seen from Fig. 5.  One ought to notice that the 
MATLAB graphics  automatically  scales  the  gray  levels,  so due to  some very strong 
points, the shade of the rest of the names in the cluster has remained rather pale.

              Fig. 5. The hit diagram of names. 
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Adjectives. In Fig. 6 we have the hit diagram of all adjectives. There seem to exist three 
main clusters in it. (Cf. also Fig. 14.)

              Fig. 6. The hit diagram of all adjectives.

At the top, close to the upper left corner, we have a broad cluster in the place where the 
predicates (verbs) and predicative idioms also have it (cf.  Figs. 2 and 3). This cluster 
probably describes predicative adjectives. 

At the top, in the right half of the map there is another more intensive cluster that seems 
to represent attributes.  This conclusion follows from the observation that the attributive  
pronouns also have a cluster in the same place (cf, Fig. 7).

The third cluster in the hit diagram of the adjectives is discernible at the left side, rather 
close to the upper corner. This is the place where the adverbial idioms (cf. Fig. 8) also 
have a cluster. The adjectives of this cluster may have an adverbial character.

Attributive pronouns. The hit diagram of the attributive pronouns has a clear intense 
cluster shown in Fig. 7. Upon comparison with the adjective map in Fig. 6, the same 
cluster can indeed also be found among the adjectives.

 Adverbial idioms. The cluster of adverbial idioms is visible in Fig. 8. One may compare 
it with the left side of the adjective map in Fig. 6. 
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              Fig. 7. The hit diagram of the attributive pronouns.

              Fig. 8. The hit diagram of the adverbial idioms.

Numerals.  In  my  experience,  whatever  versions  of  the  contextual  SOMs  we  have 
produced,  the distribution  of  the  numerals has always  been very well  clustered.  This 
already came out in our naïve experiments around 1994.

Fig. 9 is the hit diagram of numerals obtained in my present experiments. It seems to be 
otherwise quite compact, except that the mapping of the numeral “zero” (Fig. 10) is quite 
separate from the rest, which is understandable on account of its special role in texts.
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              Fig. 9. The hit diagram of the numerals.

              

              Fig. 10. The hit diagram of the numeral “zero.”

Adverbs.  The adverbs are related to the verbs (“ad-verb”), and on the SOM they are 
located at the fringes of the verb region, see Fig. 11. The main clusters surround the main 
region of the verbs.
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              Fig. 11. The hit diagram of all adverbs.

Prepositions.  The prepositions may be attached to any nouns,  and therefore they are 
almost uncorrelated with the latter. However, since they occur close to the nouns in the 
texts, their contexts are mapped into the vicinity of the region of the nouns. Fig. 12 gives 
the distribution of all prepositions. In particular, the preposition “in” is mapped into a 
single location shown in Fig. 13, in spite of it occurring in many different contexts.
            

              Fig. 12. The hit diagram of all prepositions.
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             Fig. 13. The hit diagram of the preposition “in”.

2.2.5 Coloring of the zones of the most probable main word classes on the SOM

When the SOM models were labeled according to the classification of the majority of 
classes of hits on them, we obtained the Bayes-type decision zones of the models, shown 
in Fig. 14. Here red means verbs, yellow adjectives, green nouns, blue adverbs, and white 
numerals, respectively. One can see, e.g., the three subsets of adjectives very clearly.

                       Fig. 14. The decision zones of the main word classes.
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3. Discussion

It  is  a  common  feature  of  all  self-organizing  maps  that  their  appearance  can  vary, 
depending on the dimensions of the array and the vectors, and the relative scaling of the 
input data. This is the same effect as when a solid body in a three-dimensional coordinate 
system is viewed from different angles. In the SOM experiments we usually have a very 
large number of dimensions. These differences may not be regarded as errors, as long as 
the main topological relations are preserved in the two-dimensional projection.  I have 
repeated the experiments many times, using different parameters and different choices of 
the random vectors, in order to become convinced that the results are essentially right.

Also  the  degree  of  clustering  of  different  word  classes  can  be  seen  to  vary.  This, 
however, is probably due to the inherent nature of the data used in this experiment. If the 
texts were simple or literary,  or would be written by the same authors, also the self-
organizing maps would look simpler and more consequent. One cannot expect that the 
texts from the very different sources, and written by the numerous authors of the MCRC 
corpus would have consequently had the same style and similar usage of the word order. 
One should also pay attention to the fact that the present experiment was based on all 
words that occurred in the corpus, not only on a subset of the most frequent words.  
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