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Abstract. Wildfires are a major source of air pollutants in the United States. Wildfire smoke can trigger severe

pollution episodes with substantial impacts on public health. In addition to acute episodes, wildfires can have

a marginal effect on air quality at significant distances from the source, presenting significant challenges to air

regulators’ efforts to meet National Ambient Air Quality Standards. Improved emission estimates are needed to

quantify the contribution of wildfires to air pollution and thereby inform decision-making activities related to the

control and regulation of anthropogenic air pollution sources.

To address the need of air regulators and land managers for improved wildfire emission estimates, we de-

veloped the Missoula Fire Lab Emission Inventory (MFLEI), a retrospective, daily wildfire emission inventory

for the contiguous United States (CONUS). MFLEI was produced using multiple datasets of fire activity and

burned area, a newly developed wildland fuels map and an updated emission factor database. Daily burned area

is based on a combination of Monitoring Trends in Burn Severity (MTBS) data, Moderate Resolution Imag-

ing Spectroradiometer (MODIS) burned area and active fire detection products, incident fire perimeters, and a

spatial wildfire occurrence database. The fuel type classification map is a merger of a national forest type map,

produced by the USDA Forest Service (USFS) Forest Inventory and Analysis (FIA) program and the Geospatial

Technology and Applications Center (GTAC), with a shrub and grassland vegetation map developed by the USFS

Missoula Forestry Sciences Laboratory. Forest fuel loading is from a fuel classification developed from a large

set (> 26 000 sites) of FIA surface fuel measurements. Herbaceous fuel loading is estimated using site-specific

parameters with the Normalized Difference Vegetation Index from MODIS. Shrub fuel loading is quantified by

applying numerous allometric equations linking stand structure and composition to biomass and fuels, with the

structure and composition data derived from geospatial data layers of the LANDFIRE project. MFLEI provides

estimates of CONUS daily wildfire burned area, fuel consumption, and pollutant emissions at a 250 m × 250 m

resolution for 2003–2015. A spatially aggregated emission product (10 km × 10 km, 1 day) with uncertainty es-

timates is included to provide a representation of emission uncertainties at a spatial scale pertinent to air quality

modeling. MFLEI will be updated, with recent years, as the MTBS burned area product becomes available. The

data associated with this article can be found at https://doi.org/10.2737/RDS-2017-0039 (Urbanski et al., 2017).

Published by Copernicus Publications.
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1 Introduction

Annually, open biomass fires are estimated to burn in excess

of 3 million km2 (Giglio et al., 2013) and emit 46.6 Tg of

particulate matter (36.6 Tg of fine particulate matter, PM2.5)

(van der Werf et al., 2017). Globally, the dominant biomass

burning regions are sub-Saharan Africa, Brazil, and equa-

torial Asia (van der Werf et al., 2017; Wiedinmyer et al.,

2011), regions where fire ignitions are driven by human ac-

tivity (Andela et al., 2017). In many regions across the globe,

biomass fires are a significant source of air pollution and can

be a major hazard to public health (Johnston et al., 2012).

Fresh biomass smoke is a rich mixture containing hundreds

of gases (Hatch et al., 2015; Urbanski, 2014) and particulate

matter diverse in size, composition, and morphology (Reid

et al., 2005a, b). PM2.5 is the smoke constituent presenting

the primary public health hazard (Reisen et al., 2015). In ad-

dition to PM2.5, the photochemical processing of the volatile

organic compounds and nitrogen oxides present in smoke can

also produce ozone (O3) (Jaffe and Widger, 2012; Lindaas et

al., 2017), another air pollutant which poses a public health

threat (Nuvolone et al., 2018). The health impacts associated

with exposure to wildfire smoke include increases in respi-

ratory and cardiovascular morbidity and mortality (Fisk and

Chan, 2017; Liu et al., 2015; Williamson et al., 2016).

While biomass burning in the contiguous United States

(CONUS) is a small contributor to emissions globally, it is a

significant source of air pollution in the US. Wildfire smoke

has created severe air pollution episodes with substantial im-

pacts on public health (Fann et al., 2018; Kochi et al., 2012;

Rappold et al., 2014). In addition to public health impacts,

wildfire smoke presents challenges for air regulators and

land managers. Under the US federal Clean Air Act (CAA),

the Environmental Protection Agency (EPA) has established

National Ambient Air Quality Standards (NAAQSs) to pro-

tect public health and the environment (USEPA, 2018a). The

NAAQSs include standards for PM2.5 (24 h and annual) and

O3 (8 h). The CAA requires states to adopt plans to achieve

NAAQSs and control emissions that may impact air qual-

ity in downwind states (USEPA, 2013). Thus, identifying the

contribution of wildfires to air pollution, even marginal im-

pacts at long distances from the fires, is important for air reg-

ulatory efforts. For example, Liu et al. (2016) have estimated

that, on days that exceed regulatory PM2.5 levels in the west-

ern US, wildfires account for > 70 % of total PM2.5 loading.

Ozone production from wildfires impacting both rural and

urban areas has been reported. At remote monitoring sites in

the intermountain west US, Lu et al. (2016) found that 31 %

of summertime O3 exceedances (days when O3 exceeded the

8 h NAAQS) were attributable to wildfires. However, given

the complex processes involved in O3 formation, quantify-

ing the amount attributable to fire emissions in urban areas

is particularly difficult (Gong et al., 2017; Brey and Fischer,

2016; Jaffe and Wigder, 2012). Air regulators need accurate

emission inventories to quantify the contribution of wildfires

to air pollution and thereby develop effective and efficient

strategies to control anthropogenic air emission sources. Ac-

curate emission inventories also improve the ability of state

air regulators to properly identify wildfire-induced NAAQS

exceedances, which qualify for treatment under the EPA ex-

ceptional events rule (USEPA, 2018b).

Several biomass burning emission inventories that include

CONUS are available (van der Werf et al., 2017; Zhang et al.,

2017; French et al., 2014; Larkin et al., 2014; Wiedinmyer et

al., 2011). Of these, the global inventories Global Fire Emis-

sions Database (GFED; van der Werf et al., 2017) and Fire

INventory from the National Center for Atmospheric Re-

search (NCAR) (FINN; Wiedinmyer et al., 2011) are prob-

ably the most widely used in atmospheric chemistry and

air quality modeling. The Wildland Fire Emissions Informa-

tion System (WFEIS; French et al., 2014) provides daily fire

emission estimates for CONUS for 2001–2013. Given many

options, why develop another emission inventory? In terms

of wildfire emission estimates for CONUS, we believe the

emission inventory presented in this paper, the Missoula Fire

Lab Emission Inventory (MFLEI), may improve upon cur-

rently available inventories. We are able to employ compre-

hensive datasets on the distribution and assemblage of vege-

tation cover and fuel loading (biomass available for combus-

tion) that are available only for CONUS. MFLEI uses a forest

type map and a new forest fuel classification, both of which

are based on a national forest inventory dataset, providing

more accurate fuel loading estimates compared to the fuel

layer used in WFEIS (Keane et al., 2013). The methodology

used to develop MFLEI is similar to that employed to de-

velop carbon emission estimates for Canadian wildland fires

(Anderson et al., 2015; De Groot et al., 2007). As a retro-

spective inventory, MFLEI is able to leverage geospatial fire

activity information including high-spatial-resolution burned

area and burn severity products that are not available for real-

time inventories (e.g., FINN). Additionally, much of the fire

activity data used in MFLEI are produced by US land man-

agement agencies and are available only for US territory, and

therefore are not used in global inventories. Our inventory

is also able to use a large and growing body of published

emission factor data to craft emission factors specifically for

fire-prone CONUS ecosystems.

Improved CONUS emission estimates will help quantify

the contribution of wildfires to air pollution and thereby in-

form decision-making activities related to the control and

regulation of anthropogenic air pollution sources. The abil-

ity of states to properly identify wildfire-induced NAAQS

exceedances, which qualify for treatment under the EPA ex-

ceptional events rule (USEPA, 2018b), may also be enhanced

with an improved inventory. Further, given the benefit of im-

proved fire activity information, retrospective emission in-

ventories may help identify and diminish deficiencies of real-

time emission inventories, which are used to forecast smoke

impacts on air quality and reduce risks to public health.
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Figure 1. Diagram of MFLEI biomass burning emission model

methodology and datasets.

2 Methods

2.1 Biomass burning emission model

MFLEI provides estimates of daily emissions of CO2, CO,

CH4, and PM2.5 from wildland fires for CONUS. The

MFLEI biomass burning emission model is based on Eq. (1),

given below, and the implementation and datasets are sum-

marized in Fig. 1. The inventory has a spatial resolution of

250 m, which is established by the MFLEI land cover map

(Sect. 2.2). Burned pixels are identified and assigned nominal

burn dates using a spatially resolved burned area dataset de-

veloped from four fire activity datasets (Sect. 2.3). The land

cover classifications of the MFLEI map are used to assign

fuel loading (biomass per unit area available for combustion)

and combustion completeness to burned pixels. Fuel loading

of forested pixels is based on a fuel classification system de-

veloped from forest inventory measurements (Sect. 2.4.1). A

spatially explicit rangeland fuels map supplies fuel loading

for pixels of herbaceous and shrub cover types (Sect. 2.4.2).

The inventory estimates emission intensities for each 250 m

grid cell (k) and day (t) using Eq. (1):

Ei(k, t) = EF(i,k) ×
∑

j

F (k, t,j ) × C(k, t,j ), (1)

where Ei is the emission intensity of species i for grid cell

k on day t in units of kg i m−2 day−1. The driving variables

in Eq. (1) are the pre-fire dry fuel loading for fuel compo-

nent j (F ; kg m−2), combustion completeness, which is the

fraction of fuel component j consumed by fire on the day

the grid cell burned (C; day−1), and the emission factor for

species i, which is the mass of i emitted per mass dry fuel

consumed (EF; kg i kg−1). The inventory assumes that the

burning and emissions for each burned grid cell occur on the

estimated burn day (Sect. 2.3.2). Fuel loading (F ), combus-

tion completeness (C), and emission factors (EFs) all depend

on grid cell properties. F is assigned based on a grid cell’s

forest type group or taken from a rangeland fuel loading map

in the case of herbaceous and shrub cover types. C depends

on fuel type and also on fuel moisture regime and burn sever-

ity classification for forest pixels (Sect. 2.6). EFs depend on

the fuel type (Sect. 2.7). The mass of species i emitted on

the day a grid cell burned (EMi ; kg i day−1) is the product of

the emission intensity (Ei) from Eq. (1) and the grid cell area

(A), which is 62 500 m2.

2.2 Land cover map

The MFLEI land cover map was created by combining a

250 m spatial resolution CONUS forest type group map with

a rangeland map. The forest type group map, the USDA

Forest Service (USFS) National Forest Type Dataset (Rue-

fenacht et al., 2008; available at https://data.fs.usda.gov/

geodata/rastergateway/forest_type/), was used as the base

map for the MFLEI land cover map. The forest classifica-

tion accuracy of the USFS forest type group map is generally

around 60 % to 70 % (Keane et al., 2013; Ruefenacht et al.,

2008) with a forest/non-forest classification accuracy ranging

from 80 % to 98 % (Blackard et al., 2008). Pixels mapped

as non-forest in the forest type group map were then as-

signed a shrub, herbaceous, or non-fuel cover type using the

CONUS rangeland product of Reeves and Mitchell (2011).

The MFLEI cover type map is shown in Fig. 2 and the

cover type descriptions are provided in Table 1. The LAND-

FIRE project (LANDFIRE, 2016) provides CONUS-wide

maps for Fuel Characteristics Classification System (FCCS;

Ottmar et al., 2007; McKenzie et al., 2012) and fuel load-

ing models (FLMs; Lutes et al., 2009) fuelbed models, both

of which are suitable for estimating fuel consumption and

emissions. FCCS is used in both the National Emissions In-

ventory (NEI) (Larkin et al., 2014) and WFEIS (French et

al., 2014) CONUS fire emission inventories. We assembled

a new map based on the USFS forest type group map be-

cause it provides three important benefits over other land

cover maps with respect to forests. First, the accuracy of the
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Table 1. MFLEI cover types and fuel codes.

Cover type code Fuel code Cover type Generalized cover type

−99 0 Non-fuel Non-fuel

1 1 Herbaceous Herbaceous

2 2 Shrub/scrub Shrub

100 1100 White/red/jack pine group Northern conifer

120 1120 Spruce/fir group Northern conifer

140 1140 Longleaf/slash pine group Southern conifer

160 1160 Loblolly/shortleaf pine group Southern conifer

180 1180/2180 Pinyon/juniper group Pinyon juniper

200 1200 Douglas fir group Western conifer/softwood

220 1220 Ponderosa pine group Western conifer/softwood

240 1240 Western white pine group Western conifer/softwood

260 1260 Fir/spruce/mountain hemlock group Western conifer/softwood

280 1280 Lodgepole pine group Western conifer/softwood

300 1300 Hemlock/Sitka spruce group Western conifer/softwood

320 1320 Western larch group Western conifer/softwood

340 1340 Redwood group Western conifer/softwood

360 1360 Other western softwoods group Western conifer/softwood

370 1370 California mixed conifer group Western conifer/softwood

380 1380 Exotic softwoods group Western conifer/softwood

400 1400 Oak/pine group Hardwood

500 1500 Oak/hickory group Hardwood

600 1600 Oak/gum/cypress group Hardwood

700 1700/2700 Elm/ash/cottonwood group Hardwood

800 1800 Maple/beech/birch group Hardwood

900 1900/2900 Aspen/birch group Western hardwood

910 1910 Alder/maple group Western hardwood

920 1920 Western oak group Western hardwood

940 1940 Tanoak/laurel group Western hardwood

950 1950/2950 Other western hardwoods group Western hardwood

980 1980 Tropical hardwoods group Western hardwood

990 1990 Exotic hardwoods group Western hardwood

forest type group map is significantly better than either the

FCCS or FLM maps (Keane et al., 2013). Second, it enabled

us to use the fuel type group (FTG) surface fuel classification

system (Sect. 2.4.1) which provides a more accurate estimate

of average surface fuel loading than either the FCCS or FLM

(Keane et al., 2013). Finally, because the USFS forest type

group classification is an FIA plot variable, we are able to

use the large (> 27 000 plots) dataset of FIA fuel measure-

ments estimate uncertainty in surface fuel loading and emis-

sions (Sect. 2.9). During burned area mapping (Sect. 2.3.1),

the land cover type codes of the MFLEI are used to assign

the fuel codes listed in Table 1 to burned pixels. Three of the

mapped cover types were forest type groups for which there

was insufficient data to develop a fuel loading classification

(Sect. 2.4.1). Therefore, during the burned area processing,

the fuel codes associated with these cover types, 1380, 1980,

and 1990, were recoded as 1360, 1950, and 1950, respec-

tively. Also, during processing of the burned area data, the

fuel codes of forest pixels in the eastern US that were clas-

sified as 1180, 1700, 1900, and 1950 were recoded to 2180,

2700, 2900, and 2950, respectively. This was done because

the forest inventory surface fuel dataset used to develop fuel

classifications (Sect. 2.4.1) indicated substantially different

fuel loadings between eastern and western (11 western states)

forests for these forest type groups. Burned grid cells classi-

fied as non-fuel in the land cover map were assigned a fuel

load of 0 and did not produce emissions. In post-emission

processing of the dataset, the non-fuel, zero-emission burned

pixels were assigned a cover type classification from the Na-

tional Land Cover Database 2011 (NLCD) (Homer et al.,

2015). This was done to track wildfire impacts on agricul-

tural and developed lands or identify possible agricultural

burning. Pixels that were not classified as forest or rangeland

in the MFLEI land cover map were fixed as “no data” when

the NLCD dataset classification was forest, herb, or shrub.

The focus of MFLEI is wildfires, which are fires result-

ing from unplanned ignitions (e.g., lightning, arson, acci-

dents). The other types of open biomass burning common in

CONUS are prescribed fires and agricultural fires. We define

agricultural fires as the burning of crop residue or preparation

Earth Syst. Sci. Data, 10, 2241–2274, 2018 www.earth-syst-sci-data.net/10/2241/2018/
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Figure 2. MFLEI land cover type map. White regions indicate the non-fuel cover type. Cover type codes are described in Table 1.

of fields for planting. Croplands are classified as non-fuel in

the MFLEI land cover map and are assigned zero emissions

in the inventory. Prescribed fires are intentionally ignited to

achieve land management objectives (e.g., hazardous fuel re-

duction, ecosystem restoration, and preparation of rangeland

for grazing). Prescribed fires are not excluded from MFLEI,

although given the focus on wildfires, they are certainly un-

derrepresented, as discussed in Sect. 3.5.

2.3 Burned area

Burned area was derived from MODIS- and Landsat-based

burned area products, a dataset of fire perimeter polygons

mapped to support fire management activities, and a fire oc-

currence database. Burn dates were primarily assigned based

on the MODIS burned area product and active fire detection

products from MODIS and the Visible Infrared Imaging Ra-

diometer Suite (VIIRS). When a burn date could not be as-

signed from MODIS or VIIRS data, it was estimated from

generalized fire activity cycles and the fire size and duration

obtained from the fire occurrence database or other adminis-

trative records.

2.3.1 Burned area mapping

On an annual basis, potentially burned grid cells of the

MFLEI land cover map were identified by an overlay of

burned area polygons and rasters in ArcMap. Four burned

area/fire activity datasets were used to extract potentially

burned pixels: Monitoring Trends in Burn Severity (MTBS)

fire boundaries (MTBS, 2017a; Eidenshink et al., 2007),

the MODIS active-fire-based Direct Broadcast Monthly

Burned Area Product MCD64A1 (MCD64) (MCD64A1,

2016; Giglio et al., 2009), incident fire perimeters from the

Geospatial Multi-Agency Coordination wildland fire support

archive (GEOMAC, 2015), and a spatial wildfire occurrence

database (FOD) (Short, 2017).

The MTBS project maps fire boundaries and burn severity

for large fires (> 404 ha in the west and > 202 ha in the east)

across the US from 1984 to the present (Eidenshink et al.,

2007; MTBS, 2017c). MTBS fire boundaries are polygons

representing burned area detected from post-fire Landsat

Thematic Mapper/Enhanced Thematic Mapper/Operational

Land Imager (TM/ETM/OLI) imagery (Eidenshink et al.,

2007). The polygon attributes for each MTBS boundary in-

clude a unique fire ID, fire start date, and fire name. The

MTBS fire ID attribute was used to aggregate burned grid

cells by fire events and to filter the FOD point dataset to

avoid double counting of fires. The primary MTBS product

is thematic burn severity rasters, which classify burn severity

within the fire boundaries (Eidenshink et al., 2007; MTBS,

2017b). We used the MTBS burn severity rasters to identify

unburned regions within MTBS fire boundaries and to de-

velop scaling factors to approximate unburned patches for

burned area mapped using MCD64, GEOMAC, and FOD, as

described in Sect. 2.3.3.

www.earth-syst-sci-data.net/10/2241/2018/ Earth Syst. Sci. Data, 10, 2241–2274, 2018
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The MCD64 product maps burned areas using 500 m

MODIS imagery coupled with 1 km MODIS active fire de-

tections (Giglio et al., 2009). MCD64 is a monthly 500 m

resolution raster product that provides an estimated burn date

for each pixel identified as burned. We used MODIS Col-

lection 5.1 of MCD64A1 (MCD64A1, 2016). The most re-

cent version of the MCD64A1 product, Collection 6, became

available in January 2017 (Giglio et al., 2015). The MCD64

product is the primary burned area data source for the Global

Fire Emission Database (GFED) (Giglio et al., 2013) dur-

ing the MODIS era. Details for accessing the product can be

found on the GFED website: http://www.globalfiredata.org/

(last access: 4 June 2018).

The GEOMAC dataset is a collection of fire perimeter

polygons. For large fire events, fire perimeters are period-

ically mapped by incident management teams, typically us-

ing airborne infrared imagery. These incident perimeter poly-

gons are produced to support fire management activities.

Since their purpose is identifying the fire perimeter, not map-

ping the actual area burned, the area within a perimeter typ-

ically includes unburned regions. We attempt to compen-

sate for this as discussed in Sect. 2.3.3. For these reasons,

we give the MTBS dataset precedence over the GEOMAC.

Further discussion regarding the use of incident perimeters

as “ground-truth” burned area may be found in Urbanski et

al. (2009) and Key and Benson (2006). Final fire perimeters

from the GEOMAC dataset were checked against the MTBS

fire boundaries using the products’ fire name attributes to re-

move GEOMAC perimeters for fires present in the MTBS

dataset.

FOD is a spatial database of wildfires that occurred in the

United States from 1992 to 2015 generated from wildfire

records acquired from the reporting systems of federal, state,

and local fire organizations (Short, 2017). FOD provides a

point location for each fire, not a spatial object that maps

burned area. Other FOD dataset attributes used in our anal-

ysis include final fire area, discovery date, containment date,

fire name, fire code, and the MTBS fire ID attribute from

the MTBS perimeter dataset (MTBS fires only). We used the

FOD dataset to capture fires not included in the MTBS, GE-

OMAC, or MCD64 datasets. We filtered the FOD dataset for

fires contained in either the MTBS or GEOMAC datasets

using the MTBS fire ID or the fire name and fire code at-

tributes (for GEOMAC) from the datasets. Fires < 4 ha in

size were also removed due to their minor contribution to

total burned area, while fires < 4 ha accounted for 86 % of

all fires in the FOD database for 2003–2015, they only com-

prised 1.5 % of total fire area. Finally, FOD fires with loca-

tions that fell within a distance Df (Df = 2
√

A/π , where A

is the FOD fire area) of any grid cell identified as burned by

either the MCD64 or GEOMAC datasets were removed. Fol-

lowing these filtering actions, MFLEI land cover map grid

cells within a distance Df/2 of the FOD fire location were

flagged as burned.

2.3.2 Burn date assignment

Of the four datasets used to map burned area, only MCD64

provides an estimated burn date, and these were assigned to

MFLEI grid cells identified as burned by the MCD64 prod-

uct. Grid cells identified as burned by the MTBS, GEOMAC,

or FOD datasets were assigned an estimated burn date as

follows. First, all (non-MCD64-sourced) grid cells were as-

signed a fire start date and, when available, a fire containment

date, on a fire event basis. The MTBS, GEOMAC, and FOD

datasets include fire event identifiers and fire start dates (or

discovery dates) which were added as attributes to burned

grid cells. The FOD dataset also includes a containment date

for many fire events and it was added as an attribute to burned

MFLEI grid cells when available. Most of the fires in the

MTBS and GEOMAC dataset are also included in FOD.

Fire event identifiers, MTBS Fire ID, and the fire name and

fire code attributes from GEOMAC, were used to associate

MTBS- and GEOMAC-sourced burned pixels with FOD fire

events and thereby assign containment dates when available.

Next, grid cells identified as burned by the MTBS, GEO-

MAC, or FOD datasets were assigned an estimated burn date

using one of the following methods in order of precedence:

1. Grid cells within 500 m of a MCD64-sourced pixel were

assigned that pixel’s burn date.

2. Grid cell burn dates were assigned from MODIS ac-

tive fire detections (MCD14) (Giglio et al., 2003) using

spatial and temporal proximity criteria to associate ac-

tive fire detections with burned grid cells. We assigned

each active fire detection a spatial buffer, Xb, which de-

fines the maximum distance at which it can be asso-

ciated with a MFLEI grid cell for purposes of ascrib-

ing a burn date. MCD14 pixels have nominal dimen-

sions of 1 km × 1 km; however, the actual size and lo-

cation of a detected active fire are unknown. In con-

sideration of this spatial uncertainty, we assigned Xb

a default value of 2 km. The dimensions of MCD14

pixels are 1 km × 1 km at nadir but increase with dis-

tance off nadir, reaching 4.8 km (scan direction) × 2 km

(track direction) on the edges of the MODIS scanning

swath (Nishihama et al., 1997). For off-nadir pixels, Xb

was set to the dimension of the scan direction when

> 2 km (pixel dimensions were among the attributes of

the MCD14 product used in analysis). For each burned

grid cell, we identified the nearest active fire detection

located within a distance Xb and falling in the time

frame (Dstart − 3 days) to (Dcont + 3 days), where Dstart

and Dcont are the grid cell’s fire start date and fire con-

tainment date attributes. The temporal criteria were used

to eliminate any active fire detections from an unre-

lated fire that occurred during a different time period.

For the years 2014 and 2015, VIIRS I-band active fire

detections (Schroeder et al., 2014) were also used to

assign pixel burn dates. The procedure was similar to

Earth Syst. Sci. Data, 10, 2241–2274, 2018 www.earth-syst-sci-data.net/10/2241/2018/
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that used with the MCD14 product, except that the VI-

IRS active fire detection spatial buffer, Xb, was set to

750 m, which is twice the spatial resolution (375 m) of

VIIRS I-band pixels at nadir. Because the VIIRS I-band

active fire detection product has significantly superior

mapping capabilities compared to the MCD14 prod-

uct (Schroeder et al., 2014), it was given precedence

over MCD14 for assigning pixel burn dates. Burned

grid cells not associated with MCD64 were assigned

a burn date equal to the date of the nearest active fire

detection meeting the above spatial and temporal crite-

ria. The MCD14 and VIIRS I-band active fire data used

were obtained from the USDA Forest Service Remote

Sensing Application Center’s Active Fire Mapping Pro-

gram (https://fsapps.nwcg.gov/afm/gisdata.php, last ac-

cess: 10 April 2017, USDA Forest Service, 2017).

3. For event-based extrapolation, following burn date as-

signment steps 1 and 2, 28 % of the burned grid cells

were without burn dates. Overall, 46 % of these undated

grid cells were associated with fire events which had

some grid cells that did have burn dates. For these fire

events, grid cells without burn dates were assigned the

burn date of the nearest grid cell with a burn date.

4. The final step for assigning burn dates addressed burned

grid cells of “dateless” fire events, those without any

burn date associated with the grid cells. In order to

assign estimated burn dates to these grid cells, which

comprised 15 % of all the grid cells, we developed

what we refer to as “burn-day distributions”. These

are empirical distributions of the fraction of event to-

tal burned area as a function of days since ignition.

One set of burn-day distributions was derived using

MTBS fire events which had a containment date and

also had > 95 % of grid cells assigned a burn date

in steps 1 or 2 above. From these fire events, burn-

day distributions were created according to six fire

size classes (in hectares): 200–625, 625–1250, 1250–

3125, 3125–6250, 6250–12 500, and 12 500–25 000.

The burn-day distribution for the 12 500–25 000 ha size

class is shown in Fig. A1, and the distributions for all

six size classes are provided in the Supplement dataset

(file\Supplements\BurnDayDist.csv; see Sect. 4). The

burned grid cells of dateless fire events > 200 ha in size

were assigned burn dates using the burn-day distribu-

tion for the appropriate size class. For fire events with

a containment date, the burn-day distribution was trun-

cated to correspond to the fire duration (containment

date – fire start date) and normalized. When a dateless

fire event was < 200 ha and had a containment date,

grid cell burn dates were assigned one at time cycling

through the days between the fire start date and the con-

tainment date in chronological order until all grid cells

were assigned. Fire events < 200 ha and without con-

tainment dates were assigned durations using Table A1,

and the burned grid cells were distributed one per burn

day by cycling through the burn days in chronological

order until all grid cells were assigned.

2.3.3 Unburned and lightly burned grid cells

Wildfires typically do not impact fuels uniformly across the

landscape and it is not unusual for significant area within a

fire perimeter to be unburned or only lightly burned (Kolden

et al., 2012). MTBS burn severity thematic classifications

were used to account for unburned or lightly burned regions

(MTBS, 2017b). The MTBS burn severity thematic classi-

fications were developed to represent fire effects on above-

ground biomass (Eidenshink et al., 2007; Schwind, 2008).

MTBS assigns six burn severity classifications (BSEVs) to

pixels within fire boundaries: (1) unburned to low burn sever-

ity, (2) low burn severity, (3) moderate burn severity, (4) high

burn severity, (5) increased green, and (6) no data. We elected

to designate a BSEV 1 as unburned, which is consistent

with MTBS program publications that describe this classi-

fication as areas which are either unburned or where visible

fire effects occupy < 5 % of the site at the time of obser-

vation (Schwind, 2008). The increased green classification

may indicate unburned areas that exhibited more green at

the time of the post-fire Landsat scene relative to the pre-

fire scene. The increased green classification was assigned to

just 0.3 % of MTBS pixels and thus has a negligible impact

on our inventory. MFLEI burned grid cells associated with a

fire analyzed by the MTBS project were compared against a

coarse-scale MTBS thematic burn severity map (30 m origi-

nal resampled to the MFLEI 250 m grid using majority sam-

pling). Coarse-scale MTBS pixels classified as BSEV 5 or

BSEV 6, increased green or no data, respectively, were ran-

domly reassigned a value between 1 and 4. This reassign-

ment was conducted on a fire event basis in proportion to the

frequency of pixels originally classified BSEVs 1–4. MFLEI

grid cells classified as BSEV 1, “unburned to low severity”,

in the coarse-scale MTBS product were flagged as unburned.

MFLEI burned grid cells not associated with a fire analyzed

by the MTBS project were randomly assigned a BSEV value

based on a generic cover type–BSEV empirical distribution

developed from the CONUS-wide MTBS thematic classifi-

cation maps for 2003–2013. The cover type–BSEV distribu-

tion is shown in Table 2.

2.4 Fuel loading

Fuel loading was represented with the 14 fuel components in

Table 3. Models of forest fuel loading were developed using

data from the USFS Forest Inventory and Analysis (FIA) Na-

tional Program as described in Sect. 2.4.1. The rangeland fuel

product (Sect. 2.4.2) provided spatially explicit fuel loadings

for grassland and shrub ecosystems.

www.earth-syst-sci-data.net/10/2241/2018/ Earth Syst. Sci. Data, 10, 2241–2274, 2018
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Table 2. MTBS burn severity class percent distribution by generalized cover types for 2003–2013.

Generalized cover type BSEV 1 BSEV 2 BSEV 3 BSEV 4

Herbaceous 18 68 11 3

Shrub 17 57 22 4

Northern conifer 18 34 19 29

Southern conifer 25 61 12 2

Pinyon juniper 24 43 25 8

Western conifer/softwood 25 32 22 21

Hardwood 27 62 10 1

Western hardwood 18 38 25 19

Table 3. Description of fuel components.

General fuel type Fuel component Strata Description

Litter Litter Surface Loose, freshly fallen plant material found on the top surface of the forest

floor which includes needles, leaves, cones, and dead herbaceous stems1

Duff Duff Surface Layer just below the litter consisting of partially decomposed

biomass whose origins cannot be determined1

Down dead wood 1 h (small woody) Surface < 1 cm diameter

10 h (medium woody) Surface 1–2.5 cm diameter

100 h (large woody) Surface 2.5–7.6 cm diameter

s3to9 (coarse woody debris) Surface Sound2 logs 7.6–22.9 cm diameter

s9to20 (coarse woody debris) Surface Sound2 logs 22.9–50.8 cm diameter

sgt20 (coarse woody debris) Surface Sound2 logs > 50.8 cm diameter

r3to9 (coarse woody debris) Surface Rotten2 logs 7.6–22.9 cm diameter

r9to20 (coarse woody debris) Surface Rotten2 logs 22.9–50.8 cm diameter

rgt20r (coarse woody debris) Surface Rotten2 logs > 50.8 cm diameter

Herb Herb Understory Herbs (aboveground portion)

Shrub Shrub Understory Woody shrubs (aboveground portion)

Canopy Available canopy fuel (ACF) Canopy Foliage and twigs ≤ 6 mm diameter

1 O’Connell et al. (2016). 2 Sound logs are logs assigned FIA decay classes 1, 2, or 3, and rotten logs are logs assigned FIA decay class 4 or 5 (O’Connell et al., 2016).

Figure 3. Location of FIA plots used to develop surface fuel load-

ing classifications.

2.4.1 Forest fuel loading

Surface fuel loadings

We developed an expanded version of the FTG fuel classi-

fication system assembled by Keane et al. (2013) using re-

cently available FIA fuel data and also including plot data

from the eastern US. The FIA inventory is comprised of three

phases of data collection, as described in Bechtold and Pat-

terson (2005). The inventory is designed to cover forested

land (10 % stocked with tree species; see Bechtold and Pat-

terson, 2005) of all ownership across the US. Phase 1 sam-

pling provides information to stratify inventory ground plots

and improve the precision of estimates of population totals

(Bechtold and Patterson, 2005). In phase 2, measurements

are taken on the standard FIA base grid, which has a den-

sity of approximately one sample location per ∼ 2428 ha

(6000 acres). Phase 2 collects information such as height

and diameter of standing trees and physiographic class and

land ownership. Phase 3 involves sampling of forest health

indicators, such as the down woody material (DWM) indica-

tor. The DWM indicator estimates dead organic materials in-

Earth Syst. Sci. Data, 10, 2241–2274, 2018 www.earth-syst-sci-data.net/10/2241/2018/
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cluding downed woody debris, litter, and duff (Woodall and

Monleon, 2008). The DWM indicator was used to estimate

plot-level surface fuel loading as described below. Phase 3

sampling is conducted on a subset of phase 2 plots (approxi-

mately 1/16 of phase 2 plots). In the western US, the FIA

units began collecting the DWM indicator on all of their

phase 2 plots in the early 2000s (Keane et al., 2013); thus, the

density of surface fuel plots used to assemble the FTG clas-

sification is significantly higher in the west. Figure 3 maps

the locations of the FIA plots used to develop the expanded

FTG surface fuel classification for MFLEI.

Our FTG classification is based on 27 124 plots com-

pared with 13 138 used in Keane et al. (2013). We used

only single condition plots, plots where all four sub-

plots were the same condition (land class, reserved sta-

tus, owner group, forest type, stand-size class, regenera-

tion status, and stand density) (O’Connell et al., 2016).

The FTG classification summarizes fuelbed component load-

ings (Table 3) by FIA forest type groups using fuel data

from the FIA database acquired from the FIA DataMart

website (https://www.fia.fs.fed.us/tools-data, last access: 10

April 2017; FIA, 2015). Five tables were accessed from the

FIA dataset: REF_FOREST_TYPE, COND, PLOT, COND_

DWM_CALC, and DWM_COARSE_WOODY_DEBRIS.

A detailed description of these tables is provided by

O’Connell et al. (2016). For an in-depth description of

the FIA sampling design, estimation, and analysis pro-

cedures, see Woodall and Monleon (2008), O’Connell et

al. (2016), and Woodall et al. (2013), and for an abbre-

viated summary, see Keane et al. (2013). Data assem-

bled from the COND_DWM_CALC table included load-

ing (biomass per unit area) of fine woody debris by three

size classes: small, medium, and large (Table 3); duff load-

ing and depth; and litter loading and depth. Data from

the DWM_COARSE_WOODY_DEBRIS table were as-

sembled to provide loadings of coarse woody debris by

eight size/decay class combinations (Table 3) following

the methods described in Woodall and Monleon (2008).

Best-estimate loadings of the surface fuel components were

taken as the average values of all plots for each fuel

classification and are shown in Table 4. The surface fuel

loading data for the 27 124 plots used to develop Ta-

ble 4 and to derive uncertainty estimates in the emission

modeling (Sect. 2.9) are included in the MFLEI dataset

(file\Supplements\Fuel_Load_Plot_Data.csv; see Sect. 4).

The MFLEI land cover type map assigns an FTG to all for-

est pixels. Four FTGs (180, 700, 900, and 950) had signif-

icant fuel loading differences between western (11 western

states) and eastern plots. Therefore, separate fuel classifica-

tions (west and east) were made for these FTGs and they

are differentiated by the fuel code (Table 1) which is as-

signed during burned area mapping, as described in Sect. 2.2.

As discussed in Keane et al. (2013), the variability of sur-

face fuel loading within FTGs is quite large. Figure 4 plots

the distribution of surface fuel loading for the FIA plots of

three FTGs, loblolly/shortleaf pine (160), Douglas fir (200),

and California mixed conifer (370). The surface fuel loading

plot data have a lognormal-like distribution with long tails.

The high variability in surface fuel loading is the primary

source of uncertainty in the emission estimates for forest fires

(Sect. 2.9).

Understory fuels

The loading of forest understory fuels, shrubs (vascular

plants with woody stems that are not defined as trees by FIA

phase 2), and herbs (non-woody vascular plants including but

not limited to ferns, moss, lichens, sedges, and grasses) was

derived from raster maps of forest understory carbon (Wil-

son et al., 2013). The raster maps of forest understory carbon

were combined with the USFS FIA FTG map (Ruefenacht

et al., 2008) to derive empirical distributions of understory

fuel loading for each FTG class (assuming a biomass carbon

content of 50 %). The fuel loading distributions were used

to provide uncertainty estimates for the emission modeling

(Sect. 2.9). Partitioning of the understory fuel loading be-

tween shrubs and herbs was based on herb-to-shrub ratios

from the Fuel Characteristics Classification System (FCCS)

and First Order Fire Effects Model (FOFEM) reference fuel

models (Ottmar et al., 2007; Riccardi et al., 2007; Lutes,

2016a). The empirical distributions of understory fuel load-

ing for all FTG classes are included in the MFLEI dataset

(file\Supplements\Understory_Fuel_Dist.csv; see Sect. 4).

Best-estimate loadings for herb and shrub fuel components

were taken as the average values of all plots for each fuel

classification and are shown in Table 4.

Canopy fuels

Available canopy fuel (ACF), the dry mass of canopy fuels

likely to be consumed in a fully active crown fire (needles,

lichen, moss, and live and dead branch wood ≤ 6 mm in di-

ameter) (Scott and Reinhardt, 2001), was derived from FIA

plot Treelist tables. FIA Treelist tables (which are named

TREE in the FIA database) provide a detailed inventory

of trees on FIA plots (O’Connell et al., 2017). FIA plots

with Treelists are based on phase 2 sampling and are far

more numerous than the phase 3 plots used to derive surface

fuel loadings (see above). We used the Treelist table vari-

ables: species code (SPCD), diameter (D), crown class code

(CCLCD), tree status (STATUSCD), and tree density (TPA)

to estimate ACF associated with each Treelist table entry us-

ing empirical equations from the literature following the ap-

proach outlined in the FuelCalc user’s guide (Lutes, 2016b).

FuelCalc is a fuel management software system which can

be used to calculate forest canopy characteristics at an inven-

tory plot. For each of the 363 060 FIA plots with a Treelist,

www.earth-syst-sci-data.net/10/2241/2018/ Earth Syst. Sci. Data, 10, 2241–2274, 2018
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Figure 4. The distribution of surface fuel loading for the FIA plots of three FTGs: loblolly/shortleaf pine (160), Douglas fir (200), and

California mixed conifer (370).

stand-level ACF was calculated using Eq. (2):

ACFstand =
N
∑

i

(acfi × TPAi), (2)

where the subscript i is the index for the softwood tree

species in the stand, and acfi and TPAi are tree-level avail-

able canopy fuel and tree density. acfi and TPAi are calcu-

lated as described in the Supplement. ACFstand values were

aggregated by FTG (an FIA plot variable) and the mean was

taken as the best estimate (listed in Table 4). The ACFstand

values aggregated by FTG were fit to Weibull probability

distribution functions to derive uncertainty estimates for the

emission modeling (Sect. 2.9). Best-estimate ACF and opti-

mized parameters for fits to Weibull probability distribution

functions (PDFs) are provided in Table B1.

Total forest fuel loading

Average forest fuel loading is dominated by the surface fuels

for all forest fuel types (25 FTGs plus four eastern variants;

see Sect. 2.2), as shown in Fig. 5. More than 70 % of total fuel

loading resides in the surface fuels for 25 of the 29 forest fuel

types. Surface fuel components (Table 3) are often grouped

into litter, fine woody debris (fwd; down dead wood with

diameter < 7.62 cm), coarse woody debris (cwd; down dead

wood with diameter >= 7.62 cm), and duff. These groupings

reflect the surface-to-volume ratio of the fuel particles, an

important determinant in the rate of fire spread (Scott and

Burgan, 2005), as well as the combustion characteristic of the

fuels. Litter and fine woody debris tend to favor flaming com-

bustion, while coarse woody debris, and duff especially, fa-

vor smoldering combustion processes (Urbanski, 2014). Fig-

ure 6 plots the fraction of total fuel load residing in duff,

litter, fine woody debris, and coarse woody debris for the 29

forest fuel types.

2.4.2 Rangeland fuel loading

Rangeland fuels were estimated using the Rangeland Vege-

tation Simulator (RVS) (Reeves, 2016) and began with de-

lineating the spatial domain of rangeland in CONUS (land
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Figure 5. Best-estimate (Table 4) forest fuel loading in canopy, un-

derstory, and surface fuels by fuel type.

Figure 6. Fraction of best-estimate (Table 4) total forest fuel load-

ing in surface fuel loading groups by fuel type.

cover type codes 1 and 2 in Fig. 2), as described in Reeves

and Mitchell (2011), and constrained using the forest type

map developed by Blackard et al. (2008). If a forest type was

indicated for a given pixel in the Blackard et al. (2008) map,

no rangeland fuel data were estimated for that pixel. The

vegetation form (herbaceous or shrub) and type (e.g., Chi-

huahuan mixed desert and thorn scrub) were assigned from

the LANDFIRE (LF) project existing vegetation type (EVT)

geospatial data layer (LANDFIRE, 2016). Different methods

were used to quantify woody and herbaceous fuels (Fig. 7).

Figure 7. Abbreviated flow of data and actions in RVS to produce

rangeland fuel loadings. EVT, EVC, and EVH are existing vegeta-

tion type, existing vegetation cover, and existing vegetation height

from the LANDFIRE project.

Shrub

The derivation of shrub fuel loading used two LF products in

addition to EVT as input: existing vegetation height (EVH)

and existing vegetation cover (EVC). The height estimates at

each pixel in the EVH product are thematic classes represent-

ing a range of potential heights (Table C1). The range of po-

tential heights provided by the EVH enables three values of

shrub fuels to be estimated at each pixel (median, maximum,

and minimum). EVC represents the vertically projected per-

cent cover of the live canopy.

Generation of shrub fuel loading data involves several

steps (Fig. 7) which are briefly described here. Details of the

approach are illustrated in Appendix C. First, crown dimen-

sions are derived from EVH and the projected crown area on

a horizontal surface (PCH), the latter of which is estimated

using Eq. (3) (Frandsen, 1983):

log10(PCH) = −0.8471 + 2.2953log10(HT), (3)

where PCH is in cm2 and HT is the estimated height class of

shrubs in centimeters at each pixel (from the EVH product).

Crown dimensions are then used in one of 31 species-specific

equations from the RVS allometric library to estimate per

stem biomass (PSB; kg stem−1). Next, the estimate of stem

density (SD) at each pixel (stem ha−1) is used to expand PSB
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Figure 8. Relationship between annual production and annual max-

imum Normalized Difference Vegetation Index (NDVI) on 51 grass-

land vegetation types.

to a per area basis. SD is estimated as

SD = (PCH/108) × EVC, (4)

where SD is stem density, and the value 108 cm2 converts

to a per hectare basis. In effect, the number of times PCH

can be divided into a hectare is scaled by the canopy cover

(EVC). The total shrub biomass (TSB; kg ha−1) is the prod-

uct of PSB and SD. This four-step process was conducted at

each pixel using the minimum, maximum, and median shrub

heights from EVH (Table C1) to provide lower, upper, and

middle estimates of fuel loading, respectively.

Herb

The derivation of herb fuel loading used the EVT and

MODIS growing season maximum Normalized Difference

Vegetation Index (NDVI) and the Soil Survey Geographic

(SSURGO) annual productivity map, which consists of

polygons with estimates of rangeland productivity (dry

weight/area/year) for normal, favorable, and unfavorable

production years (Soil Survey Staff, 2016). The SSURGO

productivity data were derived from the USDA National Re-

source Conservation Service soil survey geographic database

(Soil Survey Staff, 2016). Herbaceous biomass is estimated

as a function of the annual maximum NDVI across 51 grass-

land vegetation types. The three SSURGO production values

reported at each soil polygon were paired with the average,

minimum, and maximum NDVI values (from 2000 to 2016)

for each of the 51 vegetation types dominated by herba-

ceous species (Fig. 8). When this relationship is applied for

each year in the time series between 2000 and 2016, an an-

nual estimate of rangeland production can be made at every

pixel. The present year’s herbaceous production (from 2000

to 2016) is added to estimated standing dead herbaceous veg-

etation (“holdover”) resulting from previous growth (see be-

low). Annual production added to the holdover from previous

years creates the “herbaceous loading” (HL; Fig. 7) pool.

Estimating the previous year’s standing dead or herba-

ceous litter material is based upon experimental (Irisarri

et al., 2016) and anecdotal observations. This topic is not

widely studied across multiple ecosystems and it is difficult

and time consuming to derive experiments that track the fate

of herbaceous growth, senescence and decomposition across

multiple vegetation types. The paucity of suitable plot data

for estimating the amount of standing dead material is there-

fore based on observations of various vegetation stands with

significant herbaceous components throughout the western

US. In addition, the USDA Agricultural Research Service

(ARS) recently provided results from 10 years of grassland

observations on shortgrass steppe near Cheyenne, Wyoming,

and standing dead values averaged 22 % across treatments.

This means that, on average, in shortgrass steppe, standing

crop of the present year includes 22 % of the previous year’s

production plus the present annual production. The function

used in the RVS to estimate the standing dead material is

y = 100e−1.495x , which yields values of 22 % at year 1 and

5 % at year 2.

To capture the range of variability of the herbaceous re-

sponse, the coefficient of variation (C.V. is the mean divided

by the standard deviation of the annual production between

2000 and 2016) was applied at each pixel dominated by

herbaceous life forms. This yields three potential values of

herbaceous loading at each pixel (mean, mean ± C.V.). Like-

wise, the range of standing dead values over 2000–2016 was

estimated using the mean ± C.V. At this stage, HL and to-

tal shrub biomass loading (TSB) have been produced and

are mosaicked together to form a seamless depiction of fu-

els and are available for simulation of fuel consumption and

emissions. Raster files of the herbaceous C.V. and the shrub

minimum and maximum are included in the MFLEI dataset.

2.4.3 Total fuel loading

Best-estimate total fuel loading of both forests and rangeland

are mapped in Fig. 9. Forest fuel loadings range from 1.3 to

13.3 kg m−2 (Table 4, Fig. 5). Fuel loadings are considerably

less for rangeland, varying from ∼ 0.1 to 5.2 kg m−2, with a

median value of 1.8 kg m−2. Regions without a mapped fuel

loading are classified as non-fuel and are largely agriculture,

barren, developed lands, or water.

2.5 Fuel conditions

Fuel moisture content is a key driver of fuel consumption,

especially for coarse woody debris and duff. The National

Fire Danger Rating System (NFDRS; Cohen and Deeming,

1985) provides fuel moisture models that classify dead fuels

by time lag intervals which are proportional to the fuel parti-

cle diameter. The NFDRS classifications for dead fuel mois-

ture are 1, 10, 100, and 1000 h corresponding to diameters
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Figure 9. Map of best-estimate fuel loading for forest and rangeland in g m−2.

Table 5. Fuel moisture regimes used for simulating fuel consump-

tion.

NFDRS station data Moisture content used in

moisture content range fuel consumption simulations

Regime 1000 h 1000 h duff

(%) (%) (%)

Very dry <= 10 10 20

Dry > 10 and <= 25 20 40

Moderate > 25 and <= 35 30 60

Moist > 35 40 80

of < 0.64, 0.64–2.54, 2.54–7.62, and > 7.62 cm. The algo-

rithms used to simulate surface fuel consumption require fuel

moisture content for 1000 h time lag fuels and duff. Surface

fuel consumption was simulated for the four fuel moisture

regimes shown in Table 5. In the emission modeling, MFLEI

grid cells were assigned the 1000 h time lag or 100 h time lag

fuel moisture content of the nearest NFDRS station for the

day of concern. The 1000 h fuel moisture content is consid-

ered a proxy for coarse woody debris (see Table 3). Data for

NFDRS stations were obtained from the USFS Wildland Fire

Assessment System (WFAS) (USDA Forest Service, 2015)

data archive. Missing values were filled by linear interpola-

tion across days. Duff moisture content was estimated using

the 100 h fuel moisture content and empirical relationships

of Harrington (1982).

2.6 Fuel consumption

Best estimates and ranges of consumption (i.e., combustion

completeness) for forest surface and understory fuels for

the four moisture regimes used in the emission inventory

are shown in Table 6. The best-estimate values are based

on simulations using algorithms from the fire effects mod-

els CONSUME (Prichard et al., 2006) and FOFEM (Lutes,

2016a). The ranges, which were used to estimate uncertainty

in the fuel consumption simulations, were assigned as 10 %–

20 %. The best estimate and range for the fraction of for-

est canopy fuel consumed was based on each pixel’s burn

severity classification (Table 7), which was assigned as de-

scribed in Sect. 2.3.3. Fuel consumption for shrub and herba-

ceous grid cells used the natural fuel equations from CON-

SUME (Prichard et al., 2006). The rangeland fuel consump-

tion equations used do not include fuel moisture content and

therefore were independent of the moisture regime.

2.7 Emission factors

The composition and intensity of emissions produced by

biomass burning varies with the relative mix of flaming

and smoldering combustion. Modified combustion efficiency

(MCE), the molar ratio of emitted CO2 to the sum of emitted

CO2 and CO (MCE = 1CO2/(1CO2 + 1CO)), is a widely

used measure of the relative mix of flaming and smolder-

ing combustion. Because the EFs of many species are corre-

lated with MCE, it is a useful metric for extrapolating emis-

sion factors from one set of combustion conditions to another
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Table 6. Best estimates and ranges of the combustion completeness by fuel component according to moisture regime and forest type group.

Best estimates are based on cited references. Low and high ranges are assigned as approximately ±20 %.

Moisture regime

Very dry Dry Moderate Moist

Fuel component1 Best Best Best Best Reference

estimate Low High estimate Low High estimate Low High estimate Low High

Western and northern forest type groups (all forests except fuel codes 1140, 1160, 1400, 1500, and 1600)

Shrub 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 a

Herb 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 b

HR1 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90 1.00 c

HR10 0.86 0.72 1.00 0.86 0.72 1.00 0.86 0.72 1.00 0.86 0.72 1.00 c

HR100 0.78 0.62 0.94 0.78 0.62 0.94 0.78 0.62 0.94 0.78 0.62 0.94 c

Litter 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 d

Duff 0.75 0.60 0.90 0.67 0.54 0.80 0.58 0.46 0.70 0.50 0.40 0.60 e

s3to9 0.93 0.86 1.00 0.88 0.76 1.00 0.81 0.65 0.97 0.71 0.56 0.85 c

s9to20 0.60 0.48 0.72 0.50 0.40 0.60 0.41 0.33 0.49 0.32 0.25 0.38 c

sgt20 0.50 0.40 0.60 0.41 0.32 0.49 0.32 0.25 0.38 0.24 0.19 0.29 c

r3to9 0.96 0.92 1.00 0.88 0.76 1.00 0.70 0.56 0.84 0.43 0.34 0.52 c

r9to20 0.78 0.62 0.94 0.59 0.47 0.71 0.38 0.30 0.46 0.20 0.16 0.24 c

rgt20 0.57 0.46 0.68 0.43 0.34 0.52 0.31 0.25 0.37 0.21 0.17 0.25 c

Southern forest type groups (fuel codes 1140, 1160, 1400, 1500, and 1600)

Shrub 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 a

Herb 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 b

HR1 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90 1.00 0.95 0.90 1.00 f

HR10 0.86 0.72 1.00 0.86 0.72 1.00 0.86 0.72 1.00 0.86 0.72 1.00 f

HR100 0.40 0.32 0.48 0.40 0.32 0.48 0.40 0.32 0.48 0.40 0.32 0.48 f

Litter 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 d

Duff 0.15 0.12 0.18 0.10 0.08 0.12 0.05 0.00 0.10 0.05 0.00 0.10 g

s3to9 0.33 0.26 0.40 0.18 0.14 0.22 0.10 0.08 0.12 0.05 0.04 0.06 f

s9to20 0.33 0.26 0.40 0.18 0.14 0.22 0.10 0.08 0.12 0.05 0.04 0.06 f

sgt20 0.33 0.26 0.40 0.18 0.14 0.22 0.10 0.08 0.12 0.05 0.04 0.06 f

r3to9 0.41 0.33 0.49 0.27 0.22 0.32 0.11 0.09 0.13 0.05 0.04 0.06 f

r9to20 0.41 0.33 0.49 0.27 0.22 0.32 0.11 0.09 0.13 0.05 0.04 0.06 f

rgt20 0.41 0.33 0.49 0.27 0.22 0.32 0.11 0.09 0.13 0.05 0.04 0.06 f

Rangeland

Herb 0.93 0.86 1.00 0.93 0.86 1.00 0.93 0.86 1.00 0.93 0.86 1.00 b

Shrub 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 0.90 0.80 1.00 a

1 See Table 3 for description.

References: (a) CONSUME natural fuel algorithm shrub stratum, adjusted to 0.90 (Prichard et al., 2006); (b) CONSUME natural fuel algorithm non-woody stratum, adjusted to 0.90

(Prichard et al., 2006); (c) CONSUME natural fuel algorithm – western woody equations (Prichard et al., 2006); (d) FOFEM default reduced to 0.90 (Lutes, 2016a); (e) Eq. (10) of Brown

et al. (1985); (f) CONSUME natural fuel algorithm – southern woody equations (Prichard et al., 2006); (g) Hough (1978); (h) CONSUME natural fuel algorithm non-woody stratum

(Prichard et al., 2006).

(Urbanski, 2014; Akagi et al., 2011). The MCE observed for

wildland fires varies significantly across fire types; for exam-

ple, average MCE values are around 0.94 and 0.93 for range-

land and southeastern forest fires, respectively, but ∼ 0.88

for wildfires in western forests (Urbanski, 2014). This differ-

ence in fire properties was accounted for in the emission in-

ventory by using three sets of EFs (southern forests, western

and northern forests, and rangeland). Data from several field

studies (Table S4) were used to model EF as a linear function

of MCE for forest and rangeland fires (Table 8). The linear

functions were combined with best-estimate MCE values to

derive the EF used in the inventory (Table 9). Since the fo-

cus of MFLEI is wildfires, the best-estimate MCE used for

western and northern forests is based on western wildfires.

Sufficient field measurement data of MCE and EF for south-

ern wildfires could not be found in the literature. Therefore,

the EFs used for southern forest fires are based on the large

body of prescribed fire studies in the literature. The linear

functions and their standard errors in Table 8 were combined

with MCE values, sampled from a normal distribution to ac-

count for within-fuel-group uncertainty (Table 9), to provide

an estimate of the uncertainty in the EF which was used in

the emission modeling uncertainty analysis (Sect. 2.9).
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Table 7. Fraction of forest canopy consumed according to burn

severity classification (after Miller and Yool, 2002).

Fraction of

canopy consumed

Burn severity Burn severity Best Lower Upper

code thematic class estimate range range

1 Unburned to 0 0 0

low severity

2 Low severity 0.125 0.05 0.20

3 Moderate severity 0.60 0.50 0.70

4 High severity 1 1 1

Table 8. Statistics for the linear regression of EF as a function of

MCE for field data from 78 forest fires and 20 rangeland fires (Ta-

ble S4 and Figs. S1 and S2).

Standard

Intercept Slope R2 error

Forest

EFCO2 −476 2304 0.87 23

EFCO 1088 −1084 0.99 2.5

EFCH4 96.2 −100.7 0.79 1.4

FPM2.5 209.0 −211.3 0.53 4.9

Rangeland

EFCO2 −673 2505 0.89 17

EFCO 1105 −1103 1.00 1

EFCH4 62.9 −64.2 0.79 0.6

EFPM2.5 76 −70.1 0.07 4.8

2.8 Emission estimates

The best estimates of fuel loading for the 14 fuel com-

ponents (Fk,j , Table 3) were assigned to forest pixels us-

ing the mapped forest type group and associated fuel code

(Sect. 2.2) and the FTG fuel classification system (Table 4).

The fuel code, fuel moisture regime, and burn severity clas-

sification were used to designate combustion completeness

by fuel component for each pixel (Ck,j ) using the best es-

timates from Tables 6 and 7. Fuel loading for herbaceous

and shrub pixels (Fk,j ) was taken from the rangeland fuels

map (Sect. 2.4.2). Herbs and shrubs were treated as single-

component fuels with a combustion completeness that is in-

dependent of fuel moisture regime and burn severity classi-

fication. EFk,i were selected from Table 9 based on the fuel

type, and then the best-estimate emission intensities for CO2,

CO, CH4, and PM2.5 were calculated using Eq. (1).

2.9 Uncertainty estimates

A Monte Carlo style analysis following the general approach

outlined in the IPCC Guidelines for National Greenhouse

Gas Inventories (Eggleston et al., 2006) was used to estimate

the uncertainty in emission intensities (kg m−2) at the pixel

level. The method involved randomly selecting a sample of

N input values (Xi , Xi+1, . . . , XN ) for the emission model

(Eq. 1) and calculating emission intensities (Ei , Ei+1, . . . ,

EN ), where Xi is the array of input values needed for a single

emission calculation: fuel loading by component (Table 3),

combustion completeness (Tables 6 and 7), and EF (EFCO2,

EFCO, EFCH4, EFPM2.5), and Ei is the array of emission

intensities for CO2, CO, CH4, and PM2.5. The samples of in-

put variables were generated based on each pixel’s fuel code

using the methods summarized in Table 10 and described

in more detail below. The value of N was 500 for range-

land pixels. For forest pixels, N was taken as the greatest of

500 or Nplots, where Nplots is the number of plots in the FIA

dataset for a given pixel’s forest fuel code (Table 4). Next,

quantiles (q = 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95) of the

emissions (Eq,b) were calculated and saved. The process was

repeated B times, yielding Eq,1, . . . , Eq,B , and mean val-

ues

(

B
∑

1

Eq/B

)

were calculated to provide uncertainty esti-

mates of the emissions. Convergence of the distributions was

achieved with B = 2000.

Forest surface fuels were generated by us-

ing fuel loading arrays sampled from the FIA

plot data (included in the MFLEI dataset:

file\Supplements\Fuel_Load_Plot_Data.csv; see Sect. 4);

i.e., each element i used surface fuel components from a

single FIA plot. This approach was chosen to preserve any

correlations among surface fuel components. Uncertainty

in the assigned moisture regime and burn severity classi-

fication, which are used to determine surface and canopy

fuel consumption, respectively, were not considered in this

analysis. Therefore, uncertainty analysis produced 464 sets

of quantiles for forest pixels (29 forest fuel codes, four

moisture regimes, and four burn severity classifications).

Burned forest pixels were assigned sets of quantiles based

on forest fuel code, moisture regime, and burn severity

classification.

The variability in pixel-level shrub fuel loading was simu-

lated using means and standard deviations based on the maps

of the mean, minimum, and maximum loading (Sect. 2.4.2),

with the standard deviation in loading estimated as half the

range in maximum and minimum loading at each pixel. To

reduce computational demands, shrub pixels were aggre-

gated into bins of mean loading in 50 g m−2 increments (50

to 5500 g m−2). For each 50 g m−2 increment in mean load-

ing, simulations were conducted using 25 increments of stan-

dard deviation, each corresponding to 10 percentage points

of the mean loading value (10 % to 250 %), resulting in

2750 fuel loading elements (pairs of µ and σ ). Similarly,

pixel-level variability in herbaceous fuel loading was sim-

ulated based on pixel-specific mean and standard deviation

from the maps of the mean and the coefficient of variation

(C.V. = σ/µ) of loading (Sect. 2.4.2). As with the shrub fuel
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Table 9. Best-estimate MCE and EF (g kg−1) for generalized fire types from multiple field studies. The standard deviation for MCE is

provided in parentheses. EFs are based on the linear fits in Table 8 at the fire type average MCE value. The MCE values are from Urban-

ski (2014).

General fuel type MCE EFCO2 EFCO EFCH4 EFPM2.5

Southern forests1 0.933 (0.013) 1674 77 2.5 11.9

Western and northern forests2 0.881 (0.031) 1554 133 7.5 22.8

Rangeland3 0.938 (0.020) 1677 70 2.7 10.2

1 Fuel codes 1140, 1160, 1400, 1500, and 1600. 2 All forest fuel codes except 1140, 1160, 1400, 1500, and 1600. 3 Fuel

codes 1 and 2.

Table 10. Sample generation methods employed in Monte Carlo style simulation of emission intensity uncertainty.

Fuel component Sample generation Details

Surface fuel loading Sampling of surface fuel Supplemental dataset (Fuel_Load_Plot_Data.csv)

data from FIA plots

Understory fuel loading Empirical distribution Supplemental dataset (Understory_Fuel_Dist.csv)

Available canopy fuel Weibull distribution Table B4

Herbaceous fuel loading Normal distribution See text

Shrub fuel loading Normal distribution See text

Fraction of fuel consumed Uniform distribution Tables 6 and 7

Emission factors Normal or truncated Tables 8 and 9; see text

Normal distribution

loading, the herbaceous pixels were aggregated to reduce

computational demands. Herbaceous pixels were grouped

according to mean loading by 25 g m−2 increments (25 to

500 g m−2). For each 25 g m−2 increment in mean loading,

simulations were conducted using 22 increments of standard

deviation corresponding five percentage points of the mean

loading value (from 5 % to 110 %), providing 440 fuel load-

ing elements (pairs of µ and σ ). Using the general approach

described in the first paragraph of this section, a set of emis-

sion quantiles was produced for each of the 2750 shrub and

440 herbaceous fuel elements, with fuel loading simulated

using a truncated normal distribution with the elements µ and

σ , and the combustion completeness and EF using probabil-

ity distributions described in Table 10. Since rangeland fuel

consumption was estimated independent of moisture regime

and burn severity classification, these variables were not con-

sidered in the uncertainty analysis. Each burned rangeland

pixel was assigned a set of emission quantiles from the sim-

ulations based on its cover type (herb or shrub), fuel loading,

and fuel load uncertainty.

The spatial and temporal resolutions required of fire emis-

sion inventory systems depend on the specific applications

for which they are being used. For regulatory related air

quality modeling, the EPA recommends a horizontal grid

resolution of ≤ 12 km for O3 and PM2.5 NAAQS (USEPA,

2007). Therefore, the uncertainty estimation approach de-

scribed above was applied aggregating burned pixels to a

10 km × 10 km grid. The resultant dataset at 1 day and 10 km

spatial resolution provides a more relevant representation of

the uncertainties of the emissions when used in typical air

quality applications. The approach followed that outlined

above, except that the emission intensities for each sample,

Ei , were the sum of emission intensities for all pixels within

each 10 km × 10 km grid cell on a given day. Only grid cell

days with greater than four burned pixels were considered for

this uncertainty analysis; this excluded 9 % of burned area

over the 2003–2015 period.

3 Results

3.1 Annual, seasonal, and monthly

The MFLEI annual burned area, fuel consumed, and PM2.5

emitted for 2003–2015 are shown in Fig. 10. The average

area burned was 22 891 km2 yr−1; forests accounted for 44 %

of burned area, with the balance split between herb (29 %)

and shrub (27 %) cover types. The maximum annual burned

area was 40 714 km2 in 2011 which was > 5 times the min-

imum of 7688 km2 in 2004. The fuel consumed averaged

41.4 Tg yr−1, with extremes of 16.6 Tg in 2004 and 61.2 Tg

in 2012. The annual rank in fuel consumed differed from

burned area due to the far greater fuel loading of forests

(Sect. 2.4.3). While forests comprised only 44 % of burned

area over the period, they accounted for 87 % of fuel con-

sumed. Average PM2.5 emissions were 733 Gg yr−1 and, as

with fuel consumed, 2004 and 2012 were the extreme years

at 270 and 1216 Gg, respectively. There are slight differences

in the ranking of annual fuel consumption and PM2.5 emitted
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Figure 10. Annual burned area, fuel consumed, and PM2.5 emitted

for 2003–2015.

resulting from the different EFPM2.5 used for southern and

western/northern forests (Table 9). Maps of annual burned

area, fuel consumed, and PM2.5 emitted averaged over 2003–

2015 are shown in Fig. 11. In the eastern two-thirds of the

domain, fire activity and emissions are spread broadly across

the southern tier, while being comparatively sparse in the

north. In the west (western 11 states), fire activity has no

latitudinal split, but there are large pockets where emissions

are limited or absent. Many of the areas in the west without

emissions are in desert regions of the southwest with sparse

vegetation.

The monthly distributions of burned area, fuel consump-

tion, and PM2.5 emitted over 2003–2015, broken down by

Figure 11. Annual burned area, fuel consumed, and PM2.5 emitted

averaged over 2003–2015.

cover type, are plotted in Fig. 12. Burned area has a bimodal

distribution with peaks in April and August. Summer (June,

July, August) and spring (March, April, May) accounted for

49 % and 31 % of burned area, respectively. The ratio of herb

and shrub to forest burned area was similar for summer (1.3)

and spring (1.5) but differed considerably between the peak

months of April (2.7) and August (1.0). August was the most

significant month for emissions, accounting for 32 % PM2.5

emitted, more than twice the share of the next highest month,

which was July at 15 %. While April had the third high-

est burned area (15 % of total), it accounted for only 6.7 %

of PM2.5 emitted. The geographic distribution of emissions

varies considerably by season, as may be seen in Fig. 13.

Understanding the spatiotemporal distribution of emis-

sions is aided by aggregating the emissions according to six

regions in Fig. 14. Roughly 8 % of fuel consumption and 6 %
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Figure 12. Monthly distributions of burned area, fuel consumption,

and PM2.5 emitted over 2003–2015, broken down by cover type.

of PM2.5 emissions occurred in the winter months (Fig. 12)

and were largely limited to the southeast and south-central

regions (Fig. 13). Winter PM2.5 emissions comprised 25 %

and 16 % of total PM2.5 emissions in the southeast and south-

central regions, respectively (Fig. 15). In the southeast, 74 %

of winter emissions resulted from fire activity in Florida and

along the Gulf Coast. The majority of southeast (52 %) and

south-central (62 %) emissions occurred in the spring. Fires

in the Flint Hills region of eastern Kansas and northeast Ok-

lahoma accounted for 44 % of south-central spring emissions

over the 13-year period. Summer was the most significant

season for fuel consumption and emissions due to fire ac-

tivity in the west (Fig. 13). The majority of CONUS-wide

fuel consumption (51 %) and PM2.5 emissions (59 %) oc-

curred during the summer. On a regional basis, southwest

emissions peaked during June (46 %) and during August

in both the northwest (59 %) and California (40 %). North-

west emissions were concentrated in July–September (95 %),

while California emissions were spread symmetrically across

June–October (Fig. 15).

3.2 Daily

While regional-level summaries on a seasonal or monthly ba-

sis are useful for understanding the general spatiotemporal

distribution of wildfire emissions, daily emissions are more

relevant for appreciating the potential air quality impacts of

fires. For instance, US NAAQS includes a 24 h standard for

PM2.5 and an 8 h standard for O3 (the latter of which can be

produced through photochemical processing of volatile or-

ganic compounds (VOCs) and NOx present in smoke plumes

(Jaffe and Wigder, 2012). Wildfires are highly episodic and

even though they may persist for weeks, a significant share of

a wildfire’s emissions generally occur on a handful of days.

For example, consider the typical large (> 2000 ha) wildfire

in the west: our inventory indicates more than half of its to-

tal PM2.5 emissions occur on a single day. In the west, 1171

fires > 2000 ha in size accounted for ∼ 85 % of burned area

and PM2.5 emission from 2003 to 2015. To characterize wild-

fire temporal intensity, emissions of PM2.5 were summed by

region for each of the 4748 days of the inventory. Figure 16

plots the fraction of regional 2003–2015 PM2.5 emissions re-

leased on peak emission days for the top first, second, and

fifth quantiles of days. Since the north accounted for only

3 % of total wildfire emissions, it has been excluded from

this analysis to simplify the discussion. Figure 16 shows that

a small fraction of days (5 %) are responsible for the ma-

jority of wildfire PM2.5 emissions in all regions except the

southeast regions. In fact, the percent of PM2.5 emissions

during just the top 1 % of days was > 33 % in California and

the northwest, > 25 % in the south-central and southwest,

and ∼ 13 % in the southeast. The spatiotemporal concentra-

tion of emissions is further illustrated in Fig. 17, which plots

the cumulative distribution of daily PM2.5 emissions aggre-

gated on a 10 km × 10 km grid. A total of 5 % of the grid

cell days produced 69 % of total PM2.5 emitted, and 10 % of

grid cell days were responsible for 82 % of total PM2.5 emit-

ted. This analysis highlights the importance of quantifying

wildfire emissions on a daily time step when assessing the

potential impacts of wildfires on regional air pollution; as-

sessments based on emissions aggregated seasonal, monthly,

or even weekly time steps may significantly understate the

likelihood of acute pollution episodes.

3.3 Comparison with non-fire emission sources

Next, we compare our wildfire PM2.5 emissions with those

from other sources as estimated in the EPA 2014 National

Emission Inventory (NEI14; USEPA, 2014). We focus on the

west (the 11 states of the northwest, southwest, and Califor-

nia regions; Fig. 14a) since this region accounts for 72 % of

total wildfire PM2.5 emissions (Fig. 14b), and the emissions
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Figure 13. Seasonal PM2.5 emitted average over 2003–2015.

Figure 14. (a) Geographic regions. (b) Burned area, fuel consump-

tion, and PM2.5 emitted by region.

are produced with a high temporal intensity (Figs. 15 and 16)

and have resulted in severe air pollution episodes (Fann et

al., 2018; Kochi et al., 2012; Rappold et al., 2014). Non-

fire PM2.5 emission estimates for the western states were

extracted from the NEI14 Tier 3 summary state-level data

(USEPA, 2018c). The NEI14 PM2.5 emissions were lim-

ited to non-fire sources by excluding the Tier 3 source cat-

egories of “agricultural fires”, “forest wildfires”, and “pre-

scribed burning”. The NEI14 provides annual emission es-

timates for 2014, which are plotted with the annual sum

of MFLEI PM2.5 emissions for the west for 2003–2015

in Fig. 18. The 2003–2015 annual average western wild-

fire PM2.5 emitted is 525 Gg yr−1 (range 126–1034 Gg yr−1)

compared with the non-fire source strength of 657 Gg yr−1 in

2014. As discussed above, when inferring possible air qual-

ity impacts of wildfire emissions, 1 day is an appropriate

timescale. Assuming the NEI14 emissions are a reasonable

proxy for annual non-fire emissions across 2003–2015, and

neglecting the seasonal variability of emissions, daily non-

fire PM2.5 emissions are 1.80 Gg d−1. For all 4748 days of

the MFLEI period, we calculated the wildfire-to-non-wildfire

PM2.5 emission ratio; the number of days the ratio exceeds

certain thresholds is shown in Fig. 19. Across the west, wild-

fire emissions greatly exceed non-fire sources on active fire

days. On ∼ 10 % of days, wildfire emissions are more than
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Figure 15. Monthly PM2.5 emitted averaged over 2003–2015.

Figure 16. Fraction of regional 2003-2015 PM2.5 emissions re-

leased on peak days.

Figure 17. Cumulative distribution of daily PM2.5 emissions ag-

gregated on a 10 km × 10 km grid. The dashed line and dashed–

dotted line mark 5 % and 10 % of grid cell days with emissions.
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Figure 18. Annual PM2.5 emitted in the west.

Figure 19. Number of days over 2003–2015 when the wildfire-to-

non-wildfire PM2.5 emission ratio in the west exceeds thresholds of

2, 5, 10, 15, and 20.

twice non-fire sources, and on 60 days, they were > 10 times

non-fire sources.

3.4 Uncertainty

The MFLEI pixel-level best estimates of fuel consumption

(FC) and emissions (ECO2, ECO, ECH4, EPM2.5) were

derived as described in Sect. 2.8, and the uncertainties in

these estimates were characterized with quantiles (q = 0.05,

0.10, 0.25, 0.50, 0.75, 0.90, 0.95) derived from Monte Carlo

style simulations (Sect. 2.9). Here, we summarize the pixel-

level uncertainty in terms of the relative interquartile range:

RIQR = (q75 − q25)/X, where q75 and q25 are the 75 % and

25 % quantiles, and X is the best estimate of FC or EPM2.5;

the distributions are shown in Fig. 20. The mean RIQRs of

both FC and EPM2.5 are ∼ 67 % for forest cover type and

∼ 47 % for herb/shrub. At the pixel level, the uncertainty

is driven by the variability in fuel loading. The difference

Figure 20. Distribution of relative interquartile range from pixel-

level Monte Carlo style simulations.

in the uncertainty estimates between forest and herb/shrub

cover types results primarily from the high variability in for-

est fuel loading (Fig. 4). The mean RIQRs are nearly 50 %

higher for forest compared with herb/shrub; however, the lat-

ter does have a long positive tail with ∼ 11 % of pixels having

RIQR > 90 %. These high-uncertainty non-forest pixels are

shrub vegetation with low fuel consumption (< 350 g m−2).

As discussed in Sect. 3.2, CONUS wildfire emissions are

temporally and spatially concentrated. Considering this spa-

tiotemporal concentration of emissions and the grid spacing

typical of regional- and national-scale air quality modeling

(4–12 km; USEPA, 2007; NOAA, 2018), we also estimated

the uncertainty in daily MFLEI emissions aggregated on a

10 km × 10 km grid (Sect. 2.9). For purposes of air qual-

ity modeling and air regulatory activities, the uncertainty of

these spatially aggregated emissions provides a more relevant

metric than the pixel-level uncertainty presented above. Un-

certainties in the daily aggregated FC and PM2.5 emissions

are shown in Fig. 21a–b, expressed in terms of the RIQR

(calculated using the quantiles and best estimates for the spa-

tially aggregated data). Compared with the pixel-level data,

the RIQR is reduced for the aggregated emissions and a dif-

ference emerges between FC and EPM2.5; the mean RIQR is

17 % for FC and 26 % for EPM2.5. For the aggregated data,

we also show, in Fig. 21c–d, the distribution of relative inter-

decile range, RIDR = (q90 − q10)/X, where q10 and q90 are

the 10 % and 90 % quantiles (Monte Carlo style simulations;

Sect. 2.9), and X is the best estimate for FC or EPM2.5. The

mean RIDR is 32 % for FC and 50 % for EPM2.5.
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Table 11. Statistics for comparison of annual fuel consumption by region between MFLEI and FINN v1.5, GFED v4.1s, and WFEIS v0.5.

Regions are as defined in Fig. 14a.

Region

CONUS NW CA SW NO SC SE

MFLEI versus FINN v1.5 (2003–2015)

Mean RDa −17 % 6 % 50 % 103 % −35 % −65 % −75 %

Min RD −71 % −94 % −25 % 61 % −103 % −131 % −135 %

Max RD 41 % 81 % 115 % 131 % 68 % 21 % −31 %

rb 0.62 0.90 0.87 0.92 0.57 0.24 0.70

MFLEI versus GFED 4.1s (2003–2015)

Mean RD 29 % 14 % 3 % 75 % 16 % 35 % 43 %

Min RD 0 % −4 % −27 % 41 % −83 % −45 % −1 %

Max RD 60 % 40 % 52 % 105 % 90 % 91 % 76 %

r 0.90 0.97 0.96 0.97 0.62 0.79 0.76

MFLEI versus WFEIS v0.5 (2003–2013)

Mean RD −2 % 30 % −26 % 130 % −99 % −51 % 40 %

Min RD −41 % −110 % −177 % 35 % −161 % −175 % −104 %

Max RD 56 % 137 % 112 % 196 % −17 % 121 % 181 %

r 0.95 0.43 −0.20 0.88 0.20 −0.34 0.06

a RD = 100 × X(t)MFLEI−Y (t)i
0.5×

(

X(t)MFLEI+Y (t)i
) ; X(t)MFLEI = MFLEI fuel consumed in year = t ; Y (t)i = i fuel consumed in

year = t , where i is FINN, GFED, or WFEIS. b r is the correlation coefficient.

Figure 21. Distribution of relative interquartile range (a, b) and

relative interdecile range (c, d) from 10 km × 10 km gridded Monte

Carlo style simulations.

3.5 Prescribed fires

While the focus of MFLEI is wildfires, it does include an

unquantified contribution from prescribed fires (fires inten-

tionally ignited to achieve land management objectives). The

MTBS product does contain large (> 404 ha the west and >

202 ha elsewhere) prescribed fires; over 2003–2015, ∼ 13 %

of the MTBS burned area was due to fires classified as pre-

scribed or unknown. Additionally, the MODIS burned area

product (Giglio et al., 2015) used to supplement MTBS does

not distinguish between wildfires and prescribed fires and

likely includes some prescribed fire burned area. Informa-

tion on prescribed fires by federal and state agencies indi-

cates an average fire size of ∼ 60 ha (NIFC, 2018). Consid-

ering the large fire focus of MTBS and the fact that pre-

scribed fires are often low-intensity understory burns, which

are difficult to detect by satellite (Hawbaker et al., 2008),

we believe prescribed fires account for a small share of to-

tal MFLEI emissions. Unfortunately, there is no nationwide

database that inventories prescribed fire on federal, state, and

private lands. The 2015 National Prescribed Fire Use Survey

Report (Melvin, 2016), based on a 2014 comprehensive sur-

vey conducted by state forestry agencies, summarizes pre-

scribed fire activity at national and regional levels. Melvin

reported CONUS prescribed fire burned area as 35 222 km2

in 2014. For the same year, the MTBS prescribed fire burned

area was 11 954 km2 (prior to reduction for unburned to low

burn severity patches as described Sect. 2.3.3), suggesting
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Figure 22. Annual fuel consumption from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for (a) northwest, California, and southwest

regions and (b) north, south-central, and southeast regions.

MFLEI may be missing up to two-thirds of CONUS pre-

scribed fire burned area. The regional summary in Melvin re-

ports prescribed fire burned area of 25 049 km2 in their south-

east region (the southeast and south-central regions used in

our study, excluding Kansas and Missouri). The 2014 MTBS

data report only 4651 km2 of prescribed fire burned area for

the same region, indicating most of MFLEI underrepresen-

tation in prescribed fire emissions occurs in these southern

states.

3.6 Comparison with other emission inventories

Next, we compare the estimated fuel consumption and PM2.5

emissions of MFLEI with three fire emission inventories:

GFED v4.1s (GFED, 2018), FINN v1.5 (NCAR, 2018), and

WFEIS v0.5 (MTRI, 2018). In this comparison, we have

excluded fuel consumption and PM2.5 emissions associated

with agricultural burning from all three inventories. Regional

annual fuel consumption from the four inventories is plot-

ted in Fig. 22. Statistics comparing MFLEI regional annual

fuel consumption versus the other inventories are given in

Table 11. There is significant variability in the agreement

between MFLEI and the other inventories. Across the west

(NW, CA, SW), MFLEI annual fuel consumption is well cor-

related with both FINN and GFED (Table 11). MFLEI fuel

consumption exceeds the mean of FINN, GFED, and WFEIS

in nearly all years and is generally the highest in north-

west and southwest regions (Fig. 22a). In the east regions
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Table 12. Statistics for comparison of annual PM2.5 emitted consumption by region between MFLEI and FINN v1.5, GFED v4.1s, and

WFEIS v0.5. Regions are as defined in Fig. 14a.

Region

CONUS NW CA SW NO SC SE

MFLEI versus FINN v1.5 (2003–2015)

Mean RDa 98 % 56 % 85 % 136 % 24 % −55 % −70 %

Min RD −70 % −43 % 15 % −55 % −44 % −123 % −136 %

Max RD 86 % 123 % 147 % 157 % 125 % 35 % −27 %

rb 0.61 0.90 0.88 0.94 0.52 0.20 0.71

MFLEI versus GFED 4.1s (2003–2015)

Mean RD 76 % 76 % 61 % 137 % 71 % 59 % 60 %

Min RD 50 % 58 % 29 % 104 % −24 % −29 % 18 %

Max RD 99 % 98 % 106 % 158 % 136 % 119 % 94 %

r 0.94 0.97 0.98 0.97 0.65 0.70 0.73

MFLEI versus WFEIS v0.5 (2003–2013)

Mean RD 49 % 98 % 96 % 151 % 66 % 103 % 82 %

Min RD 19 % −59 % −154 % 63 % −118 % −174 % −86 %

Max RD 104 % 167 % 161 % 198 % 59 % 122 % 183 %

r 0.98 0.42 -0.15 0.90 0.23 −0.33 0.11

a RD = 100 × X(t)MFLEI−Y (t)i
0.5×

(

X(t)MFLEI+Y (t)i
) ; X(t)MFLEI = MFLEI PM2.5 emitted in year = t ; Y (t)i = i PM2.5 emitted in

year = t , where i is FINN, GFED, or WFEIS. b r is the correlation coefficient.

(SC, SE, NO), MFLEI fuel consumption fluctuates about the

FINN/GFED/WFEIS mean value (Fig. 22b). In terms of vari-

ability and mean absolute relative difference, MFLEI agrees

best with GFED.

Regional annual PM2.5 emissions are shown in Fig. 23

and statistics comparing MFLEI PM2.5 emissions versus the

other inventories are given in Table 12. As with fuel con-

sumption, across the west (NW, CA, SW), MFLEI annual

PM2.5 emissions are well correlated with both FINN and

GFED, while correlation with WFEIS is weak in most re-

gions (Table 12). In the west, MFLEI annual PM2.5 emis-

sions are highest among the inventories in most years

(Fig. 23a). The greater PM2.5 emissions of MFLEI in

the west are partly attributable to the use of a larger

EFPM2.5 for western forests (22.8 g kg−1, Table 9) com-

pared with FINN (12.9 g kg−1), GFED (12.6 g kg−1), and

WFEIS (11.9 g kg−1). Because WFEIS uses combustion-

phase-dependent EFs applied in a non-transparent manner,

we have taken EFPM2.5 as the ratio of the sum of EPM2.5

to the sum of fuel consumed for all western forests. MFLEI

uses EFPM2.5 from the synthesis of Urbanski (2014) that ac-

counts for the lower MCE measured for wildfires in west-

ern conifer forests (Urbanski, 2013). FINN and GFED use

EFPM2.5 from Akagi et al. (2011), with updates from May

et al. (2014), which are based on emission measurements of

prescribed fires, most of which occurred in the southeast US.

WFEIS employs EFPM2.5 measured for prescribed burns of

logging slash. The higher EFPM2.5 used by MFLEI for wild-

fires in western forests is consistent with recent emission

measurements of Liu et al. (2017). In a study of western US

wildfires, Liu et al. (2017) reported an average EFPM1 of

26.0 g kg−1 (PM1 is particulate matter with an aerodynamic

diameter < 1 µm), more than 2 times the EF for prescribed

fires.

4 Data availability

MFLEI is archived and publicly available at the USDA

Forest Service Research Data Archive with the DOI num-

ber https://doi.org/10.2737/RDS-2017-0039 (Urbanski et al.,

2017).

5 Conclusions

We have presented the Missoula Fire Lab Wildfire Emis-

sion Inventory (MFLEI), a retrospective wildfire emission

inventory for CONUS. MFLEI was developed from multi-

ple datasets of fire activity and burned area, a newly de-

veloped wildland fuels map and an updated emission factor

database. Daily burned area was constructed using a combi-

nation of Landsat-based burn severity data (MTBS), MODIS

burned area and active fire detection products, VIIRS active

fire detections, incident fire perimeters, and a spatial wild-

fire occurrence database. Forest fuel loading was based on

a large set (> 27 000 sites) of forest inventory surface fuel

www.earth-syst-sci-data.net/10/2241/2018/ Earth Syst. Sci. Data, 10, 2241–2274, 2018

https://doi.org/10.2737/RDS-2017-0039


2266 S. P. Urbanski et al.: US wildland fire emission estimates during 2003–2015

Figure 23. Annual PM2.5 emitted from MFLEI, FINN v1.5, GFED v4.1s, and WFEIS v0.5 for (a) northwest, California, and southwest

regions and (b) north, south-central, and southeast regions.

measurements. Herbaceous fuel loading was estimated us-

ing site-specific parameters from a soil survey database with

NDVI from MODIS. Shrub fuel loading was quantified by

applying numerous allometric equations linking stand struc-

ture and composition to biomass and fuels, with the struc-

ture and composition data derived from geospatial data lay-

ers of the LANDFIRE project. MFLEI provides estimates of

daily wildfire burned area, fuel consumption, and pollutant

emissions at a 250 m × 250 m resolution for 2003–2015. The

inventory includes a spatially aggregated emission product

(10 km × 10 km, 1 day) with uncertainty estimates to provide

a more relevant representation of emission uncertainties for

use in air quality modeling. MFLEI will be updated with re-

cent years as the MTBS data become available. The focus of

MFLEI is wildfires and does not include most prescribed fire

activity. In the southeast, where prescribed fire burned area is

estimated to greatly exceed that of wildfires on average, the

prescribed fire emissions not included in MFLEI are likely to

be substantial.

MFLEI CONUS average wildfire fuel consumption and

PM2.5 emissions were estimated to be 41.4 Tg yr−1 and

733 Gg yr−1, respectively, over 2003–2015. Annual CONUS

PM2.5 emissions showed significant variability with a coeffi-

cient of variation of 0.41 and a maximum-to-minimum ra-

tio of 4.5. Summer was the most active season; over half

(59 %) of total PM2.5 emissions occurred in the summer

(June–August), with August alone accounting for 32 % of

the total. Emissions were highly concentrated both tempo-
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rally and spatially. Just 5 % of days accounted for 57 % of

total PM2.5 emitted over 2003–2015. At the spatial scale of

the 10 km × 10 km grid, 69 % of total PM2.5 originated from

5 % of grid cell days with fire activity. Fires in the west (west-

ern 11 states) accounted for 56 % of burned area, 60 % of

fuel consumption, and 72 % of PM2.5 emitted over 2003–

2015. The southeast and south-central regions were largely

responsible for the balance of burned area and emissions. The

northern tier states across central and eastern CONUS pro-

duced < 3 % of total PM2.5 emissions. In the west, wildfire

PM2.5 emissions dwarfed those from non-fire sources during

active fire periods. Comparison of MFLEI PM2.5 emissions

with the EPA 2014 National Emission Inventory indicated

that, in the west, wildfires exceeded all non-fire primary

sources of PM2.5 by a factor of > 5 on nearly 200 days over

2003–2015. Quantified with the relative interdecile range,

the uncertainties in daily fuel consumption and PM2.5 emis-

sions, at the spatial scale of 10 km × 10 km, were estimated

to be 32 % and 50 %, respectively. A regional comparison

of MFLEI with three fire emission inventories, FINN v1.5,

GFED v4.1s, and WFEIS v0.5, showed MFLEI predicted

significantly greater PM2.5 emissions across the west, in part

due to the use of a larger EFPM2.5 for wildfires in forests.
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Appendix A

Table A1. Average small fire duration based on the fire discovery

and containment dates from the years 2003–2015 of the Fire Occur-

rence Database (Short, 2017).

Fire Number Average Standard deviation

size (ha) of fires duration (days) of duration (days)

0–31 43 915 2 7

31–62 6894 4 12

62–94 2673 5 13

94–125 1704 7 16

125–156 962 8 17

156–188 838 8 18

188–625 216 9 17
Figure A1. The burn-day distribution for the 12 500–25 000 ha size

class. Distributions for all six size classes are provided in the Sup-

plement dataset (file\Supplements\BurnDayDist.csv).
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Appendix B

Table B1. ACF best estimates (see Sect. 2.4.1) and optimized pa-

rameters for Weibull PDF fits. Parameters predict ACF in units of

t acre−1.

Best- Best-

Fuel est. ACF est. ACF Shape Scale

code N1 (kg m−2 ) (t acre−1) parameter parameter

1100 12 199 0.50 2.23 1.73 2.48

1120 21 990 0.91 4.05 1.33 4.40

1140 21 443 0.29 1.28 1.30 1.38

1160 61 276 0.16 0.71 1.33 0.77

1170 1582 0.36 1.60 1.55 1.77

1180 19 045 0.68 3.02 1.56 3.37

1200 15 112 1.18 5.25 1.70 5.85

1220 9554 0.46 2.06 1.66 2.30

1240 90 0.41 1.85 1.54 2.04

1260 10 886 1.23 5.48 1.80 6.14

1280 5425 0.67 2.99 1.59 3.32

1300 2002 1.38 6.16 1.56 6.82

1320 684 0.63 2.80 1.48 3.07

1340 239 1.66 7.39 2.29 8.29

1360 2573 0.39 1.75 1.19 1.86

1370 2173 1.04 4.62 1.91 5.19

1380 543 0.63 2.80 1.01 2.82

1400 34 528 0.13 0.57 1.03 0.57

1500 58 266 0.06 0.25 0.85 0.23

1600 17 157 0.33 1.48 0.62 0.98

1700 134 0.22 0.97 0.91 0.93

1800 25 727 0.21 0.92 0.91 0.88

1900 1736 0.34 1.50 1.03 1.51

1910 945 0.40 1.76 1.02 1.78

1920 1564 0.24 1.05 0.80 0.93

1940 774 0.48 2.13 1.19 2.26

1950 294 0.41 1.81 1.02 1.82

1970 2119 0.18 0.82 1.05 0.83

1980 166 0.10 0.43 1.04 0.44

19901 0 0.10 0.43 1.04 0.44

2180 1257 0.40 1.79 1.36 1.96

2700 6859 0.17 0.77 0.82 0.69

2900 18 279 0.18 0.79 0.92 0.75

2950 690 0.13 0.57 0.91 0.55

1 N is the number of FIA plots used in deriving best-estimate ACF and Weibull PDF fits.
2 Values for fuel code 1990 are set to those for fuel code 1980 due to lack of data.

Appendix C

This appendix demonstrates the four-step process used to es-

timate shrub fuel loading. Three LF existing vegetation prod-

ucts are used: EVT, EVC, and EVH. The height estimates

at each pixel in the EVH product are thematic classes repre-

senting a range of potential heights (Table C1) which enables

three values of shrub fuels to be estimated at each pixel (av-

erage, maximum, and minimum). Likewise, the EVC prod-

uct is thematic classes providing a 10-percentage-point range

in potential vegetation cover (Table C2). However, the shrub

fuel loading calculation simply uses the median value veg-

etation cover range. To illustrate, consider a pixel with an

EVT of class of big sagebrush shrubland, an EVH class of

105, and an EVC class of 112; the fuel loading calculation

proceeds as described below.

First, the crown volume is derived from the three EVH es-

timates (0.5, 0.75, and 1.0 m) as the product of these EVH

values and the projected crown area on a horizontal surface

(PCH), the latter of which is estimated using Eq. (C1) (Frand-

sen, 1983):

log10 (PCH) = −0.8471 + 2.2953log10(HT), (C1)

where PCH is the projected horizontal crown area in cm2

and HT is the estimated shrub height in centimeters (from

the EVH product). Per stem aboveground biomass estimates

are then derived from the crown volume estimates using an

allometric equation for sagebrush shrubs from the RVS al-

lometry library:

PSB = 201.4062 + 1.162 × VOL, (C2)

where PSB is per stem biomass (g stem−1) and VOL is crown

volume (dm3). Next, the pixel stem density (SD; stem ha−1)

is estimated to expand PSB to a per area basis:

SD =

(

1.0 × 108

PCH

)

× CC, (C3)

where SD is stem density, CC is the fractional canopy cover

from EVC (Table C2), and the value 1.0×108 converts cm2 to

a per hectare basis. The total shrub biomass (TSB; kg ha−1)

is the product of PSB and SD. Figure C1 shows the TSB

estimates for the pixel used in this example. This process was

conducted at each pixel with a shrub EVT using the range

of heights from EVH to provide lower, upper, and middle

estimates of fuel loading. The allometric equation used to

estimate PSB depends on the pixel EVT and is selected from

31 equations available in the RVS allometry library.
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Table C1. Thematic classes representing shrub heights in the LANDFIRE EVH product and the associated height values represented in the

RVS fuel modeling system.

EVH class code EVH classes RVS shrub height (m)

Minimum Median Maximum

104 Shrub height 0–0.5 m 0.1 0.25 0.5

105 Shrub height 0.5–1.0 m 0.5 0.75 1

106 Shrub height 1.0–3.0 m 1 2 3

107 Shrub height > 3.0 m 3 4 5

Table C2. Thematic classes representing shrub canopy in the

LANDFIRE EVC product and the associated canopy cover used in

the RVS fuel modeling system.

EVC EVC RVS

class classes canopy

code cover (%)

111 Shrub cover >= 10 and < 20 15

112 Shrub cover >= 20 and < 30 25

113 Shrub cover >= 30 and < 40 35

114 Shrub cover >= 40 and < 50 45

115 Shrub cover >= 50 and < 60 55

116 Shrub cover >= 60 and < 70 65

117 Shrub cover >= 70 and < 80 75

118 Shrub cover >= 80 and < 90 85

119 Shrub cover >= 90 and <= 100 95

Figure C1. Total shrub biomass estimates for a pixel with EVT

class of big sagebrush shrubland, EVH class of 105, and EVC class

of 112 (see text).
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Supplement. The supplement related to this article is available
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Author contributions. SPU and WMH designed the inventory

model and selected the fire activity, land cover, and fuel loading

datasets used as inventory input. MCR conceived and produced the

rangeland fuel loading dataset and created the final land cover map.

RPS processed the FIA data to provide the plot-level datasets of sur-

face fuel loading and processed the forest understory carbon dataset

used to derive understory fuel loading. REC processed the activity

data to create the burned area maps. SPU was responsible for final-

izing the burn date assignment, developing forest fuel loading clas-

sifications, selecting fuel condition and fuel consumption method-

ologies, and compiling emission factors. SPU conducted all final in-

ventory calculations and devised and implemented the uncertainty

analysis. SPU prepared the paper with contributions from MCR and

was responsible for preparing the inventory dataset published in the

USDA Forest Service Research Data Archive.

Competing interests. The authors declare that they have no con-

flict of interest.

Acknowledgements. This work was financially supported by

the USDA Forest Service Rocky Mountain Research Station, Joint

Fire Sciences Program grant no. 12-1-07-1, and NOAA ESS –

Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) grant

no. NA13OAR4310087.

Edited by: Alexander Kokhanovsky

Reviewed by: two anonymous referees

References

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J.,

Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emis-

sion factors for open and domestic biomass burning for use

in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072,

https://doi.org/10.5194/acp-11-4039-2011, 2011.

Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G.

R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S.,

Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Man-

geon, S., Melton, J. R., Yue, C., and Randerson, J. T.: A human-

driven decline in global burned area, Science, 356, 1356–1361,

https://doi.org/10.1126/science.aal4108, 2017.

Anderson, K., Simpson, B., Hall, R. J., Englefield, P., Gartrell, M.,

and Metsaranta, J. M.: Integrating forest fuels and land cover

data for improved estimation of fuel consumption and carbon

emissions from boreal fires, Int. J. Wildland Fire, 24, 665–679,

https://doi.org/10.1071/WF14142, 2015.

Bechtold, W. A. and Patterson, P. L. (Eds.): The enhanced Forest

Inventory and Analysis program–national sampling design and

estimation procedures, Gen. Tech Rep. SRS-80, USDA, Forest

Service, Southern Research Station, Asheville, North Carolina,

85 pp., available at: https://www.treesearch.fs.fed.us/pubs/20371

(last access: 27 April 2017), 2005.

Blackard, J. A., Finco, M. V., Helmer, E. H., Holden, G. R., Hop-

pus, M. L., Jacobs, D. M., Lister, A. J., Moisen, G. G., Nelson,

M. D., Riemann, R., Ruefenacht, B., Salajanu, D., Weyermann,

D. L., Winterberger, K. C., Brandeis, T. J., Czaplewski, R. L.,

McRoberts, R. E., Patterson, P. L., and Tymcio, R. P.: Mapping

U.S. forest biomass using nationwide forest inventory data and

moderate resolution information, Remote Sens. Environ., 112,

1658–1677, https://doi.org/10.1016/j.rse.2007.08.021, 2008.

Brey, S. J. and Fischer, E. V.: Smoke in the City: How Of-

ten and Where Does Smoke Impact Summertime Ozone in

the United States?, Environ. Sci. Technol., 50, 1288–1294,

https://doi.org/10.1021/acs.est.5b05218, 2016.

Brown, J. K., Marsden, M. M., Ryan, K. C., and Reinhardt, E. D.:

Predicting duff and woody fuel consumed by prescribed fire in

the northern Rocky Mountains. Res. Pap. INT-337, USDA, For-

est Service, Intermountain Forest and Range Experiment Sta-

tion, 23 pp., available at: https://www.fs.usda.gov/treesearch/

pubs/32531 (last access: 30 May 2018), 1985.

Cohen, J. D. and Deeming, J. E.: The national fire-danger rating

system: basic equations, Gen. Tech. Rep. PSW-GTR-82, U.S.

Department of Agriculture, Forest Service, Pacific Southwest

Forest and Range Experiment Station, Berkeley, CA, 16 pp.,

https://doi.org/10.2737/PSW-GTR-82, 1985.

De Groot, W. J., Landry, R., Kurz, W. A., Anderson, K. R., En-

glefield, P., Fraser, R. H., Hall, R. J., Banfield, E., Raymond,

D. A., Decker, V., and Lynham, T. J.: Estimating direct carbon

emissions from Canadian wildland fires, Int. J. Wildland Fire,

16, 593–606, https://doi.org/10.1071/WF06150, 2007.

Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B., and

Howard S.: A project for monitoring trends in burn severity, Fire

Ecology, 3, 3–21, https://doi.org/10.4996/fireecology.0301003,

2007.

Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., and Tanabe,

K. (Eds.): IPCC: 2006 Guidelines for National Greenhouse Gas

Inventories, National Greenhouse Gas Inventories Programme,

IGES, Japan, 3.1–3.66, 2006.

Fann, N., Alman, B., Broome, R. A., Morgan, G. G., John-

ston, F. H., Pouliot, G., and Rappold, A. G.: The health

impacts and economic value of wildland fire episodes in

the U.S.: 2008–2012, Sci. Total Environ., 610–611, 802–809,

https://doi.org/10.1016/j.scitotenv.2017.08.024, 2018.

Fisk, W. J. and Chan, W. R.: Health benefits and costs

of filtration interventions that reduce indoor exposure

to PM2.5 during wildfires, Indoor Air, 27, 191–204,

https://doi.org/10.1111/ina.12285, 2017.

Forest Inventory and Analysis (FIA): Data and Tools, available at:

https://www.fia.fs.fed.us/tools-data/ (last access: 10 April 2017),

2015.

Frandsen, W. I.: Modeling Big Sagebrush as a Fuel, J. Range Man-

age., 36, 596–600, https://doi.org/10.2307/3898349, 1983.

French, N. H. F., McKenzie, D., Erickson, T., Koziol, B.,

Billmire, M., Endsley, K. A., Scheinerman, N. K. Y., Jenk-

ins, L., Miller, M. E., Ottmar, R., and Prichard, S.: Model-

ing Regional-Scale Wildland Fire Emissions with the Wildland

Fire Emissions Information System, Earth Interact., 18, 1–26,

https://doi.org/10.1175/EI-D-14-0002.1, 2014.

GEOMAC: Geospatial Multi-Agency Coordination Group, Wild-

land Fire Support, Services and Data, available at: https://www.

geomac.gov/ (last access: 4 June 2018), 2015.

www.earth-syst-sci-data.net/10/2241/2018/ Earth Syst. Sci. Data, 10, 2241–2274, 2018

https://doi.org/10.5194/essd-10-2241-2018-supplement
https://doi.org/10.5194/acp-11-4039-2011
https://doi.org/10.1126/science.aal4108
https://doi.org/10.1071/WF14142
https://www.treesearch.fs.fed.us/pubs/20371
https://doi.org/10.1016/j.rse.2007.08.021
https://doi.org/10.1021/acs.est.5b05218
https://www.fs.usda.gov/treesearch/pubs/32531
https://www.fs.usda.gov/treesearch/pubs/32531
https://doi.org/10.2737/PSW-GTR-82
https://doi.org/10.1071/WF06150
https://doi.org/10.4996/fireecology.0301003
https://doi.org/10.1016/j.scitotenv.2017.08.024
https://doi.org/10.1111/ina.12285
https://www.fia.fs.fed.us/tools-data/
https://doi.org/10.2307/3898349
https://doi.org/10.1175/EI-D-14-0002.1
https://www.geomac.gov/
https://www.geomac.gov/


2272 S. P. Urbanski et al.: US wildland fire emission estimates during 2003–2015

GFED, V4.1s, Data Access, Global Fire Emissions Database, avail-

able at: https://www.globalfiredata.org/data.html, last access: 15

November 2018.

Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J.: An en-

hanced contextual fire detection algorithm for MODIS, Remote

Sens. Environ., 87, 273–282, https://doi.org/10.1016/S0034-

4257(03)00184-6, 2003.

Giglio, L., Loboda, T., Roy, D. P., Quayle, B., and Justice, C.

O.: An active-fire based burned area mapping algorithm for

the MODIS sensor, Remote Sens. Environ., 113, 408–420,

https://doi.org/10.1016/j.rse.2008.10.006, 2009.

Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of

daily, monthly, and annual burned area using the fourth gen-

eration global fire emissions database (GFED4), J. Geophys.

Res.-Biogeo., 118, 317–328, https://doi.org/10.1002/jgrg.20042,

2013.

Giglio, L., Boschetti, C. J., and Roy. D.: MCD64A1

MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m

SIN Grid V006, Data set, NASA EOSDIS Land Processes

DAAC, https://doi.org/10.5067/MODIS/MCD64A1.006 (last

access: 27 April 2017), 2015.

Gong, X., Kaulfus, A., Nair, U., and Jaffe, D. A.: Quantifying O-

3 Impacts in Urban Areas Due to Wildfires Using a General-

ized Additive Model, Environ. Sci. Technol., 51, 13216–13223,

https://doi.org/10.1021/acs.est.7b03130, 2017.

Harrington, M. G.: Estimating ponderosa pine fuel moisture using

national fire-danger rating fuel moisture values, USDA Forest

Service Research Paper RM-233, Rocky Mountain Forest and

Range Experiment Station, Fort Collins, CO, 7 pp., 1982.

Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stock-

well, C. E., and Barsanti, K. C.: Identification and quantifi-

cation of gaseous organic compounds emitted from biomass

burning using two-dimensional gas chromatography–time-of-

flight mass spectrometry, Atmos. Chem. Phys., 15, 1865–1899,

https://doi.org/10.5194/acp-15-1865-2015, 2015.

Hawbaker, T. J., Radeloff, V. C., Syphard, A. D., Zhu, Z., and

Stewart, S. I.: Detection rates of the MODIS active fire product

in the United States, Remote Sens. Environ., 112, 2656–2664,

https://doi.org/10.1016/j.rse.2007.12.008, 2008.

Homer, C. G., Dewitz, J. A., Yang, L., Jin, S., Danielson, P., Xian,

G., Coulston, J., Herold, N. D., Wickham, J. D., and Megown,

K.: Completion of the 2011 National Land Cover Database for

the conterminous United States-Representing a decade of land

cover change information, Photogramm. Eng. Rem. S., 81, 345–

354, https://doi.org/10.14358/PERS.81.5.345, 2015.

Hough, W. A.: Estimating available fuel weight consumed by

prescribed fires in the south. Research Paper SE-RP-187,

USDA Forest Service, Southern Forest Experiment Station, 12

pp., available at: https://www.fs.usda.gov/treesearch/pubs/42406

(last access: 30 May 2018), 1978.

Irisarri, J. G. N., Derner, J. D., Porensky, L. M., Augustine, D.

J., Reeves, J. L., and Mueller, K. E.: Grazing intensity dif-

ferentially regulates ANPP response to precipitation in North

American semiarid grasslands, Ecol. Appl., 26, 1370–1380,

https://doi.org/10.1890/15-1332, 2016.

Jaffe, D. A. and Wigder, N. L.: Ozone production from

wildfires: A critical review, Atmos. Environ., 51, 1–10,

https://doi.org/10.1016/j.atmosenv.2011.11.063, 2012.

Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Mar-

lier, M., DeFries, R. S., Kinney, P., Bowman, D. M. J. S., and

Brauer, M.: Estimated Global Mortality Attributable to Smoke

from Landscape Fires, Environ. Health Perspect., 120, 695–701,

https://doi.org/10.1289/ehp.1104422, 2012.

Keane, R. E., Herynk, J. M., Toney, C., Urbanski, S. P., Lutes, D.

C., and Ottmar, R. D.: Evaluating the performance and mapping

of three fuel classification systems using Forest Inventory and

Analysis surface fuel measurements, Forest Ecol. Manage., 305,

248–263, https://doi.org/10.1016/j.foreco.2013.06.001, 2013.

Key, C. H. and Benson, N. C.: Landscape Assessment (LA), FIRE-

MON: Fire Effects Monitoring and Inventory System, edited by:

Lutes, D. C., Keane, R. E., Caratti, J. F., Key, C. H., Benson,

N. C., Sutherland, S., and Gangi, L. J., Gen. Tech. Rep. RMRS-

GTR-164-CD, USDA, Forest Service, Rocky Mountain Research

Station, Fort Collins, CO, LA-1-51, available at: https://www.

treesearch.fs.fed.us/pubs/24066 (last access: 28 April 2017),

2006.

Kochi, I., Champ, P. A., Loomis, J. B., and Donovan, G.

H.: Valuing mortality impacts of smoke exposure from ma-

jor southern California wildfires, J. Forest Econ., 18, 61–75,

https://doi.org/10.1016/j.jfe.2011.10.002, 2012.

Kolden, C. A., Lutz, J. A., Key, C. H., Kane, J. T., and Van Wagten-

donk, J. W.: Mapped versus actual burned area within wildfire

perimeters: characterizing the unburned, Forest Ecol. Manage.,

286, 38–47, https://doi.org/10.1016/j.foreco.2012.08.020, 2012.

LANDFIRE: LANDFIRE Project, U.S. Department of Interior, Ge-

ological Survey, available at: http://www.landfire.gov/ (last ac-

cess: 28 April 2017), 2016.

Larkin, N. K., Raffuse, S. M., and Strand, T. M.: Wild-

land fire emissions, carbon, and climate: US emis-

sions inventories, Forest Ecol. Manage., 317, 61–69,

https://doi.org/10.1016/j.foreco.2013.09.012, 2014.

Lindaas, J., Farmer, D. K., Pollack, I. B., Abeleira, A., Flocke,

F., Roscioli, R., Herndon, S., and Fischer, E. V.: Changes in

ozone and precursors during two aged wildfire smoke events

in the Colorado Front Range in summer 2015, Atmos. Chem.

Phys., 17, 10691–10707, https://doi.org/10.5194/acp-17-10691-

2017, 2017.

Liu, J. C., Pereira, G., Uhl, S. A., Bravo, M. A., and Bell, M. L.:

A systematic review of the physical health impacts from non-

occupational exposure to wildfire smoke, Environ. Res., 136,

120–132, https://doi.org/10.1016/j.envres.2014.10.015, 2015.

Liu, J. C., Mickley, L. J., Sulprizio, M. P., Dominici, F., Yue, X.,

Ebisu, K., Anderson, G. B., Khan, R. F. A., Bravo, M. A., and

Bell, M. L.: Particulate air pollution from wildfires in the West-

ern US under climate change, Clim. Change, 138, 655–666,

https://doi.org/10.1007/s10584-016-1762-6, 2016.

Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J.,

Müller, M., Jimenez, J. L., Campuzano-Jost, P., Beyersdorf, A. J.,

Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A.,

Diskin, G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W.,

King, L. E., Kleinman, L., Meinardi, S., Mikoviny, T., Onasch, T.

B., Palm, B. B., Peischl, J., Pollack, I. B., Ryerson, T. B., Sachse,

G. W., Sedlacek, A. J., Shilling, J. E., Springston, S., St. Clair,

J. M., Tanner, D. J., Teng, A. P., Wennberg, P. O., Wisthaler,

A., and Wolfe, G. M.: Airborne measurements of western U.S.

wildfire emissions: Comparison with prescribed burning and air

Earth Syst. Sci. Data, 10, 2241–2274, 2018 www.earth-syst-sci-data.net/10/2241/2018/

https://www.globalfiredata.org/data.html
https://doi.org/10.1016/S0034-4257(03)00184-6
https://doi.org/10.1016/S0034-4257(03)00184-6
https://doi.org/10.1016/j.rse.2008.10.006
https://doi.org/10.1002/jgrg.20042
https://doi.org/10.5067/MODIS/MCD64A1.006
https://doi.org/10.1021/acs.est.7b03130
https://doi.org/10.5194/acp-15-1865-2015
https://doi.org/10.1016/j.rse.2007.12.008
https://doi.org/10.14358/PERS.81.5.345
https://www.fs.usda.gov/treesearch/pubs/42406
https://doi.org/10.1890/15-1332
https://doi.org/10.1016/j.atmosenv.2011.11.063
https://doi.org/10.1289/ehp.1104422
https://doi.org/10.1016/j.foreco.2013.06.001
https://www.treesearch.fs.fed.us/pubs/24066
https://www.treesearch.fs.fed.us/pubs/24066
https://doi.org/10.1016/j.jfe.2011.10.002
https://doi.org/10.1016/j.foreco.2012.08.020
http://www.landfire.gov/
https://doi.org/10.1016/j.foreco.2013.09.012
https://doi.org/10.5194/acp-17-10691-2017
https://doi.org/10.5194/acp-17-10691-2017
https://doi.org/10.1016/j.envres.2014.10.015
https://doi.org/10.1007/s10584-016-1762-6


S. P. Urbanski et al.: US wildland fire emission estimates during 2003–2015 2273

quality implications, J. Geophys. Res.-Atmos., 122, 6108–6129,

https://doi.org/10.1002/2016JD026315, 2017.

Lu, X., Zhang, L., Yue, X., Zhang, J., Jaffe, D. A., Stohl, A.,

Zhao, Y., and Shao, J.: Wildfire influences on the variabil-

ity and trend of summer surface ozone in the mountainous

western United States, Atmos. Chem. Phys., 16, 14687–14702,

https://doi.org/10.5194/acp-16-14687-2016, 2016.

Lutes, D. C., Keane, R. E., and Caratti, J. F.: A surface fuel classi-

fication for estimating fire effects, Int. J. Wildland Fire, 18, 802–

814, https://doi.org/10.1071/WF08062, 2009.

Lutes, D. C.: FOFEM: First Order Fire Effects Model v6.3 User

Guide, available at: http://firelab.org/project/fofem (last access:

27 April 2017), 2016a.

Lutes, D. C.: FuelCalc 1.4 User’s Guide, USDA, Forest Ser-

vice, Rocky Mountain Research Station, Fire Modeling In-

stitute, available at: https://www.firelab.org/sites/default/files/

images/downloads/FuelCalc_User_Guide_0.pdf (last access: 27

April 2017), 2016b.

May, A. A., McMeeking, G. R., Lee, T., Taylor, J. W., Craven, J.

S., Burling, I., Sullivan, A. P., Akagi, S., Collett, J. L., Flynn,

M., Coe, H., Urbanski, S. P., Seinfeld, J. H., Yokelson, R. J.,

and Kreidenweis, S. M.: Aerosol emissions from prescribed

fires in the United States: A synthesis of laboratory and aircraft

measurements, J. Geophys. Res.-Atmos., 119, 11826–11849,

https://doi.org/10.1002/2014JD021848, 2014.

MCD64A1 Collection 5.1, Data Access, available at: ftp://ba1.geog.

umd.edu/ (last access: 4 June 2018), 2016.

McKenzie, D., French, N. H. F., and Ottmar, R. D.:

National database for calculating fuel available to

wildfires, Eos T. Am. Geophys. Un., 93, 57–58,

https://doi.org/10.1029/2012EO060002, 2012.

Melvin, M. A.: 2015 National prescribed fire use survey report,

Technical Report 02-15, Coalition of Prescribed Fire Councils,

Inc, available at: http://www.prescribedfire.net/ (last access 4

June 2018), 2016.

Miller, J. D. and Yool, S. R.: Mapping forest post-fire canopy con-

sumption in several overstory types using multi-temporal Land-

sat TM and ETM data, Remote Sens. Environ., 82, 481–496,

https://doi.org/10.1016/S0034-4257(02)00071-8, 2002.

MTBS, Burned Area Boundaries Data, available at: https://www.

mtbs.gov/direct-download (last access: 4 June 2018), 2017a.

MTBS, National MTBS Burn Severity Mosaics Data, available

at: https://www.mtbs.gov/direct-download (last access: 4 June

2018), 2017b.

MTBS, Monitoring trends in Burn Severity, available at: http://

mtbs.gov/index.html, last access: 8 April 2017c.

MTRI: Wildland Fire Emissions Information System, WFEIS,

V0.5, Michigan Tech Research Institute, Data Access, available

at: http://wfeis.mtri.org/, last access: 15 November 2018.

NCAR: Fire Emission Factors and Emission Inventories, FINN

V1.5, National Center for Atmospheric Research, available at:

http://bai.acom.ucar.edu/Data/fire/, last access: 15 November

2018.

NIFC: Statistics, Historical Wildland Fire Information, National

Interagency Fire Center, available at: https://www.nifc.gov/

fireInfo/fireInfo_statistics.html, last access: 4 June 2018.

Nishihama, M., Wofle, R., Solomon, D., Patt, F., Blacnette, J.,

Fleig, A., and Masuoka, E.: MODIS Level 1A Earth Loca-

tion: Algorithm Theoretical Basis Document Version 3.0, avail-

able at: https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.

pdf (last access: 10 April 2017), 1997.

NOAA: National Air Quality Forecast Capability Summary,

National Oceanic and Atmospheric Administration, available at:

https://www.weather.gov/sti/stimodeling_airquality_summary,

last access: 10 April 2018.

Nuvolone, D., Petri, D., and Voller, F.: The effects of ozone

on human health, Environ. Sci. Pollut. Res., 25, 8074–8088,

https://doi.org/10.1007/s11356-017-9239-3, 2018.

O’Connell, B. M., Conkling, B. L., Wilson, A. M., Burrill, E.

A., Turner, J. A., Pugh, S. A., Christiansen, G., Ridley, T.,

and Menlove, J.: The Forest Inventory and Analysis Database:

Database description and user guide version 6.1 for Phase 2, U.S.

Department of Agriculture, Forest Service, 892 pp., available

at: https://www.fia.fs.fed.us/library/database-documentation/

historic/ver6/FIADBUserGuideP2_6-1_final.pdf (last access: 27

April 2017), 2016.

O’Connell, B. M., Conkling, B. L., Wilson, A. M., Burrill, E.

A., Turner, J. A., Pugh, S. A., Christiansen, G., Ridley, T.,

and Menlove, J.: The Forest Inventory and Analysis Database:

Database description and user guide version 7.0 for Phase 2, U.S.

Department of Agriculture, Forest Service, 830 pp., available

at: https://www.fia.fs.fed.us/library/database-documentation/

current/ver70/FIADBUserGuideP2_7-0_ntc.final.pdf, last

access: 27 April 2017.

Ottmar, R. D., Sandberg, D. V., Riccardi, C. L., and Prichard,

S. J.: An overview of the Fuel Characteristic Classifica-

tion System – Quantifying, classifying, and creating fuelbeds

for resource planning, Can. J. Forest. Res., 37, 2383–2393,

https://doi.org/10.1139/X07-077, 2007.

Prichard, S. J., Ottmar, R. D., and Anderson, G. K.: Consume

3.0 user’s guide, Pacific Northwest Research Station, Corval-

lis, Oregon, 234 pp., available at: http://www.fs.fed.us/pnw/fera/

research/smoke/consume/consume30_users_guide.pdf (last ac-

cess: 27 April 2017), 2006.

Rappold, A. G., Fann, N. L., Crooks, J., Huang, J., Cascio,

W. E., Devlin, R. B., and Diaz-Sanchez, D.: Forecast-Based

Interventions Can Reduce the Health and Economic Bur-

den of Wildfires, Environ. Sci. Technol., 48, 10571–10579,

https://doi.org/10.1021/es5012725, 2014.

Reeves, M. C.: Development of the Rangeland Vegetation Simula-

tor: A module of the Forest Vegetation Simulator, A Final Re-

port to the Joint Fire Sciences Program, Project ID: 12-1-02-15,

129 pp., 2016.

Reeves, M. C. and Mitchell, J. E.: Extent of cotermi-

nous US rangelands: quantifying implications of differing

agency perspectives, Rangeland Ecol. Manag., 64, 585–597,

https://doi.org/10.2111/REM-D-11-00035.1, 2011.

Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review

of biomass burning emissions part II: intensive physical proper-

ties of biomass burning particles, Atmos. Chem. Phys., 5, 799–

825, https://doi.org/10.5194/acp-5-799-2005, 2005a.

Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik,

O., Eleuterio, D. P., Holben, B. N., Reid, E. A., and Zhang, J.:

A review of biomass burning emissions part III: intensive optical

properties of biomass burning particles, Atmos. Chem. Phys., 5,

827–849, https://doi.org/10.5194/acp-5-827-2005, 2005b.

www.earth-syst-sci-data.net/10/2241/2018/ Earth Syst. Sci. Data, 10, 2241–2274, 2018

https://doi.org/10.1002/2016JD026315
https://doi.org/10.5194/acp-16-14687-2016
https://doi.org/10.1071/WF08062
http://firelab.org/project/fofem
https://www.firelab.org/sites/default/files/images/downloads/FuelCalc_User_Guide_0.pdf
https://www.firelab.org/sites/default/files/images/downloads/FuelCalc_User_Guide_0.pdf
https://doi.org/10.1002/2014JD021848
ftp://ba1.geog.umd.edu/
ftp://ba1.geog.umd.edu/
https://doi.org/10.1029/2012EO060002
http://www.prescribedfire.net/
https://doi.org/10.1016/S0034-4257(02)00071-8
https://www.mtbs.gov/direct-download
https://www.mtbs.gov/direct-download
https://www.mtbs.gov/direct-download
http://mtbs.gov/index.html
http://mtbs.gov/index.html
http://wfeis.mtri.org/
http://bai.acom.ucar.edu/Data/fire/
https://www.nifc.gov/fireInfo/fireInfo_statistics.html
https://www.nifc.gov/fireInfo/fireInfo_statistics.html
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf
https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf
https://www.weather.gov/sti/stimodeling_airquality_summary
https://doi.org/10.1007/s11356-017-9239-3
https://www.fia.fs.fed.us/library/database-documentation/historic/ver6/FIADB User Guide P2_6-1_final.pdf
https://www.fia.fs.fed.us/library/database-documentation/historic/ver6/FIADB User Guide P2_6-1_final.pdf
https://www.fia.fs.fed.us/library/database-documentation/current/ver70/FIADB User Guide P2_7-0_ntc.final.pdf
https://www.fia.fs.fed.us/library/database-documentation/current/ver70/FIADB User Guide P2_7-0_ntc.final.pdf
https://doi.org/10.1139/X07-077
http://www.fs.fed.us/pnw/fera/research/smoke/consume/consume30_users_guide.pdf
http://www.fs.fed.us/pnw/fera/research/smoke/consume/consume30_users_guide.pdf
https://doi.org/10.1021/es5012725
https://doi.org/10.2111/REM-D-11-00035.1
https://doi.org/10.5194/acp-5-799-2005
https://doi.org/10.5194/acp-5-827-2005


2274 S. P. Urbanski et al.: US wildland fire emission estimates during 2003–2015

Reisen, F., Duran, S. M., Flannigan, M., Elliott, C., and Rideout, K.:

Wildfire smoke and public health risk, Int. J. Wildland Fire, 24,

1029–1044, https://doi.org/10.1071/WF15034, 2015.

Riccardi, C. L., Ottmar, R. D., Sandberg, D. V., Andreu, A., Elman,

E., Kopper, K., and Long, J.: The fuelbed: a key element of the

fuel characteristic classification system, Can. J. Forest Res., 37,

2394–2412, https://doi.org/10.1139/X07-143, 2007.

Ruefenacht, B., Finco, M. V., Nelson, M. D., Czaplewski, R.,

Helmer, E. H., Blackard, J. A., Holden, G. R., Lister, A. J.,

Salajanu, D., Weyermann, D., and Winterberger, K.: Contermi-

nous U.S. and Alaska forest Type mapping using forest inventory

and analysis data, Photogramm. Eng. Remote S., 74, 1379–1388,

https://doi.org/10.14358/PERS.74.11.1379, 2008.

Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VI-

IRS 375 m active fire detection data product: Algorithm descrip-

tion and initial assessment, Remote Sens. Environ., 143, 85–96,

https://doi.org/10.1016/j.rse.2013.12.008, 2014.

Schwind, B.: Monitoring trends in burn severity: report on the PNW

& PSW fires – 1984 to 2005, MTBS Project Team, U.S. Geolo-

giocal Survey and U.S. Forest Service, Remote Sensing Applica-

tions Center, Salt Lake City, Utah, 2008.

Scott, J. H. and Burgan, R. E.: Standard fire behavior fuel models:

a comprehensive set for use with Rothermel’s surface fire spread

model, U.S. Department of Agriculture, Forest Service, Rocky

Mountain Research Station, Fort Collins, CO, Gen. Tech. Rep.

RMRS-GTR-153, 72 pp., https://doi.org/10.2737/RMRS-GTR-

153, 2005.

Scott, J. H. and Reinhardt, E. D.: Assessing crown fire potential by

linking models of surface and crown fire behavior, U.S. Depart-

ment of Agriculture, Forest Service, Rocky Mountain Research

Station, Fort Collins, CO, USA, Res. Pap. RMRS-RP-29, 59 pp.,

https://doi.org/10.2737/RMRS-RP-29, 2001.

Short, K. C.: Spatial wildfire occurrence data for the United

States, 1992–2015 [FPA_FOD_20170508], 4th edn.,

Fort Collins, CO, Forest Service Research Data Archive,

https://doi.org/10.2737/RDS-2013-0009.4, 2017.

Soil Survey Staff: Natural Resources Conservation Service, United

States Department of Agriculture, Soil Survey Geographic

(SSURGO) Database, available at: https://sdmdataaccess.sc.

egov.usda.gov, last access: May 2016.

Urbanski, S.: Wildland fire emissions, carbon, and climate:

Emission factors, Forest Ecol. Manage., 317, 51–60,

https://doi.org/10.1016/j.foreco.2013.05.045, 2014.

Urbanski, S. P., Salmon, J. M., Nordgren, B. L., and Hao, W. M.: A

MODIS direct broadcast algorithm for mapping wildfire burned

area in the western United States, Remote Sens. Environ., 113,

2511–2526, https://doi.org/10.1016/j.rse.2009.07.007, 2009.

Urbanski, S. P., Reeves, M. C., Corley, R. E., Hao, W. M., and Sil-

verstein, R. P.: Missoula Fire Lab Emission Inventory (MFLEI)

for CONUS, Forest Service Research Data Archive, Fort Collins,

CO, https://doi.org/10.2737/RDS-2017-0039 (last access: 4 De-

cember 2018), 2017.

USDA Forest Service: Wildland Fire Assessment System, available

at: http://www.wfas.net/ (last access: 27 April 2017), 2015.

USDA Forest Service: Remote Sensing Applications Center, Ac-

tive Fire Mapping Program, Fire detection GIS Data, available

at: https://fsapps.nwcg.gov/afm/gisdata.php, last access: 10 April

2017.

USEPA: Guidance on the use of models and other analyses for

demonstrating attainment of air quality goals for ozone, PM2.5,

and Regional Haze, United States Environmental Protection

Agency, EPA-454/B-07-002, 2007.

USEPA: The Clean Air Act in a nutshell: how it works,

United States Environmental Protection Agency, avail-

able at: https://www.epa.gov/clean-air-act-overview/

clean-air-act-nutshell-how-it-works (last access: 3 April

2018), 2013.

USEPA: NAAQS table, United States Environmental

Protection Agency, available at: https://www.epa.gov/

criteria-air-pollutants/naaqs-table, last access: 3 April 2018a.

USEPA: Exceptional events rule and guidance, United States Envi-

ronmental Protection Agency, available at: https://www.epa.gov/

air-quality-analysis/exceptional-events-rule-and-guidance, last

access: 4 April 2018b.

USEPA: 2014 National emissions inventory (NEI) data, Tier

Summaries, United States Environmental Protection Agency,

available at: https://www.epa.gov/air-emissions-inventories/

2014-national-emissions-inventory-nei-data, last access: 10

April 2018c.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T.

T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton,

D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global

fire emissions estimates during 1997–2016, Earth Syst. Sci. Data,

9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-

Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory

from NCAR (FINN): a high resolution global model to estimate

the emissions from open burning, Geosci. Model Dev., 4, 625–

641, https://doi.org/10.5194/gmd-4-625-2011, 2011.

Williamson, G. J., Bowman, D. M. J. S., Price, O. F., Hen-

derson, S. B., and Johnston, F. H.: A transdisciplinary ap-

proach to understanding the health effects of wildfire and pre-

scribed fire smoke regimes, Environ. Res. Lett., 11, 125009,

https://doi.org/10.1088/1748-9326/11/12/125009, 2016.

Wilson, B. T., Woodall, C. W., and Griffith, D. M.: Forest carbon

stocks of the contiguous United States (2000–2009), U.S. De-

partment of Agriculture, Forest Service, Northern Research Sta-

tion, Newtown Square, PA, https://doi.org/10.2737/RDS-2013-

0004 (last access: 27 April 2017), 2013.

Woodall, C. W. and Monleon, V. J.: Sampling protocol, estimation,

and analysis procedures for the down woody materials indica-

tor of the FIA program, U.S. Department of Agriculture, Forest

Service, Northern Research Station, Newtown Square, PA, Gen.

Tech. Rep. NRS-22, 68 pp., https://doi.org/10.2737/NRS-GTR-

22 (last access: 27 April 2017), 2008.

Woodall, C. W., Walters, B. F., Oswalt, S. N., Domke,

G. M., Toney, C., and Gray, A. N.: Biomass and car-

bon attributes of downed woody materials in forests of

the United States, Forest Ecol. Manage., 305, 48–59,

https://doi.org/10.1016/j.foreco.2013.05.030, 2013.

Zhang, X., Kondragunta, S., Da Silva, A., Lu, S., Ding, H., Li,

F., and Zhu, Y.: The blended global biomass burning emis-

sions product from modis, viirs, and geostationary satellites

(gbbepx) version 2, National Oceanic and Atmospheric Admin-

istration, available at: http://www.ospo.noaa.gov/Products/land/

gbbepx/docs/GBBEPx_ATBD.pdf (last access 4 June 2018),

2017.

Earth Syst. Sci. Data, 10, 2241–2274, 2018 www.earth-syst-sci-data.net/10/2241/2018/

https://doi.org/10.1071/WF15034
https://doi.org/10.1139/X07-143
https://doi.org/10.14358/PERS.74.11.1379
https://doi.org/10.1016/j.rse.2013.12.008
https://doi.org/10.2737/RMRS-GTR-153
https://doi.org/10.2737/RMRS-GTR-153
https://doi.org/10.2737/RMRS-RP-29
https://doi.org/10.2737/RDS-2013-0009.4
https://sdmdataaccess.sc.egov.usda.gov
https://sdmdataaccess.sc.egov.usda.gov
https://doi.org/10.1016/j.foreco.2013.05.045
https://doi.org/10.1016/j.rse.2009.07.007
https://doi.org/10.2737/RDS-2017-0039
http://www.wfas.net/
https://fsapps.nwcg.gov/afm/gisdata.php
https://www.epa.gov/clean-air-act-overview/clean-air-act-nutshell-how-it-works
https://www.epa.gov/clean-air-act-overview/clean-air-act-nutshell-how-it-works
https://www.epa.gov/criteria-air-pollutants/naaqs-table
https://www.epa.gov/criteria-air-pollutants/naaqs-table
https://www.epa.gov/air-quality-analysis/exceptional-events-rule-and-guidance
https://www.epa.gov/air-quality-analysis/exceptional-events-rule-and-guidance
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.5194/gmd-4-625-2011
https://doi.org/10.1088/1748-9326/11/12/125009
https://doi.org/10.2737/RDS-2013-0004
https://doi.org/10.2737/RDS-2013-0004
https://doi.org/10.2737/NRS-GTR-22
https://doi.org/10.2737/NRS-GTR-22
https://doi.org/10.1016/j.foreco.2013.05.030
http://www.ospo.noaa.gov/Products/land/gbbepx/docs/GBBEPx_ ATBD.pdf
http://www.ospo.noaa.gov/Products/land/gbbepx/docs/GBBEPx_ ATBD.pdf

	Abstract
	Introduction
	Methods
	Biomass burning emission model
	Land cover map
	Burned area
	Burned area mapping
	Burn date assignment
	Unburned and lightly burned grid cells

	Fuel loading
	Forest fuel loading
	Rangeland fuel loading
	Total fuel loading

	Fuel conditions
	Fuel consumption
	Emission factors
	Emission estimates
	Uncertainty estimates

	Results
	Annual, seasonal, and monthly
	Daily
	Comparison with non-fire emission sources
	Uncertainty
	Prescribed fires
	Comparison with other emission inventories

	Data availability
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	References

