Contiki – a Lightweight and Flexible Operating System for Tiny Networked Sensors

Adam Dunkels, Björn Grönvall, Thiemo Voigt

Swedish Institute of Computer Science

IEEE EmNetS-I, 16 November 2004

• • • OUTLINE

 Introduction o System Overview Kernel architecture Services Communication support Discussion Conclusion

Introduction

. . .

- Contiki an OS for sensor network nodes
- Ported Contiki to a number of platforms
 - MSP430, AVR, HC12, Z80, 6502, x86,
- Built a few applications for experimental network deployments

Introduction(cont.)

Contribution

- Downloading code at run time
 - Selective reprogramming
- Portability
- Event-driven systems
 - Event vs multi thread

System Overview

• Hardware target

- "Mote"-class device
 - 10-100 kilobytes of code ROM
 - 1-10 kilobytes of RAM
 - Communication (radio)
- ESB from FU Berlin
 - MSP430, 2k RAM, 60k ROM

System Overview(cont.)

- Contiki system consists of
 - kernel ,libraries ,progra m loader ,a set of process
- Services can be dynamically replaced at run time
- Interprocess communication is done by posting event
- All process share the same address space

Kernel architecture

- o Event-driven vs multi-threaded
- Event-driven (TinyOS)
 - low context switching overhead, fits well for reactive systems
 - Not suitable for e.g. long running computations
 - Public/private key cryptography
- Multi-threaded
 - Suitable for long running computations
 - Requires more resources(stack)
- Trade-offs: preemption, size

Event-driven(TinyOS)

- Processes do not run without events
- Event occurs: kernel invokes event handler
- Event handler runs to completion (explicit return;)

Task queue

• Multi-threaded

- Preemption
- Thread runs until next blocking statement
- Each thread requires its own stack
 - Larger memory usage
- Locking problems (race condition)

•Combine Event-driven and Multi-threaded

o Contiki: kernel is event-based

- Most programs run directly on top of the kernel
- Multi-threading implemented as a library
- Threads only used if **explicitly** needed
 - Long running computations, ...
- Preemption possible
 - Responsive system with running computations

- Two level scheduling hierarchy
 - Event scheduler that dispatches event to running process
 - Periodically call processor's polling handler

- Loadable programs
 - Run-time relocation function and a binary format that contain relocation information
 - Loader check sufficient memory space
 - Loader call initialization function
- Power save mode

•An application function calling a service

Services(cont.)

- Service replacement
 - Kernel provides a special mechanism for replacing a process and retaining the process ID

Communication support

Loosely coupled communication stack

1.Incomming packet

Discussion

• Reprogramming sensor nodes

- 40 nodes dynamic distributed alarm system
- Manual wired reprogramming complete system image
 - One node >> 30sec
 - 40 node >> 30 min
- Over the air reprogramming a single component of application
 - 2 min

Discussion(cont.)

- Program typically much smaller than entire system image (1-10%)
 - Much quicker to transfer over the radio

Discussion(cont.)

•Code size

TinyOs < Contiki <Mantis

Module	Code size	Code size	RAM
	(AVR)	(MSP430)	usage
			10+
Kernel	1044	810	+4e + 2p
Service layer	128	110	0
Program loader	-	658	8
Multi-threading	678	582	8 + s
Timer library	90	60	0
Replicator stub	182	98	4
Replicator	1752	1558	200
			230 + 4e +
Total	3874	3876	+ 2p + s

•Size of the compiled code, in bytes

Conclusion

Contiki – OS for "mote"-class sensor nodes

• Contiki explores trade-offs in

- static vs dynamic
- event-driven vs multi-threaded
- Loadable programs, works well
 - Static linking can be a problem
- Threads on an event-driven kernel
 - Multi-threading suitable for certain applications