
Contiki – a Lightweight and
Flexible Operating System
for Tiny Networked Sensors

Adam Dunkels, Björn Grönvall, Thiemo Voigt

Swedish Institute of Computer Science

IEEE EmNetS-I, 16 November 2004

OUTLINE

Introduction
System Overview
Kernel architecture
Services
Communication support
Discussion
Conclusion

Introduction

Contiki – an OS for sensor network
nodes
Ported Contiki to a number of
platforms

MSP430, AVR, HC12, Z80, 6502, x86,
...

Built a few applications for
experimental network deployments

Introduction(cont.)

Contribution
Downloading code at run time

• Selective reprogramming
Portability
Event-driven systems

• Event vs multi thread

System Overview

Hardware target
“Mote”-class device

• 10-100 kilobytes of code ROM
• 1-10 kilobytes of RAM
• Communication (radio)

ESB from FU Berlin
• MSP430, 2k RAM, 60k ROM

System Overview(cont.)

Contiki system consists of
kernel ,libraries ,progra
m loader ,a set of
process

Services can be dynamically
replaced at run time

Interprocess communication
is done by posting event

All process share the same
address space

Kernel architecture

Event-driven vs multi-threaded
Event-driven (TinyOS)

low context switching overhead, fits well for reactive
systems
Not suitable for e.g. long running computations

• Public/private key cryptography
Multi-threaded

Suitable for long running computations
Requires more resources(stack)

Trade-offs: preemption, size

Kernel architecture(cont.)

KernelEvent-driven(TinyOS)
Processes do not run
without events
Event occurs: kernel
invokes event handler
Event handler runs to
completion (explicit
return;)

Event Handler

stack

Task queue

Kernel architecture(cont.)

Thread Thread Thread ThreadMulti-threaded
Preemption
Thread runs until next
blocking statement
Each thread
requires its own
stack

• Larger memory
usage

Locking problems
(race condition)

kernel

stack stack stack stack

Kernel architecture(cont.)
•Combine Event-driven and Multi-threaded

Kernel

process

event handler

process

Thread Thread

stack stack
event queue

libraries

Kernel architecture(cont.)

Contiki: kernel is event-based
Most programs run directly on top of the
kernel

Multi-threading implemented as a library
Threads only used if explicitly needed

Long running computations, ...
Preemption possible

Responsive system with running
computations

Kernel architecture(cont.)
•Control flowTwo level scheduling

hierarchy
Event scheduler that
dispatches event to
running process
Periodically call
processor’s polling
handler

event queue

Main()

ek_run()

initialize

ek_process_event() App

Poll

Poll

Poll

driver1

driver2

driver3

Loop

process

Kernel:ek.c

Kernel architecture(cont.)

Loadable programs
Run-time relocation function and a binary format that
contain relocation information
Loader check sufficient memory space
Loader call initialization function

Power save mode

Services
•An application function calling a service

1.Services
is called

2.Stub process service
look up in services
layer

3.Retutn pointer

4.Stub calls the
implementation of
the request function

Services(cont.)

Service replacement
Kernel provides a special mechanism for replacing a
process and retaining the process ID

kernel

Service process
Running version of the service

2.Posting a
Special event

1.inform

3.Remove itself
from system

Communication support
•Loosely coupled communication stack

header

Communication buffer

2.Put packet
in buffer

3.Call
services

4.Process the header
Post event

Out going packet

1.Incomming packet

Discussion

Reprogramming sensor nodes
40 nodes dynamic distributed alarm system
Manual wired reprogramming complete
system image

• One node >> 30sec
• 40 node >> 30 min

Over the air reprogramming a single
component of application

• 2 min

Discussion(cont.)

Program typically much smaller than entire
system image (1-10%)

• Much quicker to transfer over the radio

Discussion(cont.)

•Code size
•TinyOs < Contiki <Mantis

•Size of the compiled code, in bytes

Conclusion

Contiki – OS for “mote”-class sensor nodes
Contiki explores trade-offs in

static vs dynamic
event-driven vs multi-threaded

Loadable programs, works well
Static linking can be a problem

Threads on an event-driven kernel
Multi-threading suitable for certain
applications

	Contiki – a Lightweight and Flexible Operating System for Tiny Networked Sensors
	OUTLINE
	Introduction
	Introduction(cont.)
	System Overview
	System Overview(cont.)
	Kernel architecture
	Kernel architecture(cont.)
	Kernel architecture(cont.)
	Kernel architecture(cont.)
	Kernel architecture(cont.)
	Kernel architecture(cont.)
	Kernel architecture(cont.)
	Services
	Services(cont.)
	Communication support
	Discussion
	Discussion(cont.)
	Discussion(cont.)
	Conclusion

