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both TI and T2 transgenic plants (Fig. 4C). 
The amount of NPTII protein was not af- 
fected by infection in T3 plants, in which 
the NPTÍÍ transgene does not share homol- 
ogy with the CaMV promoter. The distribu- 
tion of NPTll protein between dark green 
island and chlorotic vein border tissue of Tl 
transgenic plants (Fig. 4C) reflected that of 
GUS activity (Fig. 2B). 

Suppression of the NPTU gene might 
have occurred through interference from the 
adjacent GUS gene. Alternatively, CaMV 
infection might result in host regulation of 
the 35S RNA promoter. Therefore, we test- 
ed the effects of CaMV infection on expres- 
sion of the GUS transgene of the T3 con- 
struct (Fig. lA), for which viral homology is 
limited to the CaMV 35S RNA promoter 
sequence. CaMV infection suppressed GUS 
expression in T3 transgenic plants with the 
same symptomatic pattern as that in Tl 
transgenic plants (Fig. IC). However, silenc- 
ing in T3 transgenic plants was not likely 
mediated by posttranscriptional mechanisms 
because the construct lacked viral RNA ho- 
mology. Nuclear run-on experiments re- 
vealed that transcription of the T3 GUS 
transgene was inhibited in infected plants, 
despite concurrent transcription of the 
CaMV minichromosome (Fig. 4A). We sug- 
gest that transcriptional silencing of the 35S 
RNA promoter in the CaMV minichromo- 
some does not occur in the presence of post- 
transcriptional silencing. However, tran- 
scriptional suppression of the CaMV 35S 
RNA promoter in the T3 construct suggests 
that viral transcription could potentially be 
down-regulated in those infections that do 
not result in recovery from symptoms as in 
B. rapa. Such regulation could explain the 
differential accumulation of CaMV in chlo- 
rotic and dark green tissue observed in the 
absence of posttranscriptional silencing {15). 

Thus, plants respond to pathogen inva- 
sion by regulating pathogen gene expres- 
sion, apparently at both transcriptional and 
posttranscriptional levels. Posttranscrip- 
tional suppression of viral genes results in 
posttranscriptional cosuppression of trans- 
genes that share sequence homology with 
the virus. Sequences homologous to the 
viral promoter can be silenced at the tran- 
scriptional level. Posttranscriptional sup- 
pression of gene expression appears to take 
precedence over transcriptional regulation, 
possibly by preventing transcriptional sup- 
pression of the same gene, thereby linking 
cytoplasmic and nuclear gene regulatory 
mechanisms. 

Most gene silencing phenomena that 
have been described in plants occur as a 
result of transformation with transgenes (5, 
9). Gene silencing can also be elicited by 
viruses in the absence of transgenes (3, 4). 
It is not clear whether this response is an- 

tipathogenic or whether it is more broadly 
related to regulation of highly expressed 
genetic elements. 
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Contingency and Determinism in Replicated 
Adaptive Radiations of Island Lizards 

Jonathan B. Losos,* Todd R. Jackman, Allan Larson, 
Kevin de Queiroz, Lourdes Rodríguez-Schettino 

The vagaries of history lead to the prediction that repeated instances of evolutionary 
diversification will lead to disparate outcomes even if starting conditions are similar. We 
tested this proposition by examining the evolutionary radiation of Anolis lizards on the 
four islands of the Greater Antilles. Morphometric analyses indicate that the same set of 
habitat specialists, termed ecomorphs, occurs on all four islands. Although these similar 
assemblages could result from a single evolutionary origin of each ecomorph, followed 
by dispersal or vicariance, phylogenetic analysis indicates that the ecomorphs originated 
independently on each island. Thus, adaptive radiation in similar environments can 
overcome historical contingencies to produce strikingly similar evolutionary outcomes. 

i he theory of historical contingency pro- 
poses that unique past events have a large 
influence on subsequent evolution ( J •3 ). A 
corollary is that repeated occurrences of an 
evolutionary event would result in radically 
different outcomes (4). Indeed, faunas and 
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floras that have evolved in similar environ- 
ments often exhibit more differences than 
similarities {5•7). These differences in evo- 
lutionary outcome probably result from 
clade-specific factors that cause taxa to re- 
spond to similar selective factors in differ- 
ent ways, as well as from unique historical 
events and subtle environmental differenc- 
es in the different areas (2, 8). Here we 
show that such factors will not always lead 
to disparate outcomes. 

Anolis lizards are a dominant element of 
the Caribbean fauna. On each of the islands 
of the Greater Antilles (Cuba, Hispaniola, 
Jamaica, and Puerto Rico), lizard assem- 
blages are composed of species that differ in 
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Table 1. Hypotheses tested with DNA sequence data. A signifioant 
result denotes rejection of the stated hypothesis. D is the difference in 
length between the most parsimonious tree (8889 steps) and the tree 
constrained to conform to the stated hypothesis. T^ is the test statistic for 
the Wilcoxon signed-ranks test, n is the number of characters that differed 

in numbers of changes on the two trees. Z is the normal approximation 
when n > 100 {25). "Difference" is the difference in negative log likelihoods 
between the maximum likelihood tree (-In L = 41,059.9) and the tree 
constrained to conform to the stated hypothesis, f is the Student's f test 
statistic. 

Hypothesis D ^B n Z Parsimony 
P value 

Likelihood 
difference f Likelihood 

P value 

Monophyly of ecomorph class 
Crown-giant 120 5,350 229 7.8 <0.001 424.2 7.5 <0.001 
Grass-bush 165 17,647 339 6.2 <0.001 633.8 8.5 <0.001 
Trunk 42 2,016 113 3.4 <0.001 110.0 2.5 0.014 
Trunk-crown 201 7,921 289 9.1 <0.001 771.0 11.6 <0.001 
Trunk-ground 175 22,927 382 6.3 <0.001 546.5 11.4 <0.001 
Twig 99 12,882 270 4.2 <0.001 384.0 6.6 <0.001 

Shortest tree with 
16 ecomorph transitions 5 2,706 106 0.4 0.683 51.1 1.4 0.171 
15 ecomorph transitions 25 6,444 172 1.5 0.128 103.1 2.7 0.007 
14 ecomorph transitions 48 7,803 198 2.5 0.011 212.3 4.5 <0.001 

habitat use. The same set of "ecomorphs"• 
species speciaUzed to use particular structur- 
al microhabitats•occurs on each island, 
except that two ecomorphs are absent from 
Jamaica and one from Puerto Rico (9). 

We measured six morphometric charac- 
teristics that are closely linked to habitat use 
{10, II) for members of each ecomorph class 
from each island to investigate whether the 
ecomorphs constitute objectively recogniz- 
able classes ( J2). Our analyses reveal distinct 
ecomorph classes; members of an ecomorph 
class are more similar to other members of 
that class from different islands than they are 
to members of different ecomorph classes 
from their own island (Fig. lA) (13). 

The presence of the same set of eco- 
morphs on each island suggests that either 
ecomorphs evolved only once and then, by 
colonization or vicariance, occupied all four 
islands, or that each ecomorph evolved in- 
dependently on all four islands. Because six 
ecomorph classes exist (crown-giant, grass- 
bush, trunk, trunk-crown, trunk-ground, 
and twig; the classes are named for the 
microhabitat that constituent species nor- 
mally use), the single-evolution hypothesis 
predicts that only five instances of the evo- 
lution of new ecomorphs have occurred (as- 
suming that one ecomorph is ancestral). By 
contrast, the recurring evolution hypothesis 
(9) predicts that none of the ecomorph 
classes form a monophyletic group and that 
17 to 19 evolutionary transitions between 
ecomorph classes have occurred (J4)- 

Phylogenetic analysis based on mito- 
chondrial DNA sequences {15, 16) for 55 
species {17) indicates that, with two excep- 
tions, members of the same ecomorph class 
from different islands are not closely related 
(Fig. IB). Statistical analyses (18) indicate 
that none of the ecomorph classes consti- 
tutes a monophyletic group relative to 
members of the other classes and that at 
least   17   evolutionary   transitions   among 

ecomorph classes have occurred (Table 1) each island, the sequence by which they 
(19, 20). Although similar sets of eco- have evolved differs among islands (Fig. 
morphs   have   evolved   independently   on      IC) (21). 
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Fig. 1. (A) UPGMA phenogram showing that members of the same ecomorph class cluster in morpho- 
logical space regardless of geographic affinities. Branch lengths are proportional to the distance separat- 
ing species or clusters in morphological space. Letters indicate the island on which a species is found (0, 
Cuba; H, Hispaniola; J, Jamaica; P, Puerto Rico). The shading of the branches connecting the ecomorph 
classes has no significance. (B) The most parsimonious tree derived from the molecular data indicates 
frequent transitions among ecomorph classes. The lengths of the branches have no significance. (0) 
Topology of the four ecomorphs common to all islands, extracted for each island separately from the most 
parsimonious phylogeny. 
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One hypothesis to explain the repeated 
evolution of the same ecomorph types is 
that the diversity of morphological variants 
that can be produced by anoles is con- 
strained to these ecomorphs. However, the 
existence of several Greater Antillean spe- 
cies, usually restricted to montane areas (9), 
and many mainland species {22) that are 
not members of any of the ecomorph classes 
shows that morphological diversification 
among anoles is not constrained to produce 
only members of these ecomorph classes. 
Rather, the recurring evolution of ecologi- 
cally and morphologically similar species in 
these replicate adaptive radiations suggests 
that adaptation, rather than constraint, is 
responsible for the predictable evolutionary 
responses of Anolis lizards. 

The phylogenetic analysis reveals only 
two cases in which an ecomorph has 
evolved more than once on a single island. 
Interspecific competition, which is intense 
among anoles (23) and may drive their 
adaptive radiation (9, 24), is probably re- 
sponsible; once an ecomorph niche is filled 
on an island, other species are excluded 
from utilizing that niche. Thus, the impor- 
tance of historical contingency depends on 
the frame of reference: Among islands, it 
has little discernible effect in that the same 
ecomorphs evolve on each island, whereas 
within each island, prior evolutionary 
events limit the options available to partic- 
ular species and thus determine the direc- 
tions in which evolution can proceed. 
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Monoallelic Expression of the 
lnterleukin-2 Locus 

Georg A. Holländer,* Saulius Zuklys,t Corinne Morel,t 
Emiko Mizoguchi, Kathrine Mobisson, Stephen Simpson,! 

Cox Terhorst, William Wishart, David E. Golan, 
AtuI K. Bhan, Steven J. Burakoff* 

The lymphokine interleukin-2 (IL-2) is responsible for autocrine cell cycle progression and 
regulation of immune responses. Uncontrolled secretion of IL-2 results in adverse re- 
actions ranging from anergy, to aberrant T cell activation, to autoimmunity. With the use 
of fluorescent in situ hybridization and single-cell polymerase chain reaction in cells with 
different IL-2 alíeles, IL-2 expression in mature thymocytes and T cells was found to be 
tightly controlled by monoallelic expression. Because IL-2 is encoded at a nonimprinted 
autosomal locus, this result represents an unusual regulatory mode for controlling the 
precise expression of a single gene. 

1L-2 is a growth factor important in the 
regulation and differentiation of lympho- 
cytes and natural killer cells ( J ). Produced 
by a subpopulation of activated T cells, IL-2 
also plays a pivotal role in the generation of 
an adoptive immune response. Decreased 
secretion or the complete absence of lL-2 in 
humans is associated with primary and sec- 
ondary immunodeficiencies (2). Mice ho- 
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mozygous for an lL-2 null mutation 
(IL-2^'^) have a compromised immune sys- 
tem with alterations of both cellular and 
humoral functions (3). Overproduction of 
lL-2 results in an impaired immune re- 
sponse with autoimmunity, breaking of 
clonal anergy, and suppression of certain T 
cell functions (4)- IL-2 expression, there- 
fore, is firmly controlled by multiple signal- 
ing pathways emanating from the T cell 
receptor and antigen-independent corecep- 
tors (5). These signals regulate the tran- 
scriptional control of ubiquitous and T cell- 
specific factors, which transactivate tran- 
scription of the gene encoding IL-2 in vivo 
through binding to the promoter and en- 
hancer sequences using an all-or-nothing 
mechanism (5). Coreceptors also transduce 
signals that stabilize IL-2 mRNA (6). 

The number of functional IL-2 alíeles 
may also determine the amount of IL-2 pro- 
duced. Therefore, we investigated whether T 
cells heterozygous for the IL-2 null mutation 
produce less IL-2 than wild-type T cells. We 
stimulated CD4^ T cells purified from wild- 
type and heterozygous mice. The amount of 
IL-2 produced by concanavalin A (Con A)• 
treated IL-2^' T cells was decreased by half 
when compared with that produced by T 
cells from wild-type mice (Fig. 1). As expect- 
ed. Con A stimulation of IL-2^'^ T cells did 
not result in detectable IL-2 secretion. 

Was each heterozygous CD4^ T cell pro- 

ducing only half of the amount of IL-2 pro- 
duced by wild-type cells, or were only half of 
the CD4^ T cells secreting amounts of IL-2 
comparable with that secreted by wild-type T 
cells? Concurrent transcription from both 
(that is, the mutant and the wild-type) alíeles 
of the IL-2 gene would lead to the first result, 
whereas the latter result would be obtained if 
alíele-specific expression occurred from only 
one of the two copies of the IL-2 gene. To 
distinguish between these two mutually ex- 
clusive models, we determined IL-2 secretion 
at the single-cell level. Mature CD4^ thymo- 
cytes and CD4^ peripheral T cells were stim- 
ulated with Con A and subsequently stained 
for the presence of IL-2 (7). About half of the 
CD4^ T cells from 3- to 4-week-old het- 
erozygous mice stained positively for IL-2 
(Fig. 2, A and B, left). In agreement with 
these data, limiting dilution assays showed 
that the relative frequency of IL-2-secreting 
CD4^ T cells was diminished by a third to a 
half in heterozygous mice in comparison with 

1:2      1:4      1:8 
Dilutions 

1:16 

Fig. 1. The genotype of IL-2 mutant mice controls 
the amount of IL-2 secreted. IL-2 production in 
response to Con A stimulation. Purified T cells from 
heterozygous and homozygous IL-2 mutant mice 
and from wild-type mice were stimulated in vitro by 
Con A in RPM11640 medium (Gibco-BRL) supple- 
mented with 10% fetal bovine serum (Sigma), pen- 
icillin, streptomycin, and 2-mercaptoethanol. After 
24 hours in culture, serial dilutions of supernatant 
were assayed on 5 x 10^ CTLL-20 cells in the 
presence of mAb to IL-4 (11B11 ). Proliferation was 
measured by pl-l]thymidine incorporation during 
the last 4 hours of a 24-hour assay. The graph is 
representative of three independent experiments 
and each experiment had less than 10% variability. 
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