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Abstract—This paper presents a new approach for the 

contingency-constrained single-bus unit commitment problem. 
The proposed model explicitly incorporates an  security 
criterion by which power balance is guaranteed under any 
contingency state comprising the simultaneous loss of up to 
generation units. Instead of considering all possible contingency 
states, which would render the problem intractable, a novel 
method based on robust optimization is proposed. Using the 
notion of umbrella contingency, the robust counterpart of the 
original problem is formulated. The resulting model is a 
particular instance of bilevel programming which is solved by its 
transformation to an equivalent single-level mixed-integer 
programming problem. Unlike previously reported contingency-
dependent approaches, the robust model does not depend on the 
size of the set of credible contingencies, thus providing a 
computationally efficient framework. Simulation results back up 
these conclusions. 

Index Terms—Bilevel Programming, Contingency-
Constrained Unit Commitment,  Security Criterion, 
Robust Optimization, Umbrella Contingency. 

I. NOMENCLATURE

A. Functions 
 Cost function offered by generator  in period  to 

produce  in the pre-contingency state. 

B. Constants 
  Availability parameter that is equal to  if generator 

is unavailable in period  under contingency state ,
being  otherwise. 

 Fixed production cost coefficient offered by 
generator  in period .
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 Linear production cost coefficient offered by 
generator  in period .

 Cost rate offered by generator  to provide non-
spinning reserve in period .

 Cost rate offered by generator  to provide up-
spinning reserve in period .

 System demand in period .
 Number of unavailable generators (security criterion 

parameter).
 Number of generators. 

 Number of periods. 
  Capacity of generator .
 Minimum power output of generator .

   Upper bound for the non-spinning reserve 
contribution of generator .

   Upper bound for the up-spinning reserve contribution 
of generator .

   Ramp-down limit of generator .
   Ramp-up limit of generator .
   Shutdown ramp limit of generator .
   Startup ramp limit of generator .

C. Decision Variables 
 Binary variable that is equal to  if generator  is 

unavailable in the worst-contingency state of period 
, being  otherwise. 

  Maximum power that can be supplied under the 
worst-case contingency for a given schedule in period 
.

 Power output of generator  in period  in the pre-
contingency state. 

 Power output of generator  in period  under 
contingency .

 Non-spinning reserve provided by generator  in 
period .

 Up-spinning reserve provided by generator  in period 
.

 Binary variable that is equal to  if generator  is 
scheduled in period  in the pre-contingency state, 
being  otherwise. 

 Binary variable that is equal to  if generator  is 
scheduled in period  under contingency , being 
otherwise. 
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 Binary variable that is equal to  if generator 
provides non-spinning reserve in period , being 
otherwise. 

 Dual variable of the  security constraint at the 
lower-level optimization problem for period .

 Dual variable of the upper bound for generator 
availability at the lower-level optimization problem 
for period .

D. Sets 
  Set of contingency indexes. 
  Set of period indexes.
 Set of generator indexes.  
 Minimum up and down time feasible set for the pre-

contingency scheduling variables of generator .

E. Vectors 
 Generator availability statuses in period  under the 

worst-case contingency. 
 Generator availability statuses in period  under 

contingency .
 On/off statuses of generator .

II. INTRODUCTION

URRENT reliability policy and associated security 
standards in power systems worldwide mainly focus on 

events such as the random outage of a single or at most two 
transmission or generation assets. These standards materialize 
in the well-known  and  security criteria which in 
industry practice are implemented as deterministic approaches 
[1][2]. Hence, power systems are neither operated nor planned 
to withstand contingencies comprising multiple simultaneous 
outages. However, the adequacy of such reliability framework 
is questionable, as revealed by recent blackouts caused by the 
coincidence in time of several independent system component 
outages [3]. As a consequence, researchers have begun to 
analyze the impact of multiple contingencies, particularly in 
power system planning [4]-[8]. 

Within this context, this paper extends the consideration of 
multiple contingencies to the unit commitment problem. Unit 
commitment plays a central role in power system operation 
under both centralized and competitive frameworks [1][9] and, 
therefore, security is an issue of major concern. Security has 
been incorporated in the unit commitment through the 
definition of several types of reserves by which preventive and 
corrective actions can be implemented in order to handle 
outages [10][11].  

From a deterministic viewpoint, reserves have been 
traditionally modeled in the generation scheduling by 
imposing different types of pre-specified requirements 
[12][13]. The main drawback of these approaches is their 
dependence on an a priori determination of system-wide or 
local reserve requirements that may lead to suboptimal or even 
infeasible solutions once contingencies occur.  

In contrast to reserve-constrained unit commitment, 
contingency-constrained unit commitment (CCUC) 
[10][11][14]-[18] explicitly imposes power balance under both 
normal and contingency states. In [10], contingencies were 

accounted for by a set of credible generator and line outages, 
and a joint power and reserve scheduling model was presented 
in a one-period setting. In the same work, a reserve pricing 
scheme was proposed based on the Lagrange multipliers of the 
nodal power balance equations. Joint market models for 
energy and several types of reserves were also proposed in 
[14] and [11]. Reference [14] focused on the beneficial impact 
of demand-side bidding under  and  security 
criteria in a single-bus model. Reference [11] presented the 
concept of security price in a network-constrained system 
from both deterministic and stochastic viewpoints. In [15], 
uncertainty management in the unit commitment problem was 
reviewed and the tradeoff between system reliability and total 
cost was studied for a set of CCUC models with an 
security criterion. In [16], a Benders decomposition approach 
was proposed for a contingency-constrained model of a joint 
energy and ancillary services auction. Finally, the impact of 
transmission switching on contingency-dependent scheduling 
problems was analyzed in [17] for a single period, and in [18] 
for a multiperiod setting. 

Current computing capabilities may allow incorporating 
 and  security criteria in the CCUC models 

presented in [10][11][14]-[18] for practical power systems. 
However, the extension to tighter security levels would lead to 
intractability due to the huge number of contingency states 
that should be considered. As a consequence, CCUC models 
only examine a limited set of credible contingencies, which is 
determined based on experience and engineering judgment.  

This paper presents an alternative approach that efficiently 
incorporates a deterministic  security criterion into the 
CCUC problem. This model is hereinafter referred to as 
CCUC. Unlike previously reported CCUC models 
[10][11][14]-[18] relying on a reduced set of credible 
contingencies, we propose a joint energy and reserve dispatch 
model based on robust optimization that allows considering all 
combinations of at most  unit outages, i.e., , in a 
computationally efficient manner. 

Based on the widely used definition of the unit commitment 
problem [1][12][13][19], we make use of a single-bus model, 
recognizing that the use of such a simplified model leads to 
results that may be optimistic and that a complete study of the 

 CCUC should also consider the effects of branch 
contingencies, reactive power support, transmission network 
loading, and even protection schemes. This generalization 
would, however, render the problem essentially intractable 
through optimization and would have to be solved by repeated 
simulations. These modeling limitations notwithstanding, the 
solution of the  CCUC based on a single-bus model 
provides the system operator with a valuable scheduling tool 
accounting for security.  

Robust optimization is an appropriate framework to model 
optimization problems where the optimal solution must remain 
feasible for some parameter variations in a given user-defined 
set (also called “uncertainty set”). In this framework, the 
unknown parameters (uncertainty) are treated as worst-case 
deterministic functions of the decision variables, which are set 
to perform the worst “feasibility damage” in the model for 
each proposed solution. Robust optimization was first 
introduced in the early 1970’s by Soyster [20] for linear 

C
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programming problems. Such approach has been criticized 
due to the over-conservativism of the solutions provided. In 
the late 1990’s and early 2000’s, robust optimization was 
further developed by Ben-Tal and Nemirovski’s works 
[21][22]. These works proposed an ellipsoidal uncertainty set 
that allowed the user to define a much more accurate 
description of the uncertainty factors through robust 
counterparts. However, even in the case of linear models, the 
associated robust counterparts were nonlinear. 

Recent theoretical advances by Bertsimas and Sim [23] 
allow an easy control of the degree of conservativism with 
moderate computational effort by controlling the number of 
coefficients that may change in each constraint of the problem. 
The main advantage of this technique is that robust 
counterparts do not increase in complexity compared to their 
original formulation. Such work has paved the way for an 
enormous number of applications in the optimization field  
due to its intuitive interpretation, easy implementation, and 
independence of any subjective probability specification 
process (see [24] for many well-known problem 
reformulations and references therein). Some examples of 
successful application of robust optimization in power systems 
can be found in [25][26]. 

The  CCUC model presented here belongs to the class 
of problems suitable for robust optimization, where the 
parameters allowed to vary represent the generation unit 
availability under the contingency states. The robust 
counterpart of the original  CCUC problem is first 
constructed. This problem is modeled as a worst-case bilevel 
programming problem [27] wherein contingency states are 
characterized as decision variables. Using recent findings from 
robust optimization [23][24], the  CCUC bilevel 
program is subsequently transformed into an equivalent 
single-level mixed-integer programming (MIP) problem. The 
main advantage of the proposed solution is that the dimension 
of the resulting MIP problem does not depend on the security 
level defined by parameter , thereby allowing an efficient 
solution by off-the-shell software [28]. 

The main contributions of this paper are:  
1. Within the framework of the conventional single-bus 

unit commitment problem, the system operator is 
provided with a generation scheduling tool that 
accounts for tighter security levels than the traditional 

 and  security criteria. 
2. A novel  CCUC model is formulated and 

implemented based on robust optimization. This 
methodology is effective in attaining globally optimal 
or near-optimal solutions with moderate 
computational effort. 

3. The performance of the proposed approach is 
successfully validated with numerical simulations. 

The remainder of this paper is organized as follows. In 
Section III, the formulation of the  CCUC problem is 
presented. Section IV describes the robust optimization 
approach. Section V provides and discusses results from 
several case studies. Finally, some relevant conclusions are 
drawn in Section VI. 

III. PROBLEM FORMULATION

The contingency-constrained unit commitment problem 
determines the optimal generation schedule and reserve 
allocation so that the power demand is supplied under both 
normal and contingency states over a specific short-term time 
span. Here we propose the explicit consideration of an 
security criterion by which all combinations of up to  unit 
outages are modeled in each period. For unit consistency, it 
should be noted that hourly time periods are considered. 

Based on the models presented in [10][14][19], the 
CCUC problem can be formulated as: 

(1)

subject to: 

(2)

(3)

(4)

(5)

(6)

(7)

 (8)

(9)

 (10)

 (11)

 (12)

 (13)

 (14)

(15)
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 (16)

. (17)
 Parameters  are used to characterize contingency 
states. Thus,  is a constant equal to  if unit  is available 
in period  under contingency state , being 0 otherwise. In 
each period, the  security criterion is enforced by 
considering all contingency states such that  

(18)

The objective function to be minimized (1) consists of the 
sum of the offered cost functions for generating power, 
including startup and shutdown costs, plus the cost of all up-
spinning and non-spinning reserves offered by the generators. 
It should be noted that in a single-bus unit commitment the 
loss of any set of generation units does not require the 
reduction of the production of any remaining  available unit to 
keep the power balance. Thus, only upward reserves such as 
up-spinning and non-spinning reserves are deployed and, 
consequently, down-spinning reserve needs not be included in 
(1)-(17). Moreover, as done in [10], the cost of the corrective 
actions in the event of a contingency, that is, the actual use of 
the reserves, is not included in the objective function. 

Constraints (2) and (3) represent the power balance 
equations under the pre-contingency and contingency states, 
respectively. Constraints (4) and (5) set the generation limits 
for the pre-contingency and contingency states, respectively. 
On/off variables, , are used to allow those generators that 
are scheduled off in the pre-contingency state to participate in 
corrective actions during contingency states. Constraints (6) 
and (7) relate the reserve contributions to the power levels 
produced under the pre-contingency and contingency states. 
Constraints (8) and (9) provide the bounds for the up-spinning 
and non-spinning reserve contributions, respectively. 
Contraints (10) enforce that non-spinning reserve is only 
provided by generators that are not scheduled in the pre-
contingency state. Constraints (11) set the logic of the 
scheduling variables. Constraints (12)-(14) represent the 
ramping limits for both the pre-contingency and contingency 
states. Finally, the binary nature of the scheduling variables 

, , and  is expressed in (15)-(17). In (15), 
minimum up and down times for the pre-contingency state are 
formulated in a compact way by the feasibility set . A 
detailed description of such constraints can be found in [19]. 

Since the redispatch cost is not included in the objective 
function, problem (1)-(17) can be equivalently reformulated 
by dropping variables  and . As can be noted, by 
summing over in (6), 

(19)

and introducing (3) in (19) yields:   

(20)

Furthermore, in order to guarantee the minimum power 
output requirement in the case of a non-spinning reserve 
dispatch (5), expression (9) is modified as follows:  

 (21)

Likewise, constraints (14) can be replaced by the following 
reserve-based expressions: 

 (22)

 (23)

 (24)
 Constraints (22) enforce ramp-up and startup limits for the 
maximum synchronized power output that can be supplied 
under any contingency state. Constraints (23) and (24) model 
the ramp-up and startup limits on the provision of non-
spinning reserve. 

Thus, by replacing constraints (3), (5), (6), (9), (11), (14), 
and (17) in the original model by expressions (21)-(24), post-
contingency variables  and  can be dropped. For 
the sake of clarity, the equivalent model is stated below: 

(25)

subject to: 

(26)

(27)

(28)

 (29)

 (30)

(31)

 (32)

(33)

 (34)
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 (35)

 (36)

 (37)

 (38)

 (39)
In spite of the absence of post-contingency variables, it is 

worth mentioning that the equivalent model implicitly 
guarantees a feasible post-contingency schedule for each 
period assuming no contingency has occurred in previous 
periods.  

Problem (1)-(17) and its equivalent (25)-(39) both 
explicitly model the  security criterion by considering 
all  combinations of unit outages in (3) or (27). For 
realistic power systems comprising hundreds of units, this 
number of contingency states may become prohibitive and 
render the problem essentially intractable even for low values 
of . The approach presented next addresses such issue while 
keeping the modeling accuracy.  

IV. ROBUST OPTIMIZATION APPROACH

 Problem (25)-(39) can be viewed as a particular instance of 
robust optimization [23][24] in which the parameters allowed 
to vary are parameters  representing the availability of 
generation units in each period under each contingency state. 
Based on this fact, we propose a robust optimization approach 
to solve the  CCUC problem (25)-(39), where  is 
identified as the robustness parameter used to adjust the 
conservativism level. First, the contingency-dependent model 
(25)-(39) is equivalently reformulated as a robust bilevel 
counterpart. The resulting robust formulation embeds all 
contingencies associated with the  security criterion but 
does not depend on the size of the contingency set . Using 
recent findings from robust optimization, the resulting bilevel 
program is subsequently transformed into an equivalent 
single-level MIP problem suitable for commercially available 
software. 

A. Robust Bilevel Counterpart 
 The contingency dependence of problem (25)-(39) is 
introduced in (27), which can be referred to as the 
complicating constraints. This set of constraints requires that 
the sum of the pre-contingency power outputs and reserve 
contributions of all available units be greater than or equal to 
the system demand in each period for each contingency state. 
Since this requirement must hold for all contingencies ,
it is sufficient to guarantee that it holds for the worst case, i.e., 
the contingency with the tightest left-hand side of (27). This 

contingency is also known as the umbrella contingency [29]. 
Therefore, constraints (27) can be expressed in a compact way 
as: 

(40)

(41)

where denotes the maximum power that can be 
supplied in period  under the worst-case contingency for 
given values of scheduled power output, spinning reserve, and 
non-spinning reserve. 
 The minimum function in (41) can be formulated as an 
optimization problem by defining a new vector of decision 
variables  associated with the worst-
case contingency in each period. Hence,  is a binary 
variable which is equal to  if generator  is unavailable in 
period  in the worst-contingency state, being  otherwise.  
 Therefore, the  CCUC problem can be restated as a 
bilevel programming problem [27]. As shown in Fig. 1, the 
upper-level agent (the system operator) determines the 
schedule of power and reserves so that the overall cost is 
minimized. This cost minimization problem is also subject to 
the worst-case contingency in each period, which is modeled 
by the lower-level optimization. Thus, the lower level 
determines the combination of out-of-service generators so 
that the available post-contingency power output in each 
period is minimized. 

Minimize Cost (Available units) 

Determine: On/off decisions 

Power and reserve schedule 

Minimize Post-contingency generation capability 
(Power and reserve schedule) 

Determine:  Available units 

System operator 

Worst-case 
contingency in 

each period 

Fig. 1. Bilevel model. 

  The robust bilevel counterpart for the  CCUC 
problem is formulated as follows: 

(42)

subject to: 
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(43) 

(44)

 (45)

 (46)

(47)

 (48)

(49)

 (50)

 (51)

 (52)

 (53)

 (54)

 (55)

(56)

(57)

subject to:  

(58)

(59)

 Problem (42)-(59) comprises an upper-level problem (42)-
(56) and a set of lower-level problems (57)-(59), one for each 
period. The upper-level problem consists in the determination 
of the generation unit schedule, including pre-contingency 
power outputs as well as up-spinning and non-spinning 
reserve contributions, where the unavailability of generation 
units in the worst-case contingency results from the solution to 
the lower-level problems. Upper-level decision variables are 

, , , , and , whereas  are the 
lower-level decision variables. The dual variables associated 

with (58) and (59) are  and , respectively.  
 The upper-level objective function (42) is identical to (25). 
Analogously, upper-level constraints (43)-(55) are identical to 
(26), (28)-(39), respectively. Constraints (56) impose that the 
generation capability in each period under the worst-case 
contingency is greater than or equal to the system demand, 
i.e., power balance is guaranteed under all contingencies. 
 The lower-level objective function (57) represents the total 
post-contingency power output that can be supplied in each 
period by the generation units under any combination of 
available units. Such availability is modeled by the lower-level 
decision variables . Therefore, minimizing this objective 
function leads to the worst-case contingency. Constraint (58) 
enforces the  security criterion in each period. Finally, 
constraints (59) set the upper and lower bounds for variables 

.
 It should be noted that constraints (58) and (59) have a 
unimodular matrix structure (see proposition 3.2 in [30]), 
which guarantees that, for integer values of , the lower-level 
problems (57)-(59) always provide integer (binary) optimal 
solutions for vector . In other words, vectors composed of 
the generator availability parameters in each period ,

, are the vertexes of the 
polyhedral set defined by constraints (58) and (59). In Fig. 2, 
such polytope and the set  in a generic period  are 
both illustrated for the case of a three-generator system with 

. Circles represent the vertexes whereas the dashed 
volume, above the two-sum plane, is the so-called polyhedral 
uncertainty set, in robust optimization nomenclature. This set 
comprises all data variations in the generator availability 
space, , under which the system demand in a 
given period  is met even if a single generator happens to fail. 
Note that such uncertainty set also contains fractional (non-
binary) availability vectors for which the system demand is 
also met (points inside the dashed volume). However, for any 
feasible upper-level scheduling decision the worst-case 
contingency can always be characterized by one of the 
vertexes of such polytope. 

Fig. 2.  Generator availability set for  and .

 Besides its intrinsic complexity due to the two levels of 
optimization, problem (42)-(59) is mixed integer (containing 
both continuous and binary variables) and nonlinear due to the 
products , , and  in (57).  

Vertex for two available generators
Vertex for three available generators2

1

1 2

2

1
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B. Robust Single-Level Counterpart  
Based on the robust optimization approach presented in 

[23], an efficient single-level equivalent formulation is 
provided for the bilevel problem (42)-(59). 
 Note that the only requirement on each lower-level 
optimization problem (57)-(59) imposed at the upper level is 
that its optimal objective function value, , be at least 

 in each period . Thus, this requirement is also met by 
imposing that a lower bound for , given by the dual 
objective function of each lower-level problem, be greater 
than or equal to . Therefore, the procedure to derive the 
final single-level robust counterpart is summarized as follows: 

1) replace  in (56) by the dual objective function of 
the lower-level optimization problem (57)-(59) for each period 
;

2) replace each lower-level optimization problem (57)-(59) 
by its dual feasibility constraints. 

Step 2 guarantees that the dual objective function of each 
lower-level problem at step 1 provides a lower bound for 

 in each period. The interested reader is referred to 
[23] for a detailed proof of the transformation. For the sake of 
completeness, the equivalent single-level MIP model for the 
robust bilevel  CCUC problem (42)-(59) is as follows: 

(60)

subject to: 

(61) 

(62)

 (63)

 (64)

(65)

 (66)

(67)

 (68)

 (69)

 (70) 

 (71) 

(72)

 (73)

(74) 

(75)
;   (76)

.  (77)
 Note that expressions (60)-(73) are respectively identical to 
(42)-(55). Constraints (74) correspond to (56). Finally, 
constraints (75)-(77) are the dual feasibility constraints of the 
lower-level problems (57)-(59). 

Table I compares the size of the three formulations for the 
 CCUC problem addressed in this paper, namely both 

contingency-dependent models (1)-(17) and (25)-(39), and the 
proposed robust equivalent (60)-(77). Model sizes are 
expressed in terms of the number of constraints excluding 
variable bounds, the number of continuous variables, and the 
number of binary variables. As can be seen, even for the 
simplest case of , i.e.,  contingency states ( ),
the number of constraints and continuous variables of the 
reformulated contingency-dependent model (25)-(39) and the 
robust equivalent model grows linearly with the number of 
generation units whereas this increase is quadratic for the 
original contingency-dependent model (1)-(17). For tighter 
security levels, the size growth of the robust equivalent model 
remains linear with respect to the number of generation units 
whereas for both contingency-dependent models the size 
increases at higher polynomial orders. This comparison 
reveals the theoretical superiority of the proposed robust 
approach over the contingency-dependent models. In the next 
section, such advantage is shown in terms of significant 
computational time savings when solving a set of realistic case 
studies. 

TABLE I
SIZE COMPARISON

Model # constraints # continuous 
variables 

# binary 
variables 

(1)-(17) 

(25)-(39)    

(60)-(77) 
* .
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V. CASE STUDIES

Results from several case studies are presented in this 
Section. For didactical purposes, the robust formulation has 
been first applied to an illustrative example comprising three 
generation units and a single period. In order to assess the 
practical applicability of the proposed robust model and the 
influence of the problem size on its computational 
performance, a 10-unit system has been replicated to analyze 
systems including up to 100 generation units. For the sake of 
simplicity, generators offer linear cost functions of the form 

. Therefore, the 
robust single-level counterpart is a mixed-integer linear 
programming problem. The model has been implemented on a 
Pentium Intel i7, 3.2 GHz processor with 16 GB of RAM 
using Xpress-MP 7.0 under MOSEL [28]. 

A. Three-Unit Example 
Data for the generators are given in Table II. In this 

illustrative example, only up-spinning reserve is considered. 
The system demand is equal to 50 MW. 

TABLE II
GENERATOR DATA FOR THE 3-UNIT SYSTEM

Unit
(MW) (MW) (MW) ($) ($/MW) ($/MW) 

1 10 100 100 300 10 1 
2 10 100 100 200 20 2 
3 10 100 100 150 30 3 

For , i.e., without imposing any security criterion, the 
optimal value of the objective function is $800. In the optimal 
solution, the cheapest generator 1 is the only generator 
scheduled, thereby supplying the whole demand, and no 
spinning reserve contribution is required. 

Due to the small size of this problem (8 possible generation 
schedules), it can be solved by enumeration of the scheduling 
variables . Table III provides the results associated with the 
feasible schedules for  and . For  the 
problem is infeasible.  

TABLE III 
RESULTS  FOR THE FEASIBLE SCHEDULES OF THE 3-UNIT SYSTEM

(MW) 40/10 40/10 0/0 30/0 30/20 
(MW) 10/40 0/0 40/10 10/20 10/40 
(MW) 0/0 10/40 10/40 10/10 10/40 

Cost ($) 1190 1280 1590 1520 1670 

For , there are only four feasible schedules 
comprising the commitment of at least two generation units. 
The optimal solution requires the commitment of the 
expensive generator 2. This generator operates at its minimum 
power output of 10 MW, also providing 40 MW of up-
spinning reserve. In addition, preventive security requires that 
the power output of the cheapest generator 1 be reduced with 
respect to the unconstrained case. The optimal value of the 
objective function for this security-constrained case is $1190, 
which is considerably higher than the $800 that it costs to 
operate the system without security. 

For , there is only one feasible solution. This 
optimal solution requires the commitment of all available 

generation units. Similar to the previous case, the most 
expensive generators (units 2 and 3) produce the minimum 
power output of 10 MW while providing 40 MW of up-
spinning reserve. Generator 1 reduces its output down to 30 
MW and increases its up-spinning reserve contribution up to 
20 MW. As expected, the higher level of conservativism 
yields an increase in the optimal value of the objective 
function, which is equal to $1670. 

The robust optimization model (60)-(77) was applied to this 
illustrative example for  and . The optimal 
solutions were attained in 0.2 s. 

B. Real-Size Case Studies 
 The proposed robust formulation has been applied to solve 

several real-size case studies built on a base test system 
comprising 10 generators. The data for the generators of the 
base test system can be found in [19]. Fixed and linear 
production cost coefficients respectively correspond to the 
fixed and linear coefficients of the quadratic cost functions 
reported in [19]. Maximum up-spinning and non-spinning 
reserve contributions,  and , are both equal to each 
generator capacity. Additionally, spinning and non-spinning  
cost rates,  and , are respectively set to 8% and 
10% of the linear production cost coefficient  offered by 
each generator. All cost coefficients are assumed constant over 
the time span. The demand profile is 50% of that reported in 
[19]. 

Nine additional case studies have been generated by 
replicating the base test system and scaling the system demand 
accordingly.  

In Xpress [28], an optimality parameter can be specified to 
decide whether to find the optimal solution or to quickly 
obtain a suboptimal solution, referred to as an ε-optimal 
solution. In these case studies, the execution of Xpress was 
stopped when the value of the objective function was within 
0.5% of the optimal solution, which is a reasonable choice in 
terms of solution accuracy. In addition, a time limit of one 
hour (3600 s) was set. 

Table IV provides information on costs attained by the 
robust model for different values of the security parameter 
ranging between 0 and 5. The second column lists the costs for 
the unconstrained case ( ). Columns 3-7 show the 
percent cost increase over the unconstrained case when 
security is accounted for. Note that the base case problem with 
10 units is infeasible for , 4, and , whereas the case 
with 20 units is infeasible for . In this table, symbol “I” 
represents an infeasible problem. 

 It is remarkable that for each security level, the percent cost 
increase experiences a significant reduction as the system size 
grows. As an example, for , the cost increase due to 
security is reduced from 9.8% down to 1.2%. Furthermore, for 
each test system, higher values of the security parameter 
yield higher cost increases, as expected. However, it is worth 
mentioning that this cost increase is moderate, reaching values 
between 9.5% and 2.8% for . Both results suggest that 
tighter security levels than currently used  and 
criteria might be used in real-size systems without drastically 
increasing the total cost. 
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TABLE IV 
IMPACT OF SECURITY ON COST FOR REAL-SIZE SYSTEMS

# units 
Cost 

without
security ($) 

Cost increase due to security (%) 

1 2 3 4 5 
10 268978.5 5.5 9.8 I I I 
20 528523.4 3.2 6.0 9.0 11.0 I 
30 790214.2 1.5 3.5 5.6 7.9 9.5 
40 1053379.3 1.4 2.7 4.5 5.9 7.5 
50 1312876.8 1.3 2.4 3.8 5.0 6.0 
60 1576606.0 0.9 1.9 2.9 3.9 5.4 
70 1838217.9 0.7 1.6 2.4 3.5 4.2 
80 2100310.8 0.5 1.4 2.1 2.8 3.6 
90 2357599.8 0.5 1.4 1.9 2.5 3.4 
100 2624203.3 0.4 1.2 1.8 2.3 2.8 

The relationship between the total cost and the system size 
can be expressed through a linear regression for each security 
level . Table V lists the angular and linear coefficients of 
such regression for values of  ranging between 0 and 5. The 
angular coefficient represents the increase in cost due to 
security (additional $ per additional security level ). It 
should be noted that the angular coefficient varies slightly 
with . This result means that, despite the increase in fixed 
cost due to the commitment of extra units, tighter security 
levels do not significantly change the rate with which the total 
cost varies with the system size. As a consequence, the unitary 
cost, defined as the total cost divided by the number of 
generation units, decreases with the system size for all security 
levels. This result is depicted in Fig. 3. 

TABLE V
COEFFICIENTS OF THE LINEAR REGRESSION FOR COST VS. SYSTEM SIZE

 0 1 2 3 4 5 
Angular 

($/security) 26170.2 26125.2 26201.4 26149.1 26127.4 26139.4

Linear ($) 5615.1 21933.2 33597.1 53068.4 70402.4 85686.2

Fig. 3.  Optimal unitary cost vs. system size. 

Table VI presents the computing times required by the 
proposed robust model, denoted by R, for all test systems and 
values of  up to 5. Symbols “I” and “OM” represent 
“Infeasible” and “Out of memory”, respectively. The 
computational performance of the robust approach (60)-(77) is 
assessed through the comparison with the reserve-based 
contingency-dependent formulation (25)-(39), referred to as 
CD. For the sake of tractability of problem (25)-(39), the set of 
contingencies in CD only includes those with exactly  units 
simultaneously out of service, i.e., the cardinality of  is equal 
to  rather than . Note that this reduced 

contingency set covers all contingencies with fewer 
unavailable generators and hence optimality is not affected. As 
can be seen, the robust approach is able to find a solution 
satisfying the pre-specified optimality tolerance with little 
computational effort for all case studies. In contrast, the 
contingency-dependent model requires much larger computing 
times for most cases, particularly for large-scale systems. 
Moreover, for large numbers of units and more conservative 
security criteria, the contingency-dependent model is unable to 
find an ε-optimal solution within the time limit and even leads 
to intractable problems for which not enough memory is 
available. These results clearly back the superiority of the 
robust model over the contingency-dependent formulation 
from a computational viewpoint.  

TABLE VI
COMPARISON OF COMPUTING TIMES FOR REAL-SIZE SYSTEMS (s) 

#
units 1 2 3 4 5 

R CD R CD R CD R CD R CD
10 0.8 1.0 1.1 7.4 I I I I I I
20 2.9 6.1 10.0 24.6 10.8 288.0 0.0 2302.0 I I
30 3.6 0.8 3.3 20.1 6.5 3299.8 25.0 3600.0 9.5 3600.0
40 7.2 17.7 9.8 2394.9 290.2 3600.0 12.6 3600.0 561.9 OM 
50 14.5 13.1 12.1 3600.0 623.3 3600.0 15.7 OM 31.0 OM 
60 11.8 16.8 11.8 161.8 18.7 3197.6 14.7 OM 2576.3 OM 
70 10.9 15.9 1.8 257.8 13.3 3600.0 3520.5 OM 17.4 OM 
80 14.4 20.8 14.9 384.9 15.4 OM 14.3 OM 11.8 OM 
90 9.5 21.2 9.4 542.2 8.9 OM 10.9 OM 10.6 OM 
100 18.4 33.6 21.0 836.5 15.0 OM 15.5 OM 18.8 OM 

VI. CONCLUSIONS

 This paper presents a robust optimization approach for the 
contingency-constrained single-bus unit commitment problem 
with an  security criterion. As a major contribution of 
this paper, the model described allows system operators to 
schedule power and reserves while explicitly considering all 
combinations of up to  generation unit outages. The original 
contingency-dependent model is first formulated as a robust 
bilevel counterpart. The resulting bilevel program is 
subsequently transformed into an equivalent single-level 
mixed-integer program that is efficiently solved using 
available commercial software.  
 Numerical results show that the proposed robust model 
outperforms the contingency-dependent formulation since 
solutions within the optimality tolerance are achieved in 
moderate computing times. Moreover, the robust model can 
handle problems that are essentially intractable for the 
contingency-dependent model.  
 Research is currently underway to address a network-
constrained model. This further work considers two aspects: 
(i) the impact of line flow capacities on the definition of the 
worst-case contingency, and (ii) the extension of the 
contingency set to include line outages. Numerical analyses of 
such network-constrained model will be discussed in our 
future publications. Finally, further research will also be 
devoted to pricing energy and reserves under the 
security criterion and to assessing the tradeoff between cost 
and security. 
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