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ABSTRACT

Contingent Capital: Valuation and Risk Implications

Under Alternative Conversion Mechanisms

Behzad Nouri

Several proposals for enhancing the stability of the financial system include requirements

that banks hold some form of contingent capital, meaning equity that becomes available to

a bank in the event of a crisis or financial distress. Specific proposals vary in their choice of

conversion trigger and conversion mechanism, and have inspired extensive scrutiny regarding

their effectivity in avoiding costly public rescues and bail-outs and potential adverse effects on

market dynamics. While allowing banks to leverage and gain a higher return on their equity

capital during the upturns in financial markets, contingent capital provides an automatic

mechanism to reduce debt and raise the loss bearing capital cushion during the downturns

and market crashes; therefore, making it possible to achieve stability and robustness in the

financial sector, without reducing efficiency and competitiveness of the banking system with

higher regulatory capital requirements.

However, many researchers have raised concerns regarding unintended consequences and

implications of such instruments for market dynamics. Death spirals in the stock price near

the conversion, possibility of profitable stock or book manipulations by either the investors

or the issuer, the marketability and demand for such hybrid instruments, contagion and

systemic risks arising from the hedging strategies of the investors and higher risk taking



incentives for issuers are among such concerns. Though substantial, many of such issues are

addressed through a prudent design of the trigger and conversion mechanism.

In the following chapters, we develop multiple models for pricing and analysis of con-

tingent capital under different conversion mechanisms. In Chapter 2 we analyze the case

of contingent capital with a capital-ratio trigger and partial and on-going conversion. The

capital ratio we use is based on accounting or book value to approximate the regulatory

ratios that determine capital requirements for banks. The conversion process is partial and

on-going in the sense that each time a bank’s capital ratio reaches the minimum threshold,

just enough debt is converted to equity to meet the capital requirement, so long as the

contingent capital has not been depleted.

In Chapter 3 we simplify the design to all-at-once conversion however we perform the

analysis through a much richer model which incorporates tail risk in terms of jumps, endoge-

nous optimal default policy and debt rollover. We also investigate the case of bail-in debt,

where at default the original shareholders are wiped out and the converted investors take

control of the firm. In the case of contingent convertibles the conversion trigger is assumed

as a contractual term specified by market value of assets. For bail-in debt the trigger is

where the original shareholders optimally default. We study incentives of shareholders to

change the capital structure and how CoCo’s affect risk incentives.

Several researchers have advocated use of a market based trigger which is forward looking,

continuously updated and readily available, while some others have raised concerns regarding

unintended consequences of a market based trigger. In Chapter 4 we investigate one of these

issues, namely the existence and uniqueness of equilibrium when the conversion trigger is

based on the stock price.

keywords: contingent capital, bail-in debt, market discipline, financial regulation, contin-

gent convertible
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11
Introduction

Contingent capital in the form of debt that converts to equity when a bank faces

financial distress has been proposed as a mechanism to enhance financial stability and

avoid costly government rescues. Variants of this idea differ in the choice of trigger for the

activation of contingent capital and in how the capital is held before a triggering event. The

Dodd-Frank act calls for regulators to study the potential effectiveness of contingent capital,

and specific definitions for triggering events are put forward in a consultative document

issued by the Basel Committee on Banking Supervision [5]. The European Commission and

the Financial Stability Board (FSB) are also investigating mechanism that convert debt into

equity based on regulators’ discretion in the context of bank resolution or contractual terms

of issued debt. Such discussions are generally in regard to systemically important financial

institutions, since automatic provision of capital to a troubled bank can potentially prevent

contagion of risk through the system during liquidity crises. According to William Dudley,

President of Federal Reserve Bank of New York



Chapter 1. Introduction 2

“[contingent capital] has the potential to be more efficient because the capital ar-
rives as equity only in the bad states of the world when it is needed. It also has the
benefit of improving incentives by creating two-way risk for bank managements
and shareholders. If the bank encounters difficulties, triggering conversion, share-
holders would be automatically and immediately diluted. This would create strong
incentives for bank managements to manage not only for good outcomes on the
upside of the boom, but also against bad outcomes on the downside.”

The cyclicality of capital requirements is an important issue in crisis regulation. The

problem arises from the fact that banks tend to need more capital when it is hardest to

obtain it. Allowing banks to issue contingent capital instruments that can boost their capital

cushion against losses during a recession can be a more efficient way to achieve stability in

the financial market as compared to more costly alternative of requiring banks to hold more

equity at all times. This idea has also gained increasing support as an effective way to reduce

the need for bail-outs and government rescues during a crisis.

Contingent Convertibles (CoCos) and bail-in are among such forms of debt that convert to

equity as a firm’s assets lose value. They are points on a continuum of such securities differing

primarily along two dimensions. One dimension is the level of the trigger for conversion from

debt to equity, with CoCos (often classified as going-concern contingent capital) converting

as a firm nears, but has not yet reached, financial distress, and bail-in (often classified

as gone-concern contingent capital) converting at the point of non-viability. The second

dimension along which these types of securities vary is their conversion ratio and its impact

on the original shareholders: the conversion of CoCos dilutes the original shareholders, but

a bail-in is accompanied by a reorganization that wipes out the original shareholders – an

infinite dilution. Thus, these forms of contingent capital offer firms and regulators two levers

in their design, the conversion trigger and the dilution ratio.
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1.1 Literature Review

Flannery [31] proposed reverse convertible debentures (called contingent capital certificates

in Flannery [32]) that would convert from debt to equity based on a bank’s stock price. His

proposal uses a capital ratio based on the market value of the bank’s equity and the book

value of its debt. Kashyap, Rajan, and Stein [44] proposed a “lock box” to hold bank funds

that would be released in the event of a crisis; in this proposal, the trigger is a systemic

event, and not a risk of bankruptcy at an individual institution. McDonald [56] and the

Squam Lake Working Group [73] propose contingent capital with a trigger that depends on

the health of both an individual bank and the banking system as a whole. The convertible

securities designed by the U.S. Treasury for its Capital Assistance Program may be viewed

as a type of contingent capital in which banks hold the option to convert preferred shares to

common equity and find it advantageous to do so if their share price drops sufficiently low;

this contract is studied in Glasserman and Wang [33].

Other designs have been proposed in Bolton and Samama [10], Duffie [25], McDonald

[56], Pennacchi, Vermaelen, and Wolf [65], Squam Lake Working Group [73], and Sun-

daresan and Wang [74]; see Calomiris and Herring [17] or Pazarbasioglu et al. [62], for

an overview and comparison. Calello and Ervin [16] outline a bail-in proposal; see Basel

Committee on Banking Supervision [6] for a recent regulatory update. Von Furstenberg [79]

discusses design features of CoCo’s from a marketability point of view.

Among recent alternatives to the mechanisms considered in these papers, Duffie [25]

proposes mandatory rights offerings by banks facing financial distress, McAndrews [55]

proposes a combination of a rights offering and convertible debt, and Pennacchi, Vermaelen,

and Wolff [65] suggest bundling contingent capital with buyback options for equity holders.

Brennan and de Longevialle [12] estimate the overall potential size of the contingent capital

market at one trillion dollars and discuss investor perspectives on some alternative features.
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Alternative proposals for the design of contingent capital have led to work on valuation.

McDonald [56] prices contingent capital with a dual trigger through joint simulation of a

bank’s stock price and a market index. Pennacchi [64] compares several cases by simulation

in a jump-diffusion model of a bank’s assets. Albul, Jaffee, and Tchitsyi [2] obtain closed-

form pricing expressions under the assumption that all debt has infinite maturity and that the

conversion trigger is defined by a threshold level of assets. Hilscher and Raviv [41] also uses

an asset-level trigger in a tractable structural model and study how design of contingent

capital can eliminate risk-shifting incentives of stockholders. Madan and Schoutens [53]

incorporate bid-ask spreads in a firm’s liabilities. Von Furstenberg [78] builds a binomial

tree for the evolution of a bank’s capital ratio. Sundaresan and Wang [74] show that setting

the conversion trigger at a level of the stock price may result in multiple solutions or no

solution for the market price of the stock and convertible debt, raising questions about

the viability of contracts designed with market-based triggers; related points are made in a

more general context in Bond, Goldstein, and Prescott [11]. Koziol and Lawrenz [46] note

that contingent capital can increase incentives for risk-taking by making bankruptcy more

remote. Barucci and Viva [4] study the optimal capital structure of a bank issuing perpetual

contingent capital and conclude that there is a significant net gain in terms of reduction in

the bankruptcy costs and the coupon of straight debt, even though the convertible debt

may require a high spread. Berg and Kaserer [7] analyze CoCo bonds issued by Lloyds,

Rabobank and Credit Suisse and point out that shareholders can impose part of losses

on CoCo investors once losses exceed a certain amount and potentially CoCo bonds can

exacerbate risk taking incentives of shareholders and debt overhang problem. They also

propose a conversion mechanism which can eliminate such opposite effects. Culp [22] studies

contingent capital in the context of corporate finance and concludes that contingent capital

can help companies reduce their overall cost of capital by limiting the costs of financial

distress and providing more cost-effective management of regulatory capital. Maes and

Schoutens [52] discuss counterparty risk, contagion and systemic risk and death-spiral issues



Chapter 1. Introduction 5

arising from the hedging strategies of the investors. Corcuera et al. [21] look at the problem

of pricing CoCo bonds where the underlying risky asset follows an exponential Lévy process

incorporating jumps and heavy tails. Metzler and Reesor [54] analyze CoCo bonds in a

Merton-type structural model and point out that the rule for determining the conversion price

is the single most important feature of the contingent capital contract. Tsyplakov and Powers

[75] incorporate endogenous equity capital addition to de-lever and reduce the likelihood

of CoCo conversion in a dynamic continuous time pricing model and argue that properly

designed CoCo bonds can encourage the bank raise equity capital to avoid an automatic

conversion, and as such, CoCos can address the too big to fail problem. Himmelberg and

Tsyplakov [42] investigate incentive effects of CoCo bonds and conclude that, if properly

designed, CoCo bonds can encourage banks to maintain high capital ratios and firms would

preemptively raise equity to avoid the dilutive consequences of automatic conversion.

1.2 Complications in Design of Contingent Capital

Many researchers have raised concerns regarding unintended consequences and implications

of such instruments for market dynamics. Death spirals in the stock price near the conversion,

possibility of profitable stock or book manipulations by either the investors or the issuer, the

marketability and demand for such hybrid instruments, contagion and systemic risks arising

from the hedging strategies of the investors and higher risk taking incentives for issuers are

among such concerns. Across one dimension, many of these issues are related to what an

effective conversion trigger is and in particular if such trigger should be based on the market

data or accounting measures.

Existing regulatory capital requirements for banks are based primarily on book values.

Under Basel rules, banks must maintain regulatory capital equal to at least 8% of their risk-

weighted assets. U.S. banks also face an overall capital-to-assets constraint with a minimum
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of 3% and a threshold of 5% to qualify as “well capitalized.” All of these ratios are based on

regulatory accounting measures of debt and capital rather than the market price of a bank’s

stock. Existing issuances to date — the contingent core capital (“CoCo”) bonds issued by

Lloyd’s Banking Group in November 2009, mortgage lender Yorkshire Building Society in

December 2009 and Credit Suisse in February 2011, and the principal write-down bonds

issued by Rabobank in March 2010 — all use triggers based on regulatory capital ratios and

not market prices. However, book values are backward looking, lag behind market events,

are subject to accounting manipulations and may convert too late.

Flannery [31, 32] and Pennachi et al. [65] advocate the use of market data because it

is continuously updated, forward-looking, and less vulnerable to accounting manipulation,

while noting concerns that market values could potentially be manipulated to trigger conver-

sion. The results of Sundaresan and Wang [74] show that defining an internally consistent

market-based trigger can be problematic. Prescott [67] also illustrates the potential pit-

falls of using a market-price trigger in contingent capital in terms of multiple equilibria and

nonexistence results.

In some circumstances, a conversion mechanism based on the stock price can lead to

a death spiral, in which the dilution of the existing shareholders’ claims that would occur

in a conversion lowers the stock price, leading to more dilution and even further drop in

the stock price. Similar concerns are raised in the context of floating-priced convertibles

by Hillion and Vermaelen [40]. The Squam Lake Working Group [73] suggests that to

avoid this problem each dollar of debt must convert into a fixed quantity of equity shares,

rather than a fixed value of equity. If the number of shares issued at conversion is fixed

then dilution of existing shareholders and the impact of dilution on the stock price will not

exceed a certain amount. Pennacchi et al. [65] point out that a death spiral in the stock

price transfers wealth from shareholders to CC investors but the solvency of the bank is

not affected. However, managers will be reluctant to issue such instruments that puts the
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stockholders at risk of massive dilution.

Another critical issue in the design of conversion mechanism is the possibility of stock price

manipulation, resulting from the fact that a short position in the stock can be covered by

the shares provided by the issuer after conversion. With a trigger based on the stock price or

market capitalization of the firm, a speculator can buy the contingent convertible, short-sell

the stock to push the price down, trigger conversion, and profit from the gain on the converted

shares when the stock returns to its correct level above the trigger price. McDonald [56]

argues that manipulation is more profitable with a fixed dollar conversion instead of a fixed

share conversion, and asserts that conversion at a premium price would make manipulation

less likely and easier to detect. Flannery [31] points out that large financial firms whose

shares trade in deep markets are the intended issuers of CoCos and making the trigger apply

to a trailing average of share price can mitigate market manipulation for such firms.

1.3 Outline

In Chapter 2 we analyze the case of contingent capital with a capital-ratio trigger and partial

and on-going conversion. The capital ratio we use is based on accounting or book values

to approximate the regulatory ratios that determine capital requirements for banks. The

conversion process is partial and on-going in the sense that each time a bank’s capital ratio

reaches the minimum threshold, just enough debt is converted to equity to meet the capital

requirement, so long as the contingent capital has not been depleted. We derive closed-form

expressions for the market value of such securities when the firm’s asset value is modeled

as geometric Brownian motion, and from these we get formulas for the fair yield spread on

the convertible debt. A key step in the analysis is an explicit expression for the fraction of

equity held by the original shareholders and the fraction held by converted investors in the

contingent capital.
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In Chapter 3 we develop a capital structure model combining endogenous default, debt

rollover, and jumps; these features are essential in examining how changes in capital structure

to include CoCos or bail-in debt change incentives for equity holders. Our formulation

includes firm-specific and market-wide tail risk in the form of two types of jumps and leads to

a tractable jump-diffusion model of the firm’s income and asset value. The firm’s liabilities

include insured deposits and senior and subordinated debt, as well as convertible debt.

We derive closed-form expressions to value the firm and its liabilities, and we use these to

investigate how CoCos affect debt overhang, asset substitution, the firm’s ability to absorb

losses, the sensitivity of equity holders to various types of risk, and how these properties

interact with the firm’s debt maturity profile, the tax treatment of CoCo coupons, and

the pricing of deposit insurance. We examine the effects of varying the two main design

features of CoCos, the conversion trigger and the conversion ratio, and we compare the

effects of CoCos with the effects of reduced bankruptcy costs through orderly resolution.

Across a wide set of considerations, we find that CoCos generally have positive incentive

effects when the conversion trigger is not set too low. The need to roll over debt, the debt

tax shield, and tail risk in the firm’s income and asset value have particular impact on the

effects of CoCos. We also identify a phenomenon of debt-induced collapse that occurs when

a firm issues CoCos and then takes on excessive additional debt: the added debt burden can

induce equity holders to raise their default barrier above the conversion trigger, effectively

changing CoCos to junior straight debt; equity value experiences a sudden drop at the point

at which this occurs. Finally, we calibrate the model to past data on the largest U.S. bank

holding companies to see what impact CoCos might have had on the financial crisis. We use

the calibration to gauge the increase in loss absorbing capacity and the reduction in debt

overhang costs resulting from CoCos. We also time approximate conversion dates for high

and low conversion triggers.

Many proposals of contingent capital have advocated using a conversion trigger based

on market value of shares. However, as Sundaresan and Wang [74] point out, equity and
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contingent capital are claims on the same assets, and their prices must be determined simul-

taneously. Market prices of shares will adjust to reflect the imminence of conversion. With

a market based trigger, this adjustment may delay or precipitate conversion. Such circular

feedback between prices and the conversion event can create multiple equilibria or no equilib-

rium. In Chapter 4 we analyze existence and uniqueness of equilibrium in a continuous-time

setting where conversion trigger of contingent capital is based on the stock price.

Like most of the cited papers, we take a structural approach to modeling and valuation.

Reduced-form credit risk models of the type in Duffie and Singleton [27] and Jarrow and

Turnbull [43] could potentially be used for pricing and hedging CoCos, but they are less well-

suited to capturing incentive effects. A limitation of many structural models, including ours,

is that they do not incorporate asymmetric information between shareholders and creditors.

In Chapter 3 this is partly mitigated by the inclusion of jumps in asset value, which could

reflect a sudden release of information, as in Duffie and Lando [26].
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22
Contingent Capital With A Capital-Ratio

Trigger and Partial Conversion

Existing regulatory capital requirements for banks are based primarily on book values.

In this chapter we develop a model to study contingent capital in the form of debt

that converts to equity based on a capital-ratio trigger. The bank is required to hold a

minimum ratio of equity to total assets (equivalently, it faces an upper bound on leverage);

if its asset value drops too low, part of its debt converts to equity in order to maintain the

required capital ratio. Our setting is thus similar to Flannery’s [31, 32], though he compares

the market value of equity to the book value of debt.

Under Basel rules, banks must maintain regulatory capital equal to at least 8% of their

risk-weighted assets. U.S. banks also face an overall capital-to-assets constraint with a

minimum of 3% and a threshold of 5% to qualify as “well capitalized.” All of these ratios are

based on regulatory accounting measures of debt and capital rather than the market price
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of a bank’s stock. Existing issuances to date — the contingent core capital (“CoCo”) bonds

issued by Lloyd’s Banking Group in November 2009, mortgage lender Yorkshire Building

Society in December 2009 and Credit Suisse in February 2011, and the principal write-down

bonds issued by Rabobank in March 2010 — all use triggers based on regulatory capital ratios

and not market prices. Flannery [31, 32] and Pennachi et al. [65] advocate the use of market

data because it is continuously updated, forward-looking, and less vulnerable to accounting

manipulation, while noting concerns that market values could potentially be manipulated to

trigger conversion. The results of Sundaresan and Wang [74] show that defining an internally

consistent market-based trigger can be problematic. As there are good arguments for both

market-value and book-value triggers, both types of securities merit investigation; as the two

require somewhat different analysis, in this chapter we limit ourselves to book-value capital

ratios.

A distinguishing feature of our analysis in this chapter is that we model partial and

on-going conversion of contingent capital as a bank’s capital ratio declines, consistent with

Flannery’s [31] original proposal. (Acharya et al. [1, p.166] call this progressive conver-

sion.) Previous models have relied on the assumption that convertible debt is converted

in its entirety as soon as a threshold is hit. Instead, we assume just enough conversion

takes place to maintain the minimum capital ratio required, leading to a process of contin-

uous conversion. This partial conversion process lends itself to a somewhat larger tranche

of convertible debt than all-at-once conversion would, and it makes the full tranche truly

contingent, with each layer converted only as needed. With all-at-once conversion, most of

the debt is converted too early (or too late).

Partial conversion has important implications for investors: as contingent capital converts

to equity, bond holders become shareholders and thus share in any costs or benefits to

shareholders of subsequent conversion. We will show that increasing the minimum capital

requirement has the effect of slowing conversion and thus shifts more of the dilution cost



Chapter 2. Contingent Capital With A Capital-Ratio Trigger 12

from conversion to investors who became shareholders through earlier conversion of debt. A

higher capital ratio can therefore benefit the original shareholders if the loss in asset value

is sufficiently large; the value of the convertible debt need not be monotone in the required

capital ratio.

We undertake our valuation in a structural model, starting from the firm’s assets. The

firm’s capital structure is comprised of senior (unconvertible) debt, contingent capital, and

equity. Market values of debt and equity are determined, as usual, by viewing these as claims

on the assets; but the book value of debt is calculated by discounting future coupon and

principal payments at the yield at which the bond was issued, consistent with accounting

rules. We use the resulting book values in our capital ratio. The market and book values

of debt must agree at issuance and at maturity, and we incorporate this constraint in our

analysis to fix the coupon rates. In our framework, investors in contingent capital hold

claims on four types of payments: coupons on unconverted debt, the remaining principal on

convertible debt, dividends earned through debt converted to equity, and the value of this

equity at the maturity of the debt. We value the contingent capital as the sum of the values

of these payments.

Once the contingent capital is exhausted, we assume that a failure to meet the minimum

capital requirement results in a seizure and liquidation by regulators. Liquidation occurs

prior to bankruptcy in the sense that a bank has positive equity when it first breaches its

capital ratio. We incorporate potential liquidation costs for shareholders and also for bond

holders in our valuation. Indeed, these costs have a significant impact on our valuations,

as does asset volatility. Asset volatility affects both the likelihood of conversion of debt to

equity and the upside potential of equity following conversion.
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2.1 Outline

The rest of this chapter is organized as follows. Section 3.3 presents our model of the

firm and the conversion of debt to equity, and Section 2.3 examines how equity is allocated

between converted shareholders and the original shareholders as the value of the firm’s assets

evolve. Section 2.4 introduces dividends. Section 2.5 details the cashflows paid to investors

in the firm’s senior debt, contingent capital, and equity, and Section 2.6 presents explicit

expressions for the values of these cashflows. Section 2.7 closes the model by solving for the

coupons on the two types of debt to equate market and book values at issuance; from these

we get the yield spread on contingent capital. Section 2.8 extends the model to distinguish

between market and book value of assets. Section 2.9 illustrates our results through numerical

examples. Detailed calculations leading to our valuation formulas are deferred to appendices.

2.2 Model of the Firm

Our model of the firm (or bank) builds on a long line of research on capital structure that

includes Merton [57], Black and Cox [9], Leland [50], and numerous subsequent papers.

This approach starts by modeling the dynamics of a firm’s assets and then prices debt and

equity as claims on those assets. In Merton [57], the firm defaults at the maturity of the debt

if its asset value is less than the face value of the debt. In Black and Cox [9], bankruptcy

occurs when asset value drops to an exogenous reorganization boundary, and in Leland [50],

the time of default is chosen strategically by shareholders. In our setting, we will need to

provide a corresponding prescription for the conversion of contingent capital to equity, as

well as specifying a trigger for liquidation of the firm. We interpret the liquidation event as

resulting from seizure by regulators when the firm is unable to sustain its capital requirement

which, by design, occurs prior to a traditional bankruptcy event.
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Our starting point is a stochastic process Vt that models the book value of the firm’s

assets; this process drives the required level of capital in our model, just as accounting-based

measure of asset value drive capital requirements in practice. For tractability, we take Vt to

be geometric Brownian motion,

dVt

Vt

= (r − δ) dt+ σdWt, (2.1)

where W is a standard Brownian motion, and δ is a constant payout rate to the firm’s

security holders. In Section 2.2.1, we calculate book values for senior and convertible debt;

subtracting the book value of debt from the book value of assets leaves Qt, the book value

of shareholder’s equity which is our measure of capital. (In practice, regulatory capital

also includes certain debt instruments not captured in our model.) Our minimum capital

requirement is expressed as a lower bound on Qt/Vt.

We use these book values to model capital requirements and the conversion of debt to

equity. But for valuation, we need to calculate market values: we take the market value of

a security to be the expected discounted value of cash flows received by investors, irrespec-

tive of book values. In the basic version of our model, we assume that the market value

of the firm’s assets equals the book value Vt — in other words, we assume the bank uses

mark-to-market accounting for its assets.1 In the more general version of our model (in-

troduced in Section 2.8), we represent market and book values of assets through correlated

geometric Brownian motions, thus allowing an imperfect relationship between the two and

creating some uncertainty about how much market value will be realized when a liquidation

is triggered by a book-value-based capital ratio.

In either version of the model, we calculate market values for senior and convertible debt

1This would be the case under Financial Accounting Standard 157. Even prior to this proposed rule,
using data from 2001–2005, Calomiris and Nissim [20] report that for many bank assets (in contrast to those
of non-financial firms) book value is indeed close to fair value.
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as contingent claims on the market value of assets. We pin down the market values of these

contingent claims with the constraint that market and book values of debt must coincide at

issuance and at maturity: when debt is issued, its book value is recorded at its selling price

(market value), and when it matures its book value and market value equal the final payment

of principal and interest. In short, we use the book value of assets to drive the conversion of

contingent capital and we use the market value of assets to drive the valuation of contingent

capital. Keeping track of these two notions of value is essential to pricing securities that

depend on an accounting-based trigger.

Our model entails several idealizations and simplifications. We assume that capital ratios

can be observed continuously; in practice, regulatory capital is calculated quarterly, but

large banks routinely calculate internal “economic capital” on a daily basis, so the necessary

information could in principle be monitored for regulatory purposes to trigger conversion.

A limitation of our model is that it does not allow for jumps in asset value — a large jump

could potentially wipe out all the contingent capital and leave the firm bankrupt. This type

of event is beyond the scope of our model.

2.2.1 Debt

The firm issues ordinary senior debt as well as junior convertible debt. Both types of debt

are issued at time zero and mature at time T > 0. The senior debt has a face or par value

of D (due at time T ) and a continuous coupon rate of c2, meaning that it pays c2D per unit

of time. The debt is issued at a price of D0. From an accounting perspective, the effective

interest rate for the debt is the discount rate d2 that equates the cash raised (D0) to the

present value of future payments promised on the debt; i.e., the value of d2 that solves

D0 = De−d2T +

∫ T

0

c2De−d2s ds = D

[
e−d2T (1− c2

d2
) +

c2
d2

]
.
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The book value of the debt at any intermediate date t, 0 < t < T , is then

Dt = D

[
e−d2(T−t)(1− c2

d2
) +

c2
d2

]
(2.2)

if the firm has not yet failed. In other words, throughout the life of the debt, book value

is calculated by discounting remaining payments at the effective interest rate at which the

debt was originally issued.

In the absence of any other type of debt, we would model default as occurring the first

time the value of the firm’s assets fall below the boundary defined by Dt, 0 ≤ t ≤ T . This

is an instance of the mechanism used in Black and Cox [9], though they use an exponential

boundary, which corresponds to setting c2 = 0. The boundary in Black and Cox [9] is often

interpreted as a protective debt covenant, and that interpretation could be applied here. In

the case of a regulated bank, which is our focus, the boundary will serve to define a minimum

capital requirement the bank must maintain, rather than a privately negotiated covenant.

The capital requirement will set the liquidation boundary higher (by the amount of the

required capital buffer) than the default boundary (2.2). The bank is seized by regulators

before bankruptcy if the capital requirement is not maintained.

Next we introduce convertible debt with a face value of B, a continuous coupon rate c1,

and maturity T , issued at time zero at a price of B0. The assumption that all of the debt

has the same maturity T is a simplifying idealization. The effective interest rate d1 equates

B0 to the present value of the promised payments of coupon and principal,

B0 = Be−d1T +

∫ T

0

c1Be−d1sds = B

[
e−d1T (1− c1

d1
) +

c1
d1

]
.

As part of the original contingent capital issuance converts to equity, the remaining principal

decreases, but we apply the same effective interest rate d1 to calculate the book value of the

debt outstanding. If the remaining principal at time t is B̃t, then the book value at time t
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is

Bt = B̃t

[
e−d1(T−t)(1− c1

d1
) +

c1
d1

]
. (2.3)

We take up the conversion mechanism that determines B̃t in the next subsection.

Equations (2.2) and (2.3) take the coupon rates c1 and c2 as given. As part of our

analysis, we will solve for the values of c1 and c2 that make the values of the two types of

debt consistent with the overall value of the firm. In particular, we will choose c1 and c2 to

ensure that the initial values B0 and D0 are consistent with market values of debt given the

face amounts B and D and the dynamics of the firm’s asset value.

2.2.2 Conversion From Debt to Equity

We denote by Vt the book value of the firm’s assets at time t. Subtracting the firm’s debt

from its assets at time t leaves

Qt = Vt − Bt −Dt; (2.4)

we refer to Qt as capital, shareholder’s equity, or simply equity, but it should interpreted as

a book value or regulatory measure and not as the market value of equity, because (2.2) and

(2.3) are accounting based measures of debt. Indeed, the goal of our analysis is to calculate

market values based on the contractual terms of the contingent capital.

The firm is required to maintain a capital ratio of at least α, 0 < α < 1, which imposes

the constraint

Qt ≥ αVt or (1− α)Vt ≥ Bt +Dt.

For example, to model a bank that is required to hold capital equal to 5% of assets, we would

set α = 0.05.2 As V fluctuates, a bank could be in danger of violating this requirement;

2We can model a capital requirement tied to risk-weighted assets, rather than total assets, by adjusting the
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V = 100 D = 60 V = 95 D = 60 V = 95 D = 60

B = 30 B = 30 B = 25.5

Q = 10 Q = 5 Q = 9.5

(c) (b)(a)

LiabilitiesAssets Assets Liabilities Assets Liabilities

Figure 2.1: (a) Initial balance sheet with a 10% capital ratio satisfied; (b) after a drop in asset
value; (c) after conversion of debt to equity restoring the 10% capital ratio.

the contingent capital converts from debt to equity (decreasing Bt and increasing Qt) to

maintain the constraint as long as possible. Flannery [31] introduced this mechanism using

the market value of equity, rather than regulatory capital, to drive conversion.

Before formalizing the conversion mechanism in our model, we consider the example in

Figure 2.1. Part (a) of the figure shows an initial balance sheet with 100 in assets, 60 in

senior debt and 30 in convertible debt, leaving 10 in shareholder’s equity. For simplicity,

we consider a minimum capital requirement of 10%, which is just met in (a). In (b), the

firm’s assets drop to a value of 95; the loss of 5 is absorbed by equity. To meet the capital

requirement, the firm converts 4.5 of convertible debt to equity to arrive at the balance sheet

in (c), which again just meets the capital requirement.

In our model, V evolves continuously in time with continuous paths, and we will derive

the process of minimal conversion under which conversion takes place precisely at those times

t at which Qt = αVt; i.e., times at which (1 − α)Vt = Bt +Dt. We will assume throughout

that the bank is initially well capitalized in the sense that Q0 > αV0.

In terms of the amount B̃t of principal remaining (not converted) at time t, the capital

value of α. The average ratio of risk-weighted assets to total assets over all FDIC banks was 70–75% during
2003–2010, so a capital requirement of 8% of risk-weighted assets could be approximated by a requirement
of 5–6% of total assets. For the largest bank holding companies, the asset ratio is 40–60%, corresponding to
a lower value of α. The adjustment in α could be tailored to a specific institution based on its mix of assets.
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constraint is

(1− α)Vt ≥ B̃t

[
e−d1(T−t)(1− c1

d1
) +

c1
d1

]
+D

[
e−d2(T−t)(1− c2

d2
) +

c2
d2

]
. (2.5)

Once the contingent capital is exhausted, the constraint becomes (1 − α)Vt ≥ Dt. Let τb

denote the first time (1− α)Vt = Dt, at which point the firm is seized by regulators. Define

Lt by setting

(1− α)Lt = max
0≤s≤t






B +

D
[
e−d2(T−s)(1− c2

d2
) + c2

d2

]
− (1− α)Vs

[
e−d1(T−s)(1− c1

d1
) + c1

d1

]




+




. (2.6)

Then we show below that (1 − α)Lt is the cumulative amount of principal converted up to

time t. More precisely, we claim that if we set B̃t = B − (1−α)Lt, then (2.5) is satisfied for

all t ∈ [0, τb], and (1− α)Lt is the least amount of conversion that meets this condition.

Equation (2.6) simplifies when both kinds of debt have constant book value. This holds

when the debt is issued at par (i.e., B0 = B and D0 = D) so the coupon rates coincide with

the effective interest rates, meaning that c1 = d1 and c2 = d2. In this case, equation (2.6)

simplifies to

(1− α)Lt =

(
B +D − (1− α) min

0≤s≤t
Vs

)+

. (2.7)

The conversion process in this case becomes easier to visualize if we introduce two thresh-

olds

a =
B +D

1− α
, b =

D

1− α
. (2.8)

Under our standing assumption that the capital constraint is satisfied at time zero, V0 > a.

Conversion starts when V first hits a. Subsequently, at each instant at which V hits a

level lower than any previously reached, additional contingent capital is converted to satisfy

the constraint. Once V hits b (which happens at τb), the contingent capital has been fully
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V
0

b

a
V

t L
t

0 t

Figure 2.2: Illustration of the conversion process. Conversion begins when V reaches the upper
boundary a. The total amount converted to time t is (1 − α)Lt, where Lt is the
distance from the running minimum of V to a, capped at a− b.

converted. See Figure 2.2. The process L is given by

Lt = min

{(
a− min

0≤s≤t
Vs

)+

, a− b

}
, for all t ∈ [0, T ]. (2.9)

The width a− b is (1−α) times the face value B of contingent capital. A similarly tractable

case holds when the two types of debt pay no coupon and have the same effective interest

rate – that is, when c1 = c2 = 0 and d1 = d2 = d.

We formalize the conversion mechanism in the following result, in which we view (2.6) as

a mapping from a path of V to a path of L:

Proposition 2.2.1. Let D, B, c1, c2, d1, and d2 be given. The function {Lt, t ∈ [0, τb]}
defined by applying (2.6) to {Vt, t ∈ [0, τb]} is the only function with the following properties:

(i) L is increasing and continuous with L0 = 0;

(ii) Vt − (B − (1− α)Lt)(e
−d1(T−t)(1− c1

d1
) + c1

d1
)−Dt ≥ αVt for all t ∈ [0, τb];

(iii) L increases only when equality holds in (ii).
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Any function satisfying (i) and (ii) is greater than or equal to L on [0, τb].

Condition (i) is natural for the process of cumulative conversion. Condition (ii) states

that conversion occurs to preserve the required capital ratio until τb when the contingent

capital is exhausted. Condition (iii) states that conversion occurs only as needed – when the

firm is at its minimum capital requirement. The result follows from the standard reflection

mapping (as in Harrison [38, p.21]) applied to the function

Vt −
1

1− α

(
B[e−d1(T−t)(1− c1

d1
) +

c1
d1

] +Dt

)
.

The proposition determines L only up to the time τb when the contingent capital has been

fully converted. Using (2.6) or the special case in (2.9), we can conveniently extend the

definition of L to the interval [0, T ], even if τb < T .

2.3 Equity Allocation

We will value the contingent capital bond by calculating the expected present value of the

payments to the holder of the security. The payments include coupons (paid continuously in

proportion to the unconverted debt), any remaining principal at maturity, a fraction of the

firm’s equity earned through conversion, and dividends paid on a fraction of equity. From

the analysis in the previous section, we can determine how much of the contingent capital

remains unconverted at each point in time. To value the equity component as the bond

converts, we need to analyze what fraction of the firm’s equity is held by investors who were

converted from contingent capital holders to equity holders. We limit ourselves to the case

c1 = d1 and c2 = d2 which, as explained in the previous section, equates book value to

remaining face value for both kinds of debt.
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To motivate the analysis that follows, consider again the example of Figure 2.1. Suppose,

for simplicity, that the firm starts with 10 shares outstanding. By writing down 4.5 in

convertible debt in (c), the firm automatically adds 4.5 to equity, but how the total equity is

apportioned to the prior and new shareholders depends on how many new shares are issued

in exchange for the converted debt. We introduce a conversion ratio q > 0, which is the book

value of equity received by the contingent capital investors for each dollar of face value of

debt converted. If q = 1, then in (c), the converted investors need to get 4.5 in book value

of equity. This is accomplished by issuing them 9 shares, since they then own a fraction

9/(10 + 9) of the firm, and 9/19ths of the total equity of 9.5 is indeed 4.5. If q = 2, then

they should get 180 shares: this gives them a fraction 180/(10 + 180) of the total equity of

9.5 for a book value of 9, which is indeed twice the book value of the debt they gave up.

The dilution leaves the original shareholders with 0.5 in book value, or 1/18th of the total

equity. The conversion ratio q has no effect on the total amount of equity, but it determines

how the equity is divided between the original and converted shareholders. We need to keep

track of this allocation to determine the market value of the convertible debt. Book value

of equity is not, by itself, a direct measure of market value; but the proportions of book

value of equity held by the two types of investors determine how cash flows are allocated,

and the market value of the contingent capital is the expected discounted value of all cash

flows received by the investors in these securities.

We will derive an expression for the amount of equity held at any time by the original

equity investors. As a lead-in to the continuous-time setting, we consider a discrete-time

formulation with a discrete transition over a small interval ∆t and write Vt+∆t = Vt +∆Vt.

Suppose (as in Figure 2.1a) that the firm is just at the capital ratio boundary at time t

and it suffers an asset loss ∆Vt < 0. From (2.9) (and Proposition 2.2.1), we know that L

increases when V reaches a new minimum and ∆Lt = −∆Vt. The resulting amount of equity
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following conversion is given by

Qt+∆t = Qt +∆Vt + (1− α)∆Lt = Qt + α∆Vt,

the minimal amount of additional equity required to preserve the capital ratio (as in Fig.

2.1c).

Let Qo denote the amount (book value) of equity held by the original shareholders, and

let πt = Qo
t/Qt denote the fraction of equity they own. Suppose the conversion at time t

is the first to occur, so that the equity is fully held by the original shareholders just before

conversion and Qo
t = Qt. Then

Qo
t+∆t = Qo

t +∆Vt − (q − 1)(1− α)∆Lt.

In other words, the original shareholders absorb the full loss ∆Vt in asset value, and they

lose an amount (q − 1)(1 − α)∆Lt to the new shareholders as a result of the conversion.

More generally, if the original shareholders own a fraction πt of the equity at time t, then

they absorb a fraction πt of the losses, and we have

Qo
t+∆t = Qo

t + πt (∆Vt − (q − 1)(1− α)∆Lt) . (2.10)

To formulate a precise result, we work directly in continuous time. We defined Qt in

(2.4). Under our constant book-value condition c1 = d1, c2 = d2, (2.4) becomes

Qt = Vt − [B − (1− α)Lt]−D, (2.11)

and the expression

dQt = dVt + (1− α)dLt (2.12)
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is well-defined because V is geometric Brownian motion and L has increasing paths. We

introduce the process Qo by setting

dQo
t =

Qo
t

Qt

(dVt − (q − 1)(1− α)dLt) , 0 ≤ t ≤ τb, (2.13)

with initial condition Qo
0 = Q0. We interpret Qo as the equity held by the original sharehold-

ers: equation (2.13) says that the change in their equity is their share of the change in asset

value plus their share of the transfer to new shareholders upon conversion. Using (2.12) to

write this equation as
dQo

t

Qo
t

=
dQt

Qt

− q(1− α)
dLt

Qt

(2.14)

offers the following interpretation: the percentage change in the book value of equity held

by the original shareholders dQo
t/Q

o
t equals the overall percentage change dQt/Qt so long

as no conversion occurs; at an instant of conversion, the percentage change in book value

held by the original shareholders is reduced by the fraction of equity transferred to the new

shareholders. (In Figure 2.1, (2.14) describes the transition from (a) to (c) with q = 1,

Qo
t = Qt = 10, dQt = −0.5, dQo

t = −5, and the converted amount (1 − α)dLt = 4.5.)

Because dLt = 0 for t > τb, based on (2.14) we extend Qo
t beyond τb if τb < T by setting

Qo
t = (Qt/Qτb)Q

o
τb
, t ∈ (τb, T ], (2.15)

so the fraction Qo
t/Qt does not change in [τb, T ]. The following result confirms that these

definitions are meaningful and that they lead to an explicit solution.

Theorem 2.3.1. Suppose Bt ≡ B and Dt ≡ D > 0 for t ∈ [0, T ]. Then (2.14) and (2.15)

have exactly one solution, and it is given by

Qo
t = Qt

(
a− Lt

a

)(q 1−α
α

)

, 0 ≤ t ≤ T. (2.16)
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Consequently, the fraction of equity held by the original shareholders at time t is given by

πt =

(
a− Lt

a

)(q 1−α
α )

=

(
1− (1− α)Lt

B +D

)(q 1−α
α )

=

(
min{1, (1− α)min0≤s≤t Vs

B +D
}
)(q 1−α

α )
,

(2.17)

for t ∈ [0, T ].

A remarkable feature of (2.17) is that the fraction of equity held by the original sharehold-

ers at any time t depends only on the minimum asset value reached up to time t. Different

paths of V may produce very different paths for the conversion process and may result in

different terminal values for equity; and yet, if they reach the same minimum asset value,

they leave the original shareholders owning the same fraction of the firm. The total amount

of contingent capital converted to time t is (1−α)Lt, and it is interesting that the dependence

of πt on this amount is nonlinear yet explicit.

We note some properties of (2.17). If Lt = 0 (i.e., if V never reaches the capital-ratio

trigger a = (B +D)/(1− α) in [0, t]), then πt = 1, reflecting the fact that no conversion has

occurred. If Lt = b − a (i.e., if V reaches the lower boundary b = D/(1 − α) at which the

required capital ratio can no longer be sustained), the contingent capital is fully exhausted,

but the original shareholders are not wiped out; they own a fraction

(
b

a

)(q 1−α
α

)

=

(
D

B +D

)(q 1−α
α

)

(2.18)

of the remaining equity Vt −D = αD/(1− α). The following result records the dependence

of πt on the minimum ratio α:

Corollary 2.3.2. The proportion πt of equity owned by the original shareholders is an in-

creasing function of α with min0≤s≤t Vs held fixed if

min
0≤s≤t

Vs <
exp(−α)

1− α
(B +D); (2.19)
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it is decreasing in α if the opposite inequality holds.

This result is easily established by differentiating the third expression for πt given in

(2.17). We interpret the corollary as stating, perhaps surprisingly, that a higher required

capital ratio ultimately protects the original shareholders: if the loss in asset value is suffi-

ciently large, the original shareholders keep a higher fraction of the firm under a higher (and

thus more stringent) capital ratio α. Moreover, the total amount of shareholder equity Qt is

itself an increasing function of α; this follows from (2.9) and (2.11).

To interpret the condition in the corollary, recall that conversion of debt to equity begins

when asset value reaches a = (B +D)/(1− α). For small α, exp(−α) ≈ 1, so the threshold

in (2.19) is nearly the same as the trigger for conversion. Thus, at higher α, conversion is

triggered sooner (resulting in a lower π), but if asset value continues to decline, a higher α

results in a higher fraction of equity held by the original shareholders.

This phenomenon is illustrated in Figure 2.3 for a firm with D = 50, B = 30, and

initial asset value V0 = 100. The figure plots πt against the maximum loss in asset value,

V0 − min0≤s≤t Vs for two different values of α. Conversion begins when the loss in value

reaches V0 − (B + D)/(1 − α), which is approximately 15.8 with α = 0.05 and 19.2 with

α = 0.01. The higher capital ratio triggers conversion sooner; however, once conversion

begins at the smaller value of α, the two curves quickly cross. Indeed, from the corollary we

know that once the loss exceeds V0 − exp(−.01)(B + D)/(1 − .01) ≈ 20, any capital ratio

greater than 1% keeps a higher fraction of equity with the original shareholders.
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Figure 2.3: Comparison of the fraction πt held by the original shareholders as a function of the
maximum loss in asset value up to time t, for two values of the capital ratio α.

2.4 Dividends and Debt Service Payments

As is standard in much of the capital structure literature (e.g., Leland and Toft [51]), we

will assume that the firm’s assets generate cash at a rate proportional to their value (in

our setting, book value), and these cashflows are used to service the firm’s debt and to pay

dividends to shareholders. If the firm pays out a constant fraction δ ∈ (0, 1) of its asset

value, then from time t to t+ dt, the cashflow available will be δVt dt.

With a coupon rate of c2 and a face value of D, the senior debt requires payments at

rate c2D prior to maturity. Interest on debt is tax deductible, and we model this as in, e.g.,

Leland [50] and Leland and Toft [51]: if the firm’s marginal tax rate is κ ∈ (0, 1), it incurs

an after-tax cost rate of (1 − κ)c2D in servicing the senior debt. We could apply different

marginal tax rates κ1, κ2 to the two types of debt3 to get after-tax coupon rates (1 − κi)ci,

i = 1, 2; for simplicity, we use a common value κ. The outstanding convertible debt at time

3It is unclear if coupons on contingent capital would be tax deductible under the current tax code in the
U.S. because the conversion feature may make the debt too equity-like. This possibility could be modeled
by taking κ1 = 0. But tax rules could also be changed if regulators sought to create incentives for banks to
hold more of their debt in the form of contingent capital.
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t is B − (1− α)Lt, requiring an after-tax payment at rate c1(1− κ)[B − (1− α)Lt].

The difference

δVt − (1− κ) (c1 (B − (1− α)Lt) + c2D)

between the rate at which cash is generated and the rate at which it is paid to debt holders

is the rate at which dividends are paid to shareholders, whenever this difference is positive.

When the difference is negative, the firm is generating insufficient cash to service its debt.

As is customary, we interpret a negative dividend as the issuance of a small amount of new

equity, which brings cash into the firm. This cash is immediately paid out to the debt

holders, so the issuance has no impact on the total amount of capital in the firm.

We will assume, in fact, that the new equity is issued to existing shareholders (as in a

rights offering) and that the original and converted shareholders participate in equal propor-

tions. Thus, the proportion πt of the firm owned by the original shareholders is unchanged.

The new shareholders then receive a net cashflow at rate

(1− πt) (δVt − (1− κ) (c1 (B − (1− α)Lt) + c2D)) , (2.20)

regardless of whether this is positive (in which case it is a dividend) or negative (in which

case it is the cost of raising equity). We will need to incorporate this stream of payments

into our overall valuation of the contingent capital.

Two parameter ranges for the coupon and payout rates merit special mention. We know

that as long as the firm has not exhausted its convertible debt, it can maintain the minimum

capital ratio by converting debt into equity; that is, it can maintain the bound

(1− α)Vt ≥ B − (1− α)Lt +D,
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with equality holding at the instants of conversion. It follows that, if

(1− α)δ > (1− κ)max{c1, c2}

the firm always generates enough cash to service its debt, and shareholders always earn a

dividend. In contrast, if

(1− α)δ < (1− κ)min{c1, c2}

then the firm will stop paying a dividend — and will start issuing small amounts of equity

— in advance of any debt converting to equity.

2.5 Decomposition of Payments on Convertible and Senior Debt

In this section, we decompose the payments to holders of the convertible debt into a principal

payment, coupon payments, dividends on converted equity and a terminal equity payment.

We decompose payments on the senior debt contingent on the firm’s ability to maintain the

required capital ratio. These decompositions prepare the way for the valuations in the next

section.

The horizon for the valuation is the smaller of the debt maturity T and the time τb at

which V first hits b = D/(1 − α). At τb, the firm has exhausted its contingent capital

and can no longer sustain the required capital ratio; as before, we assume the firm is then

seized by regulators and liquidated.4 The firm still has equity at this point, but not enough

to meet the capital requirement. To capture the possible loss in value from seizure, we

assume that shareholders recover a random fraction X1 ∈ [0, 1] of the equity value at τb, the

remaining fraction 1−X1 representing a deadweight cost. (An alternative loss mechanism is

4An alternative interpretation is that the firm undergoes a distressed sale, so the full value of the assets
is not recovered, but the equity holders need not be wiped out.
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the delayed recapitalization used in Peura and Keppo [66].) Similarly, we apply a random

recovery fraction of X2 ∈ [0, 1] to senior debt. We assume that X1 and X2 are independent

of V but not of each other. Indeed, to enforce absolute priority of debt over equity, we

need P (X2 = 1|X1 > 0) = 1. Independence between (X1, X2) and V will imply that only

the expected recovery rates Ri = E[Xi], i = 1, 2, enter into our valuations. These can

satisfy R1 > 0 and R2 < 1 without violating absolute priority. As just one illustration, any

0 ≤ R1 ≤ R2 ≤ 1 can be realized as expected recovery rates while satisfying absolute priority

by assigning to (X1, X2) the outcomes (1, 1), (0, 1), and (0, 0) with probabilities R1, R2−R1,

and 1−R2, respectively.

2.5.1 Convertible Debt

We use r > 0 to denote a fixed (risk-free) interest rate at which to discount all payoffs for

valuation. The discounted payoffs of the components of the convertible debt are as follows:

• principal payment at maturity:

e−rT (B − (1− α)LT ) (2.21)

• earned coupon: ∫ T

0

e−rsc1(B − (1− α)Ls)ds (2.22)

• equity earned through conversion:

e−rT (1− πT ) (VT − [(B − (1− α)LT ) +D])1{τb>T} + e−rτb(1− πτb)X1αVτb1{τb≤T}

(2.23)
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• net dividends:

∫ min{T,τb}

0

e−rt (1− πt) (δVt − (1− κ) (c1 (B − (1− α)Lt) + c2D)) dt (2.24)

In (2.21), (1 − α)LT is the total amount of debt converted to equity, so B − (1 − α)LT

is the remaining principal at maturity. Similarly, in (2.22), B − (1− α)Ls is the remaining

principal at time s, and multiplying this expression by c1 yields the rate at which the holders

of the bond earn coupons.

Equation (2.23) breaks down the claim on equity into two parts, depending on whether

liquidation occurs before the maturity of the debt. In the first term, τb > T so the firm

survives throughout the interval [0, T ]. The market value of the firm’s total equity at T is

the difference

VT − [(B − (1− α)LT ) +D] (2.25)

between the value of the firm’s assets and the principal payments on the two kinds of debt.

Here we invoke our assumption (relaxed in Section 2.8), that asset value is marked to market

so that (2.25) is the cash paid to equity holders after retiring all debt if the assets are sold

at T . A fraction (1 − πT ) of this residual value goes to the new shareholders — those who

acquired an equity stake through conversion of the contingent capital. In the second case in

(2.23), the firm is seized and liquidated at time τb when the contingent capital is exhausted.

At this instant, the firm just meets its capital requirement, so the residual market value is

αVτb . A fraction X1 of this is recovered by shareholders upon liquidation, and a fraction

(1− πτb) of the recovered value goes to the new shareholders.

Finally, the integrand in (2.24) is the discounted value of the net dividend rate in (2.20)

paid to the converted shareholders at time t. To value the contingent capital, we will need

to calculate the expectations of (2.21)–(2.24).
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2.5.2 Senior Debt

The payments on the senior debt can be decomposed similarly but more simply into prin-

cipal and coupon payments. We again distinguish the cases τb ≤ T and τb > T , the first

case corresponding to seizure and liquidation of the firm. The discounted payoffs to senior

debtholders are as follows:

• earned coupon: ∫ min {τb,T}

0

c2De−rsds (2.26)

• principal:
(
e−rT1{τb>T} +X2e

−rτb1{τb<T}

)
D (2.27)

In equation (2.26), coupons are paid until either the maturity of the debt at time T or the

liquidation at τb. In (2.27), the principal payment is reduced from the original face value

of D to X2D in the case of liquidation, reflecting a random recovery fraction of X2 for the

senior debt and the possibility of a deadweight cost of seizure and liquidation. If X2 ≡ 1,

the senior debt would be entirely riskless.

2.6 Valuation

To calculate expectations of (2.21)–(2.27), we posit that the dynamics of the book value of

the firm’s assets are given by (2.1). Equivalently, we have, with µ = r − δ − σ2/2,

Vt = V0 exp {µt+ σWt} . (2.28)
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We are assuming that the firm’s assets are marked to market, so that V also represents

the market value of the firm’s assets; we drop this assumption in Section 2.8. In writing the

drift in (2.1) as r − δ, we are implicitly specifying the dynamics of V under a risk-neutral

pricing measure that we will use to take expectations in (2.21)–(2.26). Mathematically, this

is by no means necessary — we could use any constant drift, including one that incorporates

a risk premium, and modify our valuation formulas accordingly.

2.6.1 A Partial Transform

Inspection of the discounted payoffs in (2.21)–(2.26) and the proportion πt in (2.17) indicates

that the key remaining step for valuation is taking expectations involving powers of V and

its running minimum with the running minimum restricted to an interval. We therefore

undertake a preliminary calculation of a general such expression which we will then use to

value the various payments.

Set

W̃t = log(Vt/V0) and m̃t = min
0≤s≤t

W̃s; (2.29)

then W̃ is a Brownian motion with drift µ and diffusion coefficient σ. Let

H(t, v, k, y) = Hµ,σ(t, v, k, y)

= E
[
exp

(
vW̃t + km̃t

)
1 {m̃t ≤ y}

]
, t, k ≥ 0, v, y ∈ (−∞,∞).

(2.30)

The function H depends on the parameters µ and σ through the processes W̃ and m̃; as

these parameters remain fixed, we suppress this dependence and write simply H(t, v, k, y) in

referring to the function. The function is given explicitly in the following result.
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Proposition 2.6.1. The function H in (2.30) evaluates to

H(t, v, k, y) = exp
(
µvt+ v2σ2t/2

)
h(t, k, y), (2.31)

with

h(t, k, y) =
2θ

2θ + kσ2
eky+2yθ/σ2

Φ

(
y + tθ

σ
√
t

)

+
2θ + 2kσ2

2θ + kσ2
ekθt+k2σ2t/2Φ

(
y − (θ + kσ2)t

σ
√
t

)
,

(2.32)

where θ = µ+ vσ2, and Φ is the standard normal distribution function.

With y = 0, (2.30) defines the joint Laplace transform of W̃t and −m̃t, and in this sense

the general case in (2.30) defines a partial transform. In our application of the formula,

y will always take the value log(a/V0) or log(b/V0), corresponding to the asset levels at

which conversion of contingent capital starts and ends. In several cases, we need to take the

difference of values of H at these two values of y with other arguments held fixed, so it will

be convenient to define

∆H(t, v, k) = H(t, v, k, log(a/V0))−H(t, v, k, log(b/V0)). (2.33)

.

2.6.2 Principal and Coupon Payments

The discounted expected value of the principal payment on the convertible debt is the ex-

pected value of equation (2.21) and is given by

e−rT (B − (1− α)E[LT ]) . (2.34)
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Thus, to value the principal payment it suffices to find the expectation of LT .

Proposition 2.6.2. The expected present value of the contingent capital’s principal payment

is (2.34), where

E[Lt] = aH(t, 0, 0, log(a/V0))− bH(t, 0, 0, log(b/V0))− V0∆H(t, 0, 1).

This expression evaluates to

E[Lt] = aΦ
(
δ−a1
)
− bΦ

(
δ−b1
)
+

2V0 (µ+ σ2)

(2µ+ σ2)
etµ+

tσ2

2

(
Φ
(
δ−a2
)
− Φ

(
δ−b2
))

+
σ2

(2µ+ σ2)

(
a

(
a

V0

) 2µ

σ2

Φ
(
δ+a1
)
− b

(
b

V0

) 2µ

σ2

Φ
(
δ+b1
)
) (2.35)

where

δ±a1 =
±tµ+ log( a

V0
)

σ
√
t

δ±a2 =
t(µ+ σ2)± log( a

V0
)

σ
√
t

δ±b1 =
±tµ+ log( b

V0
)

σ
√
t

δ±b2 =
t(µ+ σ2)± log( b

V0
)

σ
√
t

Figure 2.4 plots the expected amount of contingent capital converted by time t, namely

(1−α)E[Lt], over a two-year horizon for various levels of α and σ. Recall that E[Lt] depends

on α through the boundaries a and b of the conversion band. The figure uses V0 = 100 with

D = 60, B = 30, r = 5%, and δ = 3%. The left panel fixes σ at 25%, and the right panel

fixes α at 5%. The curves show qualitatively different behavior near time zero: when the

initial asset level is far from the conversion trigger (either because α is small or because σ is

small), the expected amount converted is nearly flat for small t; the curves are steeper when

the conversion trigger is closer.

The expected present value of the contingent capital coupon payments (2.22) is given by
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Figure 2.4: Comparison of (1−α)E[Lt], the expected amount of contingent capital converted by
time t for different values of the capital ratio α (left) and the asset volatility σ (right).

B
c1
r
(1− e−rT )− c1(1− α)

∫ T

0

e−rtE[Lt] dt. (2.36)

We do not have a simple expression for the integral in (2.36); however, because E[Lt] is

smooth and monotone, the integral can be accurately approximated by replacing it with a

sum.

2.6.3 Equity Earned Through Conversion

We turn now to (2.23), which gives the discounted terminal value of the equity acquired

by the contingent capital investors through the process of conversion. We value separately

the two terms in (2.23), the first corresponding to the firm surviving until T , the second

corresponding to seizure and liquidation before T .

Proposition 2.6.3. The value of the converted equity stake in the event of survival (the first
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term in (2.23)) is given by exp(−rT ) times

V0∆H(T, 1, 0)− V0

(
V0

a

)q(1−α)/α

∆H(T, 1, q(1− α)/α)

−V0(1− α)∆H(T, 0, 1) + V0(1− α)

(
V0

a

)q(1−α)/α

∆H(T, 0, 1 + q(1− α)/α).(2.37)

In the event of seizure and liquidation (the second term in (2.23)), the value of the converted

equity stake is with R1 = E[X1] and θ1 =
√

µ2 + 2σ2r,

R1αb

(
1−

(
b

a

)q(1−α)/α
)(

b

V0

)(µ−θ1)/σ2

e−rTH(T, (θ1 − µ)/σ2, 0, log(b/V0)). (2.38)

2.6.4 Net Dividends

As discussed in Section 2.4, the difference between the total payout rate δVt and debt service

payments creates a dividend stream for equity holders, a fraction 1 − πt of which flows to

investors who originally held convertible debt, as in (2.24). Taking the expected value of

this expression, we get

E

[∫ min{T,τb}

0

e−rt (1− πt) (δVt − (1− κ) (c1 (B − (1− α)Lt) + c2D)) dt

]

=

∫ T

0

e−rtE [(1− πt) (δVt − (1− κ) (c1 (B − (1− α)Lt) + c2D))1 {τb > t}] dt (2.39)

The expectation inside the integral can be evaluated in closed form:

Proposition 2.6.4. The expected net rate at which the contingent capital investors earn
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dividends (i.e., the expectation on the right side of (2.39)) is given by

δV0∆H(t, 1, 0)− (1− α)(1− κ)(c2 − c1)b∆H(t, 0, 0)− (1− α)(1− κ)c1V0∆H(t, 0, 1)

−(1− α)(1− κ)c1V0∆H(t, 0, 1 + q(1− α)/α)−
(
V0

a

)q(1−α)/α

×

[δV0∆H(t, 1, q(1− α)/α)− (1− α)(1− κ)(c2 − c1)b∆H(t, 0, q(1− α)/α)] . (2.40)

The present value of the cumulative dividends is the time-integral of this expression,

which is easily and accurately approximated by a sum over a discrete set of dates.

It is also evident from this expression that the effect of the marginal tax rate κ is simply

to replace each original coupon rate ci with (1 − κ)ci. The formula remains valid if we

replace (1− κ)ci with (1− κi)ci to allow different levels of tax-deductibility of the two types

of coupons.

2.6.5 Senior Debt

The expected value of the coupon payments (2.26) is given by

E

[∫ min {τb,T}

0

c2De−rsds

]
= D

c2
r
(1− E [exp {−rmin{τb, T}}])

= D
c2
r

(
1− e−rT

P(τb > T )− E
[
e−rτb1{τb≤T}

])
.

(2.41)

Similarly, the discounted expected value of the principal payment (2.27) is given by

DE
[
e−rT1{τb>T} +X2e

−rτb1{τb<T}

]
= D

(
e−rT

P(τb > T ) +R2E
[
e−rτb1{τb≤T}

])
. (2.42)

The probability P(τb > T ) coincides with P(m̃T > log(b/V0)), which can be evaluated directly

using equation (A.2) in the appendix; the expectation E[exp(−rτb)1{τb ≤ T}] is evaluated
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explicitly in equation (A.6) of the appendix. With these substitutions, the total discounted

expected value of the senior debt becomes

D
c2
r
+D

(
1− c2

r

)
e−rT

[
Φ

(
µT − log( b

V0
)

σ
√
T

)
−
(

b

V0

) 2µ

σ2

Φ

(
µT + log( b

V0
)

σ
√
T

)]

+D
(
R2 −

c2
r

)


(

b

V0

)µ−θ1
σ2

Φ



log
(

b
V0

)
− θ1T

σ
√
T


+

(
b

V0

)µ+θ1
σ2

Φ



log
(

b
V0

)
+ θ1T

σ
√
T




 ,

where, as before, θ1 is the square root of 2σ2r + µ2. The following result values the senior

debt using the function H:

Proposition 2.6.5. The value of the senior debt, including both coupon payments (2.26)

and principal (2.27), is given, with θ1 =
√

2σ2r + µ, by

D
c2
r
+D

(
1− c2

r

)
e−rT (1−H(T, 0, 0, log(b/V0)))

+D
(
R2 −

c2
r

)( b

V0

)µ−θ1
σ2

e−rTH(T, (θ1 − µ)/σ2, 0, log(b/V0)),

2.7 Closing the Model: Market Yields

In our calculations, we have assumed that both the senior debt and the convertible debt are

sold at par at time zero; this leads to constant book values (for the unconverted principal),

(2.9), and the resulting tractability. In Section 2.6, we have calculated market prices for

senior and convertible debt, with coupon rates assumed given. For our model to be inter-

nally consistent, we need the market prices we calculate at time zero to coincide with our

assumption that the bonds sell at par. We now show that this is indeed possible and that it

determines the coupon rates for both types of debt.

For the senior debt, equating the expected discounted value of the coupon and principal
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calculated in Section 2.6.5 to the face value D yields the coupon rate

c2 = r

(
1 +

(1−R2)E
[
e−rτb1{τb≤T}

]

1− e−rTP(τb > T )−R2E
[
e−rτb1{τb≤T}

]
)
.

The probability and expectation in this expression are evaluated in Appendix A.1.6, thus

allowing direct evaluation of c2. If R2 = 1, the coupon rate c2 reduces to r: under our

assumption that the firm is seized and liquidated when it violates its capital requirement —

before insolvency — the senior debt is riskless if there is no loss of value at liquidation.

Similarly, for the convertible debt, equating our valuation (the sum of the expectations

of (2.21)–(2.24))) with the face value B yields the coupon rate

c1 =
B − A1 − A3 − A4

A2 + A5

,

where A1 is the expected principal in (2.34),

A2 =
B

r
(1− e−rT )− (1− α)

∫ T

0

e−rtE[Lt] dt,

from (2.36), A3 is the expected terminal equity value (the sum of (2.38) and exp(−rT ) times

(2.37)), and

A4 = E

[∫ min{T,τb}

0

e−rt (1− πt) (δVt − (1− κ)c2D) dt

]

and

A5 = E

[∫ min{T,τb}

0

e−rt (1− πt) (1− κ) (B − (1− α)Lt) dt

]

come from the net dividends in (2.39). The results in Section 2.6 yield explicit expressions

for A1–A5 and thus for the coupon rate c1.

We view these expressions as the key practical contribution of our analysis. Given the
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characteristics of the firm — its asset volatility and the face value of its senior and convertible

debt — these equations give the coupon rates required by the market. For debt issued at

par, the coupon rate equals the yield; so, more generally, we interpret these rates as the

yields required by the market for the two types of debt. These equations are therefore useful

in gauging the yield required by investors in contingent capital as compensation for bearing

the risk that the debt they hold converts to equity.

2.8 Distinguishing Market and Book Values of Assets

To this point, we have assumed that the bank’s assets are marked to market so that V

represents the market value of assets as well as their book value. We now extend the model

to capture a stochastic relation between the two. We use At to denote the market value of

assets. Our key assumption is that while the market and book values of assets may differ,

they are sufficiently aligned to agree on whether a bank is solvent. If the bank were liquidated

at time t, debt holders would be due Bt+D, so the bank is solvent if its assets have at least

this value. Our condition, then, is that At > Bt +D whenever Vt > Bt +D. To model this

relationship, we introduce a second geometric Brownian motion U ,

Ut = U0 exp {θut+ σuW
′
t} ,

with W ′ and W (the original Brownian motion driving V ) having instantaneous correlation

ρ. We model At as satisfying

At − Bt −D = Ut(Vt − Bt −D). (2.43)

The process U can be roughly interpreted as a market-to-book ratio, but whereas Vt−Bt−D

is the book value of equity, At −Bt −D is the difference between the market value of assets
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and the book value of debt. A natural choice in this setting would be to take θu = −σ2
u/2,

so that E[Ut] is constant, but we need not limit ourselves to this case.

In this extension of our basic model, conversion from debt to equity is still governed by

book value V , just as before; but the value received by equity holders at either the maturity

date T or at a seizure at τb now depends on the market value A. Accordingly, we modify

(2.23) by replacing VT with AT and Vτb with Aτb . This case remains tractable under the

parameter restriction 2σ2γ ≥ µ2, where

γ = −θu + σuµρ/σ − 1
2
σ2
u(1− ρ2) + r.

In Proposition 2.6.3, (2.37) becomes

ϑ∆H(T, 1 + σu
ρ

σ
, 0)− ϑ

(
V0

a

)q(1−α)/α

∆H(T, 1 + σu
ρ

σ
, q(1− α)/α)

−ϑ(1− α)∆H(T, σu
ρ

σ
, 1) + ϑ(1− α)

(
V0

a

)q(1−α)/α

∆H(T, σu
ρ

σ
, 1 + q(1− α)/α),

with ϑ = V0U0 exp((r − γ)T ), and (2.38) becomes

R1U0αb

(
1−

(
b

a

)(q 1−α
α

)
)
×
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b
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(
log( b
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)− θ2T
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)
+

(
b

V0

) ρσu/σ+µ+θ2
σ2

Φ

(
log( b

V0
) + θ2T

σ
√
T

)
 .

These expressions are derived through a minor modification of the proof of Proposition 2.6.3

after making the substitution in (2.43).

With the condition that θu = −σ2
u/2, this extension introduces two new parameters, the

“book-to-market volatility” σu and correlation ρ, as well as the initial value A0. Though

not directly observable, these parameters could be calibrated using market values of a firm’s
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I II
Debt over assets ratio D/V0 90%
Capital adequacy ratio α 4%
Risk free rate r 5% 0.5%
Volatility of asset returns σ 8% 16%
Debt maturity T 1.5
Fractional payout of assets δ 3% 1.5%
Tax rate κ 30%
Recovery rate for equity R1 30%
Recovery rate for senior debt R2 95%

Table 2.1: Parameters for base case (I) and modified scenario (II).

debt and equity and book values from financial statements. As our model already has several

parameters, in the numerical examples of the next section we limit ourselves to the basic

model in which At = Vt.

2.9 Example

In this section, we use numerical examples to investigate how the yields derived from our

model change with parameter inputs and how the introduction of convertible debt influences

the spread on senior debt. Table 2.1 shows the parameter values we use. The first set (I)

is our base case and is intended to be representative of the end of 2006, before the financial

crisis, based on data for the twenty largest (by assets) banks in the U.S. The parameter

modifications indicated under II are intended to be representative of 2009. In both cases, we

consider a bank with 90% debt that is required to maintain a minimum capital ratio of 4%

of assets (which corresponds to 8% of risk-weighted assets for a bank whose assets have an

average risk weight of 50%). The maturity T approximates the weighted average maturity of

debt for large banks, using a six-month maturity for deposits. The base case has a relatively

low asset volatility of 8% (see, e.g., the estimates in Nikolova [61]), a payout rate of 3%

(reflecting both interest payments and dividends) and a risk-free rate of 5%, which is very
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Figure 2.5: (a) Sensitivity of senior debt to volatility and minimum capital ratio α in the absence
of convertible debt. (b) Coupon rates at different magnitudes of convertible debt as
a percentage of total debt.

close to the average Treasury rate at the end of 2006, when the Treasury yield curve was

quite flat.

We begin with nonconvertible debt only. Recall that the coupon rate is set to price the

bond at par, so the coupon and yield are equal. Figure 2.5a shows the yield spreads we

obtain with our assumed recovery rate R2 of 95%. With a 100% recovery rate, the debt

would be riskless. The potential loss of 5% takes effect only in case of seizure by regulators;

this occurs at a positive capital ratio, when the bank’s assets still exceed the value of its

debt, so the loss reflects a liquidation cost. Our base case of α = 4% and σ = 8% produces

a spread of 1.9%. As expected, the figure shows that the spread increases if we increase

α or σ, as each of these changes increases the likelihood of seizure and thus of a loss from

liquidation.

Figure 2.5b illustrates the effect of introducing convertible debt to the balance sheet.
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The total amount of debt (regular debt and convertible debt) is fixed at 90% of total asset

value. We change the proportion of convertible debt from 5% to 15% of the total debt. The

graph shows the required coupon rates for both the senior and the convertible debt. The

coupon rate on the convertible debt depends on the loss incurred by shareholders at seizure

and liquidation; we assume a 30% recovery rate, meaning that 70% of the remaining equity

value at seizure is lost through liquidation.

The first observation is that the coupon rate on the senior debt decreases when the

proportion of convertible debt increases. The contingent capital works as a cushion against

liquidation; therefore, with the same recovery rate, the senior debt suffers lower liquidation

costs because of the reduced likelihood of seizure, and this translates to a lower compensating

coupon rate.

With only a small amount of convertible debt, the required coupon on this debt is high,

and this can be understood as follows. With a thin layer of convertible debt on the balance

sheet, the probability of liquidation does not change much, and if the asset level hits the

conversion trigger it is very likely that the full layer of contingent capital will be converted and

the liquidation boundary will be reached, leaving little chance for the converted investors

to benefit from the potential upside to equity. Indeed, they are likely to incur the 30%

liquidation cost to equity shortly after conversion.

However, the coupon rate decreases quickly as we thicken the layer of convertible debt.

Indeed, when q = 1 and convertible debt makes up more than 7.8% of total debt it earns

a lower coupon than the senior debt; and at more than 8% of the total debt, its coupon

drops below the risk-free rate. This pattern results from the potential upside of the equity

the contingent capital investors earn through conversion. Conversion occurs precisely when

the book value of equity is low, so, conditional on survival, the contingent capital investors

can benefit substantially from an increase in equity value. Increasing the proportion of
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Figure 2.6: (a) Sensitivity of senior debt to volatility and minimum capital ratio α when 10% of
debt is replaced with convertible debt. (b) Coupon rates for convertible debt.

contingent capital widens the interval between the conversion trigger and the liquidation

trigger and increases the likelihood of an upside gain through conversion to equity. Lowering

q to 0.8 reduces the upside gain from conversion and thus requires a higher coupon to keep

the convertible debt priced at par.

Figure 2.6a reproduces Figure 2.5a but now with convertible debt making up 10% of total

debt. The figure shows that the coupon rate for senior debt is now much less sensitive to

volatility; for example, at α = 6% and a volatility of 16% the spread does not exceed 200

basis points whereas without contingent capital it was over 800 basis points. This clearly

shows the effect of the protection provided by the convertible debt.

Figure 2.6b shows the required coupon rate for convertible debt at different values of

volatility and α. The graphs are more complicated and non-monotonic in this case. This

reflects the hybrid nature of the contingent capital, with both equity-like and debt-like

behavior. Volatility has an adverse effect on debt and a favorable effect on equity. What we
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Figure 2.7: Coupon rates at different magnitudes of convertible debt with parameter set II.

observe in Figure 2.6b is the trade-off between these two effects.

Next we consider parameter set II of Table 2.1, based roughly on conditions in 2009.

Volatility is much higher, the risk-free rate is much lower, and we have cut the payout rate

δ to reflect lower dividend rates. Figure 2.7 shows the resulting coupon rate on senior and

convertible debt, and it shows that in these new market conditions, the fair coupon rate on

the convertible debt is dramatically higher. Indeed, with these parameters, the geometric

Brownian motion that models assets has a negative risk-neutral drift (r−δ−σ2/2 = −0.0228)

and a high volatility, implying a higher chance of liquidation. As the debt sells at par,

higher liquidation probabilities must be compensated with higher coupon rates. Increasing

the size of the convertible debt decreases the required coupon rate; but, in contrast to the

previous parameter set, even at 10% convertible debt we observe very high coupon rates.

We see this as reflecting the necessity of issuing contingent capital in advance of a crisis; in

an environment of high volatility, investors will demand a much higher coupon unless the

overall level of leverage is substantially reduced. The problem is diminished with a wider

tranche of contingent capital, which provides a buffer for the senior debt and yields for the
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convertible debt in the range of 5–10%.

2.10 Concluding Remarks

We have developed a model to value contingent capital in the form of debt that converts to

equity. The key distinguishing features of our analysis are that we formulate a capital-ratio

trigger and we model partial and on-going conversion. Our capital-ratio trigger approximates

a regulatory capital requirement by using book values for debt and equity. Our partial

conversion process allows just enough debt to convert to equity to maintain the required

ratio until the contingent capital is fully exhausted. We derive closed-form expressions for

yield spreads by adding a consistency requirement that market and book values of debt agree

at issuance and at maturity.

Our numerical examples indicate that the fair yield for contingent capital in our model

is quite sensitive to some of the model’s inputs — in particular, to the size of the convertible

tranche, to the volatility of the firm’s assets, and to recovery rates in the event that the

firm breaches its minimum capital requirement and is seized by regulators. This sensitivity

— particularly to asset volatility and recovery rates, which are not directly observable and

are difficult to estimate — as well as the overall complexity of the product, could present

obstacles to generating the investor demand that would be needed for widespread issuance

of contingent convertible bonds.
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33
Contingent Convertibles, Bail-In Debt, and Tail

Risk in Optimal Endogenous Default Setting

Debt rollover, endogenous default, and tail risk are essential features in examining

how changes in capital structure to include CoCos or bail-in debt change incentives

for equity holders. In this chapter we develop a model of the capital structure of a financial

firm that includes CoCos or bail-in debt along with insured deposits, senior debt, and sub-

ordinated debt. Importantly, bankruptcy in our model is endogenous, as in Leland [50] and

Leland and Toft [51], meaning that it results from the optimal decision of shareholders to

exercise their option to surrender the firm’s assets to the creditors. We are thus interested in

how the two levers in the design of contingent capital affect the incentives for shareholders

to invest additional capital in the firm, and how the levers affect the shareholders’ incentives

to take on different types of risk in investing the firm’s assets. Our model incorporates debt

rollover, and a central theme of our analysis is that the shareholders’ incentives are strongly

influenced by this feature — the cost of debt rollover can motivate shareholders to reduce the
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firm’s leverage and the riskiness of its assets. Also crucial to our analysis is the inclusion of

both jumps and diffusion in asset value. We interpret the diffusive risk as the ordinary level

of volatility in the firm’s business, which is readily observable by a regulator. In contrast,

the jumps capture the firm’s ability to take on high-yielding tail risk that is much harder to

measure if jumps are rare. Among the questions we examine is how replacing straight debt

with convertible debt affects the attractiveness of the two types of risk to equity holders.

We obtain explicit expressions to value all pieces of the capital structure by building on

results of Chen and Kou [18] and Cai, Chen, and Wan [14]. Using the valuation formulas,

we investigate the effect of varying key model parameters including the trigger level for

conversion of debt to equity, the dilution ratio at conversion, the mix and average maturity of

different types of debt, bankruptcy costs, deposit insurance premiums, the tax-deductibility

of interest payments on CoCos, and the riskiness of the firm’s investments. We investigate

how these parameters affect debt and equity values, the timing of bankruptcy, the risk-

sensitivity of equity, the propensity for asset substitution, and the extent of debt overhang

as an obstacle to raising capital 1.

3.1 Summary of Main Results

We can draw some conclusions theoretically, whereas others are illustrated through compar-

ative statics. Details are provided in later sections, but we highlight some key observations

as follows:

(i). So long as the trigger level and the conversion ratio are designed to ensure that con-

1Pelger [63] independently develops a model applying results of Chen and Kou [18] to analyze contingent
convertible bonds. Among the most important differences between his work and ours are that his model
does not distinguish firm-specific and market-wide jumps with different recovery rates for the two cases, nor
does he consider the case of bail-in debt or any calibration to market data.



Chapter 3. CoCos, Bail-in and Tail Risk 51

version occurs prior to endogenous bankruptcy, the precise values of the trigger and

the conversion ratio have no effect on the timing of bankruptcy or the asset level at

which it occurs. This simple but important observation will underlie several other

implications of the model. Conversion in our model is triggered when asset value falls

below a specified level. The asset level at which shareholders optimally surrender the

firm is insensitive to the conversion level and conversion ratio, so long as the conversion

level is higher than the resulting bankruptcy level. If conversion precedes bankruptcy,

the optimal bankruptcy level is the level for the post-conversion firm, which does not

depend on the conversion trigger or ratio.

(ii). CoCos can reduce default risk, as we explain below. In so doing, they reduce the cost

of rolling over straight debt as it matures, and this increases dividends available to

equity holders. This effect, together with a desire to avoid unfavorable conversion, can

lead equity holders to prefer less risky assets.

(iii). Replacing some straight debt with CoCos has several effects.

• This replacement reduces the value of the debt tax shield if CoCo coupons are

not tax deductible. Even assuming tax-deductibility of CoCo coupons, this re-

placement will reduce the tax shield through the eventual conversion of CoCos to

equity, unless the CoCo coupon is so high as to offset this effect.

• This replacement lowers the endogenous default barrier and thus increases the

firm’s ability to sustain a loss in asset value. It thus reduces bankruptcy costs. The

reduction in bankruptcy costs and the reduction in the tax shield have opposite

effects on total firm value, but we find that the reduction in bankruptcy cost is

greater in our numerical examples.

• Reducing bankruptcy costs lowers the cost of rolling over the remaining straight

debt; thus, replacing some straight debt with convertible debt can increase the

value of equity, which we interpret as a reduction in the firm’s cost of capital. The
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benefit to shareholders of replacing straight debt with convertible debt increases

as asset value decreases.

(iv). We also consider the effects of increasing firm size by issuing CoCos while keep other

forms of debt fixed.

• If the size of the additional CoCo issue is sufficiently large, the increased coupon

payments may make it optimal for shareholders to default prior to conversion

resulting in greater value destruction at bankruptcy through the increase in the

firm’s assets and a phenomenon of debt-induced collapse discussed below. We

mainly focus on the case (which should be more typical) that the optimal default

barrier is lower than the conversion trigger.

• So long as this holds, the default barrier is unchanged and the default risk de-

creases because the distance to default increases with the value of additional

assets.

• The reduced default risk lowers the cost of rolling straight debt which increases

the value of equity. If CoCo coupons are tax-deductible, this further increases

equity value, lowering the cost of equity capital.

(v). For completeness, we also consider the effect of replacing some equity with CoCos,

though this case is of less interest in practice. If CoCo coupons are tax-deductible, and

if the substitution is not so large as to drive the default barrier above the conversion

level, then equity holders capture all the value of the increased tax shield with no

change in the firm’s default risk. However, this replacement can also induce the equity

holders to prefer less risky assets in order to preserve the funding advantage provided

by unconverted CoCos through the tax shield.

(vi). CoCos can mitigate the debt overhang problem, creating two incentives for new equity

investment as the firm’s asset value approaches the conversion trigger. If the CoCo



Chapter 3. CoCos, Bail-in and Tail Risk 53

coupons are tax deductible, it is optimal for the shareholders to invest in the firm to

prevent conversion and preserve the tax shield. Also, assuming the number of shares

issued to CoCo investors at conversion is fixed, the value of the equity issued to CoCo

investors is largest at the conversion trigger, so the incentive for the shareholders to

stave off conversion through additional investment is greatest just above this point.

(vii). CoCos affect asset substitution — the tendency of equity holders to prefer riskier

assets after issuing debt — in several ways. As already noted, lowering the cost of

rolling over straight debt provides an incentive for equity holders to take on less risk,

and this incentive can be increased by the presence of CoCos, particularly in the

presence of a tax shield. However, CoCos can also create incentives for equity holders

to increase exposure to tail risk (i.e., downward jumps in asset value) because the cost

(to shareholders) of conversion is lower if it occurs at a lower asset value.

(viii). As bond investors, holders of CoCos may be unwilling or unable to hold equity following

conversion and may therefore receive less than full market value in a forced sale of

shares. Anticipating this outcome, they would demand a lower price at the time of

their initial investment in CoCos. This effect reduces but, in our examples, does not

eliminate the attractiveness to shareholders of replacing some straight debt with CoCos.

(ix). In the pure bail-in case, conversion of debt to equity occurs just as the firm would

otherwise declare bankruptcy and the original shareholders are wiped out. We assume

that the bail-in avoids the deadweight costs of bankruptcy. Although they are wiped

out at bail-in, the original shareholders benefit from replacing straight debt with bail-in

debt because the reduction in bankruptcy costs lowers the cost of debt service. The

benefit to shareholders of such a replacement increases as asset value decreases.

(x). Our model identifies a phenomenon of “debt-induced collapse” specific to a setting

with convertible debt and endogenous default. The phenomenon occurs when a firm

issues CoCos and then takes on excessive additional debt. If sufficiently extreme, the
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additional debt will induce equity holders to default prior to conversion, effectively

changing CoCos to junior straight debt. At the point at which this occurs, equity

value experiences a sudden drop as the value of the conversion feature to equity holders

is eliminated. Avoiding this phenomenon requires setting the conversion trigger to be

unambiguous about whether conversion will occur prior to bankruptcy (as with CoCos)

or only at bankruptcy (the bail-in case).

(xi). Considering a regulator’s perspective, we have already noted that the level of the

conversion trigger has no direct effect on the timing of bankruptcy, so long as the

conversion trigger remains above the endogenous default barrier. Nevertheless, the

regulator can have indirect influence through CoCos. A higher trigger creates a greater

incentive for equity holders to invest additional capital in the firm earlier and can reduce

incentives to increase the riskiness of the assets; but a lower trigger creates a greater

incentive for equity holders to voluntarily replace some straight debt with convertible

debt.

(xii). Charging deposit insurance in proportion to all of the firm’s debt, including CoCos, re-

duces some of the positive incentives resulting from CoCos, just as the tax-deductibility

of CoCo coupons increases some of these positive incentives.

(xiii). We have calibrated our model to bank balance sheet and stock price data during

2004Q1–2011Q3 for 17 of the 19 largest U.S. bank holding companies. (We exclude

Ally because it is privately held and MetLife because it is predominantly an insurance

company.) We use the calibration to gauge how much CoCos would have increased

banks’ ability to sustain losses during the crisis. We also use the calibration to measure

debt overhang costs and find that CoCos with a high trigger would have created positive

incentives for additional investment in 2008–2009 for most of the banks. Based on the

calibration, we time the conversion of CoCos with high and low triggers for each bank

and and identify which banks would not have triggered conversion.
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Our model integrates endogenous default, debt rollover, and jumps into the valuation of

contingent capital. We see these features as essential to examining the incentive effects of

including CoCos: to understand, for example, if CoCos help overcome debt overhang and

motivate equity holders to invest in the firm, we need a model in which equity holders exercise

their option to abandon the firm optimally; otherwise, apparent incentive effects from CoCos

may simply reflect inconsistent modeling of the decisions of equity holders. Moreover, these

incentives are strongly influenced by the need to roll debt, and many of our conclusions

would be missing in a model with a single maturity date for debt. Our analysis combines

these features with a rich capital structure that includes several types of liabilities with a

variety of maturity profiles. On the asset side we capture tail risk through two types of

jumps, and we combine these features while achieving tractability in our valuations.

Pennacchi [64] highlights the importance of jumps in valuing contingent convertibles and

uses a jump-diffusion model of assets, as we do, but his work differs from ours in several

respects. He foregoes tractability, instead using simulation for valuation, and incorporates

stochastic interest rates in his valuations. All debt in his model shares a fixed maturity, and

default is determined exogenously through a mechanism similar to that of Black and Cox [9].

As already noted, endogenous default and the rollover of maturing debt are key features of our

analysis. We combine deposits, straight debt, and CoCos, each with its own maturity profile.

Pennacchi’s [64] simulation model does not include a debt tax shield or bankruptcy costs;

these features are important to our conclusions. Our model also adds alternative assumptions

about deposit insurance premiums and allows a potential loss at conversion as CoCo investors

with a preference for debt are forced to sell unwanted equity shares at a discount. Moreover,

our model identifies the phenomenon of “debt-induced collapse” discussed above, which can

be observed only in a model with both contingent convertibles and endogenous default. Also,

our model distinguishes firm-specific and market-wide jumps; we capture fire-sale effects by

imposing a lower recovery rate on assets when default occurs at a market-wide jump.



Chapter 3. CoCos, Bail-in and Tail Risk 56

Like most of other works in the context of contingent capital, we take a structural ap-

proach to modeling and valuation. Reduced-form credit risk models of the type in Duffie

and Singleton [27] and Jarrow and Turnbull [43] could potentially be used for pricing and

hedging CoCos, but they are less well-suited to capturing incentive effects. A limitation of

many structural models, including ours, is that they do not incorporate asymmetric informa-

tion between shareholders and creditors. This is partly mitigated by the inclusion of jumps

in asset value, which could reflect a sudden release of information, as in Duffie and Lando

[26].

3.2 Outline

We formulate the model in Section 3.3 and develop our valuation method in Section 3.4.

Section 3.5 explores the effects of replacing debt or equity with CoCos, with particular focus

on the change in the cost of equity capital. Section 3.6 examines the effect of CoCos on the

problem of debt overhang, and Section 3.7 examines their effect on asset substitution and

risk sensitivity. Section 3.8 explains debt-induced collapse. Section 3.9 contrasts resolution

authority with contingent capital and differentiates recovery rates for defaults at firm-specific

jumps and market-wide jumps. Section 3.10 calibrates our model to data from individual

banks through the financial crisis. Technical results are collected in an appendix.

3.3 The Model

3.3.1 Firm Asset Value

Much as in Merton [57], Black and Cox [9], Leland [50], Leland and Toft [51], and Goldstein,

Ju, and Leland [34], consider a firm generating cash through its investments and operations
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continuously at rate {δt, t ≥ 0}. The income flow {δt} is exposed to firm-specific and market

jump risk, with dynamics given by

dδt
δt−

= µ̃dt+ σ̃dW̃t + d




Ñf
t∑

i=1

(Ỹ f
i − 1)


+ d




Ñm
t∑

i=1

(Ỹ m
i − 1)


 . (3.1)

Here, µ̃ and σ̃ are constants, {W̃t, t ≥ 0} is a standard Brownian motion, and we write δt−

to indicate the value just prior to a possible jump at time t. The last two terms reflect

two types of jumps, the first we interpret as firm-specific and the second as market-wide.

These are driven by Poisson processes {Ñ f
t , t ≥ 0} and {Ñm

t , t ≥ 0} with intensities λ̃f and

λ̃m. The jump sizes {Ỹ f
i , i = 1, 2, . . . } and {Ỹ m

i , j = 1, 2, . . . }, and Ñ f , Ñm, and W̃ are

all independent of each other. Since we are mainly concerned with the impact of downside

shocks to the firm’s business, we assume that the Ỹ f
i and Ỹ m

i are are all less than 1. We

can represent the common distribution of the Ỹ f
i and the common distribution of the Ỹ m

i

by setting Z̃f := − log(Ỹ f ) and Z̃m := − log(Ỹ m) and positing, for tractability, that these

have exponential distributions,

fZ̃f
(z) = η̃fe

−η̃f z and fZ̃m
(z) = η̃me

−η̃mz, z ≥ 0, (3.2)

for some η̃f , η̃m > 0. In addition, we assume a constant risk-free interest rate r.

In a rational expectations framework with a representative agent having HARA utility,

the equilibrium price of any claim on the future income of the firm can be shown to be the

expectation of the discounted payoff of the claim under a “risk-neutral” probability measure

Q; see Naik and Lee [60] and Kou [45] for a detailed justification of this assertion. The

value of the firm’s assets is the present value of the future cash flows they generate,

Vt = EQ
[∫ ∞

t

e−r(u−t)δudu
∣∣∣δt
]
,
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for all t ≥ 0. Following Naik and Lee [60] and Kou [45], we can easily show that δ := Vt/δt

is a constant and Vt evolves as a jump-diffusion process

dVt

Vt−

= (r − δ) dt+ σ dWt + d




Nf
t∑

i=1

(Y f
i − 1)


+ d

(
Nm

t∑

j=1

(Y m
j − 1)

)
− (λm + λf )ξ dt (3.3)

with the parameter ξ < 0 given by

ξ =
λf

λm + λf

· ηf
ηf + 1

+
λm

λm + λf

· ηm
ηm + 1

− 1.

Under Q, {Wt} in (3.3) is a standard Brownian motion and {N f
t } and {Nm

t } are two Poisson

processes with intensities λf and λm. The distributions of the jump sizes Y f
i and Y m

i have

the same form as before, but now with parameters ηf and ηm. Kou [45] gives explicit

expressions for the parameters in (3.3) in terms of the parameters in (3.1). We will value

pieces of the firm’s capital structure as contingent claims on the asset value process V , taking

expectations under Q and using the dynamics in (3.3).

3.3.2 The Capital Structure

The firm finances its assets by issuing four kinds of liabilities: insured deposits, senior and

junior debt, contingent capital, and equity. We detail these in order of seniority.

A. Insured Deposits

Insured deposits have no contractual maturity and are subject to withdrawal at any time.

We model this by assigning to each deposit a randomly distributed lifetime; for tractability,

we take this lifetime to be exponentially distributed (as in Leland and Toft [51]) with a

mean of 1/m1. More explicitly, the firm issues new accounts with a par value of p1dt at
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every moment (t, t+ dt) for all t ≥ 0. In each subsequent interval (t+ s, t+ s+ ds), s ≥ 0,

a fraction

φ1(s) = m1e
−m1sds

of the initial deposit p1dt is withdrawn.

This specification generates a stationary profile for the firm’s insured deposits. At any

moment t > 0, the total par value of outstanding deposits is given by

∫ +∞

t

(∫ t

−∞

p1φ1(s− u)du

)
ds =

p1
m1

=: P1,

and this remains constant until the default of the firm. Deposits earn interest at rate c1, so

the total interest paid on deposits in each interval (t, t+ dt) is c1P1dt.

At bankruptcy, depositors have the most senior claim on the firm’s assets. If these

assets are insufficient to repay depositors, government insurance makes up the difference, so

depositors are guaranteed repayment at par. Prior to bankruptcy, the firm pays premiums

for deposit insurance at rate ϕ. The insurance premium may be fairly priced — exactly

offsetting the expected payout from the insurance fund — but need not be. We also examine

the implications of making insurance premiums proportional to all the firm’s debt (consistent

with rules adopted by the FDIC in 2011), and not just deposits.

B. Senior and Subordinated Debt

In addition to deposits, the firm issues unsecured senior and subordinated debt. The costs

and consequences of debt rollover are important to our analysis,2 so we use the exponential

2Short-term debt addresses problems of asymmetric information and monitoring, as discussed in Calomiris
and Kahn [19], Diamond and Rajan [24], and Gorton and Pennacchi [36]. But discussions of the financial
crisis, including Brunnermeier [13], Krishnamurthy [47], and Shin [72], have highlighted the role of short-
term financing and the resulting rollover risk (e.g., He and Xiong [39]).
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maturity framework for these instruments as well. The firm continuously issues two classes of

straight bonds, senior and subordinated, with respective par values p2dt and p3dt in (t, t+dt)

for all t ≥ 0. The maturities of the newly issued bonds are exponentially distributed; that

is, a portion

φi(s) = mie
−misds,

of the total amount pidt, i = 2, 3, matures during the time interval (t + s, t + s + ds), for

all s ≥ 0. As long as the firm is not in default, the par values of the outstanding senior and

subordinated debt remains constant at levels Pi := pi/mi, i = 2, 3. In effect, we assume the

firm manages its debt issuance to target a fixed maturity profile and fixed levels of various

types of debt.

Senior and subordinated debt pay coupons at rates ci, i = 2, 3, respectively. The total

coupon payment on these bonds is then (c2P2 + c3P3)dt in each interval (t, t+ dt), up to the

default of the firm.

Upon default, we assume that a fraction (1 − α), 0 ≤ α ≤ 1, of the firm’s asset value

is lost to bankruptcy and liquidation costs. If we let V denote asset value at the moment

of bankruptcy and thus αV the value just after bankruptcy, then repaying depositors leaves

(αV −P1)
+. Senior bond holders are repaid to the extent that the remaining funds suffice, so

they get get P2∧(αV −P1)
+, and the junior bond holders similarly get P3∧(αV −P1−P2)

+.

This discussion presupposes recovery at par value, in the sense that the bond holders

have a claim of Pi, i = 2, 3, in bankruptcy, as is the case in practice. Alternative modeling

assumptions used in the literature include recovery at market value or at a fraction of an

otherwise equivalent Treasury note; see Duffie and Singleton [27], Jarrow and Turnbull [43],

and Lando [49]. The differences in these conventions are relatively minor and would not

change our conclusions qualitatively.
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C. Contingent Convertibles

We use the same basic framework to model the issuance and maturity of CoCos as we use for

other types of debt. In all cases, we would retain tractability if we replaced the assumption of

exponential maturity profile with consols, but, as already noted, debt rollover is an important

part of our analysis, so we use finite-maturity debt. We denote by P4 the par value of CoCos

outstanding, which remains constant prior to conversion or default and pays a continuous

coupon at rate c4. The mean maturity is 1/m4, and new debt is issued at rate p4.

Conversion of CoCos from debt to equity is triggered when the value of the firm’s assets

fall below an exogenously specified threshold Vc. Thus, conversion occurs at

τc = inf{t ≥ 0 : Vt ≤ Vc},

and we assume the trigger Vc is lower than the initial asset level V0. (Because earnings δVt are

proportional to asset value, the trigger could equivalently be based on earnings, as posited

in Koziol and Lawrenz [46].) At the instant of conversion, the CoCo liability is erased and

CoCo investors receive ∆ shares of the firm’s equity for every dollar of principal, for a total

of ∆P4 shares. We normalize the number of shares to 1 prior to conversion. Thus, following

conversion, the CoCo investors own a fraction ∆P4/(1 + ∆P4) of the firm. In the bail-in

case, ∆ = ∞, so the original shareholders are wiped out and the converted investors take

control of the firm. We think of the parameters (Vc,∆) as part of the contractual terms of

the convertible debt and examine the consequences of varying these parameters.3

3We do not distinguish between contractual and statutory conversion. Under the former, conversion is
an explicit contractual feature of the debt. The statutory case refers to conversion imposed on otherwise
standard debt at the discretion of a regulator granted explicit legal authority to force such a conversion.
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3.3.3 Endogenous Default

The firm has two types of cash inflows and three types of cash outflows. The inflows are the

income stream δtdt = δVtdt and the proceeds from new bond issuance btdt, where bt is the

total market value of bonds issued at time t. The cash outflows are the after-tax coupon

payments, the principal due (p1+ p2+ p3+ p4)dt on maturing debt, and insurance premiums

ϕP1dt or, more generally, ϕPdt for some assessment base P . The firm has a marginal tax rate

of κ, and we assume that interest payments on deposits and straight debt are tax-deductible.

Thus, the after-tax coupon payment rate is given by At = (1−κ)(c1P1+ c2P2+ c3P3+ c4P4)

or At = (1− κ)(c1P1 + c2P2 + c3P3) + c4P4, depending on whether or nor coupon payments

on CoCos are also tax deductible.

Let p̄ denote the total rate of issuance (and retirement) of par value of debt, just as bt

denotes the total rate of issuance measured at market value. We have p̄ = p1 + p2 + p3 + p4

prior to conversion of any CoCos and p̄ = p1 + p2 + p3 after conversion. Whenever

bt + δVt > At + p̄+ ϕP1 (3.4)

the firm has a net inflow of cash, which is distributed to equity holders as a dividend flow.

When the inequality is reversed, the firm faces a cash shortfall. The equity holders then

face a choice between making further investments in the firm — in which case they invest

just enough to make up the shortfall — or abandoning the firm and declaring bankruptcy.

Bankruptcy then occurs at

τb = inf{t ≥ 0 : Vt ≤ V ∗
b },

the first time the asset level is at or below V ∗
b , with V ∗

b chosen optimally by the equity

holders. In fact, it would be more accurate to say that V ∗
b is determined simultaneously

with bt, because the market value of debt depends on the timing of default, just as the firm’s
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ability to raise cash through new debt influences the timing of default.

In Section 3.4 and the appendix, we derive explicit expressions for all the firm’s liabilities,

including the (before-conversion) equity value EBC(V ;Vb) as a function of the current asset

value V and the default barrier Vb. In determining the optimal threshold at which to default,

the equity holders seek to maximize the value of equity. They solve

max
Vb

EBC(V ;Vb)

subject to the limited liability constraint

EBC(V ′;Vb) ≥ 0, for all V ′ ≥ Vb.

If the solution V ∗
b to this problem is below the conversion trigger Vc, then the same default

barrier solves the corresponding problem for the post-conversion equity value EPC(V ;Vb):

max
Vb

EPC(V ;Vb)

subject to the limited liability constraint

EPC(V ′;Vb) ≥ 0, for all V ′ ≥ Vb.

3.4 Valuing the Firm’s Liabilities

We value the firm’s liabilities by discounting their cashflows and taking expectations under

the risk neutral probability Q.
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A. Insured Deposits

In the presence of deposit insurance, repayment is guaranteed, but the timing of repayment

may be accelerated by the default of the firm. To value a unit of deposit at time t, to be held

on deposit until time t+ T , we discount the interest earned over the interval [t, (t+ T )∧ τb]

and the principal received at (t+ T ) ∧ τb to get a market value of

b1(Vt;T ) = EQ

[∫ (t+T )∧τb

t

c1e
−r(u−t)du+ e−r(T∧(τb−t))

∣∣∣∣∣Vt

]

=
c1
r
+
(
1− c1

r

)
EQ
[
e−r(T∧(τb−t)) | Vt

]
.

To simplify notation, we will henceforth take t = 0 and omit the conditional expectation

given Vt, though it should be understood that the value of each liability is a function of the

current value V of the firm’s assets.

Recall that we take the deposit lifetimes T to be exponentially distributed with density

m1 exp(−m1T ), and the total amount in deposits is P1; the total market value of deposits

then evaluates to

B1(V ) = P1

∫ ∞

0

b1(V ;T )m1e
−m1TdT

=
c1
r
P1 +m1P1

(
1− c1

r

)( 1

m1 + r
+

(
1

m1

− 1

m1 + r

)
EQ
[
e−(m1+r)τb

])
.

The key to the valuation is thus the transform of the default time τb, which is given explicitly

by Cai and Kou [15] and Cai, Chen, and Wan [14].

The asset value remaining just after bankruptcy is αVτb , and if this amount is less than

the total deposits P1, the difference is covered by deposit insurance. The market value of
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this guarantee is therefore given by

EQ
[
e−rτb(P1 − αVτb)1{αVτb

<P1}
]
.

The firm pays a premium for deposit insurance at rate ϕ. If this rate is charged on the

deposit base P1, the cost of insurance is

EQ

[∫ τb

0

ϕP1e
−rsds

]
.

We also consider an alternative in which the premium is applied to all of the firm’s debt, for

which we replace P1 with P1 + P2 + P3 + P4.

B. Senior and Subordinated Debt

We follow a similar approach to valuing straight debt, first considering a bond with a face

value of 1 and a time-to-maturity T . The value of a senior bond with these terms is as

follows:

b2(V ;T ) = EQ
[
e−rT1{τb>T}

]
(principal payment if no default)

+EQ
[
e−rτb1{τb≤T}1{αVτb

≥P1+P2}

]
(payment at default, full recovery)

+EQ
[
e−rτb1{τb≤T}

αVτb − P1

P2

1{P1≤αVτb
<P1+P2}

]
(partial recovery)

+EQ
[∫ τb∧T

0

c2e
−r(u−t)du

]
(coupon payments) (3.5)

In this expression, {τb ≤ T} is the event that default occurs before the bond matures, and

αVτb gives the value of the firm’s assets just after default. If αVτb exceeds P1+P2, the senior

bonds are repaid in full; if P1 ≤ αVτb < P1 +P2, then each dollar of face value of senior debt

recovers (Vτb − P1)/P2.
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Proceeding as we did for the value of the deposits, we calculate the total market value of

senior debt to be

B2(V ) = P2

∫ ∞

0

b2(V ;T )e−m2TdT

= P2

[(
1− c2

r

)
· m2

m2 + r
+

c2
r

]
· EQ

[
1− e−(m2+r)τb

]

+ P2E
Q

[
e−(m2+r)τb

(
1{αVτb

≥P1+P2} +
αVτb − P1

P2

1{P1≤αVτb
<P1+P2}

)]
. (3.6)

The expectation in (3.6) is evaluated in the appendix.

By exactly the same argument, the total market value of the subordinated debt is

B3(V ) = P3

[(
1− c3

r

)
· m3

m3 + r
+

c3
r

]
· EQ

[
1− e−(m3+r)τb

]

+ P3E
Q

[
e−(m3+r)τb

(
1{αVτb

≥P1+P2+P3} +
αVτb − P1 − P2

P3

1{P1+P2≤αVτb
<P1+P2+P3}

)]
.

C. Contingent Convertibles

The market value of a CoCo combines the value of its coupons, its principal, and its potential

conversion to equity.4 Fix a default barrier Vb, and suppose that Vc > Vb, so that bankruptcy

cannot occur prior to conversion. A CoCo with maturity T and unit face value has market

value

b4(V ;T ) = EQ
[
e−rT1{τc>T}

]
+ EQ

[∫ T∧τc

0

c4e
−rsds

]
+

∆

1 +∆P4

EQ
[
e−rτcEPC(Vτc)1{τc<T}

]
,

where EPC(V ) is the post-conversion value of equity at an asset value of V . At conversion,

the CoCo investors collectively receive ∆P4 shares of equity for each share outstanding,

4In applying the same pricing measure with and without CoCos, we are implicitly assuming that the
impact of CoCos is not so great as to change the market’s stochastic discount factor.
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giving them a fraction ∆P4/(1+∆P4) of the firm, and dividing this by P4 yields the amount

that goes to a CoCo with a face value of 1. The total market value of CoCos outstanding is

then

B4(V ) = P4

∫ +∞

0

b4(V ;T )m4e
−m4TdT

= P4

[(
1− c4

r

) m4

m4 + r
+

c4
r

] (
1− E

[
e−(r+m4)τc

])

+
∆P4

1 + ∆P4

E
[
e−(r+m4)τcEPC(Vτc)

]
.

If Vc ≤ Vb, so that conversion does not occur prior to bankruptcy, a similar calculation

yields

B4(V ) = P4

[(
1− c4

r

) m4

m4 + r
+

c4
r

] (
1− E

[
e−(r+m4)τb

])
+ P4E

[
e−(r+m4)τb

]

+EQ
[
e−(r+m4)τb

(
(αVτb − P1 − P2 − P3)1{P1+P2+P3≤αVτb

<P1+P2+P3+P4}
+P41{αVτb

≥P1+P2+P3+P4}
)]

It remains to calculate EPC(V ), the post-conversion equity value with a default barrier

of Vb. We derive this value by calculating total firm value and subtracting the value of debt.

After conversion, total firm value is given by

F PC(V ) = V + EQ

[∫ τb

0

κ(c1P1 + c2P2 + c3P3)e
−rsds

]

︸ ︷︷ ︸
tax benefits

−EQ
[
e−rτb(1− α)Vτb

]
︸ ︷︷ ︸

bankruptcy costs

(3.7)

+EQ
[
e−rτb(P1 − αVτb)1{αVτb

≤P1}
]

︸ ︷︷ ︸
deposit insurance

−EQ

[∫ τb

0

ϕP1e
−rsds

]

︸ ︷︷ ︸
insurance premiums

= V +
[
(c1P1 + c2P2 + c3P3)

κ

r
− P1

ϕ

r

] (
1− EQ

[
e−rτb

])

+EQ
[
e−rτb(P1 − αVτb)1{αVτb

≤P1}
]
− EQ

[
e−rτb(1− α)Vτb

]
(3.8)
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The post-conversion equity value (for a given barrier Vb) is then given by

EPC(V ) ≡ EPC(V ;Vb) = F PC(V )− B1(V )− B2(V )− B3(V ),

the value that remains after subtracting deposits and senior and subordinated debt from

total firm value. The expression we need to value the CoCos,

EQ
[
e−rτcEPC(Vτc)1{τc<T}

]
, (3.9)

is evaluated using the method in the appendix.

D. Equity Value Before Conversion

Just as we did for the post-conversion value of equity, we calculate the value before conversion

by first calculating total firm value before conversion, FBC(V ), given a default barrier Vb. To

the expression above for the post-conversion value, we need to add the tax shield on CoCos,

EQ
[∫ τc∧τb

0

κc4e
−rudu

]
,

if the CoCo coupons are tax-deductible. Thus,

FBC(V ) = FPC(V ) +





c4P4
κ

r

(
1− EQ

[
e−rτb

])
, if Vc ≤ Vb;

c4P4
κ

r

(
1− EQ

[
e−rτc

])
, if Vc > Vb.

If insurance premiums are charged in proportion to all debt, and not just deposits, then

conversion of CoCos also reduces premium payments, and we need to add

EQ

[∫ τc∧τb

0

ϕP4e
−rsds

]
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to F PC(V ) to get FBC(V ). The market value of the firm’s equity before conversion is then

given by

EBC(V ) = FBC(V )− B1(V )− B2(V )− B3(V )− B4(V ). (3.10)

Both FBC(V ) and EBC(V ) admit closed-form expressions.

We thus have explicit expressions for the market values of all pieces of the firm’s capital

structure, for a given default barrier Vb. To complete the valuation, we endogenize default,

letting equity holders choose Vb optimally, as discussed in Section 3.3.3.

To solve this type of problem in a pure-diffusion model without CoCos, Leland [50] and

Leland and Toft [51] use a smooth-pasting principle. In our setting, this becomes

∂EBC(V )

∂V

∣∣∣
V=V ∗

b

= 0, (3.11)

with the understanding that EBC(V ) = EPC(V ) if V ≤ Vc. We take the solution to (3.11)

to be the optimal barrier V ∗
b . Chen and Kou [18] justify this approach in a jump-diffusion

model without CoCos (see also Kyprianou and Surya [48]).5 This calculation has to be done

numerically, so we do not have explicit expressions for V ∗
b or for the value of equity using

V ∗
b .

6

5Décamps and Villeneuve [23] show that the situation is more complex, and the resulting equilibrium
unknown in general, when equity holders may deviate from a stated default rule and creditors anticipate this
possibility. The added generality would be needed to incorporate strategic behavior on the part of creditors
and the possibility that creditors might force the firm into bankruptcy.

6The detailed verification of the smooth pasting condition in our setting has been outlined in notes
provided by Professor Nan Chen.
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3.5 Changes in Capital Structure

We can use the valuation results of the previous section to investigate the effects of changes

in the firm’s liability structure. We focus in particular on the perspective of the equity

holders and the impact of issuing CoCos.

For our base case, we use the parameters in Table 3.1. The firm initially funds 100 in

assets with par values of 40 in deposits, 30 in senior debt, 15 in subordinated debt, and 15 in

equity or a combination of equity and CoCos. The proceeds of issuing new debt may be used

to scale up the firm’s assets, to pay down another form of debt, or to buy back equity. We

consider all three cases. Under any change in capital structure, we recompute the optimal

default barrier and recompute the value of the firm and its liabilities.

The process of rolling debt is important to our analysis, so we briefly describe how this

works. Under our exponential maturity assumption, old debt is continuously maturing and

new debt is continuously issued. Within each debt category, the coupon and the total par

value outstanding remain constant; but while debt matures at par value, it is issued at

market value. If the par value is greater, the difference is a cash shortfall that needs to be

paid out by the firm; if the market value is greater, the difference generates additional cash

for the firm. We refer to these as rollover costs — a negative cost in the first case, a positive

cost in the second — and treat them the same way we treat coupon payments. Rollover

costs will change as the firm’s asset value changes, becoming more negative as asset value

declines, the firm gets closer to default, and the market value of its debt decreases. Rollover

costs thus capture the increased yield demanded of riskier firms.
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Parameter Value
initial asset value V0 100
debt principal (P1, P2, P3) (40, 30, 15)
risk free rate r 6%
volatility σ 8%
payout rate δ 1%
tax rate κ 35%
firm specific jump intensity λf .2
market jump intensity λm .05
firm specific jump exponent ηf 4
market jump exponent ηm 3
coupon rates (c1, c2, c3, c4) (r, r + 3%, r + 3%, r)
deposits insurance premium rate ϕ 1%
contingent capital principal P4 1 or 5
maturity profile exponent – base case (m1,m2,m3,m4) (1, 1/4, 1/4, 1/4)
maturity profile exponent – long maturity (m1,m2,m3,m4) (1, 1/16, 1/16, 1/16)

or (1, 1/25, 1/25, 1/25)
conversion trigger Vc 75 (in most cases)
conversion loss (if applied) 20% of value of shares

Table 3.1: Base case parameters. Asset returns have a total volatility (combining jumps and
diffusion) of 20.6% and overall drift rate of 3.3%. In the base case, the number of
shares ∆ issued at conversion is set such that if conversion happens at exactly Vc, the
market value of shares delivered is the same as the face value of the converted debt.

3.5.1 Replacing Straight Debt with CoCos

We begin by replacing some straight debt — either senior or subordinated — with CoCos.

We assume that the conversion trigger Vc is higher than the bankruptcy barrier V ∗
b , so

bankruptcy cannot precede conversion. This holds in our base case. As noted before, so long

as the trigger is above the barrier, it has no effect on the barrier; in other words, ∂V ∗
b /∂Vc = 0

whenever V ∗
b > Vc.

We can walk through the consequences of the substitution as follows.

• If coupon payments on CoCos are not tax deductible, then replacing straight debt with

CoCos has the immediate effect of reducing firm value by reducing the value of the tax
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shield. Even if CoCo coupons are tax deductible, this benefit ends at conversion, so,

other things being equal, the substitution still has the immediate impact of reducing

firm value; see (3.7)–(3.8). The reduction in firm value has the direct effect of lowering

the value of equity.

• However after conversion the firm will have less debt outstanding and lower debt service

payments (coupons and rollover costs) than it would without the substitution of CoCos

for straight debt. With lower debt service, more of the cash δVt dt generated by the

firm’s assets flows to equity holders in dividends. This reduces the default barrier V ∗
b ,

which extends the life of the firm, reduces the bankruptcy cost E [e−rτb(1− α)Vτb ], and

thus increases firm value in (3.7)–(3.8).

• We thus have two opposite effects on firm value: the reduced tax shield from CoCos

reduces firm value, but the reduced default probability and bankruptcy cost increases

firm value. In our numerical examples, we find that the second effect dominates over

a wide range of parameter values, so that the net effect of replacing straight debt with

CoCos is to increase firm value.

• Part of this increase in firm value is captured by senior and subordinated debt holders

because the reduced bankruptcy risk increases the value of the debt; see (3.6), for

example. Part of the increase is also captured by equity holders: the increased debt

value reduces rollover costs which increases the flow of dividends. Thus, equity holders

have a positive incentive to issue CoCos.

This conclusion contrasts with that of Albul et al. [2], who find that equity holders would

never voluntarily replace straight debt with contingent convertibles. In their model, straight

debt has infinite maturity and is never rolled. As a result, all of the benefit of reduced

bankruptcy costs from CoCos is captured by debt holders, indeed leaving no incentive for

equity holders. This difference highlights the importance of debt rollover in influencing
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Figure 3.1: Change in equity value resulting from various changes in capital structure. In the right
hand figure the CoCo holders dump their shares in the market following the conversion
and as a result lose 20% value of their shares due price impact and transaction fees.

incentives for equity holders, an effect we return to at several points.

The line marked with crosses in the left panel of Figure 3.1 shows the increase in equity

value resulting from a substitution of one unit (market value) of CoCos for one unit (market

value) of straight debt, plotted against the value of the firm’s asset value. The conversion

level Vc is 75. Despite the dilutive effect of conversion, the benefit to equity holders of the

substitution is greatest just above the conversion level and decreases as asset level increases.

This follows from the fact that the benefit to equity holders derives from the reduction in

bankruptcy costs, which is greater at lower asset values. We will discuss the other curves in

the left panel shortly.

The right panel of Figure 3.1 incorporates a friction in the conversion of debt to equity.

To this point, we have valued each security as the expected present value of its cash flows.
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In practice, the markets for debt and equity are segmented, and some bond investors may

be unwilling (or unable under an investment mandate) to own equity. Such investors would

value CoCos at less than their present value, and this effect could well move the price at

which the market clears, given the comparatively small pool of investors focused on hybrid

securities.

To capture this effect, we suppose that the equity received by CoCo investors at conversion

is valued at 80% of market value. For example, we can think of CoCo investors as dumping

their shares at a discount, with the discount reflecting a market impact that is only temporary

and therefore does not affect the original equity holders. CoCo investors anticipate that they

will not receive the full value of equity at conversion and thus discount the price of CoCos up

front. This makes CoCos more expensive for the firm as a source of funding. The line marked

with crosses in the right panel shows the benefit to equity holders of the same substitution

examined in the left panel. As one would expect, the benefit is substantially reduced near

the conversion trigger of 75 (comparing the two panels); at higher asset values, the difference

between the cases vanishes, with the crossed lines in both panels near 0.3 at an asset level

of 100. This discussion can be summarized as follows: Segmentation between debt and equity

investors that creates a friction in conversion reduces the benefit of issuing CoCos; this effect

is partially offset by lowering the conversion trigger.

3.5.2 Increasing the Balance Sheet with CoCos

We now consider the effects of issuing CoCos without an offsetting reduction in any other

liabilities. The proceeds from issuing CoCos are used to scale up the firm’s investments. The

consequences of this change are as follows:

• Because the post-conversion debt outstanding is unchanged, the endogenous default
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barrier V ∗
b is unchanged, so long as the optimal barrier is below the conversion trigger

Vc.

• In this case, the risk of default decreases because an increase in assets moves the firm

farther from the default barrier. The reduction in bankruptcy costs increases firm

value and the value of straight debt. The additional tax shield from issuing CoCos

(assuming their coupons are tax-deductible) further increases firm value.

• Shareholders benefit from the increase in firm value combined with the decrease in

rollover costs for straight debt and the increase in cash generated from the larger asset

base. These benefits work in the opposite direction of the increase in coupon payments

required for the new CoCos.

• With a sufficiently large CoCo issue, it becomes optimal for equity holders to default

prior to conversion. At this point, the firm moves, in effect, from one equilibrium to

another, and the increased default risk works against the increase in firm, debt, and

equity value. We return to this in Section 3.8.

The dashed line in each panel of Figure 3.1 shows the benefit to shareholders of issuing

a unit of new CoCos with V ∗
b < Vc. The benefit is lower on the right in the presence of a

conversion friction. Whereas the incentive for debt substitution decreases with asset value,

the incentive for issuing new CoCos increases with asset value.

3.5.3 Replacing Equity with CoCos

We include this case for completeness. The firm issues CoCos and the proceeds are used to

buy back equity; the cash from the buy-back is part of the benefit received by equity holders.

If the conversion trigger is above the default barrier, the post-conversion firm is unaffected

because the CoCos that replaced the equity convert to equity; thus, the timing of default is
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unchanged. The value of straight debt is therefore unaffected by the replacement, and there

are no changes in rollover costs of straight debt. If the coupon on CoCos is tax deductible,

this benefit from the newly issued CoCos is entirely captured by the equity holders. The

total benefit to equity holders (the buy-back cash and the tax shield) is illustrated by the

dash-dot line in each panel of Figure 3.1. In the right panel, the benefit is negative at asset

levels near the conversion trigger because the conversion friction increases the cost of issuing

CoCos and decreases the cash received in the buy back.

Finally, the solid line in the figures shows the net benefit to shareholders of a unit increase

in their equity investment. The benefit is positive because the additional equity reduces

default risk and thus lowers rollover costs, a phenomenon not observed in a static model

of capital structure. Thus, the negative effect of debt overhang does not overwhelm the

potential value of additional investment. We further develop this point in Section 3.6.

3.5.4 The Bail-In Case

We model bail-in debt by taking ∆ = ∞, meaning that the original shareholders are infinitely

diluted and thus wiped out. Also, there is no exogenous trigger level Vc in the bail-in case;

instead, conversion occurs at the moment that the original equity holders declare bankruptcy.

The convertible debt converts to equity, the converted investors become the sole shareholders,

and they then determine a new default barrier endogenously. We assume that the bail-in

avoids all bankruptcy costs, but the key assumption is that the asset recovery rate at bail-in

is greater than the recovery rate α at default.

Figure 3.2 illustrates the same comparisons made in the left panel of Figure 3.1. The

main observation is that the incentive to issue convertible debt is greater in Figure 3.2 than

in Figure 3.1. This is primarily due to the lowering of the conversion threshold — the trigger
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is 75 in Figure 3.1 whereas the bail-in point is a bit below 70 in Figure 3.2. As long as

conversion occurs before bankruptcy, the level of the conversion threshold has no effect on

firm value or the value of straight debt. It does affect how value is apportioned between

equity holders and investors in the convertible debt.

3.6 Debt Overhang and Investment Incentives

In most capital structure models, equity holders are least motivated to invest in a firm

precisely when the firm most needs additional equity. For a firm near bankruptcy, much of

the value of an additional equity investment is captured by debt holders as the additional

equity increases the market value of the debt by reducing the chances of bankruptcy. This is a

problem of debt overhang (Myers [59]), and it presents a significant obstacle to recapitalizing

ailing banks. Duffie [25] has proposed mandatory rights offerings as a mechanism to compel
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Figure 3.2: Change in equity value resulting from various changes in capital structure with bail-in
debt.



Chapter 3. CoCos, Bail-in and Tail Risk 78

investment. Here we examine the effect of CoCos on investment incentives.

The phenomenon of debt overhang is easiest to see in a static model, viewing equity as

a call option on the assets of a firm with a strike price equal to the face value of debt, as

in Merton [57]. At a low asset value, where the option is deep out-of-the-money, the option

delta is close to zero: a unit increase in asset value produces much less than a unit increase

in option value, so equity holders have no incentive to invest. Indeed, in this static model,

the net benefit of investment is always negative.

At least three features distinguish our setting from the simple static model. First, the

reduction in rollover costs that follows from safer debt means that equity holders have the

potential to derive some benefit from an increase in their investment. Second, the dilutive

effects of CoCo conversion creates an incentive for shareholders to invest to prevent conver-

sion. Third, if CoCo coupons are tax deductible, shareholders have an added incentive to

invest in the firm near the conversion trigger to avoid the loss of this tax benefit.

Figure 3.3 shows the cost to equity holders of an additional investment of 1 in various

scenarios. Negative costs are benefits. For this example, we use the longer maturities for

debt in Table 3.1, as the overhang problem is more acute in this case. This is illustrated by

the solid black line in the left panel, which shows the overhang cost is positive throughout

the range of asset values displayed.

The solid blue line and the dashed line show the overhang cost after the firm has issued

CoCos. The blue line corresponds to replacing equity with CoCos, and the dashed line

corresponds to replacing straight debt with CoCos. As we move from right to left, tracing

a decline in asset value toward the conversion threshold Vc = 75, we see a dramatic increase

in the benefit (negative cost) to equity holders of an additional investment. In other words,

the presence of CoCos creates a strong incentive for equity holders to invest in the firm to
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Figure 3.3: Net cost to shareholders of increasing the firm’s asset by 1. Negative costs are gains.
The figures show that CoCos and tail risk create a strong incentive for additional
investment by equity holders near the conversion trigger.

avoid conversion. After conversion (below an asset level of 75), the overhang cost reverts to

its level in a firm without CoCos.

The right panel of Figure 3.3 provides further insight into the investment incentive illus-

trated in the left panel. If we lower the conversion trigger from 75 to 70, we see from the solid

black line that the investment incentive becomes greatest at 70, as expected, where it is a

bit greater than the greatest value in the left figure. Removing the tax-deductibility of CoCo

coupons yields the dashed black line, which shows that the investment incentive is reduced

but not eliminated. In the solid red line, we have returned the conversion trigger to 75 but

removed the jumps from the asset process. This eliminates close to half the incentive for

investment, compared to the left panel. Removing both the tax shield on CoCos and jumps

in asset value eliminates almost all the investment incentive, as indicated by the dashed red

line.
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The tax effect is immediate: the tax shield increases the value to shareholders of avoiding

the conversion of CoCos and thus creates a greater incentive for investment. The jump effect

requires some explanation. Recall that the conversion ratio ∆ is set so that the market value

of the shares into which the CoCos convert equals the face value of the converted debt if

conversion occurs at an asset level of Vc. If a downward jump takes Vt from a level above the

trigger Vc to a level below it, then conversion occurs at an asset level lower than Vc, and the

market value of the equity granted to CoCo investors is less than the face value of the debt.

Equity holders thus prefer conversion following a jump to conversion at the trigger; indeed,

conversion right at the trigger is the worst conversion outcome for equity holders, and this

creates an incentive for investment as asset value approaches the trigger. The equity holders

would prefer to delay conversion and, in effect, bet on converting at a jump rather than right

at the trigger. This suggests that CoCos may create an incentive for equity investors to take

on further tail risk, an issue we investigate in the next section.

We close this section by examining the value of equity and CoCos across the conversion

trigger. In Figure 3.4, we fix the conversion ratio ∆ at the “fair” value for a CoCo size of

5 and a conversion trigger of Vc = 80; with ∆ = .108, the market value of the 5∆ shares

issued to the CoCo investors equals the par value of 5 if the asset value V equals Vc. We keep

∆ fixed at this level and vary Vc so that the value received at the trigger is either greater

(Vc = 85) or smaller (Vc = 75).

The figures indicate that there is no instantaneous value transfer across the conversion

trigger, a property introduced by Sundaresan and Wang [74]. In other words, the values are

continuous across the trigger. There does appear to be a kink at conversion — a discontinuity

in the derivative. The higher sensitivity of equity to asset value above Vc is consistent with

higher leverage. Conversion that is less attractive to CoCo investors (a lower Vc with the

same ∆) produces a small equity sensitivity above the trigger, suggesting that this may also

reduce risk-taking incentives; we examine this in greater detail in the next section.
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Figure 3.4: Equity and CoCo values are continuous functions of asset level — there is no abrupt
value transfer at conversion. The three curves use the same conversion ratio ∆, set
here so that the value of the equity held by CoCo investors just after conversion equals
the par value of the CoCos if conversion occurs at an asset level of 80. With conversion
at 85, CoCo investors get more than the par value in equity; with conversion at 75,
they get less the par value.

The right panel shows an interesting pattern for CoCo value near the conversion trigger.

When conversion grants shares at a discount price advantageous to CoCo investors (the

dashed line), CoCo value increases as asset value decreases toward the trigger. We see a

similar but less pronounced increase in the blue line, in which conversion is at par. The red

line reflects conversion at a premium price per share, and in this case CoCo value declines

steadily.

A parallel pattern has been observed for contingent capital with a stock price trigger, and

the possibility that the CoCo value would increase as the stock price decreases has raised

concerns about potential market manipulation and a downward spiral as CoCo investors
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short the stock to try to trigger conversion. This concern is not directly applicable to our

setting, as investors have little chance of moving asset value. Nevertheless, the two panels

of Figure 3.4 suggest that conversion at a small premium (the solid red line) yields lower

volatility in CoCo and equity value around the conversion trigger.

Calomiris and Herring [17] argue that CoCos should be designed so that they convert at

a ratio punitive to shareholders and also so that their yield spreads widen as they approach

conversion, providing a signal to the market of the firm’s condition (as has been discussed

for subordinated debt — see Evanoff and Wall [28], Flannery [30], and Hancock and Kwast

[37]). The right panel of Figure 3.4 shows that these objectives are incompatible: for spreads

to widen near conversion, the conversion should be at small premium over the market value

of the shares earned.

3.7 Asset Substitution and Risk Sensitivity

We reviewed the problem of debt overhang in the previous section in Merton’s [57] model,

which views equity as a call option on the firm’s assets. The same model predicts that equity

value increases with the volatility of the firm’s assets, giving equity holders an incentive to

increase the riskiness of the firm’s investments after they have secured funding from creditors.

In this section, we examine this phenomenon in our dynamic model, focusing on how CoCos

change the incentives. Related questions of risk-shifting incentives are studied in Albul et al.

[2], Hilscher and Raviv [41], Koziol and Lawrenz [46], and Pennacchi [64] with contingent

capital and in Bhanot and Mello [8] for debt with rating triggers. Morellec [58] studies the

impact of asset liquidity on debt capacity.

We can summarize our main observations as follows. Because of the need to roll maturing

debt, equity holders do not necessarily prefer more volatile assets in a dynamic model; longer



Chapter 3. CoCos, Bail-in and Tail Risk 83

debt maturity makes riskier assets more attractive to equity holders. Even when equity value

does increase with asset volatility, CoCos can mitigate or entirely offset this effect, in part

because equity holders are motivated to avoid conversion. In some cases, CoCos can make

tail risk more attractive to equity holders even while making diffusive risk less attractive.

To illustrate these points, we start with the lower panel of Figure 3.5, which shows the

sensitivity of equity to diffusive volatility as a function of asset value. The solid black line

corresponds to a firm with no contingent capital — the sensitivity of equity to σ is positive

throughout the range and peaks just above the default barrier. As the firm nears bankruptcy,

the equity holders are motivated to take on extra risk in a last-ditch effort at recovery.

We see a very different pattern in the two blue lines, corresponding to a firm in which

some straight debt has been replaced with CoCos, and the two red lines, based on replacing

some equity with CoCos. In both cases, the solid line is based on a conversion trigger of 85,

and the dashed line uses a trigger of 70. This gives us four combinations of capital structure

and trigger level. In all four, the sensitivity is negative at high asset values and turns

sharply negative as asset value decreases toward the conversion boundary before becoming

slight positive just above the trigger, where equity holders would prefer to gamble to avoid

conversion. After conversion, the pattern naturally follows that of a firm without CoCos.

The key implication of the figure is that CoCos decrease, and even reverse, the incentive for

the shareholders to increase the riskiness of the firm’s assets.
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Figure 3.5: Sensitivity of equity value to diffusive volatility σ. With longer maturity debt, equity
holders have a positive risk-shifting incentive. CoCos tend to reverse this incentive.

The top half illustrates the effect of debt maturity and bankruptcy costs on the risk-

shifting incentive. In each pair of lines, the dashed line has the same level of deposits and

straight debt as the solid line but it also has CoCos. Considering first the solid lines, we
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see that with long-maturity debt, the risk-shifting incentive is positive, even at rather high

recovery rate of α = 90%. In contrast, with shorter maturity debt, the sensitivity is nearly

always negative, even with a recovery rate of 100% — i.e., with no bankruptcy costs. Thus,

debt maturity and not bankruptcy cost is the main driver of the sign of the risk-sensitivity.

CoCos therefore have a greater effect on the risk-shifting incentive when the rest of the firm’s

debt has longer average maturity. The impact of CoCos is not very sensitive to the recovery

rate α.

Figures 3.6 and 3.7 illustrate similar comparisons but with the sensitivity at each asset

level normalized by the value of equity at that asset level; we interpret this as measuring the

risk-shifting incentive per dollar of equity. Also, the figures compare sensitivities to diffusive

volatility on the left with sensitivity to tail risk, as measured by 1/ηf , on the right. Figure 3.7

uses a longer average maturity of debt than Figure 3.6.

The left panels of Figures 3.6 and 3.7 are consistent with what we saw in Figure 3.5 for

the unnormalized sensitivities: with longer maturity debt, CoCos reverse the risk-shifting

incentive; with shorter maturity debt, equity holders already have an incentive to reduce

risk, particularly at low asset values, and CoCos make the risk sensitivity more negative.

The right panels add new information by showing sensitivity to tail risk. In both Fig-

ures 3.6 and 3.7, equity holders have a positive incentive to add tail risk, particularly with

long maturity debt, but also with short maturity debt at low asset levels. Indeed, the in-

centive becomes very large in both cases as asset value falls. Increasing the size of the

firm’s balance sheet by adding CoCos leads to a modest increase in this incentive above the

conversion trigger. Replacing some straight debt with CoCos reduces the incentive to take

on tail risk but does not reverse it. Related comparisons are examined in Albul et al. [2]

and Pennacchi [64]. Pennacchi’s [64] conclusions appear to be consistent with ours, though

modeling differences make a direct comparison difficult; the conclusions in Albul et al. [2]
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Figure 3.6: Sensitivity of equity value to diffusive volatility and jump risk in assets.

are quite different, given the absence of jumps and debt rollover in their framework.

The patterns in our results can be understood, at least in part, from the asset dynamics

in (3.3); in particular, whereas the diffusive volatility σ plays no role in the (risk-neutral)

drift, increasing the jump parameter 1/ηf increases the drift. In effect, the firm earns a

higher continuous yield on its assets by taking on greater tail risk. This has the potential

to generate additional dividends for shareholders, though the additional yield needs to be

balanced against increased rollover costs resulting from increased default risk. In addition

to generating a higher yield, jump risk is attractive to shareholders because the cost of

conversion is lower if it takes place at a lower asset value than at the conversion trigger.

Moreover, shareholders are indifferent between a bankruptcy at an asset value below their

default barrier or right at their barrier, so they are motivated to earn the higher yield from

tail risk without bearing all of the downside consequences.
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Figure 3.7: Same comparisons as Figure 3.6 but with with longer average maturity. In all plots,
at the same asset level the dashed line corresponds to a larger distance to default due
to less outstanding regular debt.

3.8 Debt-Induced Collapse

At several points in our discussion we have qualified our remarks with the condition that

conversion precedes bankruptcy — in other words, that the the conversion trigger Vc is above

the endogenous bankruptcy boundary Vb. We now examine this condition in greater detail,

highlighting a phenomenon of debt-induced collapse in equity value: an increase in the firm’s

debt drives its bankruptcy level Vb higher; if the increase is sufficiently extreme to drive the

bankruptcy level above the conversion trigger, then just at the point at which Vb crosses Vc

— where the CoCos become junior debt — equity value experiences a sharp decline. No

comparable phenomenon can occur in the absence of CoCos.

To explain this phenomenon, we introduce two other firms that are identical to the
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original firm except that in one the CoCos have already been converted, and in the other the

conversion feature has been removed so the CoCos will never convert. Call these the AC and

NC firms, respectively. The equity holders of the NC firm (which has no convertible debt)

set an optimal default barrier Vb(NC). If Vb(NC) ≥ Vc, then Vb(NC) is a feasible choice of

default barrier for the original firm (and makes equity values for the two firms identical). It

is feasible in the sense that if the original firm chose Vb = Vb(NC), then equity value would

be positive prior to default and equal to zero at the time of default. These assertions follow

from the fact that equity value in the original firm would equal equity value in the NC firm

if Vb = Vb(NC) ≥ Vc, because conversion would never precede default under this condition.

To illustrate, we consider an example. The heavy solid line in Figure 3.8 shows equity

value for the NC firm. The optimal default barrier Vb(NC) is at 86.1, and the NC equity

value and its derivative are equal to zero at this point. If the conversion trigger Vc is below

86.1 (two cases are considered in the figure), then this is a feasible default level — and a

feasible equity value — for the original firm.

Denote by Vb(AC) the optimal default barrier for the AC firm. We always have Vb(AC) ≤
Vb(NC) because the NC firm has all the debt of the AC firm plus additional debt. Suppose

Vb(AC) < Vc. Below the conversion trigger Vc, the original firm is identical to the AC

firm, so for asset values below Vc the only possible choice of default barrier for the original

firm is Vb(AC). However, this choice may not be feasible for the original firm because it

potentially produces negative equity values at higher asset levels. But equity holders would

default rather than accept negative value; the inconsistency in such a case would indicate

that Vb(AC) would not be a feasible choice of default barrier for the original firm.

Both cases are illustrated in Figure 3.8. The dashed line corresponds to a conversion

trigger of Vc = 81.7, where the kink occurs. The equity holders choose Vb = Vb(AC) = 66.3

as their default barrier, conversion occurs prior to default, equity value is always nonnegative,
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Figure 3.8: Candidate equity value as a function of asset value in three scenarios. The heavy solid
line reflects default at Vb(NC) = 86.1, prior to conversion. The other two lines reflect
default at Vb(AC) = 66.3 with two different conversion triggers. With Vc = 72.9,
equity becomes negative so Vb(AC) is infeasible and default occurs at Vb(NC). With
Vc = 81.7, default at Vb(AC) is feasible, and it is optimal because it yields higher
equity than Vb(NC).

and it is characterized by the smooth pasting condition at the default barrier. However, at

a conversion trigger of Vc = 72.9, an attempt to choose Vb = Vb(AC) = 66.3 as the default

barrier would result in negative equity at a higher asset value, which means that equity

holders would actually default near 78; but this choice would then change the entire path

of equity value, meaning that Vb = Vb(AC) fails to be internally consistent — it is not a

feasible choice. The only feasible default barrier for the original firm is then Vb = Vb(NC).

Now consider the implications of having the two candidate solutions Vb(AC) and Vb(NC)

for optimal default barrier of the original firm. With a conversion trigger of Vc = 81.7, the

optimal default barrier is Vb = Vb(AC) = 66.3, conversion occurs prior to default, and equity
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value follows the dashed line. But if we lower Vc, we eventually get to a point (somewhere

before Vc = 72.9) at which Vc(AC) becomes infeasible and the optimal default barrier jumps

to Vb(NC) = 86.1. This jump up in default barrier is accompanied by a sudden drop in

equity value.

The economic explanation is that lowering the conversion trigger eventually has the effect

of changing the CoCos into junior straight debt — debt with no ability to absorb losses. In

an equilibrium in which conversion occurs prior to bankruptcy, equity holders derive greater

benefit from the presence of the convertible debt and are thus more willing to continue to

sustain the firm at times when the inequality in (3.4) is reversed. In an equilibrium in which

bankruptcy precedes conversion, the convertibility feature has no value to equity holders,

equity holders have less incentive to sustain the firm, and equity value drops.

Although we have described this phenomenon through a change in Vc, a similar and more

significant pattern holds if Vc is fixed but the firm increases its debt, whether straight debt

or CoCos. Consider an increase in straight debt. This moves both Vb(AC) and Vb(NC) to

the right in the figure, which has the same effect as moving Vc to the left.7 Eventually, the

additional debt service becomes so great that equity holders become unwilling to sustain the

firm all the way down to Vb(AC) and instead commit to abandoning the firm at Vb(NC),

prior to conversion. The equity holders thus effectively eliminate the conversion feature of

the CoCos, and at the point at which this happens, equity experiences a sudden drop given

by the vertical distance between the dashed line and the heavy solid line in the figure.

We view this scenario as a real phenomenon, and one that is possible only with convertible

debt and endogenous default. The implications are as follows: the conversion trigger for

CoCos needs to be sufficiently high to ensure unambiguously that conversion will take place

prior to default; the firm’s capital structure needs to be managed to ensure that this continues

7If the additional debt is convertible, Vb(AC) will not change, but equity will become negative somewhere
above the conversion boundary, as in Figure 3.8.
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to hold if the firm takes on more debt. A switch from conversion prior to bankruptcy to

bankruptcy prior to conversion is accompanied by a sharp drop in equity value as the value

of the conversion feature is lost.

3.9 Orderly Resolution Versus Contingent Capital

Resolution authority and contingent capital can be viewed as complementary tools in avoid-

ing financial crises: whereas the objective of replacing straight debt with CoCos is to reduce

the likelihood of a bank failure, the objective of orderly resolution is to reduce the costs

and negative externalities of a failure. These tools are also complementary in the sense that

orderly resolution includes the option of a bail-in mechanism in which equity holders are

wiped out and creditors are forced to take some losses and accept repayment in the form of

equity in a reorganized entity.8

3.9.1 Varying the Recovery Rate

In our model, the impact of orderly resolution is reflected, in a reduced-form manner, by the

parameter α, which measures the recovery rate on assets in the event of default: an ideal

and seamless resolution would have α = 100%. We have used α = 50% as part of our base

case parameter set. In this section, we examine the relative impact of CoCos and orderly

resolution by exploring how much α would need to be increased to achieve the same effect

as a CoCo issue of a given size. We examine this trade-off for a few different performance

measures as α and CoCo size vary.

Before doing so, we comment briefly on the relationship between our reduced-form model

8See, for example, Resolution Strategy Overview, FDIC Office of Complex Financial Institutions, January
25, 2012, http://www.fdic.gov/about/srac/2012/2012-01-25_resolution-strategy.pdf.

http://www.fdic.gov/about/srac/2012/2012-01-25_resolution-strategy.pdf


Chapter 3. CoCos, Bail-in and Tail Risk 92

and the complexities of unwinding a large financial institution. For this, we draw on an

analysis by the FDIC [29] of how the failure of Lehman Brothers would have been managed

had Title II of the Dodd-Frank act been in effect at the time. The report highlights (p.6) three

elements of the FDIC’s resolution authority that are particularly relevant to our reduced-

form bankruptcy costs: supporting an orderly liquidation that maintains asset values, the

ability to continue key operations, and the ability to transfer contracts to preserve value.9

According to the report, the Chapter 11 reorganization plan filed on January 25, 2011,

estimates a 21.4% recovery rate for senior unsecured creditors. The report further concludes

that an FDIC resolution would have produced a 97% recover rate for senior unsecured

creditors. These recovery rates are not directly comparable to our α, because α is a recovery

rate on assets, not debt, which must be lower. To arrive at a 97% recovery rate on senior

debt under an orderly resolution, the report estimates that Lehman’s problem assets would

have experienced a loss in the range of 60–80%, and that its $210 billion in total assets would

have suffered $40 billion in losses, for a recovery rate of 81%, eliminating $35 billion in equity

and subordinated debt. To achieve the 21.4% recovery rate on senior unsecured debt in the

Chapter 11 filing, a similar calculation shows that the recovery rate on assets would have

to be less than 17.8%. Although none of these values corresponds directly to our α, they

suggest an aspiration for a very substantial increase in the recovery rate, from something in

the vicinity of 20% to something closer to 80-100%.10

In Figure 3.9, we vary the loss given default factor, 1−α, to achieve the same result as a

CoCo issue. In the left panel, we hold expected bankruptcy costs fixed. In our base case (the

heavy solid line) we see, for example, that replacing 10% of debt with CoCos achieves the

same reduction in expected bankruptcy costs as reducing the loss given default from 50% to

9The report also highlights advance resolution planning and prompt distributions to creditors based on
anticipated recoveries.

10Valukas [76], pp.202–209, observes that Lehman’s assets were in principle reported at fair value but
that there was public skepticism about Lehman’s marks on its illiquid assets. The loss in asset value at
bankruptcy may therefore combine a correction in valuation with costs more directly connected to financial
distress; the two effects are difficult to disentangle.
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Figure 3.9: The left panel shows how much the loss given default would have to decrease to
achieve the same expected bankruptcy costs as replacing straight debt with CoCos.
The heavy solid line is our base case, and the other two lines double either σ or η. In
the right panel, we show the corresponding trade-off holding the discount on senior
debt fixed.

around 34%. The other two curves on the left show the same comparison with either σ or

η doubled. Reducing the severity of the jumps (increasing η) makes CoCos relatively more

effective as measured by the equivalent reduction in 1− α.

The right panel shows a similar comparison holding the discount on senior debt constant.

The four lines correspond to replacing senior debt with CoCo issues of varying sizes. Asset

value increases as we move from left to right. The largest CoCo size has the same effect on

the yield of senior debt as reducing the loss given default to 7.5–12.5% from the base case

value of 50%.

Finally, we consider the impact on equity. Figure 3.10 shows the reduction in loss given
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Figure 3.10: The figure shows how much the loss given default would have to decrease to achieve
the same increase in equity value as replacing straight debt with CoCos.

default required to achieve the same increase in equity value as a CoCo issuance of the

indicated size. The sharp decline near the left end of the curve is due to deposit insurance:

equity value is nearly insensitive to the loss given default until the recovery exceeds the

deposits. The figure indicates that replacing straight debt with CoCos in an amount equal

to 10% of assets has the same effect on equity value as reducing the loss given default from

50% to just over 20%.

Focusing on the impact on debt and equity, these comparisons suggest that replacing

approximately 10% of debt with CoCos has a similar effect as increasing the recovery rate α

from 50% to roughly 80–90%, for parameter values similar to our base case. This improve-

ment is substantial, though it falls short of the objective of a seamless resolution with nearly

100% recovery.
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3.9.2 Market-Wide Jumps and Systemic Effects

Our model distinguishes firm-specific jumps and market-wide jumps, with the interpretation

that market-wide jumps are rarer but more severe. The analysis in the appendix further

allows us to differentiate recovery rates for defaults triggered by the two types of jumps.

Default at a market-wide jump is likely to have spill-over effects: if many banks suffer

losses simultaneously, many may need to liquidate assets simultaneously, further depressing

prices. We model this systemic effect through a lower recovery rate for defaults that occur

at market-wide jumps.

We revisit the comparison on the right side of Figure 3.5 from this perspective. To achieve

a more pronounced separation between systemic and ordinary defaults, we set the baseline

recovery rate to 30% at market-wide jumps and 70% otherwise. Figure 3.11 compares the

sensitivity of equity value to market-wide jump risk and to firm-level jump risk for three

different combinations of straight debt and CoCos. In all cases, the sensitivities are positive

at low asset values, reflecting an incentive for equity holders to take on additional jump

risk in this setting. The sensitivity to market-wide jump risk is consistently higher than

the sensitivity to firm-specific jump risk. Replacing straight debt with CoCos reduces the

attractiveness of jump risk to equity holders, as measured by the sensitivities, even mak-

ing the sensitivity to firm-specific jump risk negative. However, the gap between the two

sensitivities is not affected. Indeed, as discussed in Section 3.6, equity holders prefer CoCo

conversion to occur at a low asset level rather than near the trigger level, and this creates

an incentive to take on tail risk.

Next, we re-examine the trade-off between CoCos and resolution authority. We suppose

that resolution authority can improve the recovery rate when default is due to diffusive risk

or a firm-specific jump, but that it cannot offset the fire-sale effects of a market-wide decline

in asset values. The setting is the same as that of Figure 3.9, except that the recovery rate
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Figure 3.11: The figure revisits the example on the right side of Figure 3.5 with a lower recovery
rate for defaults that occur at market-wide jumps.

at market-wide jumps is fixed at 30% and we vary only the recovery rate for other types

of default, starting at the base case value of 50%. The results are shown in Figure 3.12.

As one might expect, CoCos translate to a greater improvement in recovery in this setting

because the improvement applies in only a subset of cases. However, the change compared

to Figure 3.9 is minor because defaults due to market-wide jumps are rare for the parameters

in our base case.

A simple variant of our model would calculate bankruptcy costs from a regulator’s per-

spective using a lower α than the recovery rate used by shareholders and creditors, with

the interpretation that these greater costs reflect negative externalities from the failure of a

financial institution. Taking this idea a step further, one could try to develop an extension

in which the regulator sets CoCo requirements to get shareholders to internalize these exter-

nalities. The model in Van den Heuvel [77] is potentially useful in formulating a regulatory

objective.



Chapter 3. CoCos, Bail-in and Tail Risk 97

0 2 4 6 8 10
20%

25%

30%

35%

40%

45%

50%
holding expected bankruptcy costs fixed

market value of CC

lo
s
s
 g

iv
e

n
 d

e
fa

u
lt
 f

a
c
to

r

 

 

80 85 90 95 100
0%

5%

10%

15%

20%

25%

30%

35%

40%
holding discount on senior debt fixed

assets level (V
0
)

lo
s
s
 g

iv
e

n
 d

e
fa

u
lt
 f

a
c
to

r

base case

σ doubled

η doubled

market value of CC = $10

market value of CC = $5

market value of CC = $2

market value of CC = $1

Figure 3.12: The figure revisits the example of Figure 3.9 with the restriction that resolution
authority does not affect the recovery rate for defaults that occur at a market-wide
jump.

3.10 Calibration to Bank Data Through the Crisis

In this section, we calibrate our model to specific banks. We focus on the years leading up

to and during the financial crisis, with the objective of gauging what impact CoCos might

have had, had they been issued in advance of the crisis. We examine the increase in the

banks’ ability to absorb losses, relative to the amount of straight debt replaced with CoCos,

and we calculate the reduction in debt overhang costs as an indication of whether CoCos

would have created greater incentives for equity holders to inject private capital at various

points in time.

As candidates for our calibration, we chose the 19 bank holding companies (the largest 19

at the time) that underwent the Supervisory Capital Assessment Program (SCAP) in 2009.
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From this list, we removed MetLife because banking is a small part of its overall business,

and we removed GMAC (now Ally) because it is privately held. The banks are listed in

Table 3.2, in order of asset value in 2009.

We obtain quarterly balance sheet information from each bank holding company’s quar-

terly 10-Q/10-K S.E.C. filings from 2004 through the third quarter of 2011, except in the

case of American Express, for which we begin in 2006 because of a large spin-off in 2005.

Several of the firms became bank holding companies late in our time window, so Y-9 reports

would not be available throughout the period. Also, the Y-9 reports contain less information

about debt maturities and interest expenses than the quarterly reports. We group all debt

into three categories — deposits, short-term debt, and long-term debt — in this order of

seniority. We do not separate subordinated debt from other long-term debt because of diffi-

culties in doing so consistently and reliably. The distinction would not have much effect on

our calculations. We calculate average debt maturity within each category using information

provided in annual reports. We calculate total dividends and interest payments to get a total

payout rate.

We interpolate values within each quarter, using values from the beginning of the quarter

and the beginning of the subsequent quarter; this gives us values at a weekly frequency

and avoids abrupt changes at the end of each quarter. For debt maturities, we interpolate

between annual reports.

Our model is driven by asset value, but asset value is not observable. So, we fit our model

using balance sheet and market information and then use the model to infer asset value or

a model-defined proxy for asset value. In more detail, at each week we use the interpolated

values to determine the bank’s debt profile, dividends, and interest. As the risk-free rate, we

use the Treasury yield corresponding to the weighted average maturity of each bank’s debt.
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Jump parameters are difficult to estimate, particularly for rare jumps as contemplated by

our model. For the calibrations, we simplify the model to a single type of jump and choose

from a finite set of values for the jump rate λ and the mean jump size 1/η. For each (λ, η),

we calibrate a value for the diffusive volatility σ iteratively as follows. Given a starting value

for σ, we can numerically invert our model’s formula for equity at each point in time (using

the market value of equity at each point in time) to get an implied market value for the

assets. We then calculate the annualized sample standard deviation of the implied asset log

returns, excluding returns of magnitude greater than 3.3σ, which we treat as jumps, and

compare it with σ. We adjust σ up or down depending on whether the standard deviation

is larger or smaller than σ, proceeding iteratively until the values match. At that point, we

have found a path of underlying assets that reproduces the market value of equity with an

internally consistent level of asset volatility, for a fixed (λ, η).

We repeat this procedure over a grid of (λ, η) values. We limit λ to 0.1 or 0.3; for η, we

consider integer values between 5 and 10, but if the best fit occurs at the boundary we extend

the range to ensure that does not improve the fit. We choose from the set of (λ, η, σ) values

by comparing model implied debt prices with market data of traded debt from the Fixed

Income Securities Database and TRACE databases. We add up the total principal of traded

debt and total market price paid in those transactions. Their ratio gives an average discount

rate that the market applies to the debt. We calculate the corresponding model implied

average discount for each (λ, η, σ) using quarterly balance sheet data for the principal of

debt outstanding and the model implied prices. The interest payments are already matched

through our choice of coupon rates, so we choose the (λ, η, σ) that comes closest to matching

the discount on the principal as our calibrated parameters. The parameters for the 17 banks

are reported in Table 3.2.

The results of applying this procedure to the banks are illustrated in Figures 3.13 and 3.14,

respectively, for Bank of America (the largest bank) and SunTrust (one of the two banks
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Parameters Conversion Date
Bank Holding Company λ η σ 50% 75%

Bank of America Corp 0.1 5 4.1% Jan-09
JPMorgan Chase & Co. 0.1 8 4.4%
Citigroup Inc. 0.1 9 3.9% Nov-08
Wells Fargo & Company 0.1 5 4.7%
Goldman Sachs Group, Inc. 0.1 5 3.8% Nov-08
Morgan Stanley 0.1 8 4.2% Sep-08 Dec-08
PNC Financial Services 0.3 8 7.0% Nov-08 Jan-09
U.S. Bancorp 0.3 5 5.5% Jan-09
Bank of New York Mellon Corp. 0.3 6 7.3% Oct-08
SunTrust Banks, Inc. 0.3 9 4.1% Apr-08 Jan-09
Capital One Financial Corp. 0.3 7 7.9% Jun-08 Jan-09
BB&T Corporation 0.3 6 5.3% Jun-08
Regions Financial Corporation 0.3 8 4.7% Jun-08 Jan-09
State Street Corporation 0.3 5 7.4% Oct-08
American Express Company 0.3 8 8.6%
Fifth Third Bancorp 0.3 5 6.3% Jan-08 Jun-08
KeyCorp 0.3 8 4.2% Nov-07 Nov-08

Table 3.2: The table shows the calibrated parameter values (λ, η, σ) for each bank holding com-
pany. The last two columns show the months in which CoCo conversion would have
been triggered, according to the calibration, assuming CoCos made up 10% of debt.
The 50% and 75% dilution ratios correspond to higher and lower triggers, respectively.

in the middle of the list). The top panel of each figure displays the market capitalization

(the dashed line, using the right scale), asset values from quarterly reports (the piecewise

constant line, using the left scale), and the calibrated asset value (the solid line, using the

left scale). We have undertake the same procedure for every bank in Table 3.2.

Given the path of asset value and all the other model parameters, we can calculate model-

implied quantities. As a first step, we calculate the endogenous bankruptcy level Vb based

on the bank’s debt profile at each point in time. We can also undertake a counterfactual

experiment in which part of the debt is replaced with CoCos and recalculate the default

boundary. We take CoCos to be 10% of total debt, keeping the relative proportions of other

types of debt unchanged. Recall that the default boundary does not depend on the CoCo

conversion trigger or conversion ratio, as long as the trigger is above the default boundary,
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so we do not need to specify values for these features to determine Vb.

In the second panel of each of Figures 3.13 and 3.14, we show the endogenous default

boundaries calculated from the model, with and without CoCos. The boundaries are dis-

played together with the calibrated asset values, which are repeated from the top panel, to

illustrate the distance to default. The boundaries are not flat because we calculate a different

default boundary at each point in time, given the capital structure at that time. The gap

between the two default boundaries measures the increase in loss absorption capacity that

results from replacing 10% of total debt with CoCos.

Table 3.3 provides more detailed information at four points in time. Under each date, the

value on the left is the ratio of increased loss absorption to the market value of CoCos. A

ratio of 1 indicates that a dollar of CoCos absorbs a dollar of additional losses; a ratio greater

or smaller than 1 indicates a greater or smaller degree of loss absorption. The second entry

under each date is the distance to default as a percentage of asset value. Comparing a single

institution at different points in time, the pattern that emerges is that the loss absorption

ratio tends to be greater when the firm is closer to default. The pattern does not hold across

institutions because there are too many other differences in their balance sheets besides the

distance to default.

The design and market value of the CoCos depends on two contractual features, the

trigger Vc and the conversion price ∆. By the definition of ∆, the fraction of total equity

held by CoCo investors just after conversion is ∆P4/(1 + ∆P4), where P4 is the face value

of CoCos issued. We choose ∆ so that this ratio is either 50% or 75%, and we refer to

this as the dilution ratio. We then set the conversion level Vc so that if conversion were to

occur exactly at Vt = Vc, the market value of the equity CoCo investors would receive would

equal the face value P4 of the CoCos: conversion at Vt = Vc implies neither a premium nor

a discount. In order that the equity value received be equal to P4 at both 50% and 75%



Chapter 3. CoCos, Bail-in and Tail Risk 102

Jan-2006 Jan-2007 Jan-2008 Jan-2009

Bank of America Corp 1.47 7% 1.43 8% 1.63 5% 1.54 3%
JPMorgan Chase & Co. 1.29 6% 1.29 6% 1.49 5% 1.50 5%
Citigroup Inc. 1.34 7% 1.32 6% 1.42 4% - 2%
Wells Fargo & Company 1.11 19% 1.06 22% 1.44 9% 1.60 5%
Goldman Sachs Group, Inc. 1.35 4% 1.41 5% 1.52 4% - 4%
Morgan Stanley 1.43 4% 1.38 4% 1.50 5% - 5%
PNC Financial Services 1.17 19% 1.11 21% 1.29 14% - 8%
U.S. Bancorp 0.95 32% 0.98 32% 1.11 24% 1.17 18%
Bank of New York Mellon 1.15 24% 1.06 28% 1.04 28% 0.80 17%
SunTrust Banks, Inc. 0.91 21% 0.87 22% 0.91 16% - 8%
Capital One Financial Corp. 0.93 29% 0.92 26% 0.97 16% - 12%
BB&T Corporation 1.03 25% 1.03 23% 0.97 14% - 9%
Regions Financial Corp. 0.90 24% 0.89 19% 0.87 12% - 4%
State Street Corporation 1.33 18% 1.25 20% 1.07 24% - 11%
American Express Company 1.15 38% 1.13 36% 1.26 28% 1.50 18%
Fifth Third Bancorp 0.89 26% 0.77 31% - 17% - 6%
KeyCorp 1.11 17% 1.01 20% - 10% - 5%

mean 1.15 18.81% 1.11 19.23% 1.23 13.73% 1.35 8.15%
median 1.15 19.32% 1.06 20.52% 1.26 13.80% 1.50 5.81%

Table 3.3: Under each date the left column shows the ratio of the increase in loss absorption
(the change in the default boundary after CoCo issuance) to CoCo size (as measured
by market value). The right column is the distance to default (without CoCos) as a
percentage of asset level. The dilution ratio is 50%.

dilution ratios, the higher dilution ratio must coincide with a lower conversion trigger. The

results in Table 3.3 are based on a 50% dilution ratio, but the corresponding results with

75% dilution are virtually identical.

The last two columns of Table 3.2 report the month in which the model calibrations

predict each of the banks would have triggered conversion of CoCos with a high trigger (50%

dilution ratio) and a low trigger (75% dilution ratio). In each case, the CoCo size is equal to

10% of the bank’s total debt. The calibrations predict that all the banks except JPMorgan

Chase, Wells Fargo, and American Express would have crossed the high conversion trigger

sometime between November 2007 and January 2009; seven of the banks would have crossed

the lower conversion trigger as well.



Chapter 3. CoCos, Bail-in and Tail Risk 103

Next, we consider debt overhang costs. For each bank in each week, we calculate the

size of the equity investment required to increase assets by 1%. From this we subtract the

net increase in equity value, which we calculate by taking the value of equity just after the

investment (as calculated by the model) and subtracting the value of equity just before the

investment (as observed in the data). This is our measure of debt overhang cost: if it is

positive, it measures how much less equity holders get from their investment than they put

in. A negative cost indicates a net benefit to investment.

Table 3.4 presents more detailed information at three dates prior to key points in the

financial crisis: one month before the announcement of JP Morgan’s acquisition of Bear

Stearns; one month before final approval of the acquisition; and one month before the Lehman

bankruptcy. For each date, the table shows the debt overhang cost without CoCos and with

high-trigger CoCos; the third column under each date shows the distance to the conversion

boundary as a percentage of asset value. Interestingly, several of the largest banks show

significantly negative debt overhang costs even without CoCos. Recall from Section 3.6 that

this is possible in a model with debt rollover, though not with a single (finite or infinite) debt

maturity. Greater asset value implies greater bankruptcy costs and reducing these costs may

partly explain the motivation for shareholders to increase their investments in the largest

firms. Also, if the market perceives a too-big-to-fail guarantee for the largest banks that is

absent from our model, then the model’s shareholders may see the largest banks as overly

leveraged relative to the market’s perception.

We focus on comparisons between columns of the table — a single firm under different

conditions — rather than comparisons across rows. With few exceptions, the effect of the

CoCos is to lower the debt overhang cost, and the impact is often substantial. The effect

depends on the interaction of several factors, including leverage, debt maturity, and the risk-

free rate, which enters into the risk-neutral drift. The largest reductions in debt overhang

cost generally coincide with a small distance to conversion, and, in most cases in which a
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Feb-2008 Apr-2008 Aug-2008

Bank of America Corp -29% -32% 6% -26% -30% 5% -28% -42% 3%
JPMorgan Chase & Co. -75% -51% 5% -43% -41% 5% -93% -60% 3%
Citigroup Inc. -42% -53% 3% -24% -45% 2% -54% -65% 2%
Wells Fargo & Company -35% -23% 8% -33% -20% 8% -33% -21% 7%
Goldman Sachs Group -51% -45% 2% -33% -42% 2% -53% -54% 2%
Morgan Stanley 21% -42% 1% 21% -36% 1% -20% -58% 2%
PNC Financial Services -11% -16% 7% -7% -12% 8% -10% -12% 8%
U.S. Bancorp 4% 4% 13% 5% 5% 13% 5% 5% 11%
Bank of New York Mellon -3% -2% 17% -1% 0% 14% 6% 4% 8%
SunTrust Banks, Inc. -2% -20% 2% 5% - - 9% - -
Capital One Financial -4% -28% 3% 4% -34% 2% 6% - -
BB&T Corporation 2% -11% 4% 4% -12% 4% 6% -60% 1%
Regions Financial Corp. -7% -24% 3% -8% -42% 2% -9% - -
State Street Corporation 2% 2% 11% 5% -1% 6% 0% -11% 5%
American Express Co. -12% -13% 20% -7% -10% 20% -10% -12% 17%
Fifth Third Bancorp 12% -79% 0% 17% - - 19% - -
KeyCorp -6% -137% 0% -1% - - 5% - -

Table 3.4: Under each date, the first column is the debt overhang cost as a percentage of the
increase in assets with no CoCos. The second column quotes the same value when 10%
of debt is replaced with CoCos and CoCo investors receive 50% of equity at conversion.
The third column is the distance to conversion as the percentage of assets. The dates
correspond to one month before announcement and final approval of acquisition of
Bear Stearns by JPMorgan and one month before the Lehman bankruptcy. A table
entry is blank if the corresponding date is later than the CoCo conversion date for the
corresponding bank.

bank draws closer to the conversion boundary over time, the resulting reduction in debt

overhang cost becomes greater. The values in the table are for 50% dilution. The pattern

with 75% is similar, but the decrease in the debt overhang cost is smaller in that case because

the distance from the conversion trigger is greater. For illustration, Figure 3.15 plots the

conversion boundaries calibrated for SunTrust at the two dilution ratios, and the lower figure

plots debt overhang costs with and without CoCos. The CoCos create a positive incentive

for investment as the asset level approaches the conversion boundary.

The magnitudes of the quantities reported in these tables and figures are subject to the

many limitations and simplifications of our model and calibration. We see these results as
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providing a useful additional perspective on the comparative statics of earlier sections of this

chapter; the directional effects and the comparisons over time should be more informative

than the precise numerical values. These calibrations and our exploration of counterfactual

scenarios, though hypothetical, shed light on how CoCo issuance in advance of the financial

crisis might have affected loss absorption capacity, incentives for additional equity invest-

ment, and how the choice of conversion trigger and dilution ratio might have determined the

timing of conversion.

3.11 Concluding Remarks

The key contribution our analysis lies in combining endogenous default, debt rollover, and

jumps and diffusion in income and asset value to analyze the incentive effects of contingent

convertibles and bail-in debt. Through debt rollover, shareholders capture some of the

benefits (in the form of lower bankruptcy costs) from reduced asset riskiness and lower

leverage — benefits that would otherwise accrue solely to creditors. These features shape

many of the incentives we consider, as do the tax treatment of CoCos, the deposit insurance

base, and tail risk. The phenomenon of debt-induced collapse, which is observable only

when CoCos are combined with endogenous default, points to the need to set the conversion

trigger sufficiently high so that conversion unambiguously precedes bankruptcy, or else to

use bail-in debt structured to avoid bankruptcy costs. Our calibrations suggest that CoCos

could have had a significant impact on the largest U.S. bank holding companies in the lead

up to the financial crisis.

Our analysis does not include asymmetric information, nor does it directly incorporate

agency issues; both considerations are potentially relevant to the incentives questions we

investigate. Some important practical considerations, such as the size of the investor base

for CoCos, the behavior of stock and bond prices near the trigger, and the complexity of these



Chapter 3. CoCos, Bail-in and Tail Risk 106

Jan04 Jul04 Jan05 Jul05 Jan06 Jul06 Jan07 Jul07 Jan08 Jul08 Jan09 Jul09 Jan10 Jul10 Jan11 Jul11     Oct11
0.5

1

1.5

2

2.5

3

3.5

a
s
s
e
ts

 (
tr

ill
io

n
s
)

Bank of America Corp − assets & market capitalization

0

50

100

150

200

250

m
a
rk

e
t 
c
a
p
it
a
liz

a
ti
o
n
 (

b
ill

io
n
s
)

Jan04 Jul04 Jan05 Jul05 Jan06 Jul06 Jan07 Jul07 Jan08 Jul08 Jan09 Jul09 Jan10 Jul10 Jan11 Jul11      Oct11
0.5

1

1.5

2

2.5

3

3.5

(t
ri
lli

o
n
s
)

Bank of America Corp − default boundaries

 

 

implied market value of assets
optimal V

b
 (no CC)

optimal V
b
 after replacing 10% of debt with CC

Figure 3.13: Calibration results for Bank of America.



Chapter 3. CoCos, Bail-in and Tail Risk 107

Jan04 Jul04 Jan05 Jul05 Jan06 Jul06 Jan07 Jul07 Jan08 Jul08 Jan09 Jul09 Jan10 Jul10 Jan11 Jul11     Oct11
120

130

140

150

160

170

180

190

a
s
s
e
ts

 (
b
ill

io
n
s
)

SunTrust Banks, Inc. − assets & market capitalization

0

5

10

15

20

25

30

35

m
a
rk

e
t 
c
a
p
it
a
liz

a
ti
o
n
 (

b
ill

io
n
s
)

Jan04 Jul04 Jan05 Jul05 Jan06 Jul06 Jan07 Jul07 Jan08 Jul08 Jan09 Jul09 Jan10 Jul10 Jan11 Jul11      Oct11
80

90

100

110

120

130

140

150

160

170

(b
ill

io
n
s
)

SunTrust Banks, Inc. − default boundaries

Figure 3.14: Calibration results for SunTrust.



Chapter 3. CoCos, Bail-in and Tail Risk 108

Jan04 Jul04 Jan05 Jul05 Jan06 Jul06 Jan07 Jul07 Jan08 Jul08 Jan09 Jul09 Jan10 Jul10 Jan11 Jul11      Oct11
100

110

120

130

140

150

160

170

(b
ill

io
n
s
)

SunTrust Banks, Inc.− conversion boundary

 

 

implied market value of assets
V

c
, CC investors get 50% of equity after conversion

V
c
, CC investors get 75% of equity after conversion

Jan04 Jul04 Jan05 Jul05 Jan06 Jul06 Jan07 Jul07 Jan08 Jul08 Jan09 Jul09 Jan10 Jul10 Jan11 Jul11     Oct11
−2

−1.5

−1

−0.5

0

0.5
SunTrust Banks, Inc. − debt overhang cost

c
o
s
t 
to

 s
h
a
re

h
o
ld

e
rs

 t
o
 i
n
c
re

a
s
e
 a

s
s
e
ts

 b
y
 1

%
 (

in
 b

ill
io

n
s
)

Figure 3.15: The top figure shows calibrated conversion boundaries for SunTrust at 50% and 75%
dilution. The lower figure shows debt overhang costs without CoCos (heavy solid
line) and with CoCos at 50% (thin solid line) and 75% dilution (dashed line).



Chapter 3. CoCos, Bail-in and Tail Risk 109

instruments are also outside the model. The analysis provided here should nevertheless help

inform the discussion of the merits and potential shortcomings of CoCos and other hybrid

capital instruments.
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44
Existence and Uniqueness of Equilibrium with

Stock Price Trigger

Stock prices are forward looking, continuously updated and readily available. There-

fore, many proposals of contingent capital have advocated using a conversion trigger

based on market value of shares. However, as Sundaresan and Wang [74] point out, equity

and contingent capital are claims on the same assets, and their prices must be determined

simultaneously. Market prices of shares will adjust to reflect the imminence of conversion.

With a market based trigger, this adjustment may delay or precipitate conversion. Such

circular feedback between prices and the conversion event can create multiple equilibria or

no equilibrium. Sundaresan and Wang [74] show that for a unique equilibrium to exist, it is

necessary that mandatory conversion must not result in any value transfers between equity

and CC holders; in their model this may be achieved if contingent capital earns floating

rate coupons equal to the risk-free rate. Another possibility is that the stock prices adjust

in advance to reflect the impact of conversion on the claims so that there will be no value
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Figure 4.1: Equilibrium problem at the maturity: (a) for A ∈ [B+C+L,B+(1+m) ·L] there are
multiple solutions, (b) no feasible solutions exists for A ∈ [B+(1+m) ·L,B+C+L]

transfer at the actual conversion. Such a situation is similar to results of Bond, Goldstein,

and Prescott [11] which observe that if corrective actions by an economic agent is based on

market prices, then prices adjust to reflect this.

4.1 Static Case

In order to understand the equilibrium problem we look at payoffs in a finite maturity model.

Assume that senior debt and contingent capital have face values of respectively B and C.

Convergence trigger is when the stock price hits L and upon conversion m new shares are

issued to CC investors (total initial shares are normalized to 1). At the maturity, if CC does

not convert the share price is (A− B − C)+ where A is value of the assets. If CC converts,

each share is worth (A− B)+ /(1 +m). An equilibrium is a mapping from the assets (A) to



Chapter 4. Existence and Uniqueness of Equilibrium with Stock Price Trigger 112

the stock price (S) where

S = 1 {S > L} · (A− B − C)+ + 1 {S ≤ L} · (A− B)+

1 +m

A feasible solution without conversion is obtained if (A− B − C)+ > L; whereas (A− B)+ /(1+

m) ≤ L results in a solution with conversion. Figure 4.1 shows how these conditions can lead

to multiple equilibria or no equilibrium. If C ≤ m · L, for A ∈ [B + C + L,B + (1 +m) · L]
both conditions are valid and there are multiple solutions; whereas C > m · L leads to no

feasible solutions for A ∈ [B + (1+m) ·L,B +C +L], as neither of the conditions are valid

in this range.

It is important to note that in a dynamic model, if uniqueness of equilibrium is established

before the maturity then the singularity at the maturity is significant only if that state

can be reached without being preceded by conversion with a positive probability. A result

of our analysis (Lemma 4.3.2) suggests that under any equilibrium process the conversion

occurs at or before the first time post-conversion stock price hits the the conversion trigger.

In terms of Figure 4.1a this implies that although there are multiple solutions for A ∈
[B+C +L,B+(1+m) ·L], CC is already converted for A strictly less than B+(1+m) ·L,
and probability of assets hitting B + (1 +m) · L right at the maturity is zero.

In the rest of this chapter we investigate the equilibrium problem in a continuous time

setting. As Figure 4.2 shows, in the discrete-time setting of Sundaresan and Wang [74],

using binomial tree models, there is a range of possible equilibrium values for equity and

contingent capital before the maturity. However, the range shrinks as the number of steps

increase, suggesting that in the continuous time limit there is a unique equilibrium, resulting

from the adjustment in the stock price.
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Figure 4.2: Convergence of upper and lower bounds on equity and contingent capital in a binomial
tree model, and impact of volatility on range of equilibrium prices.

4.2 Model

Suppose that asset value is a jump-diffusion process,

At = A0 exp
([
rt − δt − λµ+ σ2/2

]
t+ σWt

) Nt∏

n=1

Yn, 0 ≤ t ≤ T,
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where δt is the fixed payout rate of the assets, N is a Poisson process with rate λ, {Y, Y1, Y2, . . . }
are i.i.d. positive jump sizes, µ = E [Y ] − 1, and N , the jump sizes, and the Brownian mo-

tion W are mutually independent. Assuming E [Y ] < ∞ ensures that E [At] < ∞ for all

t ∈ [0, T ].

Senior debt has face value B and contingent capital has face value C; both mature at T ,

and earn coupons at fixed rates of respectively c1t and c2t . The difference between the payout

of the assets and the coupon payments is paid to shareholders as dividends. Bankruptcy can

occur only at T (as in a Merton [57] model). Investors are risk-neutral. For simplicity, we

take the risk-free rate to be zero. The trigger for conversion is L > 0; at conversion, CC

holders get m shares.

Unless otherwise indicated, we assume all processes are right-continuous with left limit

(RCLL). Thus, if there is a jump at t, At denotes the asset value just after the jump, and At−

denotes the value just before the jump; more precisely, it is the limit of As as s approaches

t from the left.

Definition 4.2.1. An equilibrium stock price is any RCLL process {St, 0 ≤ t ≤ T} satisfying

ST = 1
{
τS > T

}
(AT − B − C)+ + 1

{
τS ≤ T

}
(AT − B)+/(1 +m)

and, for all ∈ [0, T ],

St = Et

[∫ T

t

(
1
{
τS > v

}
(δvAv − c1vB − c2vC) + 1

{
τS ≤ v

} 1

1 +m
(δvAv − c1vB)

)
dv

+1
{
τS > T

}
(AT − B − C)+ + 1

{
τS ≤ T

}
(AT − B)+/(1 +m)

]
(4.1)

where Et denotes conditional expectation given the history {(Wu, Nu, Y1, . . . , YNu), 0 ≤ u ≤ t}
and

τS = inf {0 ≤ t ≤ T : St ≤ L}
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is the first time S reaches [0, L].

Take τS = ∞ if S never reaches this set in [0, T ], and apply the same convention to all

hitting times introduced below. The right-continuity of S implies that SτS ≤ L.

For each equilibrium stock price (as defined above), there is an associated CC price

process {Ct, 0 ≤ t ≤ T},

Ct = Et

[∫ T

t

(
1
{
τS > v

}
c2vCdv + 1

{
τS ≤ v

} m

1 +m
(δvAv − c1vB)

)
dv

+1
{
τS > T

}
min

{
(AT − B)+, C

}
+ 1

{
τS ≤ T

}
m(AT − B)+/(1 +m)

]
(4.2)

It is worth noting here that in the diffusion only case, the two processes

St +

∫ t

0

(
1
{
τS > v

}
(δvAv − c1vB − c2vC) + 1

{
τS ≤ v

} 1

1 +m
(δvAv − c1vB)

)
dv

and

Ct +

∫ t

0

(
1
{
τS > v

}
c2vCdv + 1

{
τS ≤ v

} m

1 +m
(δvAv − c1vB)

)
dv

are martingales with respect to Brownian motion and therefore automatically continuous.

Consequently St and Ct are continuous processes. Thus, an equilibrium stock price process

automatically satisfies the Sundaresan-Wang no-value-transfer principle and, in particular,

P (C(τS−) = mL) = P (C(τS+) = mL) = 1

for any equilibrium stock price process S.

Define

Ut =
1

1 +m
Et

[∫ T

t

(δvAv − c1vB)dv + (AT − B)+
]

(4.3)
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We interpret U as the stock price process if conversion took place at time zero. Let

τU = inf {0 ≤ t ≤ T : Ut ≤ L}

be the first time U hits [0, L]. If U0 ≤ L, then τU = 0. By definition (and right-continuity),

UτU ≤ L.

4.3 Technical Results

Lemma 4.3.1. If S is an equilibrium stock price, then P (τU ≤ τS) = 1.

Proof. Let S be an equilibrium stock price. Then, on the event
{
τS < T

}
,

SτS =
1

1 +m
EτS

[∫ T

t

(δvAv − c1vB)dv + (AT − B)+
]
= UτS .

But, by right continuity, SτS ≤ L, so UτS ≤ L, which implies τU ≤ τS. �

Lemma 4.3.2. If S is an equilibrium stock price, then P (τU ≥ τS) = 1.

We defer the proof of above lemma until the end.

Proposition 4.3.3. There is at most one equilibrium stock price process.

Proof. Let Si, i = 1, 2, be equilibrium stock price processes, and let τ i, i = 1, 2, be their

hitting times for [0, L]. From Lemmas 4.3.1 and 4.3.2 we have P (τ i = τU) = 1, so, for all
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S*

L

U
U = S*

L

Figure 4.3: Construction of equilibrium: S∗
t converts the first time the post-conversion price Ut

hits the trigger L. No equilibrium stock price can hit L earlier than that. After
conversion St = Ut.

t ∈ [0, T ],

S1
t = Et

[∫ T

t

(
1
{
τU > v

}
(δvAv − c1vB − c2vC) + 1

{
τU ≤ v

} 1

1 +m
(δvAv − c1vB)

)
dv

+1
{
τU > T

}
(AT − B − C)+ + 1

{
τU ≤ T

}
(AT − B)+/(1 +m)

]

= S2
t

�

Define

S∗
t = Et

[∫ T

t

(
1
{
τU > v

}
(δvAv − c1vB − c2vC) + 1

{
τU ≤ v

} 1

1 +m
(δvAv − c1vB)

)
dv

+1
{
τU > T

}
(AT − B − C)+ + 1

{
τU ≤ T

}
(AT − B)+/(1 +m)

]

noting that the trigger here is defined by U . Also, let τ ∗ be the hitting time for S∗ to [0, L].

Lemma 4.3.4. P (τ ∗ ≤ τU) = 1.
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Proof. If τU > T , then τU = ∞ and the required inequality holds. On the event
{
τU ≤ T

}
,

S∗
τU =

1

1 +m
EτU

[∫ T

τU
(δvAv − c1vB)dv + (AT − B)+

]
= UτU ≤ L

so τ ∗ ≤ τU . �

In the following, Lemma 4.3.5 and Proposition 4.3.6 assume that there are no coupons

or dividends (i.e. δt = 0, cit = 0).

Lemma 4.3.5. If C ≤ mL, then P (τU ≤ τ ∗) = 1.

Proof. We claim that if C ≤ mL, then S∗
T ≥ UT . There are two cases. If AT − B ≥

C(1 +m)/m, then

AT − B − C ≥ (AT − B)/(1 +m),

and S∗
T ≥ UT ; if AT − B < C(1 + m)/m, then UT < C/m ≤ L, so S∗

T = UT . Taking

conditional expectations, we get S∗
t ≥ Ut for all t ∈ [0, T ]. But if S∗ is always greater than

or equal to U , it cannot reach [0, L] before U does. �

Proposition 4.3.6. Suppose U0 > L. If C ≤ mL then S∗ is the unique equilibrium stock

price, and if C > mL there is no equilibrium stock price. If U0 ≤ L, then S∗ is always the

unique equilibrium stock price.

Proof. Consider the case U0 > L and C ≤ mL. From Lemmas 4.3.4 and 4.3.5, we have

τ ∗ = τU , so, for all t ∈ [0, T ],

S∗
t = Et

[
1 {τ ∗ > T} (AT − B − C)+ + 1 {τ ∗ ≤ T} (AT − B)+/(1 +m)

]

which shows that S∗ is an equilibrium and, by Proposition 4.3.3, the only equilibrium. If

U0 ≤ L, then τU = τ ∗ = 0 and S∗ ≡ U is trivially an equilibrium stock price process.
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The remaining case is U0 > L and C > mL. Suppose an equilibrium stock price process

S exists. If S0 ≤ L, then τS = 0 and S0 = U0, but U0 > L, resulting in a contradiction.

Suppose S0 > L. Conditional on NT = 0, A is simply geometric Brownian motion on [0, T ],

so

P (At > at, 0 ≤ t ≤ T, and AT < L+B + C|NT = 0) > 0,

with at the boundary defined in the proof of Lemma 4.3.2, aT = B+(1+m)L < L+B+C.

Because P (NT = 0) > 0, it follows that

P (At > at, 0 ≤ t ≤ T, and AT < L+B + C and NT = 0) > 0,

and, as a consequence,

P (τS > T and AT < L+B + C) > 0.

But τS > T implies ST = (AT − B − C)+, and then AT < L + B + C implies ST < L,

contradicting τS > T . So, no equilibrium S is possible. �

With coupons and dividends, Lemmas 4.3.1 and 4.3.2 impose that if there exist any

equilibrium, it is unique and it will convert at τU . Consequently, the constructed stock

process S∗
t has to be the unique equilibrium stock process. A contradiction will occur if

S∗
t crosses L before τu. So we need P (S∗

t ≤ L,Ut > L) = 0 to avoid the contradiction. A

sufficient condition is C ≤ mL and m
m+1

(δtAt − c1tB) − c2tC ≥ 0 for all t ∈ [0, T ], which

guarantees P (S∗
t − Ut ≥ 0) = 1.

Proof of Lemma 4.3.2. We will introduce two boundaries for the asset process A with the fol-

lowing interpretation: no equilibrium stock price can hit L until A hits the upper boundary;

every equilibrium stock price must hit L before A hits the lower boundary.
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In light of the Markov property of A, we can write Ut as

1

1 +m
E

[∫ T

t

(δvAv − c1vB)dv + (AT − B)+
∣∣∣∣At

]

in other words, Ut is a deterministic function of t and At, Ut = g(t, At). The function is

strictly increasing in At and has range (0,∞). σ > 0 allows to conclude that At has a C∞

density with all derivatives vanishing at infinity (Sato [71, Proposition 28.3]), which ensures

the function g(t, At) is a continuous and smooth function of its arguments (Rong [69]). Thus,

we can then define, for each t ∈ [0, T ], an asset level at such that

g(t, at) = L.

Thus, Ut = L if and only if At = at, and Ut ≤ L if and only if At ≤ at. If U0 > L, τU is

the first time A is at or below the boundary {at, 0 ≤ t ≤ T}. Moreover, {at, 0 ≤ t ≤ T} is

continuous in t. This is our upper boundary.

We introduce a second boundary by defining

Vt = Et

[∫ T

t

δvAvdv + (AT − B − C)+ + (AT − B)+/(1 +m)

]
.

Clearly, Vt ≥ St, for any equilibrium stock price St. Again by the Markov property, Vt =

h(t, At) for some function h. Following similar arguments as in the case of g(t, At), for each

t ∈ [0, T ] there is bt > 0 at which h(t, bt) = L. In fact, {bt, 0 ≤ t ≤ T} is bounded from below

by some constant b > 0, and then, for all t ∈ [0, T ].

At ≤ b ⇒ Vt ≤ L ⇒ St ≤ L. (4.4)

The constant b is our lower boundary.
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For any t < T and any x ∈ (b, at), consider the evolution of A on [t, T ] given At = x.

Write N(t, T ] for the number of jumps in the interval (t, T ]; i.e.,

N(t, T ] = NT −Nt,

and note that N(t, T ] is independent of all time-t information. Conditional on N(t, T ] = 0

and At = x, A evolves like geometric Brownian motion on [t, T ] starting at x. It is then a

standard property of Brownian motion that (conditional on At = x and N(t, T ] = 0) the

probability that A reaches b before reaching the a boundary and before T is strictly positive.

Now fix ǫ > 0 and let

τǫ = inf {0 ≤ t ≤ T : At ≤ at − ǫ}

denote the first time A drops ǫ or more below the a boundary, and let τ+a and τ+b denote the

first time in [τǫ, T ] that A reaches the boundaries a and b, respectively, taking each of these

to be ∞ if the corresponding boundary is never hit in [τǫ, T ]. (If Aτǫ ≤ b, then τ+b = τǫ.)

Then, by the strong Markov property of A,

P (τ+b < min
{
τ+a , T

}
, N(τǫ, T ] = 0|At, 0 ≤ t ≤ τǫ)

= P (τ+b < min
{
τ+a , T

}
, N(τǫ, T ] = 0|Aτǫ) > 0,

on the event {τǫ < T}.

Next, we claim that for any equilibrium stock price S, the event

{
τǫ < τS, τ+b < τ+a

}
∩ {N(τǫ, T ] = 0} (4.5)

has probability zero. To see why, observe from (4.4) that Sτ+b
≤ L, so on the event

{
τǫ < τS, τ+b < τ+a

}
, S must hit [0, L] for the first time sometime in (τǫ, τ

+
b ]. But, on the

event
{
τ+b < τ+a

}
, U is strictly below L (because A is strictly below the upper boundary)
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throughout the interval
[
τǫ, τ

+
b

]
. If S is continuous on (τǫ, τ

+
b ], then the first time it hits

[0, L], it must in fact hit L. But S and U must coincide at τS, so this would contradict

the fact that U is strictly below L. Thus, the event
{
τǫ < τS, τ+b < τ+a

}
is contained within

the event that S has a discontinuity somewhere in (τǫ, T ]. However, on {N(τǫ, T ] = 0}, S is

continuous on (τǫ, T ] so the intersection in (4.5) has probability zero.

We now have

0 = P (τǫ < τS, τ+b < τ+a , N(τǫ, T ] = 0)

= E
[
P (τǫ < τS, τ+b < τ+a , N(τǫ, T ] = 0|At, 0 ≤ t ≤ min {τǫ, T})

]

= E
[
1
{
τǫ < τS

}
P (τ+b < τ+a , N(τǫ, T ] = 0|At, 0 ≤ t ≤ min {τǫ, T})

]

= E
[
1
{
τǫ < τS

}
P (τ+b < τ+a , N(τǫ, T ] = 0|At, 0 ≤ t ≤ τǫ < T )

]
,

the third equality using the fact that 1
{
τǫ < τS

}
is determined by (measurable with respect

to) {At, 0 ≤ t ≤ min {τǫ, T}}, and the fourth equality using the fact that τǫ < T on the event
{
τǫ < τS

}
. But as the conditional probability inside the expectation is strictly positive with

probability one, the only way the expectation can be zero is if

P (τǫ < τS) = 0;

i.e., P (τǫ ≥ τS) = 1. But, with probability one, τU = infǫ>0 τǫ, so P (τU ≥ τS) = 1 as

well. �
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Figure 4.4: Ut = L on the at boundary (conversion possible); St < L below the b boundary
(conversion necessary); An actual conversion time later than the first time Ut hits at
leads to a contradiction.
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AA
Appendix

A.1 Technical Appendix for Chapter 2

A.1.1 Equity Allocation

In this appendix, we prove Theorem 2.3.1 under the more general assumption that V is

any continuous semimartingale (as in Protter [68], p.44 and p.114). We first show that the

expression for Qo in (2.16) satisfies (2.14). For t ∈ [0,min(τb, T )], we have Qt > 0. By

(2.4), Q is a continuous semimartingale and L is an increasing process, so we may take the

differential of (2.16) to get

dQo
t = dQt

Qo
t

Qt

+Qt d

[(
a− Lt

a

)(q 1−α
α

)
]
,
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and

d

[(
a− Lt

a

)(q 1−α
α

)
]
= −q

1− α

α

Qo
t

Qt

dLt

a− Lt

. (A.1)

From part (iii) of Proposition 2.2.1, we know that if t is a point of increase (in the sense of

Harrison [38], p.xvii) of L, then Vt − (B − (1− α)Lt)−D = αVt; in other words, Qt = αVt.

This expression also gives Vt = a− Lt. Thus, we have

dLt

a− Lt

=
dLt

Vt

=
dLt

Qt/α
.

Making this substitution in (A.1) and rearranging terms, we get (2.14). If τb < T , then for

t ∈ (τb, T ], we have Lt = Lτb and (2.16) is consistent with (2.15). Thus, Qo in (2.16) solves

(2.14)–(2.15).

To prove uniqueness, we use Theorem 6 on p.194 of Protter [68], for which we rewrite

(2.14)–(2.15) as

Qo
t = Qo +

∫ t

0

f(s, ω,Qo
s) dZs,

with Zs = Vs + (q − 1)(1− α)Ls and

f(t, ω, x) =





x/Qt(ω), t ≤ τb(ω);

(b/a)q(1−α)/α, t > τb(ω),

the second case giving Qo
τb
/Qτb , as in (2.18). For each fixed x, the mapping (t, ω) → f(t, ω, x)

is continuous in t and adapted. For each fixed (t, ω) and any real x, y,

|f(t, ω, x)− f(t, ω, y)| ≤ (1− α)

αD
1{s < τb(ω)}|x− y|,

because Qt ≥ αD/(1− α) for t ∈ [0, τb). The conditions for Protter’s [68] theorem are thus

satisfied and uniqueness follows. The expressions in (2.17) for π follow directly from (2.14).
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A.1.2 Proof of Proposition 2.6.1

The main objective of this section is to prove Proposition 2.6.1. First, we recall that, at each

t, W̃t defined in (2.29) has a N (µt, σ2t) distribution, and m̃t has the following distribution

and density (see, e.g., Harrison [38], p.14), for m ≤ 0:

P(m̃t ≤ m) = Φ

(
m− µt

σ
√
t

)
+ exp

{
2µ

m

σ2

}
Φ

(
m+ µt

σ
√
t

)
(A.2)

fµ
m̃t
(m) =

2

σ
√
2πt

exp

{ −1

2σ2t
(m− µt)2

}
+ 2

µ

σ2
exp

{
2µ

m

σ2

}
Φ

(
m+ µt

σ
√
t

)
. (A.3)

Now let

hµ(t, k, y) = H(t, 0, k, y) =

∫ y

−∞

ekmfµ
m̃t
(m) dm.

Integration yields

hµ(t, k, y) =
2µ

2µ+ kσ2
eky+2yµ/σ2

Φ

(
y + tµ

σ
√
t

)
+

2µ+ 2kσ2

2µ+ kσ2
ekµt+k2σ2t/2Φ

(
y − (µ+ kσ2)t

σ
√
t

)
.

We can now evaluate H. By the Girsanov theorem,

E
[
evW̃t+km̃t1{m̃t ≤ y}

]
= evµt+v2σ2tEθ

[
ekm̃t1{m̃t ≤ y}

]
,

the subscript θ indicating that the expectation is taken with the drift of W̃ equal to θ =

µ+ vσ2 rather than µ. The remaining expectation is given by hθ(t, k, y).
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A.1.3 Proof of Proposition 2.6.2

We may write Lt = (a− V0 exp (m̃t))
+ ∧ (a− b) as

Lt = (a− b)1{m̃T ≤ log(b/V0)}+ (a− V0e
m̃T )1{log(b/V0) < m̃T ≤ log(a/V0)}

= a1{m̃T ≤ log(a/V0)} − b1{m̃T ≤ log(b/V0)}

−V0e
m̃T1{log(b/V0) < m̃T ≤ log(a/V0)}.

The first expression in the proposition now follows from the definition of H in (2.30) and

∆H in (2.33). The second expression follows by making the substitutions in (2.31) and

simplifying terms.

A.1.4 Proof of Proposition 2.6.3

We begin with the second part of the proposition, showing that (2.38) is the expectation of

the second term in (2.23). By definition, we have Vτb = b, and the fraction πτb is given in

(2.18). With these substitutions, the second term in (2.23) simplifies to

X1αb

(
1−

(
b

a

)(q 1−α
α

)
)
e−rτb1{τb ≤ T}.

To calculate its expectation, we need to find E [e−rτb1 {τb ≤ T}]. By the Girsanov theorem,

this expectation coincides with

Eθ

[
exp

{
−rτb +

µ− θ

σ2
W̃τb −

µ2 − θ2

2σ2
τb

}
1 {τb ≤ T}

]
(A.4)

where Eθ indicates expectation with the drift of W̃ changed to θ. This identity holds for

any real θ; if we choose θ = θ1, with θ1 =
√

2σ2r + µ2, then, recalling that W̃τb = log(b/V0),
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the expectation in (A.4) becomes

(
b

V0

)µ−θ1
σ2

Pθ1 (τb ≤ T ) . (A.5)

Observing that Pθ1 (τb ≤ T ) = Pθ1 (m̃T ≤ log(b/V0)) and applying formula (A.2) with m

replaced by log(b/V0) and µ replaced by θ1, it follows that (A.5) is equal to

(
b

V0

)µ−θ1
σ2

Φ

(
log( b

V0
)− θ1T

σ
√
T

)
+

(
b

V0

)µ+θ1
σ2

Φ

(
log( b

V0
) + θ1T

σ
√
T

)
. (A.6)

Thus we have shown that

E
[
e−rτb(1− πτb)X1αVτb1{τb≤T}

]
= R1αb

(
1−

(
b

a

)(q 1−α
α

)
)
×

[(
b

V0

)µ−θ1
σ2

Φ

(
log( b

V0
)− θ1T

σ
√
T

)
+

(
b

V0

)µ+θ1
σ2

Φ

(
log( b

V0
) + θ1T

σ
√
T

)]
.

A further application of the Girsanov theorem yields

Pθ1 (τb ≤ T ) = E

[
exp

{
θ1 − µ

σ2
W̃T +

µ2 − θ21
2σ2

T

}
1 {τb ≤ T}

]

= e−rTH(T, (θ1 − µ)/σ2, 0, log(b/V0))

and thus the expression in (2.38).

Next we turn to (2.37). On the event that the firm survives until the debt matures, the

present value of the equity held by the contingent capital investors is given by the first term

in (2.23). We can replace the indicator 1{τb > T} in this expression with 1{m̃T > log(b/V0)};
and, if m̃T > log(a/V0) then no debt was converted and (1−πT ) = 0, so we may restrict the

expectation to the event that m̃T lies between log(b/V0) and log(a/V0). Moreover, for m̃T is
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in this interval, LT = a− V0 exp(m̃T ). On this event, we therefore get (from (2.17))

πT =

(
V0

a

)q 1−α
α

e(q
1−α
α

)m̃T ,

and B− (1−α)LT +D = a(1−α)− (1−α)LT = (1−α)V0e
m̃T . Making these substitutions,

the first term in (2.23) becomes exp(−rT ) times

(
1−

(
V0

a

)q 1−α
α

e(q
1−α
α

)m̃T

)(
V0e

W̃T − (1− α)V0e
m̃T

)
1

{
log

(
b

V0

)
< m̃T ≤ log

(
a

V0

)}
.

By expanding the product and taking the expectation we get four terms, each of the type

that defines the function ∆H, and this yields (2.37).

A.1.5 Proof of Proposition 2.6.4

If m̃t ≤ log(b/V0), then τb ≤ t and if m̃t > log(a/V0), then πt = 1. In addition for m̃t

in the interval [log(b/V0), log(a/V0)], Lt and πt are respectively equal to a − V0e
m̃t and

(V0e
m̃t/a)(q

1−α
α

). It follows that (1− πt) (δVt − (1− κ) [c1 (B − (1− α)Lt) + c2D])1 {τb > t}
equals

(
1−

(
V0e

m̃t

a

)(q 1−α
α

)
)(

δV0e
W̃t − (1− κ)(1− α)

[
(c2 − c1)b+ c1V0e

m̃t
])

× 1

{
log

(
b

V0

)
< 1m̃t ≤ log

(
a

V0

)}
.

Here again the expectation is a linear combination of values of ∆H, as given in (2.40).
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A.1.6 Proof of Proposition 2.6.5

We have P(τb > T ) = 1−P(m̃T ≤ log(b/V0)) = 1−H(T, 0, 0, log(b/V0)), and we showed that

E
[
e−rτb1{τb ≤ T}

]
= e−rTH(T, (θ1 − µ)/σ2, 0, log(b/V0))

in the proof of Proposition 2.6.3. The result follows from making these substitutions in

(2.41)–(2.42).

A.2 Technical Appendix for Chapter 3

All the valuations used in the chapter reduce to expectations of certain functions of the

asset value process Vt in (3.3) and the default time τb. This appendix derives the necessary

formulas. Our analysis builds on work on the hyperexponential jump-diffusion process in

Cai et al. [14]. There is an extensive body of work on ruin probabilities and random walks

that uses related techniques; see Asmussen and Albrecher [3] for a thorough treatment of

the topic and extensive references.

Let Xt = log(Vt) and write

Xt = X0 + µt+ σWt +
Nt∑

i=1

Yi. (A.7)

Here, Nt = N
(m)
t +N

(f)
t , and the jump sizes Yi are i.i.d. with density

fY (y) = qfηfe
ηfy1{y<0} + qmηme

ηmy1{y<0}, (A.8)

where qf = Λf/(Λf + Λm) and qm = 1− qf are the probabilities of the two types of jumps.



Appendix A. Appendix 131

This is a Lévy process with Lévy exponent

G(x) :=
1

t
logE[exp(xXt)] = xµ+

1

2
x2σ2 + (Λf + Λm)

(
qfηf
ηf + x

+
qmηm
ηm + x

− 1

)
.

By some elementary calculus, it can be shown that for any given a > 0, the equationG(x) = a

has four distinct real roots β, −γ1, −γ2, and −γ3, where β, γj > 0 for j = 1, 2, 3. All these

roots are different from ηf and ηm. See Cai et al. [14].

Given a constant b, define τb ≡ inf {t ≥ 0 : Xt ≤ b}. The process X can reach or cross

level b in three ways: without a jump at τb, with a firm-specific jump at τb, or with a market-

wide jump at time τb. Let J0, J1, and J2 denote these three events. We need to consider the

overshoot across level b in these three cases, so we define the events F0 := {Xτb = b} ∩ J0,

F1 := {Xτb < b + y} ∩ J1, and F2 := {Xτb < b + y} ∩ J2 for some negative y. The pricing

equations in Section 3.4 all reduce to evaluating quantities of the form

ui(x) = E
[
e−aτb+θXτb1Fi

|X0 = x
]
, i = 0, 1, 2,

where a ≥ 0 and θ are constants.

Introduce a matrix

M =




e−γ1b e−γ1b ηf
ηf−γ1

e−γ1b ηm
ηm−γ1

e−γ2b e−γ2b ηf
ηf−γ2

e−γ2b ηm
ηm−γ2

e−γ3b e−γ3b ηf
ηf−γ3

e−γ3b ηm
ηm−γ3


 .

The matrix M is invertible because the roots γj are distinct. We can use it to express the

functions ui(x) explicitly:

Theorem 1. Given a > 0 and the negative roots −γj, j = 1, 2, 3, of the algebraic equation
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G(x) = a, let w(x) := (exp(−γ1x), exp(−γ2x), exp(−γ3x))
⊤. Then,




u0(x)

u1(x)

u2(x)


 = DM−1w(x),

where

D =




1 0 0

0 eθb
ηf

ηf+θ
e(θ+ηf )y 0

0 0 eθb
ηf

ηf+θ
e(θ+ηf )y


 .

Proof. Conditional on the event J1, the memoryless property of the exponential distri-

bution implies that b−Xτb is exponentially distributed with mean 1/ηf , independent of ηf .

Therefore,

E[exp(−aτb + θXτb)1F1
|X0 = x] = eθbE[exp(−aτb + θ(Xτb − b))1F1

|X0 = x]

= eθbE[exp(−aτb)1J1 |X0 = x]
ηf

θ + ηf
e(θ+ηf )y. (A.9)

Similarly, we have

E[exp(−aτb + θXτb)1F2
|X0 = x] = elbE[exp(−aτb)1J2 |X0 = x]

ηm
θ + ηm

e(θ+ηm)y, (A.10)

and

E[exp(−aτb + θXτb)1F0
|X0 = x] = elbE[exp(−aτb)1J0 |X0 = x] (A.11)

Thus, we need to find

E
[
e−aτb+θXτb1Ji |X0 = x

]
, i = 1, 2, 3.
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For any a > 0 and any purely imaginary number l (i.e., l =
√
−1c for some real c),

Mt := exp(−at+ lXt)− exp(lX0)− (G(l)− a)

∫ t

0

exp(−as+ lXs)ds

is a zero-mean martingale. By the optional sampling theorem for martingales, we know that

E[Mτb |X0 = x] = 0, i.e.,

E[exp(−aτb + lXτb)|X0 = x]− elx

−(G(l)− a)E

[∫ τb

0

exp(−as+ lXs)ds|X0 = x

]
= 0. (A.12)

On the other hand, we can further decompose the first term on the right as

E[exp(−aτb + lXτb)|X0 = x] =
3∑

i=1

E[exp(−aτb + lXτb)1Ji |X0 = x]

= elbE[exp(−aτb)1J0 |X0 = x]

+elb
ηf

ηf + θ
E[exp(−aτb)1J1 |X0 = x]

+elb
ηm

ηm + θ
E[exp(−aτb)1J2 |X0 = x]

From (A.12) and (A.13), we know that

0 = E[exp(−aτb)1J0 |X0 = x]elb + elb
ηf

ηf + θ
E[exp(−aτb)1J1 |X0 = x]

+elb
ηm

ηm + θ
E[exp(−aτb)1J2 |X0 = x]− elx

−(G(l)− a)E

[∫ τb

0

exp(−as+ lXs)ds|X0 = x

]
.

(A.13)

Denote the right side of (A.13) by h(l). The equality (A.13) indicates that h(l) ≡ 0 for
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all imaginary l. Multiply h(l) by (l + ηm)(l + ηf ) to obtain a new function

H(l) = h(l) · (l + ηm) · (l + ηf ).

Then, H(l) is well-defined and analytic in the whole complex domain C. By (A.13), H(l)

equals zero whenever l is a purely imaginary. The identity theorem of analytic functions in

the complex domain (Rudin[70], Theorem 10.18) then implies that H(l) ≡ 0 for all l ∈ C.

Accordingly, h(l) = 0 for all l ∈ C \ {−ηf ,−ηm}.

If we choose l = −γj, j = 1, 2, 3, then G(l) = 0, and the equation h(l) = 0 becomes

e−γjx = E[exp(−aτb)1J0 |X0 = x]e−γjb + e−γjbE[exp(−aτb)1J1 |X0 = x]
ηf

ηf − γj

+e−γjbE[exp(−aτb)1J2 |X0 = x]
ηm

ηm − γj
, (A.14)

for j = 1, 2, 3. This give us a system of three linear equations in the three unknown quantities

E[e−aτb1Ji |X0 = x], i = 1, 2, 3. Using the solution to the linear equations in (A.9)–(A.11),

we get E[e−aτb+θXτb1Fi
|X0 = x], i = 1, 2, 3. �

Iterated expectations of the form E[e−a1τc+θ1XτcE[e−a2(τb−τc)+θ2Xτb1Fi
|Xτc ]] can be evalu-

ated the same way, and this is what we need for (3.9).
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