
Contingent payments from two-party signing and verification for abelian groups

Sergiu Bursuc
SnT, University of Luxembourg

Sjouke Mauw
SnT and DCS, University of Luxembourg

Abstract—The fair exchange problem has faced for a long
time the bottleneck of a required trusted third party. The
recent development of blockchains introduces a new type
of party to this problem, whose trustworthiness relies on a
public ledger and distributed computation. The challenge in
this setting is to reconcile the minimalistic and public nature
of blockchains with elaborate fair exchange requirements,
from functionality to privacy. Zero-knowledge contingent
payments (ZKCP) are a class of protocols that are promising
in this direction, allowing the fair exchange of data for
payment. We propose a new ZKCP protocol that, when
compared to others, requires less computation from the
blockchain and less interaction between parties. The protocol
is based on two-party (weak) adaptor signatures, which we
show how to instantiate from state of the art multiparty sign-
ing protocols. We improve the symbolic definition of ZKCP
security and, for automated verification with Tamarin, we
propose a general security reduction from the theory of
abelian groups to the theory of exclusive or.

1. Introduction

The computational guarantees and the distributed na-
ture of blockchains, e.g. [59], [70], raise expectations
that they can serve as trustworthy infrastructure for ap-
plications that usually require trusted third parties. A
prominent such application is that of fair exchange, which
should allow two parties to exchange data in a secure
way. Indeed, since fair exchange was shown impossible
in general without a trusted third party [26], [61], it has
been confined to restricted functionalities or optimistic
scenarios [5], [20], [27]. A natural question is whether the
blockchain, guaranteeing consistency and liveness [41],
[63], can contribute to more general solutions. The answer
is not easy, since blockchain-based computation should be
minimal, for efficiency and privacy reasons. As a conse-
quence, most solutions incur significant overhead, relying
on advanced cryptographic primitives and mediators [24],
[36], [37], [44], trusted hardware [31], [69], or penalties
[3], [4], [13].

A step towards more practical solutions is the func-
tionality of zero-knowledge contingent payments. A con-
tingent payment is executed between a sender and a re-
ceiver and allows the provision of certain type of data in
exchange for payment. Furthermore, in a zero-knowledge
contingent payment (ZKCP), the receiver should obtain
no information about the data if the sender does not
obtain payment. The data exchanged in ZKCP is called
a witness, since its properties are formalised as a relation
between an NP statement and a witness to it. The first
protocol achieving ZKCP in Bitcoin was proposed in

[71], and implemented in [55], based on the generic zk-
SNARK framework for non-interactive zero-knowledge
proofs [12]. The protocol relies on so-called hashed time-
lock contracts. Such a contract allows two parties to agree
on a hash value and create a coin that can be claimed by
one of the two parties by providing the inverse of that hash
value. In the first step of the ZKCP protocol from [71],
the sender S constructs a non-interactive zero-knowledge
proof to convince the receiver R that the inverse of a hash
value, together with additional encrypted data, reveals the
witness. In the second step, R transfers a coin into a
hashed timelock contract for that hash value. Finally, S
redeems the payment by posting the inverse of the hash
value on the Bitcoin ledger, where R can retrieve it and
compute the witness. The timelock refers to the fact that
the coin can be returned to its original owner if the party
responsible for providing the inverse of the hash does
not respond after a certain amount of time. The timelock
mechanism can also be applied to standard coins, without
a hashlock contract.

Security definitions for ZKCP and security proofs for
this protocol have been proposed both in the symbolic [18]
and in the computational model [60]. However, there are
still several drawbacks in practice. The foremost is that
hashed timelock contracts are not standard transactions
in Bitcoin and add significant overhead. This limitation
refers to the hash function required to be evaluated on the
blockchain, but not to the timelock aspect which is negligi-
ble in comparison. Ideally we should have a protocol that
uses only standard transactions that transfer funds between
accounts based on signatures with associated keys, possi-
bly with timelock constraints associated to certain coins.
Even on blockchains like Ethereum that naturally support
more general code, minimising the amount of on-chain
computation is worthwhile. A second drawback of [71]
is that the zero-knowledge proof has to be recomputed
at every new session between a given sender and any
receiver, even if it is for selling the same witness. The
reason for this is that the inverse of the hash value giving
access to the witness is linked to the zero-knowledge proof
and is recorded on the blockchain after completing the
exchange.

The problem of hashed timelock contracts in [71] has
been discussed in [8], which proposed a second protocol
based on standard Bitcoin. The protocol relies on a shared
key between the sender and the receiver, which acts as
an intermediary for payment between the two. Before
making a payment towards the shared key, the receiver
needs to be convinced that the followup signature trans-
ferring it to the sender will reveal enough information to
compute the witness. For this, the parties jointly generate
a signature with respect to the shared key and the sender

proves in zero-knowledge that this signature, together with
additional encrypted data, reveals the witness. The fair-
exchange happens when this signature, initially held by the
sender, is posted on the blockchain, allowing the receiver
to obtain the witness and the sender to obtain payment.
The first drawback of this protocol is that, as in [71],
the zero-knowledge proof cannot be reused, because it is
linked to a particular signature. Second, the relation that
needs to be proved in zero-knowledge is significantly more
complex than in [71], as it needs to prove the validity of
the signature, of the witness, and of the relation between
them. That is why [8] aims to avoid generic zk proofs
and designs a specific zk construction. It is based on
the cut-and-choose technique, where many sessions are
executed in parallel to derive security guarantees. Their
construction expects that the underlying NP statement
admits zero-knowledge proofs of a particular structure,
which significantly limits the type of data to which the
protocol can be applied. Finally, the zk proof construction
of [8] is interactive, which adds more overhead compared
to the non-interactive zero-knowledge proofs that are now
standard in the context of blockchains [11], [12], [62].

Our contributions. We propose a new ZKCP protocol
that has new interesting features when compared to the
state of the art. We perform its formal specification and
verification with the Tamarin prover. We make several
additional contributions of independent interest described
below.

New ZKCP protocol. The main improvement of our
protocol with respect to [71] is that it works on standard
Bitcoin, like [8]. It only assumes the ability of the ledger
to return a coin to a previous owner after a timeout, but
does not require hashlock transactions. An improvement
over both protocols is that the same zero-knowledge proof
can be reused for selling the same witness to different
buyers across different sessions. This is important in a
decentralised setting where one may generate many data
elements for many potential buyers. The relation that we
need to prove in zero-knowledge is much simpler than
[8], allowing us to rely on generic non-interactive zero-
knowledge proofs like [71]. This means we do not have
a restriction on the class of statements: the protocol can
be applied to exchange any data whose properties can be
formalised as an NP relation.

Two-party weak adaptor signing. The notion of adap-
tor signatures has been recently introduced in the context
of blockchains in order to improve their scalability and
privacy [6], [38], [54], [66]. An adaptor signature scheme
allows to construct a so-called pre-signature on a message,
that can be adapted into a real signature on that message
given a witness for a specified NP relation. Conversely,
given a valid signature on that message, one can extract
from the pre-signature a witness for that NP relation. A
related notion of lockable signatures has been introduced
in [67]. This notion is weaker than adaptor signatures,
since it requires a party to provide a corresponding NP
witness in order to construct a pre-signature and it does
not allow the verification of a pre-signature. In this paper,
we consider an intermediary notion between lockable sig-
natures and adaptor signatures, that we call weak adaptor
signatures. Like lockable signatures, this notion requires
the NP witness in order to compute a pre-signature; like
adaptor signatures, it allows to verify a pre-signature.

For our ZKCP protocol, the main tool that we need
is a distributed protocol that allows two parties to con-
struct a weak adaptor signature for a shared signing key.
The signature scheme that is used in Bitcoin is ECDSA
(elliptic curve DSA) [47]. Two recent multiparty ECDSA
signing protocols with state-of-the-art efficiency are pro-
posed in [42], [53]. We show that these protocols can be
directly extended to compute ECDSA-based weak adaptor
signatures in a distributed way, which is not the case for
adaptor signatures. A pre-signature in this setting is simply
a term β + s, where s is (part of) a fresh signature s and
β is the witness for a suitably chosen NP relation. Our
ZKCP protocol will ensure that the signature s allows the
sender to obtain payment, while the mask β allows the
receiver to obtain the witness. A zk proof will attest the
relation between the public representation of β and a valid
witness. The fair exchange happens when s reaches the
blockchain.

Formal verification modulo abelian groups. To per-
form formal verification for our protocol, we need to
model the abelian group (ag) where β + s is performed.
Unfortunately, the theory of ag is currently outside the
scope of automated verification tools. The most advanced
model is the one associated to the Diffie-Hellman theory in
Tamarin [65], but therein the use of ag is restricted to the
exponent, and protocol rules cannot directly use abelian
group operations. ProVerif allows only a limited use of the
Diffie-Hellman theory and, in order to handle associative-
commutative operators, requires additional restrictions and
encodings [49], [50]. There are several decidability results
for security verification modulo abelian groups in the
context of a passive intruder [51] or for a bounded number
of sessions [32], [33]. To our knowledge they have not
been implemented, and furthermore we are interested in
automated verification for the general case of an active
intruder and unbounded number of sessions.

In the family of equational theories that rely on an
associative-commutative symbol, the state of the art is
much better for the theory of exclusive or (xor). For xor,
we have decidability results for a bounded number of
sessions [23], [29], and also tools like Tamarin that work
in practice for an unbounded number of sessions and no
restrictions on the class of protocols [35]. Mathematically,
the xor operation corresponds to an abelian group of order
two, and its use in security protocols stems from the
algebraic properties of such a group. A natural question
is whether we can reduce security verification modulo
ag (corresponding to any group) to security verification
modulo xor (corresponding to a group of order two).
For a significant class of properties, including all non-
reachability properties and some reachability properties,
we prove that this is indeed the case. We illustrate this
approach by performing automated verification of our
proposed protocol with Tamarin modulo xor, and then
deriving the desired security guarantees modulo ag. The
soundness of the reduction holds for any combination of
the theory of abelian groups with another intruder theory,
e.g. for modelling additional cryptographic primitives, and
for any class of protocols. We prove our reduction in the
more general setting of subsumed theories.

Better ZKCP definition. We improve the ZKCP sym-
bolic security definition from [18], making it amenable to
automation, since their property cannot be fully verified

with tools like Tamarin. We also make it more general,
as the receiver property from [18] needs to be adapted
according to the structure of the protocol. Finally, we also
make it stronger. Indeed, the receiver property from [18]
only ensures that the witness is deducible by the receiver,
i.e. there exists a sequence of computation steps that
allows to deduce the witness. However, a ZKCP protocol
specifies a computation sequence that should allow the
receiver to obtain the witness in a bounded number of
steps. Our definition guarantees this stronger notion.

Paper structure. In Section 3 we present (weak)
adaptor signing, ZKCP definitions and our corresponding
constructions. Formal specifications for the verification of
the protocol are in Section 4, our reduction results for
intruder theories are in Section 5, and their application for
the verification of the proposed protocol is in Section 6.

2. Preliminaries

We denote by x
$←− S the fact that x is uniformly

sampled from S, by x ← A(y, . . .) the fact that x is the
result of a randomised algorithm A on inputs y, . . ., and
by x := A(y, . . .) the result of a deterministic algorithm.

Basic cryptographic primitives. We consider a sym-
metric key encryption scheme (Enc,Dec) and a key
derivation function that generates encryption keys for Enc
from elements of Zq. The key derivation function can be
based on a hash function [48], and we denote it by H.
The ECDSA signing scheme is represented by algorithms
Sign and Verify. An ECDSA signature is composed by
a pair of elements (r, s) ∈ Zq × Zq. The element r is
random and does not depend on the signed message nor
on the secret key, while s is the principal element of the
signature computed from the message, the secret key and
r. Sometimes we will call s the signature, assuming that
r is specified implicitly. We let g be the generator of the
group of order q that underlies ECDSA. We note that
computing the discrete logarithm in this group is hard.
A secret-sharing scheme allows multiple parties to hold
individual shares of a secret and use it when needed
[10]. It is called additive when the secret is the sum of
individual shares. A feature often used is that, from an
additive secret-sharing of u and an additive secret-sharing
of v, the parties can compute an additive secret-sharing
of u+ v by locally adding their individual shares.

Zero-knowledge proofs allow a prover to convince
a verifier that it holds a secret element w (also called
witness) that is in a given relation with respect to a
public element x (also called statement). The relation is
formalised by a public function f : {0, 1}∗ → {0, 1}∗ such
that w and x are in the relation iff x = f(w). This is
denoted by {(x;w) | x = f(w)}. Of special interest are
NP relations where f can be computed in polynomial time
and finding a witness for a statement is hard. We consider
non-interactive versions of zero-knowledge proofs, where
the proof consists of a single term sent from the prover
to the verifier [64]. In contingent payment protocols, we
assume that the sender holds a witness w for a statement x
in a relation f and the receiver wants to acquire it. In order
to enable the fair exchange, the witness w is encoded in
a way that makes the release of the witness contingent
on the availability of other data. In this setting, we need
to augment the statement x with the new elements that

encode the witness and will allow the receiver to obtain
it at the end of the protocol. The NP relation needs to
be extended accordingly to formalise the correspondence
between the desired witness and the new elements. For
the protocol in [71], the new elements are a ciphertext c
encrypting the witness and an element ρ that is the hash
image of the corresponding decryption key. The corre-
sponding relation, presented in the first line of Figure 1,
shows that these elements are as expected. We denote by
Prove0(c, ρ;w, k) a non-interactive zero-knowledge proof
for this relation. For our protocol, we will require a zero-
knowledge proof for a slightly different relation. Namely,
for new public elements c and ρ, the proof needs to
show that c encrypts a valid witness w and that the
decryption key is the hash of the discrete logarithm of ρ,
as presented in the second line of Figure 1. We denote by
Prove(c, ρ;w, β) a non-interactive zero-knowledge proof
for this relation, and by Ver the corresponding verification
algorithm.

Bitcoin. We consider a model of Bitcoin, presented
in Figure 2, where the ownership of a coin with serial
number sn by a party with public key pk is represented
by a coin referred to by (sn, pk , `) on the ledger. The
label ` records whether a timeout constraint is associated
to this coin: if ` = >, then the coin can be returned
to the previous owner after a timeout; otherwise, the coin
can only be spent by providing a signature. To transfer the
coin owned by pk to another party pk ′, the ledger expects
a valid ECDSA signature with respect to pk authorising
the transfer. In that case a new coin (sn ′, pk ′, `′) is stored
on the ledger, along with the signature that justifies the
transfer from pk to pk ′. We store all transaction data in a
set L.Trans. An extension of this model are the so-called
hashed timelock contracts. Such a contract creates a coin
(sn, ρ, pk , `) which can be transferred to the party pk if it
provides the inverse of ρ with respect to a cryptographic
hash function.

Two-party signing. We consider multiparty ECDSA
signing protocols from [42], [53], instantiated to the case
of two parties, allowing to generate signatures with respect
to a shared secret key. These protocols do not guarantee
fairness, but we will use them as a building block in
order to obtain fairness in our protocol. In multiparty
computation in general, and in particular [42], [53], the
lack of fairness means that a malicious party may obtain
the output and prevent the other parties from doing so
[27]. However, the two parties can agree on which of
them has advantage and can obtain the output first. We call
this party the receiver, and the other party is the sender.
The signature generation procedures from [42], [53] have
two main parts: i) Signing: a fresh signature σ = (r, s) is
generated, r and gs are published, and the parties obtain an
additive secret-sharing of s; ii) Opening: the parties reveal
their shares of s and the signature can be reconstructed by
each party. We note that gs is published during the signing
operation so that the parties can verify (in the exponent)
that (r, s) is indeed a valid signature before opening their
shares of s in the clear.

Zero knowledge contingent payments. Informally,
ZKCP security for the sender means that, whenever the
adversary learns the witness, the sender can obtain a coin
from the blockchain as payment. Symmetrically, whenever
one of the receiver’s coins is spent, the receiver should

Figure 1: Zero-knowledge proof relations for contingent payment protocols

[71]:
{

(c, ρ, x;w, k) | c = Enck(w) ∧ x = f(w) ∧ ρ = H(k)
}

Ours:
{

(c, ρ, x;w, β) | c = Enck(w) ∧ x = f(w) ∧ k = H(β) ∧ ρ = gβ
}

[8]:
{

(c, ρ, x, pk ;w, σ, γ) | c = Enck(w) ∧ x = f(w) ∧ k = H(σ) ∧ ρ = Com(σ, γ) ∧ Verify(σ, pk) = ok
}

Figure 2: Ledger functionality L
Setup

L.Coins := ∅
L.Trans := ∅
Mine

Pk(pk),Fr(sn),

add (sn, pk ,⊥)
to L.Coins

SignedTrans

In(sn, pk ′, `′, σ),

if (sn, pk , `) ∈ L.Coins and
Verify(σ, (sn, pk ′, `′), pk) then Fr(sn ′)

L.Coins := L.Coinsr (sn, pk , `) ∪ (sn ′, pk ′, `′),

L.Trans := L.Trans ∪ (sn, pk , σ, sn ′, pk ′)

event:Spend(sn, σ, pk ′)

TimedTrans

if (sn, pk ,>) ∈ L.Coins and
(sn0, pk0, , sn, pk) ∈ L.Trans then Fr(sn ′)

L.Coins := L.Coinsr (sn, pk ,>) ∪ (sn ′, pk ′,⊥),
L.Trans := L.Trans ∪ (sn, pk ,time, sn ′, pk0),

event:Spend(sn,time, pk0)

be able to learn a valid witness, typically by combin-
ing information received during the run of the protocol
with information from the ledger. We give more formal
specifications of security in the following sections. The
first protocol for ZKCP was proposed in [71], and sev-
eral follow-up works are devoted to its implementation
and analysis [21], [39], [55], [60]. It relies on a zero-
knowledge proof Prove0(c, ρ, x;w, k) for the relation in-
troduced in the previous section and Figure 1. The first
step of the protocol is for the sender S to construct the
public data c, ρ and send it to the receiver R along with
the corresponding zero-knowledge proof. Upon successful
verification, R is convinced that the preimage of ρ reveals
the witness encrypted in c. It then transfers a coin into a
hashed timelock contract on the ledger, with respect to the
hash image ρ, recording the originator of the transaction
and the party that is entitled to claim the coin by providing
the inverse of ρ. Upon claiming this coin by S, the inverse
of ρ will be recorded on the ledger. Using this, the receiver
can decrypt c and obtain the witness. If the sender aborts
at any time, the receiver can obtain a refund after a timeout
associated to the hashed timelock contract.

A second ZKCP protocol is proposed in [8], aiming
to run on standard Bitcoin. It assumes a shared ECDSA
key between S and R. A basic step of the protocol allows
S to obtain a fresh signature on a message with respect
to this shared key. The message signed in this way is a
Bitcoin transaction that transfers a particular coin from
the shared key to S. Before paying into the shared key, R
needs to ensure that the follow-up signature will reveal a
valid witness. For this R and S engage in two phases of
cut-and-choose proofs: multiple instances of the protocol
are run and some of them are opened for verification.
First, R ensures that a sequence of commitments contains
valid signatures of the agreed-upon transaction. Second,
R ensures that they can be mapped to decryption keys
that give access to zk proof transcripts allowing to extract
a valid witness. This technique relies on an underlying zk
proof system for the NP relation of interest, and it requires
a witness extractor associated to zk proof transcripts that
has special properties.

To ease the comparison between ZKCP proof rela-
tions, we give an abstract representation of the relation

ensured by [8] in line 3 of Figure 1. We note, however, that
in reality the relation for [8] involves many more terms
and signatures depending on a security parameter, and zk
proof transcripts are encrypted instead of the witness. The
term pk in the relation represents the public part of the
shared signing key between the sender and the receiver.
Security of [8] relies on an assumption about ECDSA
called strong unforgeability [2], [17]: an adversary against
the signing scheme cannot construct a fresh signature σ′
on a message m, even if it has previously seen a signature
σ on the same message m. This forces the sender in the
protocol described above to claim payment through one
of the signatures linked to the cut-and-choose proofs. If
the sender aborts and does not publish such a signature,
the receiver can obtain a refund after a timeout associated
to the shared key coin (or relying on timed commitments
of sender’s secret key shares [16]).

3. Two-party signing and contingent payment

Our protocol relies on a cryptographic building block
that allows to combine an ECDSA signature σ with a
secret element y into a term σ′ such that: i) from σ′ and
y, one can obtain σ; ii) from σ′ and σ, one can obtain y;
iii) from σ′ alone, one cannot derive σ or y. These three
properties are satisfied by the recently introduced notion
of adaptor signatures [6], [38], which has been applied to
improve the scalability and privacy of blockchain-based
payments [54], [66]. While we could directly use an
adaptor signature in our protocol, it turns our that a weaker
notion is sufficient for our purposes. We show how this
weaker notion can be constructed for ECDSA and how
multi-party ECDSA signing protocols from [42], [53] can
be applied to distribute our construction between a sender
and a receiver.

3.1. Two-party weak adaptor signatures

An adaptor signing scheme, as introduced in [6], con-
sists in four algorithms (pSign, pVerify,Adapt,Extract)
and is relative to a hard NP relation R. The witnesses
y for the relation R plays the role of a secret element to
be combined with a signature, while the statement Y gives

public access to this element. The role of these algorithms
is as follows:
• pSign(m, sk , Y) allows to construct a pre-signature

on message m, that allows to obtain real signature
given a witness corresponding to Y ;

• pVerify(σ′,m, pk , Y) allows to verify the correctness
of a pre-signature σ′;

• Adapt(σ′, y) allows to obtain a signature σ from a
pre-signature σ′ given the corresponding witness y:

• Extract(σ′, σ) allows to obtain a witness y for a pre-
signature σ′ given a corresponding signature σ.

We weaken this notion in the following sense: i) the
pSign algorithm takes as input a witness y instead of a
statement Y ; ii) the statement Y is not sufficient to verify
a pre-signature: we require in addition a (helper) statement
Z that may be produced by a trusted party having access to
the signing key or a corresponding signature. The resulting
notion is similar to lockable signatures introduced in [67].
The difference is that the definition in [67] does not
allow to extract the witness, does not allow verification
with pVerify, and only considers a particular NP relation.
Therefore the notion that we propose is somewhere be-
tween lockable signatures and adaptor signatures.

Definition 1. A weak adaptor signature scheme consists
in a signing scheme (KGen,Sign,Verify) and:
• an NP relation Ra, called the adaptor relation;
• an NP relation Rv, called the verification relation;

and a tuple of algorithms (pSign, pVerify,Adapt,Extract).
These algorithms are the same as for an adaptor signature,
except:
• pSign(m, sk , y) takes as third argument a witness y

instead of a statement Y for the relation Ra;
• pVerify(σ′,m, pk , Y, Z) takes as an additional argu-

ment Z, for which (m, pk , Z) is expected to be a
statement from the relation Rv.

Following [6], the security properties for a (weak)
adaptor signature scheme are: unforgeability: given any
number of signatures and pre-signatures, an adversary
without access to the secret key is not able to forge any
signature or pre-signature on a new message; furthermore,
witness extractability requires that, if such an adversary
successfully adapted a pre-signature σ′ into a signature σ,
an honest party will be able to extract a witness from
σ′ and σ; pre-signature adaptability requires that, if a
pre-signature σ′ was successfully verified, then a valid
signature can be obtained Adapt(σ′, y), where y is a
witness for Y . These properties are formally defined in
a computational model in [6]. In this paper, we consider
an abstract, Dolev-Yao style model of the adversary where
these properties are enforced by the underlying term alge-
bra. In particular, the formal security proof of our protocol
implies that the Dolev-Yao adversary cannot break the
security of the weak adaptor signature scheme that we
consider as a building block in the protocol.

In the following, we consider the weak adap-
tor signing scheme defined by the ECDSA algorithms
(KGen,Sign,Verify), the relations (Ra,Rv) and the al-
gorithms (pSign, pVerify,Adapt,Extract) from Figure 3.
The relation Ra states that (Y, y) ∈ Ra iff y ∈ Zq is
the discrete logarithm of Y . A pre-signature is defined in
Figure 3 as simply the sum between the witness and (the

second component of) a valid signature, while the adap-
tation and extraction algorithms perform the subtraction
of the corresponding element (a witness or a signature).
The verification relation states that (m, pk , Z) ∈ Rv iff Z
is equal to (r, gs) for a valid ECDSA signature (r, s) for
message m and key pk . It can be easily checked that the
scheme defined in this way is correct, i.e. for any valid pre-
signature, the algorithms of verification, adaptation and
extraction can be successfully performed.

Two-party weak adaptor signing. In order to apply
a weak adaptor signature scheme in our protocol, we
need a sub-protocol that allows to compute a pre-signature
in a distributed manner. First, we define the expected
properties of this sub-protocol.

Definition 2. A two-party weak adaptor signing protocol
AS allows two parties to perform the following functions:
• AS.SharedPk({id1, id2}): if a shared signing key for
{id1, id2} is not already stored, generate and store the
secret key; return the corresponding public key.

• AS.Sender(m, pk , y): a party S playing the role of
the sender inputs a message m, a shared public key
pk , and a witness y to be used for a pre-signature.
The tuple (S,m, pk , y,R) is stored, where R is the
expected receiver.

• AS.Receiver(m, pk , Y): a party R playing the role
of the receiver inputs a message m, a shared public
key pk and a statement Y to be used for a pre-
signature. When a tuple (S,m, pk , y,R) is available,
check if (Y ; y) ∈ R, fetch the sk corresponding to
pk , compute σ′ ← pSign(m, sk , y), and return σ′ to
the receiver.

In Figure 4, we show how to extend the protocols
for ECDSA two-party signing from [42], [53], presented
in Section 2, in order to obtain a protocol for two-party
weak adaptor for the scheme introduced in Figure 3: we
show how to compute a pre-signature corresponding to a
signature (r, s), i.e. σ′ = (r, y+s), where the sender S and
the receiver R have agreed on the public element Y = gy

beforehand. We call FSign the functionality implemented
by the protocols from [42], [53]. The main idea for the
construction in Figure 4 is that the signing operation
implemented by FSign provides each party with r, si, g

s,
where (r, s) is a fresh signature for the desired message m
and key sk ,while and (s1, s2) is an additive secret-sharing
of s. We note that (m, pk , gs) is now a valid statement
for the verification relation Rv in Figure 3. Based on this,
the functions in AS are implemented as follows:
• AS.SharedPk({id1, id2}): the parties generate a

shared secret key as in FSign.
• AS.Sender(m, pk , y): first phase: perform the sign-

ing operation from FSign interactively withR; second
phase: generates an additive secret-sharing of y and
send to R its respective share, along with the sum
between S’s shares of the signature s and of y.

• AS.Receiver(m, pk , Y): first phase: perform signing
operation from FSign interactively with S; second
phase: after receiving the information from S, R
can compute s′ = y + s by summing up all shares.
Finally, it performs the verification operation for the
obtained pre-signature (r, s′). Note that the statement
(m, pk , r, gs) that is required to run pVerify is pro-
vided by the functionality from FSign.

Figure 3: ECDSA-based weak adaptor signature
1) Adaptor relation : Ra = {(Y ; y) | Y = gy }
2) Verification relation : Rv = {(m, pk , Z;σ) | Verify(σ,m, pk) = true ∧ σ = (r, s) ∧ Z = (r, gs)}
3) Algorithms :

pSign(m, sk , y)

(r, s)← Sign(m, sk)

return (r, s+ y)

pVerify(σ′,m, pk , Y, Z)

(r′, s′) := σ′, (r,W) := Z

if r′ = r ∧ Y ·W = gs
′
return true

Adapt(σ′, y)

(r, s′) := σ′

return (r, s′ − y)

Extract(σ′, σ)

(r, s′) := σ′, (r, s) := σ

return s′ − s

Figure 4: In gray: two-party ECDSA signing provided by [42], [53]. In clear: extension for weak adaptor signing

AS.Sender(m, pk , y)

(y1, y2)← Share(y)

s′1 := s1 + y1

AS.Receiver(m, pk , Y)

s′2 := s2 + y2
σ′ := (r, s′1 + s′2)
Z := (r, gs)

if pVerify(σ′,m, pk , Y, Z) then return σ′

(we have gy = Y)

)

(we have σ′ = pSign(m, sk , y))

Two-party signing (sk , pk)

(r, s)← Sign(m, sk)
(s1, s2)← Share(s)

m, pk m, pk

r, s1, g
s r, s2, g

s

s′1, y2

3.2. Contingent payment syntax and security

The ZKCP protocols from [8], [71], as well as our
protocol, follow a common structure: 1) the sender and
the receiver agree on an encoding of the witness and
funds are committed by the receiver on the ledger; 2) data
is exchanged and verified among the two parties; 3) the
parties finalise the protocol by interacting with the ledger,
either to obtain payment or to extract the witness. We
introduce a syntax to make explicit the algorithms for each
phase and clarify the specification of ZKCP protocols.

Definition 3. A zero-knowledge contingent payment pro-
tocol consists of two roles {S,R} and, for each role
X ∈ {S,R}, a triple of (interactive) algorithms:
• SetupS(w) takes as input a witnes and outputs a state

for the sender, while SetupR(x, skR, pkS) takes as
input a statement, the secret key of the receiver and
the public key of the sender;

• ExchangeS(state0, pkS , pkR) - the input of this al-
gorithm is a state returned by SetupS , and the public
keys of the sender and receiver;

• SettleX (state1) - the input of this algorithm is a state
returned by ExchangeX .

For a sender, we have SetupS(w, skS , pkR), where
w is the witness to be transferred. Note that the se-
cret key of the sender is not required for the protocol
execution, reflecting the fact that the sender only uses
the blockchain infrastructure to receive money. For a
receiver, we have SetupR(x, skR, pkS), where x is the
corresponding statement for the desired witness. In this
section, we only provide an informal definition of security,
that we instantiate formally in Section 4. For this, we
assume a notion of events that can be added at certain
points in the protocol specification, recording that certain
actions have occurred during the execution of a protocol.
Events can be defined both in computational models, e.g.
in CryptoVerif [14], and in formal models, e.g. in ProVerif
[15] or Tamarin [56], where they are called action facts.
For ZKCP security, we assume the following events:

• Trans(sn, `, pk ′) - recording that a coin sn is trans-
ferred to pk ′ on the ledger; the label ` records either
a signature on the corresponding transaction, or we
have ` = time to mark the lapse of a timeout
associated to sn .

• Setup(w) - recording that an honest sender has per-
formed the setup for a given witness.

• Claim(pk , w, sn) - recording that an honest sender
with public key pk claims a coin with serial number
sn as payment for a given witness w; this event will
typically occur in the SettleS algorithm.

• Pay(pk , sn, x) - recording that an honest receiver
with public key pk has paid for a witness for the
statement x and that this has resulted in a coin with
serial number sn on the blockchain ledger; this event
will typically occur in the ExchangeR algorithm.

• End(pk , sn, w) - recording a finished session for a
receiver obtaining a purported witness w when the
coin sn is spent on the ledger. This event should
occur in the SettleR algorithm.

We refer to Figure 5 for an example ZKCP protocol
specification and the specification of corresponding events
for security. Informally, a ZKCP protocol is secure if:

- Sender security: whenever the adversary learns a
new witness w, an honest sender obtains payment for w,
i.e. the events Claim(pkS , w, sn) and Trans(sn, σ, pkS)
are executed. Due to the fact that the attacker controls
the network, we need to relax this security definition to
account for the fact that the claim of the sender may
not reach the blockchain ledger in time, in which case
Trans(sn,time, pk ′) may be executed for a key pk ′

controlled by the adversary.
- Receiver security: by the end of a protocol session

corresponding to a statement x, the receiver can either
obtain a witness for x or be refunded for any coin it has
paid, i.e. we have Pay(pk , sn, x) ∧ Trans(sn, `, pk ′) ∧
End(pk , sn, w)⇒ (x,w) ∈ R ∨ pk ′ = pk .

Formal instances for these two notions of security
in the symbolic model are given in Definition 4 from
Section 4.3. A computational definition for ZKCP security

has been proposed in [60]. Their definition is focused on
the security of cryptographic components and is targeted
for the particular components used in the protocol from
[71]. It also does not consider the blockchain environment
where the protocol is executed.

3.3. Proposed contingent payment protocol

We assume S andR have established a shared signing,
e.g. by running the key generation protocol from [42],
[53]. Our proposed protocol is described in Figure 5.
The main idea is for the sender S and the receiver R
to jointly compute a pre-signature encoding a signature σ
and a secret element β, where β allows R to obtain the
desired witness, while σ is allows S to obtain payment.
To protect the witness and the secret key, σ′ need to be
computed in a distributed way, which we do relying on
the protocol from Figure 4. We also use zk proof relation
Prove introduced in Section 2 in order to convince R
that the discrete logarithm of ρ = gβ allows to obtain
the desired witness. In our protocol, we can let R have
advantage in the pre-signing functionality, obtain σ′ first,
and forward it to S. The blockchain will ensure fairness:
R can obtain β iff S can obtain payment.
Setup. S generates β ∈ Zq, derives the key k ← H(β)
and publishes an encryption of the witness with this key,
gβ and a zk proof showing that these encode a valid
witness. R verifies the zk proof and if it is valid transfers
a coin to the public key shared with S.
Exchange. The parties compute σ′ := pSign(τ, pk , β),
where gβ is provided by S at setup, while τ is a transac-
tion that transfers the shared coin created at the previous
step to S. R obtains σ′ and forwards it to S.
Settle. S adapts σ′ to compute σ and posts it to the
blockchain to obtain payment. From the blockchain ledger,
R can obtain σ and then extract β from σ′, finally
computing the witness. We provide formal security proofs
in a symbolic Dolev-Yao model in the next section. In
the following, we argue informally why security holds for
each party.

Sender security. Assuming the security of the en-
cryption scheme, the only way the adversary can obtain
the witness is by decrypting the corresponding ciphertext.
Assuming the random oracle property for H, the only
way of obtaining the decryption key is by applying H to
β. From the hardness of computing discrete logarithms,
computing β before the settling phase requires extracting
it from σ′, for which a valid signature σ is required.
Finally, computing σ is impossible by the unforgeability
of ECDSA and the security of the protocol in [42], [53].

Receiver security. The only way in which R can lose
a coin as a result of the protocol is if a valid signature for
pk is posted on the ledger. From the strong unforgeability
assumption for ECDSA, discussed in Section 2, and from
the security of [42], [53], the adversary can obtain such a
signature σ only if a corresponding pre-signature σ′ was
obtained by R from the (adaptor) signing functionality.
Then, relying on σ from the ledger, R can extract β and
compute the witness. The zero-knowledge proof relation
ensures that the witness obtained in this way is valid.

Instance from adaptor signatures. We conclude this
section by noting that the protocol in Figure 5 could also
be instantiated based on the stronger notion of adaptor

signatures from [6], relying on the same zero-knowledge
proof relation Prove to connect the witness in the adaptor
signature with the witness in the desired functionality.
What would be different is the way of computing a pre-
signature in a distributed way. In our instantiation of
weak adaptor signatures in Figure 3, a pre-signature is
simply a masked version of a fresh signature, which does
not depend on the witness for the adaptor relation. As a
consequence, we can have a direct, generic extension of
the protocols in [42], [53] in order to compute a pre-
signature in a distributed way. On the other hand, in
current constructions of adaptor signatures the randomness
of the signature is determined by the secret witness of
the adaptor relation [6], [38]. As a consequence, the
corresponding distributed protocols in [54], [58] require
additional zk proofs to be plugged into a two-party sign-
ing protocol. In our construction from Figure 4, no zk
proof is required, except those used for implementing the
distributed signing functionality in [42], [53].

Comparison with previous ZKCP protocols. Some no-
table features of our proposed protocol are the following:
i) it does not require the application of hash functions on
the blockchain; ii) the zero-knowledge proof is generic
and non-interactive; iii) the zero-knowledge proof and the
secret β can be reused across different protocol sessions to
sell the same witness to different receivers. The protocol
from [71] satisfies point ii), but not points i) and iii). The
protocol from [8] satisfies the point i), but not points ii)
and iii).

4. Formal specifications

We first introduce the symbolic model used in Tamarin
for the verification of security protocols, referring to [56],
[65] for more details. Then we present our formal models
for the cryptographic primitives, the ideal functionalities,
the security properties and the proposed protocol.

4.1. Formal specification preliminaries

The cryptographic primitives are represented by an
equational theory, i.e. a set of function symbols, constants
and equations. A term is constructed from function sym-
bols applied recursively to variables from a set denoted
by X , to constants and to names - typically representing
atomic or fresh data. Considering the function symbols
{◦, i, 1}, the theories for abelian groups (ag) and exclu-
sive or (xor) are defined as in Figure 6. The last two
equations in Eag and Exor represent the associativity and
commutativity of ◦, denoted by AC. We note that the
equation i(x) = x is not usually part of the xor theory,
but adding it allows simpler statements and proofs for
our reduction between theories, and it does not pose any
challenge for Tamarin. This equation can be justified com-
putationally by taking i(.) as being the identity function,
and also noting that the inverse of an element in the group
of order two that underlies xor is itself. Sometimes we
need to reason about several symbols that satisfy ag or xor,
e.g. + and ∗. In that case, we annotate the corresponding
theory with a superscript, i.e. E+ag, E+xor, E?ag, . . . and we
replace ◦ and i with corresponding symbols in the equa-
tions for Eag. All equalities in the following are implicitly
modulo the underlying equational theory. For protocol

Figure 5: Algorithms defining our protocol for ledger L and two-party weak adaptor signing scheme AS
SetupS(w)

β
$←− Z?q , ρ := gβ , k := H(β),

c← Enc(w, k), π ← Prove(c, ρ;w, β),

event:Setup(w),

Out(c, ρ, π), return state0

ExchangeS(state0, pkS , pkR)

pk ← AS.SharedPk({pkS , pkR}),
if (sn, pk ,>) ∈ L.Coins and sn /∈ Used

then Used := Used ∪ {sn}, τ := (sn, pkS ,⊥)
AS.Sender(τ, pk , β), return state1

SettleS(state1)

In(σ′), σ := Adapt(σ′, β)

if Verify(σ, τ, pk) = true

then Out(sn, pkS , σ)

event:Claim(pkS , w, sn)

SetupR(x, skR, pkS)

In(π, c, ρ), pkR := pub(skR)

if Ver(π, c, ρ, x) and

(sn0, pkR, `0) ∈ L.Coins then
pk ← AS.SharedPk({pkS , pkR})
σ0 ← Sign((sn0, pk ,>), skR)

Out(sn0, pk ,>, σ0), return state0

ExchangeR(state0)

if (sn0, pkR, σ0, sn, pk) ∈ L.Trans
then event:Pay(pkR, sn, x)

τ := (sn, pkS),

σ′ := AS.Receiver(τ, pk , ρ),
Out(σ′), return state1

SettleR(state1)

if (sn, , σ, ,) ∈ L.Trans then
β ← Extract(σ′, σ), k := H(β),

w := Dec(c, k),

event:End(pkR, sn, w)

Corresponding Tamarin specifications PS and PR using PNP ,PPK,PL,PAS from Figure 8. See full code in [1].

Rule SetupS

[Witn(w),

Fr(β), ρ = gβ , k = h(β), c = enc(w, k),

π = prove(c, ρ, w, β)]

−−[Setup(w)]→[Out(c, ρ, π), state0]

Rule ExchangeS

[state0, Pk(pkS),Pk(pkR),

AS.SharedPk({pkS , pkR}, pk),
L.Coin(sn, pk , `), τ = 〈sn, pkS ,notime〉]
−−[Once(〈used, sn〉),Honest(pkS)]→
[AS.Sender(pkS , τ, pk , β), state1]

Rule SettleS

[state1, In(s
′), s = s′ − β]

−−[verify(s, τ, pk) = ok,

Claim(pkS , w, sn)]→
[Out(τ, s)]

Rule SetupR

[Sk(skR), pkR = pub(skR),Pk(pkR),

AS.SharedPk({pkR, pkS}, pk),
Stm(x), In(c, ρ, π),L.Coin(sn0, pkR, `0),

τ0 = 〈sn0, pk ,time〉,Fr(r),
s0 = sign(τ0, skR, r)]

−−[ver(π, c, ρ, x) = ok]→
[Out(τ0, s0), state0]

Rules Exchange1R and Exchange2R

[state0,L.Trans(sn0, pkR, s0, sn, pk),

L.Coin(sn, pk , `), τ = 〈sn, pkS ,notime〉]
−−[Pay(pkR, sn, x)]→
[AS.Receiver(skR, τ, pk , ρ), state

′
1]

[state′1,

AS.ReceiverOutput(skR, τ, pk , ρ, s
′)]⇒

[Out(s′), state1]

Rule SettleR

[state1,

L.Trans(sn, , s, ,),

β = s′ − s,
k = h(β), w = dec(c, k)]

−−[End(pkR, sn, w)]→[]

Figure 6: Equational theories for ag and xor

Eag
x ◦ i(x) = 1
x ◦ 1 = x

i(i(x)) = x
x ◦ y = y ◦ x

(x ◦ y) ◦ z = x ◦ (y ◦ z)

Exor
x ◦ x = 1
x ◦ 1 = x
i(x) = x

x ◦ y = y ◦ x
(x ◦ y) ◦ z = x ◦ (y ◦ z)

verification, equational theories are usually represented by
an equivalent AC-convergent rewrite system, where each
term has a unique normal form modulo AC [34]. Such a
system is also called an intruder theory [9], [30], [68].
We denote by t↓ the normal form of a term t. When it is
not clear from the context, we annotate ↓ with a symbol
representing the corresponding intruder theory. A term that
is in normal form wrt to I is called in I-normal form.
To express security protocols, the language is extended
with fact symbols for adversarial knowledge, protocol
state, freshness information, etc. A fact is represented by
F (t1, . . . , tk), where F is a fact symbol and t1, . . . , tk are
terms. There are the following special fact symbols: K -
for attacker knowledge; Fr - for fresh data; In and Out
- for protocol inputs and outputs. Other symbols may be

added as required, e.g. for representing the protocol state.
Facts can be persistent (consumed any number of times)
or linear (consumed at most once). The notation !F is
used in Tamarin to distinguish persistent facts, but most
of the facts in our models will be persistent, so we do not
use this notation in the paper to avoid clutter.

A multiset rewriting rule is defined by
[L]−−[M]→[N], where L,M,N are multisets of facts
called respectively premises, actions, and conclusions.
We denote such a rule by [L] ⇒ [N] when M is
empty. To ease protocol specification, the syntax of
multiset rules is extended with variable assignments and
equality constraints, i.e. we can write rules of the form
[L]−−[E,M]→[N] where L may contain expressions
x = t to define local variables and E is a set of
equations of the form u = v. Equations are not directly
supported in Tamarin, but can be easily encoded within
its language. For two multisets of facts M0,M1 and rule
P = [L]−−[E,M]→[N] we say that M1 can be obtained
from M0 by applying the rule P , instantiated with θ if:
(1) every equality in Eθ is true; (2) every fact in Lθ↓ is
included in M0 (counting multiplicities for linear facts);
(3) M1 is obtained from M0 by removing linear facts
included in Lθ↓ and adding all facts from Nθ↓.

A special set of message deduction rules defines how
the attacker can derive new knowledge and make use of
existing knowledge to interact with the protocol. Within
this set, we distinguish network deduction rules and in-
truder deduction rules. Network deduction rules are fixed:
they define outputs, inputs, public and fresh data.

[Out(x)]⇒ [K(x)] [K(x)]⇒ [In(x)]
[]⇒ [K(y)] []⇒ [Fr(z)] [Fr(x)]⇒ [K(x)]

The semantics ensures that y and z in the rules above are
instantiated to public, resp. fresh names. A fact of the form
K(t) represents that the intruder knows the message t. In-
truder deduction rules define operations on messages and
are of the form [K(x1), . . . ,K(xk)]⇒ [K(f(x1, . . . , xk))],
for any symbol f from the equational theory. Another
class of multiset rules are protocol rules, which model
the execution of the protocol by honest parties. For a rule
R, we let lhs(R), rhs(R), act(R) be respectively the set
of its left-hand side facts (i.e. premisses), of its right-hand
side facts (i.e. conclusions) and of its action facts. We use
the following notation:
• M0

R,σ−−→ M1 if M1 can be obtained from M0 by
applying a rule R instantiated with substitution σ (this
is called a transition);
• for a set of rules P , we let M0

P
=⇒ M1 if M1 can be

obtained from M0 by applying a sequence of transitions
using rules from P . Such a sequence of transitions is
called a trace of P .

We let traces(P) be the set of all traces of a set of
rules P . All terms that occur in a trace can be assumed
to be in normal form with respect to the intruder theory.
Consider a trace τ obtained by applying n multiset rules
that ends in a multiset of facts M . We say that such a trace
has length n, and denote the length of τ by |τ |. Elements
of the set {1, . . . , n} are called the timepoints of τ . For
every i ∈ {1, . . . , n}, we let Ri be the rule applied at step
i and σi be the corresponding substitution. We define:
• facts(τ, i) = act(Ri)σi↓ if Ri is a protocol or

network deduction rule;
• facts(τ, i) = {K(vσi↓)} if Ri is a message deduction

rule with rhs(Ri) = {K(v)}
• facts(τ) = (facts(τ, 1); . . . ; facts(τ, n);M)

We consider a set of timepoint variables, denoted by
i, j, l, . . ., which will be interpreted over rational numbers.
A trace atom is either ⊥, or a timepoint ordering i < j,
or a timepoint equality i = j, or a term equality t1 = t2
or an action fact F@i for a fact F and a timepoint variable
i. Atoms involving only timepoints are called timepoint
atoms, and all others are called term atoms. A trace
formula is a first-order logic formula obtained from trace
atoms by applying the usual quantification and logical
connectives. A trace property is a trace formula where all
variables are bounded by a quantifier. When quantifiers are
missing in a formula Φ0 ⇒ Φ1, we assume all variables
in var(Φ0) are universally quantified, and all variables
in var(Φ1) r var(Φ0) are existentially quantified. If a
formula does not contain timepoint atoms, we omit the
notation @i from its action facts. For example, the formu-
las ∀i, x.F (x)@i⇒ ∃j, y.G(x, y)@i and F (x)⇒ G(x, y)
are the same according to notations above.

The satisfaction relation τ |= Φ, for a trace τ and
a trace property Φ is defined recursively starting from

Figure 7: Equational theory Ezkcp for our protocol model

Ezkcp : E+ag ∪ E∗ag ∪ Eexp ∪ Eenc ∪ Esign ∪ Ezk
E+ag : abelian group theory for the symbol +
E∗ag : abelian group theory for the symbol ∗
Eexp : (xy)z = x(y∗z) Eenc : dec(enc(x, y), y) = x
Esign : verify(sign(x, y, z), x, pub(y)) = ok
Ezk : ver(prove(enc(x, h(y)), gy, x, y),

enc(x, h(y)), gy, f(x))) = ok

atoms and applying the usual semantics of logical con-
nectives. For an action fact, the semantics is: τ |= F@i
iff F↓ ∈ facts(τ, i). For other atoms the semantics is as
expected from the syntax. Then we have P |= Φ iff ∀τ ∈
traces(P). τ |= Φ. When the equational theory E is not
clear from the context, we use the notation (P, E) |= Φ.
For protocol specification, it is often convenient to con-
sider restrictions in addition to rules. Restrictions are
modeled by a trace property Ψ and we use the notation
(P,Ψ, E) |= Φ for (P, E) |= Ψ ⇒ Φ, i.e. the property Φ
holds assuming the restrictions Ψ.

4.2. Cryptographic primitives and functionalities

The cryptographic primitives are modelled by an equa-
tional theory presented in Figure 7 while the higher level
functionalities are modelled by rules presented in Figure 8.

Cryptographic primitives. For representing exponen-
tiations, we use the same notation as in Tamarin, where
term xy represents exponentiation of x to power y and
g is a constant playing the role of the generator for
the exponentiation group. In addition to E+ag used in our
protocol, we consider E∗ag modelling the abelian group
property for the operation ∗ used in the exponent. The
theory Eexp ∪ E∗ag is the so-called Diffie-Hellman theory
used in the original Tamarin paper [65] and Tamarin
disallows the use of the theory E∗ag in protocol rules. We
have no restrictions on the use of E+ag or E∗ag for our
reduction. Eenc and Esign represent the standard theories
for symmetric encryption and randomised signatures.The
theory Ezk models the zero-knowledge proof functionality
Prove introduced in Section 2 and used in our protocol. A
term of the form prove(enc(x, h(y)), gy, x, y) represents a
zero-knowledge proof that a given ciphertext enc(x, h(y))
encrypts a valid witness for a statement f(x) and that
the encryption key can be obtained by applying a hash
function to the discrete logarithm of gy. This model of
zero-knowledge proofs is similar to the general symbolic
model introduced in [7].

NP relations and PK infrastructure. As in [18], we
consider a function symbol f to represent an NP relation,
where f(w) represents a valid statement, while w is the
corresponding witness. The adversary cannot obtain a
witness w from a statement x = f(w), while it is efficient
to verify that a candidate witness w′ is indeed valid, by
checking whether f(w′) = x. The rule Rwitn from PNP
allows an honest sender to obtain a witness w, while the
adversary learns the corresponding public element f(w).
The ruleRstm allows an honest receiver to obtain a desired
statement f(w), while the adversary knows the witness w.
We rely on the rules PPK to manage public and secret
keys of parties, where the first rule generates and stores

Figure 8: Specifications for cryptographic functionalities

Rules PNP for NP relations
Rwitn : [Fr(w)]⇒ [Witn(w),Out(f(w))]
Rstm : [In(w)]⇒ [Stm(f(w))]

Rules PPK for key registration
Rhon : [Fr(sk)]−−[Honest(pub(sk))]→

[Sk(sk),Pk(pub(sk)),Out(pub(sk))]
Rcor : [In(sk)]−−[Corrupt(pub(sk))]→[Pk(pub(sk))]

Rules PL for ledger
Rmine : [Pk(x)]⇒ [L.Coin(sn, x,notime)]
Rsign : [L.Coin(sn, pk , `), In(τ, s), τ = 〈sn, pk ′, `′〉]
−−[verify(s, τ, pk) = ok,Spend(sn, s, pk ′),

Once(〈spend, sn〉),Once(〈coin, sn ′〉)]→
[L.Coin(sn ′, pk ′, `′),L.Trans(sn, pk0, s, sn

′, pk ′)]

Rtime : [L.Coin(sn, pk ,time),
L.Trans(sn0, pk0, , sn, pk)]

−−[Spend(sn,time, pk0), (and Once facts as above)]→
[L.Coin(sn ′, pk0,notime),
L.Trans(sn, pk ,time, sn ′, pk0)]

Rules PAS for two-party weak adaptor signing
Rkgen : [Sk(sk1), In(sk2),Fr(sk),

pk1 = pub(sk1), pk2 = pub(sk2), pk = pub(sk)]
−−[Honest(pk)]→[SharedSk({pk1, pk2}, sk),
AS.SharedPk({pk1, pk2}, pk), Out(pk)]

Rpsign : [AS.Sender(pkS ,m, pub(sk), y),
AS.Receiver(pkR,m, pub(sk), Y),
SharedSk({pkS , pkR}, sk),
Fr(r), s′ = y + sign(m, sk , r)]
−−[if Y = gy then]→
[AS.ReceiverOutput(pkR,m, pk , Y, s

′)]

- Plus rules for inputs and outputs of corrupt parties

the keys for honest parties, while the second rule allows
the adversary to chose any key for corrupt parties.

Bitcoin ledger. The specification PL for the bitcoin
ledger is presented in Figure 8, following ledger func-
tionality presented in Figure 2. A fact L.Coin(sn, pk , `)
represents a coin with serial number sn , belonging to a
user with public key pk . The label ` ∈ {time,notime}
determines whether the coin can be redeemed after a
timeout or not. The first rule abstracts the coin mining
process. A fact L.Trans(sn, pk , s, sn ′, pk ′) represents the
action that a coin with serial number sn has been spent
towards a fresh coin sn ′ with new owner pk ′. If the coin
was spend after receiving a valid signature, s records that
signature. Otherwise, s = time to mark that the coin
was spent after a timeout. We have a restriction Ψonce

specifying that all the new coins on the ledger have fresh
serial numbers and that there is no double spending of
any coin.

Two-party weak adaptor signing. The specification
PAS allows a sender and a receiver to create a shared
signing key and subsequently create adaptor signatures for
it, for the relation (y, gy). To obtain an adaptor signature,
both parties provide the message to be signed, the sender
provides the witness y, while the receiver provides the

Figure 9: Specifications for ZKCP security properties

Φ1
S : Setup(w) ∧ K(w)⇒ Claim(pk , w, sn)

Φ2
S : Claim(pk1, w1, sn)@i1 ∧ Claim(pk2, w2, sn)@i2

⇒ i1 = i2
Φ3
S : Claim(pk , w, sn) ∧ Spend(sn, `, pk ′)

⇒ pk ′ = pk ∨ ` = time

ΦR : Pay(pk , sn, x) ∧ Spend(sn, `, pk ′)
∧ End(pk , sn, w)⇒ f(w) = x ∨ pk ′ = pk

statement Y. The receiver obtains the output and the ad-
versary can control inputs and outputs for corrupt parties.
We use a term s+ y to represent an adaptor signature for
signature s and witness y. This reflects our construction
of such signatures for ECDSA as shown in Figure 3 and
Figure 4.

4.3. Contingent payment security properties

The definition of security properties, formalised in
Definition 4, relies on trace properties from Figure 9. For
the sender, our definition is the same as in [18], relying
on the action fact K(w), recording that the adversary
knows w, and the action facts Setup(w), Claim(pk , w, sn)
and Spend(sn, `, pk ′), modeling the events introduced in
Section 3.2. Security is expressed as a conjunction of three
formulas Φ1

S ∧Φ2
S ∧Φ3

S , ensuring that: 1) if the adversary
learns a witness, then an honest sender can claim a coin
from the blockchain as payment for that witness; 2) each
coin is claimed at most once; 3) each claim is satisfied, i.e.
the respective coin is transferred to the claimant, unless
there is a timeout in the delivery of messages to the ledger.

For the receiver, we propose a new formalisation of
security that improves upon the definition from [18]. First,
our definition is protocol independent and only depends
on generic events Pay,Spend,End, whereas the definition
from [18] requires in addition two formulas Ψ1,Ψ2 that
depend on the protocol. Second, our definition can be
given directly as input to automated verification tools like
Tamarin and ProVerif, whereas part of the definition in
[18] requires proof by hand or a special encoding. Finally,
we also offer stronger security: while [18] ensures that
the witness is deducible in general, our definition ensures
that the receiver can deduce the witness by applying the
specified protocol steps. Our formula relies on the action
facts Pay(pk , sn, x), Spend and End(pk , sn, w) modelling
the corresponding events introduced in Section 3.2. Intu-
itively, ΦR captures the same property as the conjunction
of properties in [18]: if the receiver’s coin is transferred
on the ledger, then R can obtain a valid witness or
it obtains a refund. Our novelty consists in a simpler
formalisation relying on the action fact End(pk , sn, w).
In any contingent payment protocol, there should be such
an event recording the computed outcome.

Definition 4. For a ZKCP protocol P , let
• E be an intruder theory;
• (PS ,ΨS) be a specification for the sender role;
• (PR,ΨR) be a specification for the receiver role.
• (PI ,ΨI) be a specification for the (adversarial) en-

vironment where P is executed.

Consider the trace properties defined in Figure 9. We say
that P is secure if

SecS : (PS ∪ PI ,ΨS ∧ΨI , E) |= Φ1
S ∧ Φ2

S ∧ Φ3
S

SecR : (PR ∪ PI ,ΨR ∧ΨI , E) |= ΦR

We say that P is concurrently secure if

(PS∪PR∪PI ,ΨS∧ΨR∧ΨI , E) |= Φ1
S∧Φ2

S∧Φ3
S∧ΦR.

In the above definition, we note that, if the specifi-
cation (PI ,ΨI) allows the adversary to run any number
of instances of any role (as we do in our specifications),
and if we assume that honest parties use different keys
for different roles, then it can be shown that concurrent
security is implied by simple security, see e.g. [25], [45],
[46]. Formally, we will only prove simple security for
our protocol, since Tamarin takes too long to run for
verifying concurrent security: while simple security termi-
nates within 3 minutes for each party, concurrent security
does not terminate within 30 minutes. Since the above-
cited composition results do not directly apply to our
setting, we leave as future work the proof of the following
proposition, which allows to reduce concurrent to simple
security.

Proposition 1. Let P1 and P2 be two sets of rules that do
not share any fact symbol and E be an intruder theory that
does not contain private function symbols. Assume that P
is a set of rules that includes the message deduction rules.
Then, for any trace properties Ψ,Φ1,Φ2, we have:

(P1 ∪ P,Ψ, E) |= Φ1 ∧ (P2 ∪ P,Ψ, E) |= Φ2

=⇒ (P1 ∪ P2 ∪ P,Ψ, E) |= Φ1 ∧ Φ2

Note that the set of restrictions Ψ is the same in the
two statements above, which will be the case for our case
study. The idea for the proof is that, in any trace of P1 ∪
P2∪P , any instance of a rule from P2 can be simulated by
adversarial message deduction rules from P , by replacing
any protocol facts with intruder facts, and any fresh secret
data with fresh public data.

4.4. Contingent payment protocol

The formal specification for our proposed protocol is
represented by the sender and receiver rules from the
bottom part of Figure 5, following closely the protocol
description given in the top part of that figure. Putting
together the rules and restrictions from Figure 5 and Fig-
ure 8, the specification of the sender is (PS ,Ψonce), that
of the receiver is (PR, true), and that of the environment
is (PI ,Ψonce), where

PS = {SetupS ,ExchangeR,SettleS}
PR = {SetupR,Exchange1R,Exchange2R,SettleR}
PI = PL ∪ PAS ∪ PPK ∪ PNP ∪ PD

Ψonce = Once(x) @ i ∧ Once(x) @ j ⇒ i = j

and PD is the set of Tamarin message deduction rules.
For the specification of the sender, we have an associated
restriction Ψonce stating that every different session of
the sender should claim a different coin as payment. The
interaction between each party and the blockchain, and
between the two parties is via the public channel con-
trolled by the adversary - except for the masked signing
functionality, where we rely on the specification PAS to
ensure the corresponding properties.

5. Reduction of subsumed theories

The main observation that underlies our reduction is
the following relation between the theories Eag and Exor:
Lemma 1. For any equational theory E and terms u, v,
we have u =E∪Eag v =⇒ u =E∪Exor v.

Lemma 1 is true because, for any equation l = r ∈
Eag, we have l =xor r, as can be checked directly from
Figure 6. This motivates the following notion:

Definition 5. We say that an equational theory E0 is
subsumed by E1, denoted by E0 v E1, iff for any terms
u, v, we have u =E0 v =⇒ u =E1 v.

We show that, if E0 v E1, security verification modulo
E0 can be reduced to security verification modulo E1. We
instantiate this to reduce security verification from E ∪Eag
to E ∪ Exor, and we use this for the verification of our
proposed protocol with Tamarin. For i ∈ {0, 1}, we let Ii
be the intruder theory corresponding to Ei.

5.1. Trace correspondence and non-reachability

Corollary 1. If E0 v E1, then ∀t. (t↓I0)↓I1 = t↓I1 .

Proof. By definition, we have t↓I0 =E0 t and, from
Definition 5, we deduce t↓I0 =E1 t. Taking the normal
form with respect to I1 we obtain (t↓I0)↓I1 = t↓I1 .

Corollary 1 allows to show that the normal form with
respect to I1 of any I0-trace produces a valid I1-trace.

Proposition 2. Assume that E0 v E1. Then, for any
set of rules P and any tr ∈ tracesI0(P), there is
tr ′ ∈ tracesI1(P) s.t. |tr| = |tr′| and facts(tr ′) =
facts(tr)↓I1 . We denote such a trace tr ′ by tr↓I1 .

Normalisation with respect to I1 may change trace
properties. However, we will show that some relevant
classes of properties can be carried between the two
worlds of E0 and E1. For a sequence of variables X ,
we let ∀X be the universal and ∃X be the existential
quantification of every variable in X .

Definition 6. We say that Φ is a positive formula if it
does not contain negations, implications or quantifiers.

Definition 7. A trace property is a:
• non-reachability property if it is of the form
∀X0.Φ0 ⇒ ¬∃X1.Φ1;

• reachability property if it is of the form
∀X0.Φ0 ⇒ ∃X1.Φ1.

where Φ0 and Φ1 are positive formulas.

Example 1. A typical non-reachability property is
secrecy, e.g. ∀i, x.Secret(x)@i ⇒ ¬∃j.K(x)@j. A
typical reachability property is authentication, e.g.
∀i, x.Recv(x)@i⇒ ∃j.Sent(x)@j.

An attack wrt E0 against a non-reachability property is
shown by a trace containing a sequence of terms t1, . . . , tn
- e.g. Secret(t),K(t) expressing that the adversary knows
a secret. According to Proposition 2, there is a corre-
sponding E1-trace that contains the sequence of terms
t1↓I1 , . . . , tn↓In in the same sequence of facts, leading
to the same attack. Conversely, if we cannot find attacks
with respect to E1, then there are none wrt E0.

Theorem 1. For any set of rules P and non-reachability
property Φ, if E0 v E1, then (P, E1) |= Φ⇒ (P, E0) |= Φ.

5.2. Handling reachability properties

The challenge in extending Theorem 1 to reachability
is that E1 may enable new deduction steps, so we can have
a fact reachable modulo E1 but unreachable modulo E0.
Take the example of Eag (playing the role of E0) and Exor
(playing the role of E1). If a trace contains F (a◦a◦a) but
does not contain F (a), then it does not satisfy true ⇒
F (a) with respect to Eag. On the other hand, if we consider
equalities modulo Exor, then this trace contains F (a) and
therefore it satisfies true⇒ F (a). A reachability property
may also be of the form Φ ⇒ u = v. In a trace we may
have uσ =Exor vσ and the property satisfied modulo Exor,
but uσ 6=Eag vσ and the property violated modulo Eag,
since the converse of Lemma 1 is not true in general.

Example 2. Consider the Tamarin deduction rules D and
the set of rules P = {R0,R1,R2}, where

R0 : [Fr(x)]−−[Reg(x)]→[F1(x), F2(x), F2(x ◦ x ◦ x)]
Ri : [Fi(sk),Fr(n),Fr(r), s = sign(n, sk , r)]
(i ∈ {1, 2}) −−[Signedi(n, sk , r)]→[Out(s)]

and the reachability formulas

Φi : Signedi(x, y, z)⇒ Reg(y) (i ∈ {1, 2})

We have: (D ∪ P, Exor) |= Φ1 (D ∪ P, Exor) |= Φ2

(D ∪ P, Eag) |= Φ1 (D ∪ P, Eag) 6|= Φ2

We will solve the these problems by restricting the
terms that are subject to reachability constraints in for-
mulas. For illustration, we consider the intruder theory
Ixor from [35] for representing Exor:

(1) x ◦ x→ 1
(2) x ◦ x ◦ y → y

(3) x ◦ 1→ x
(4) i(x)→ x

where rule (4) is our addition to handle the symbol i.
To represent Eag, we consider the theory from [65] that
we denote by Iag. For a fact symbol F of arity n, we let
pos(F) = {1, . . . , n} be the set of positions in F . We call
a pair of the form (F, i), for i ∈ pos(F), a fact position.

Definition 8. A fact position (F, i) is (I0, I1)-complete
in a set of rules P iff for any F (t1, . . . , tn) occurring in
tracesI0(P) we have that ti is in I1-normal form.

Example 3. We have that (F, 1) is (I0, I1)-complete
wrt the rule R:[Fr(x)]−−[F (x)]→[Out(x)], for any I0, I1.
Indeed, for any fact F (t) occurring in tracesI0({R}), we
have that t is a name and therefore is in normal form.

Definition 9. Let P be a set of rules and Φ be a positive
formula. A term t with var(t) ⊆ var(Φ) is (I0, I1)-
complete in (Φ,P) iff, for every tr ∈ tracesI0(P) and
substitution σ s.t. tr |=I0 Φσ, we have that tσ is in normal
form wrt I0 ∪ I1.

The (I0, I1)-completeness of a term t in (Φ,P) can be
derived from the (I0, I1)-completeness of fact positions
where the variables of t occur in Φ, as in the next example.

Example 4. Continuing Example 2, let Ψi be
Signedi(x, y, z)@`. Then y is (Iag, Ixor)-complete in

(Ψ1,P). This follows since (Signed1, 2) is (Iag, Ixor)-
complete for P . Indeed, since all arguments of Reg are
names, it follows that all second arguments of Signed1

are also names and therefore in normal form.
On the other hand, we may have tr |=ag Signed2(n, t◦

t ◦ t, r)@`σ in a trace of P , via the rule R2. The term
t ◦ t ◦ t is not in Ixor-normal form, showing that y is not
(Iag, Ixor)-complete in (Ψ2,P).

For a formula Φ, we say that a fact position of Φ
is trivial if it contains a variable that does not occur
anywhere else in Φ, except in quantifiers.

Definition 10. A reachability property Φ : ∀X0.Φ0 ⇒
∃X1.Φ1 is (I0, I1)-complete for P iff

1) for any term t that occurs as an argument of a term
atom in Φ1, we have
a) either var(t) ⊆ X0 and t is (I0, I1)-complete in

(Φ0,P)
b) or else t occurs in a trivial fact position of Φ.

2) any non-trivial fact position in Φ1 is (I0, I1)-
complete in P .

Intuitively, the point 1) of Definition 10 will ensure
that any term that is subject to a reachability constraint
in Φ1 is in normal form wrt I1 once Φ0 is satisfied. On
the other hand, the point 2) ensures that any term from a
trace that may match facts in Φ1 is also in normal form
wrt I1.

Example 5. Continuing Example 2 and Example 4, the
formula Φ2 is not (Iag, Ixor)-complete for P , since y
is not (Iag, Ixor)-complete for (Ψ2,P). On the other
hand, the formula Φ1 is (Iag, Ixor)-complete, since y is
(Iag, Ixor)-complete for (Ψ1,P). Furthermore, (Reg, 1) is
also (Iag, Ixor)-complete, as required.

Example 6. The formula F (x) @ i ∧G(x) @ j ⇒ i ≺ j
is always (I0, I1)-complete, since it does not contain any
term to the right of the implication (but only timepoints).
The formula F (x)⇒ G(y)∨G(c) also is, if c is a constant
that does not occur in I1, since the variable y only occurs
once on the right hand side.

Theorem 2. For any set of rules P and reachability
property Φ that is (I0, I1)-complete for P , if E0 v E1,
then we have (P, E1) |= Φ⇒ (P, E0) |= Φ.

It is convenient to allow restrictions Ψ in protocol
specifications. Since restrictions occur as preconditions,
and not as conclusions of the verification query, we need
a definition of completeness that is dual to Definition 10.

Definition 11. A reachability property ∀X0.Ψ0 ⇒
∃X1.Ψ1 is a (I0, I1)-complete restriction for P if the
following holds for Ψ0: it does not contain term equality
atoms; all arguments of its fact atoms are variables; and
any of its fact positions is (I0, I1)-complete in P .

To prove the following theorem, we fix an attack trace
wrt E0 where Ψ holds, and show that Ψ also holds in the
corresponding E1-trace, leading to an attack wrt E1. To
ease the proof, we introduce a notion of subsumption for
intruder theories as well:

Definition 12. We say that an intruder theory I0 is
subsumed by I1, denoted by I0 v I1, if any term that

is in normal form with respect to I1 is also in normal
form with respect to I0.

Theorem 3. Let P be any set of rules, Ψ,Φ be trace
formulas and E0, E1 be equational theories. Assume that:
• E0 v E1 and I0 v I1;
• Ψ is a conjunction of (I0, I1)-complete restrictions

for P;
• Φ is either an (I0, I1)-complete reachability property

for P , or a non-reachability property.
Then we have (P,Ψ, E1) |= Φ =⇒ (P,Ψ, E0) |= Φ.

Application to abelian groups. For any equational
theory E , Lemma 1 shows that E ∪Eag v E∪Exor. Assume
that E∪Eag is represented by I∪Iag and E∪Exor by I∪Ixor,
for some intruder theory I. We also have:

Lemma 2. For any intruder theory I, I ∪Iag v I ∪Ixor.
Therefore, from Theorem 3, we derive:

Corollary 2. Assume P,Ψ and Φ are as in Theorem 3,
using (E ∪ Eag, E ∪ Exor) in place of (E0, E1), and (I ∪
Iag, I∪Ixor) in place of (I0, I1). Then we have (P,Ψ, E∪
Exor) |= Φ =⇒ (P,Ψ, E ∪ Eag) |= Φ.

We note that our proofs only show the soundness, but
not the completeness of the reduction from ag to xor. The
lack of completeness means that, if an attack is found
modulo xor against a protocol supposed to run with ag,
one should check the attack trace and verify if it is a real
attack against the protocol.

6. Verification of the proposed protocol
Consider the specifications PS ,PR,PR and Ψonce

introduced in Section 4.4 and the trace properties from
Section 4.3. We let:
Ezkcp = E+ag ∪ E∗ag ∪ Eexp ∪ E0 Izkcp = I+ag ∪ I∗exp ∪ I0
Exorzkcp = E+xor ∪ E∗ag ∪ Eexp ∪ E0 Ixorzkcp = I+xor ∪ I∗exp ∪ I0

SecS : (PS ∪ PI ,Ψonce, Ezkcp) |= Φ1
S ∧ Φ2

S ∧ Φ3
S

SecR : (PR ∪ PI ,Ψonce, Ezkcp) |= ΦR

where:
• Ezkcp is as in Figure 7, with E0 = Eenc ∪ Esign ∪ Ezk;
• I0 is orienting all equations from E0 to the right;
• I∗exp is the theory representing E∗ag ∪Eexp as in [65];
• Iag is the theory representing E+ag.
• Ixor is the theory representing E+xor.
To formally prove security for our protocol, we have

to prove the statements SecS and SecR from above. For
these statements, we will apply Corollary 2 for reducing
Ezkcp to Exorzkcp. For applying Corollary 2, we need to ensure
that the formulas in SecS and SecR are (Izkcp, Ixorzkcp)-
complete with respect to PS ∪PI and PR∪PI . First, we
note that Ψonce is an (Izkcp, Ixorzkcp)-complete restriction,
since Once only applies to tuples of serial numbers,
honest public keys and public constants in PS or PI .
The security properties Φ1

S and Φ2
S are also (Izkcp, Ixorzkcp)-

complete. This is immediate for Φ2
S , as it only contains

timepoint atoms on the right-hand side. For Φ1
S , the

term atom Claim(pk , w, sn) does not violate (Izkcp, Ixorzkcp)-
completeness since w is always instantiated to a name and
pk and sn are variables that do not occur anywhere else
in Φ2

S , i.e. their corresponding positions are trivial.

6.1. Formula transformation for completeness

The formulas Φ3
S and ΦR are not (Izkcp, Ixorzkcp)-

complete: the equality pk ′ = pk violates it because of the
term pk ′. Here, pk ′ represents a potentially adversarial
public key occurring on the blockchain, and it may be
e.g. of the form pk(x + x), i.e. not in Ixor-normal form.
In ΦR, the equality f(w) = x also violates completeness,
because the term w is provided by the adversary and
may have arbitrary structure. We show how to transform
these formulas into complete ones while still ensuring the
desired security properties.

Pushing out corrupt keys. To solve the first problem,
related to the atom pk ′ = pk , we make a case distinction
according to whether pk ′ is corrupt or honest. Let ΦX ∈
{Φ3
S ,ΦR}. Recall that ΦX is of the form Υ(pk , pk ′) ⇒

pk ′ = pk ∨ Γ where pk is the key of the honest party for
which we verify the property, and the formula Γ states
the expected outcome in case pk ′ 6= pk . Since any key
is either honest or corrupt, ΦX is then equivalent to the
conjunction of:

Φcor
X : Υ(pk , pk ′) ∧ Corrupt(pk ′) ⇒ Γ

Φhon
X : Υ(pk , pk ′) ∧ Honest(pk ′) ⇒ pk ′ = pk ∨ Γ

The atom pk ′ = pk in Φhon
X does not pose a problem

now since honest keys are based on fresh names. We are
left to consider the formula Γ. For Φ3

S , Γ is ` = time,
where ` is instantiated to a constant denoting the type of
transaction on the blockchain. It follows that Φ3,hon

S and
Φ3,cor
S are (Izkcp, Ixorzkcp)-complete. For ΦR, Γ is f(w) = x,

which can violate completeness.
Rearranging term equalities. To solve the problem of

the equality f(w) = x, we replace it with another one
that will also provide the receiver with a valid witness,
but where both terms can be ensured to be in normal
form. Recall that the zero-knowledge proof π, for which
the receiver checks ver(π, c, ρ, x), ensures the following
relation between the terms c, ρ, x:

∃β. c = enc(w, k) ∧ x = f(w) ∧ k = H(β) ∧ ρ = gβ

To obtain the witness w by decryption, the receiver
computes a candidate β by computing s′ − s, where s′ is
obtained from the masked signing functionality and s is
the signature recorded on the blockchain ledger. It follows
that the receiver obtains a valid witness if s′ = s + β,
where β is the exponent in the term ρ for which it verified
the zero-knowledge proof. For z ∈ {hon, cor}, recall that:

ΦzR : Υ ∧ Ωz0 ⇒ f(w) = x ∨ Ωz1
Υ : Pay(pk , sn, x) ∧ Spend(sn, `, s, sn ′, pk ′)

∧ End(pk , sn, w)

for some Ωz0,Ω
z
1. From the previous observations, we have

that the formula ΦzR is equivalent to

Φ′zR : Υ′ ∧ Ωz0 ⇒ s′ = s+ β ∨ Ωz1

Υ′ : Pay′(pk , sn, gβ) ∧ Spend(sn, `, s, sn ′, pk ′)
∧ End′(pk , sn, s′)

where we record in the fact Pay′(pk , sn, gβ) the term ρ =
gβ instead of x, and in the fact End′(pk , sn, s′) the term
s′ instead of w.

Constraining the algebraic structure. The advantage
of the equality s′ = s + β is that we can add algebraic
constraints over its terms. The term β is supposed to be
a fresh random value, and this can be easily checked
in the exponent as we will show. The terms s, s′ also
have a restricted structure enforced by the blockchain and
the adaptor signing functionality. To show (Izkcp, Ixorzkcp)-
completeness, it is then sufficient to ensure that the terms
ρ and pkS (the public key of the sender) provided by the
adversary are of the form gt and pub(t) for some term t
that does not interfere with the equational theory. In the
symbolic model, we rely on a private function symbol fr
and a rule Qfr : [Fr(t)] ⇒ [Out(fr(t))]. Private functions
cannot be applied by the adversary. It follows that for any
term fr(t) we can ensure that t is a name. For a term
ρ provided by the adversary, we will require for ρ to
be of the form gfr(t), and similarly for the public key,
by considering the equational theory Efr and verification
checks Vfr presented below. We let PR,frzkcp be the set of
rules PRzkcp where we add the checks Vfr to the receiver
rule SetupR, and the action facts Pay′(pk , sn, ρ) to the
rule Exchange1R, and End′(pk , sn, s′) to the rule SettleR;
moreover we add Qfr to the set of rules.

Efr Vfr︷ ︸︸ ︷
ver exp(gfr(x)) = ok
ver key(pub(fr(x))) = ok

︷ ︸︸ ︷
ver exp(ρ) = ok
ver key(pkS) = ok

We let I frzkcp and Ixor,frzkcp be Izkcp and Ixorzkcp augmented with
rules from Efr oriented from left to right.

6.2. Ensuring random exponents and keys

To justify the freshness constraints from the symbolic
model, we show how to ensure that the terms we model
as fresh are random. For the term ρ provided by S, we
will have ρ = gβ for which S will know the secret β
but it will have no ability to control its actual value.
More precisely, we will have β = β0 + r where β0 is
chosen by S and r is indistinguishable from the output of
a random function. For generating such an r, we rely on
publicly verifiable random functions (VRF) [57], that have
been successfully deployed in the context of blockchains
[40], [43]. We assume a VRF-based party (e.g. a smart
contract) that allows anyone to ask for fresh randomness.
After such a request is recorded on the blockchain, fresh
randomness is generated and publicly recorded on the
ledger. Any party has a guarantee that the randomness is
freshly generated after the request. Such a smart contract
is already deployed on the Ethereum blockchain [22].
Then we can have the following initial protocol between
S and R in our contingent payment protocol:
• S generates β0 and sends gβ0 to R;
• R requests fresh randomness from the VRF, which

is recorded on the blockchain as r ∈ Zq;
• S computes β = β0 + r ∈ Zq and R verifies that
ρ = (gβ0)

r.
This guarantees to R that the exponent β0 + r in ρ =
(gβ0)

r
= gβ0+r is independent from the choice of the

adversary. This follows from the pseudo-randomness of r
generated after the initially committed value gβ0 . For the
public key, since Bitcoin relies on ECDSA signing keys,

we have pub(x) = gx where x ∈ Zq is the corresponding
private key. Therefore we can apply the same technique
as above to ensure that the public key that the sender uses
for receiving payment in the ZKCP protocol is close to
uniformly random. The above construction can be made
non-interactive by sending a commitment to gβ0 to the
blockchain and triggering the smart contract without input
from the receiver. The receiver would just need to consult
the blockchain for verification, after receiving ρ and gβ0

from the sender. We note that the parties can also run an
interactive coin tossing protocol for generating a random
gβ without using smart contracts. The advantage of using
the blockchain is that gβ can be generated once, non-
interactively, and reused for any number of receivers.

6.3. Verification results

Consider the statements SecS and SecR modeling the
security of our protocol. Let SecfrR be SecR where we use
the set of rules PR,frzkcp instead of PRzkcp and we add Efr
to the equational theory. In the accompanying technical
report [19], we prove a series of lemmas formalising the
claims from Section 6.1. From these lemmas, we derive:

Corollary 3. For the statements

SecS : (PSzkcp,Ψonce, Ezkcp) |= Φ1
S ∧ Φ2

S ∧ Φ3,hon
S ∧ Φ3,cor

S
SecR : (PR,frzkcp ,Ψonce, Ezkcp ∪ Efr) |= Φ′honR ∧ Φ′corR

we have SecS =⇒ SecS and SecR =⇒ SecfrR.

Corollary 4. 1) Izkcp, Ixorzkcp, I frzkcp, I
xor,fr
zkcp are intruder the-

ories with Ixorzkcp v Izkcp and Ixor,frzkcp v I frzkcp.
2) All restrictions and trace properties in SecS are

(Izkcp, Ixorzkcp)-complete for PSzkcp.
3) All restrictions and trace properties in SecR are

(I frzkcp, I
xor,fr
zkcp)-complete for PR,frzkcp .

Let Sec
xor

S and Sec
xor

R be the statements SecS and SecR
where we replace the equational theory Ezkcp with Exorzkcp.
From the Tamarin code provided online [1].

Proposition 3. The statements Sec
xor

S and Sec
xor

R are true.

By Corollary 4, we can apply Corollary 2 to deduce
Sec

xor

S ⇒ SecS and Sec
xor

R ⇒ SecR. Putting this together
with Proposition 3 and Corollary 3, we can conclude the
security proof for our proposed protocol:

Theorem 4. The statements SecS and SecfrR are true.

7. Conclusion and future work

This paper makes two main contributions: it proposes
a new ZKCP protocol that improves the state of the art of
fair exchange relying on blockchains, and a new method
that enables security verification modulo abelian groups
with automated tools. There is scope for improvement in
both directions. First, the protocol needs to be proved
secure in a stronger cryptographic model to get more
assurance. Depending on the application, a specialised
version of ZKCP may be more practical than the generic
protocol we propose. For example, when the data to be
exchanged is an ECDSA signature (e.g. of a contract),

[60] proposes a more efficient interactive zk proof to be
plugged into [71] instead of the non-interactive zk proof.

The soundness of our reduction allows to perform
security proofs with respect to one theory and conclude
the security of the protocol with respect to another. It
would be interesting to explore to what extent such a
reduction is complete, in order to also have a correspon-
dence of attacks. More generally, our results can form
the foundation for a verification procedure modulo abelian
groups, without any restriction on the class of properties.
Indeed, the notion of (I0, I1)-completeness is related to
the finite variant property [28], used in Tamarin to handle
equational reasoning. A similar approach as in Tamarin
could be applied to transform a specification P into a set
of variants P1, . . . ,Pn with respect to which any desired
formula, or its variants, would be (I0, I1)-complete.

References

[1] Additional material: specifications in Tamarin. https://github.com
/sbursuc/ZKCP-specifications-in-Tamarin.

[2] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security
of joint signature and encryption. In Advances in Cryptology -
EUROCRYPT, volume 2332 of LNCS, pages 83–107, 2002.

[3] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski,
and Lukasz Mazurek. Fair two-party computations via Bitcoin
deposits. In Financial Cryptography and Data Security Workshops,
volume 8438 of LNCS, pages 105–121. Springer, 2014.

[4] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski,
and Lukasz Mazurek. Secure multiparty computations on Bitcoin.
In IEEE S&P, pages 443–458, 2014.

[5] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair
exchange of digital signatures. IEEE Journal on Selected Areas in
Communications, 18(4):593–610, 2000.

[6] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust,
Kristina Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and
Siavash Riahi. Generalized channels from limited blockchain
scripts and adaptor signatures. In Advances in Cryptology -
ASIACRYPT 2021, volume 13091 of LNCS, pages 635–664, 2021.

[7] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-
knowledge in the applied pi-calculus and automated verification of
the direct anonymous attestation protocol. In IEEE S&P, pages
202–215. IEEE Computer Society, 2008.

[8] Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski.
Efficient zero-knowledge contingent payments in cryptocurrencies
without scripts. In Computer Security - ESORICS 2016, LNCS,
pages 261–280, 2016.

[9] David A. Basin, Sebastian Mödersheim, and Luca Viganò. Alge-
braic intruder deductions. In LPAR 2005, volume 3835 of LNCS,
pages 549–564. Springer, 2005.

[10] Amos Beimel. Secret-sharing schemes: A survey. In Coding and
Cryptology - Third International Workshop, volume 6639 of LNCS,
pages 11–46. Springer, 2011.

[11] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash:
Decentralized anonymous payments from Bitcoin. In IEEE S&P,
pages 459–474. IEEE Computer Society, 2014.

[12] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct non-interactive zero knowledge for a von Neumann
architecture. In USENIX Security Symposium, 2014.

[13] Iddo Bentov and Ranjit Kumaresan. How to use Bitcoin to design
fair protocols. In Juan A. Garay and Rosario Gennaro, editors,
Advances in Cryptology - CRYPTO 2014, volume 8617 of LNCS,
pages 421–439. Springer, 2014.

[14] Bruno Blanchet. Mechanizing game-based proofs of security
protocols. In Software Safety and Security - Tools for Analysis and
Verification, volume 33 of NATO Science for Peace and Security
Series – D: Information and Communication Security, pages 1–25.
IOS Press, May 2012.

[15] Bruno Blanchet. Modeling and verifying security protocols with
the applied pi calculus and proverif. Found. Trends Priv. Secur.,
1(1-2):1–135, 2016.

[16] Dan Boneh and Moni Naor. Timed commitments. In Advances
in Cryptology - CRYPTO, volume 1880 of LNCS, pages 236–254.
Springer, 2000.

[17] Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable
signatures based on computational Diffie-Hellman. In Public Key
Cryptography - PKC 2006, LNCS, pages 229–240, 2006.

[18] Sergiu Bursuc and Steve Kremer. Contingent payments on a
public ledger: Models and reductions for automated verification.
In Computer Security - ESORICS, LNCS, pages 361–382, 2019.

[19] Sergiu Bursuc and Sjouke Mauw. Contingent payments from two-
party signing and verification for abelian groups. Technical report,
IACR, 2022.

[20] Christian Cachin and Jan Camenisch. Optimistic fair secure com-
putation. In Advances in Cryptology - CRYPTO, volume 1880 of
LNCS, pages 93–111. Springer, 2000.

[21] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca
Nizzardo. Zero-knowledge contingent payments revisited: Attacks
and payments for services. In ACM CCS, pages 229–243. ACM,
2017.

[22] Chainlink. Chainlink VRF: On-chain verifiable randomness. https:
//blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/.

[23] Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, and Math-
ieu Turuani. An NP decision procedure for protocol insecurity with
XOR. In IEEE Symposium on Logic in Computer Science (LICS
2003), pages 261–270. IEEE Computer Society, 2003.

[24] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel
Kaptchuk, and Ian Miers. Fairness in an unfair world: Fair
multiparty computation from public bulletin boards. In ACM CCS,
pages 719–728. ACM, 2017.

[25] Ştefan Ciobâcă and Véronique Cortier. Protocol composition for
arbitrary primitives. In IEEE Computer Security Foundations
Symposium, pages 322–336. IEEE Computer Society, 2010.

[26] Richard Cleve. Limits on the security of coin flips when half the
processors are faulty (extended abstract). In Symposium on Theory
of Computing, pages 364–369. ACM, 1986.

[27] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed
output delivery in secure multiparty computation. J. Cryptology,
30(4):1157–1186, 2017.

[28] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant
property: How to get rid of some algebraic properties. In Jürgen
Giesl, editor, Term Rewriting and Applications, volume 3467 of
LNCS, pages 294–307. Springer, 2005.

[29] Hubert Comon-Lundh and Vitaly Shmatikov. Intruder deductions,
constraint solving and insecurity decision in presence of exclusive
or. In IEEE Symposium on Logic in Computer Science (LICS 2003),
page 271. IEEE Computer Society, 2003.

[30] Hubert Comon-Lundh and Ralf Treinen. Easy intruder deductions.
In Verification: Theory and Practice, Essays Dedicated to Zohar
Manna on the Occasion of His 64th Birthday, volume 2772 of
LNCS, pages 225–242. Springer, 2003.

[31] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens,
Kristina Hostáková, Patrick Jauernig, Sebastian Faust, and Ahmad-
Reza Sadeghi. Fastkitten: Practical smart contracts on bitcoin. In
Proceedings of the 28th USENIX Conference on Security Sympo-
sium, SEC’19, page 801–818, USA, 2019. USENIX Association.

[32] Stéphanie Delaune, Steve Kremer, and Daniel Pasaila. Security
protocols, constraint systems, and group theories. In Automated
Reasoning - 6th International Joint Conference, IJCAR, volume
7364 of LNCS, pages 164–178. Springer, 2012.

[33] Stéphanie Delaune, Pascal Lafourcade, Denis Lugiez, and Ralf
Treinen. Symbolic protocol analysis for monoidal equational
theories. Inf. Comput., 206(2-4):312–351, 2008.

[34] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems.
In Jan van Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, pages 243–320.
Elsevier and MIT Press, 1990.

https://github.com/sbursuc/ZKCP-specifications-in-Tamarin
https://github.com/sbursuc/ZKCP-specifications-in-Tamarin
https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/
https://blog.chain.link/chainlink-vrf-on-chain-verifiable-randomness/

[35] Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, and Ralf Sasse.
Automated unbounded verification of stateful cryptographic proto-
cols with exclusive OR. In IEEE Computer Security Foundations
Symposium, pages 359–373. IEEE Computer Society, 2018.

[36] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap:
How to fairly exchange digital goods. In ACM SIGSAC Conference
on Computer and Communications Security (CCS’18), pages 967–
984. ACM, 2018.

[37] Lisa Eckey, Sebastian Faust, and Benjamin Schlosser. Optiswap:
Fast optimistic fair exchange. In Asia CCS, page 543–557. ACM,
2020.

[38] Lloyd Fournier. One-time verifiably encrypted signatures a.k.a.
adaptor signatures, 2019. https://github.com/LLFourn/one-time-
VES.

[39] Georg Fuchsbauer. WI is not enough: Zero-knowledge contingent
(service) payments revisited. In CCS, pages 49–62. ACM, 2019.

[40] David Galindo, Jia Liu, Mihai Ordean, and Jin-Mann Wong. Fully
distributed verifiable random functions and their application to
decentralised random beacons. In IEEE EuroS&P, pages 88–102.
IEEE, 2021.

[41] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The
Bitcoin backbone protocol: Analysis and applications. In Advances
in Cryptology - EUROCRYPT, volume 9057 of Lecture Notes in
Computer Science, pages 281–310. Springer, 2015.

[42] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold
ECDSA with fast trustless setup. In Lie et al. [52], pages 1179–
1194.

[43] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and
Nickolai Zeldovich. Algorand: Scaling byzantine agreements for
cryptocurrencies. In Symposium on Operating Systems Principles,
SOSP ’17, page 51–68. ACM, 2017.

[44] Steven Goldfeder, Joseph Bonneau, Rosario Gennaro, and Arvind
Narayanan. Escrow protocols for cryptocurrencies: How to buy
physical goods using Bitcoin. In Financial Cryptography and Data
Security, volume 10322 of LNCS, pages 321–339. Springer, 2017.

[45] Joshua D. Guttman and F. Javier Thayer. Protocol independence
through disjoint encryption. In Computer Security Foundations
Workshop, pages 24–34. IEEE Computer Society, 2000.

[46] Andreas V Hess, Sebastian A Mödersheim, and Achim D Brucker.
Stateful protocol composition. In European Symposium on Re-
search in Computer Security, pages 427–446. Springer, 2018.

[47] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic
curve digital signature algorithm (ecdsa). International journal of
information security, 1(1):36–63, 2001.

[48] Hugo Krawczyk and Pasi Eronen. Hmac-based extract-and-expand
key derivation function (hkdf). Technical report, IETF, 2010. RFC
5869.

[49] Ralf Küsters and Tomasz Truderung. Reducing protocol analysis
with XOR to the XOR-free case in the horn theory based approach.
In CCS, pages 129–138. ACM, 2008.

[50] Ralf Küsters and Tomasz Truderung. Using ProVerif to analyze
protocols with Diffie-Hellman exponentiation. In Computer Se-
curity Foundations Symposium, pages 157–171. IEEE Computer
Society, 2009.

[51] Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder de-
duction for the equational theory of abelian groups with distributive
encryption. Inf. Comput., 205(4):581–623, 2007.

[52] David Lie, Mohammad Mannan, Michael Backes, and Xiao Feng
Wang, editors. Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018. ACM, 2018.

[53] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with
practical distributed key generation and applications to cryptocur-
rency custody. In Lie et al. [52], pages 1837–1854.

[54] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind,
Aniket Kate, and Matteo Maffei. Anonymous multi-hop locks
for blockchain scalability and interoperability. In Annual Network
and Distributed System Security Symposium, NDSS. The Internet
Society, 2019.

[55] Gregory Maxwell. The first successful zero-knowledge contingent
payment. https://bitcoincore.org/en/2016/02/26/zero-knowledge-c
ontingent-payments-announcement/, 2016.

[56] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A.
Basin. The TAMARIN prover for the symbolic analysis of security
protocols. In 25th International Conference on Computer Aided
Verification (CAV’13), volume 8044 of Lecture Notes in Computer
Science, pages 696–701. Springer, 2013.

[57] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable
random functions. In Annual Symposium on Foundations of Com-
puter Science, pages 120–130. IEEE Computer Society, 1999.

[58] Pedro Moreno-Sanchez and Aniket Kate. Scriptless scripts with
ecdsa. https://lists.linuxfoundation.org/pipermail/lightning-dev/at
tachments/20180426/fe978423/attachment-0001.pdf.

[59] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
2008. Available at https://bitcoin.org/bitcoin.pdf.

[60] Ky Nguyen, Miguel Ambrona, and Masayuki Abe. WI is almost
enough: Contingent payment all over again. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’20, page 641–656, New York, NY, USA, 2020.
Association for Computing Machinery.

[61] Henning Pagnia and Felix C Gärtner. On the impossibility of fair
exchange without a trusted third party. Technical Report TUD-
BS-199-02, Darmstadt University of Technology, Department of
Computer Science, 1999.

[62] Juha Partala, Tri Hong Nguyen, and Susanna Pirttikangas. Non-
interactive zero-knowledge for blockchain: A survey. IEEE Access,
8:227945–227961, 2020.

[63] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the
blockchain protocol in asynchronous networks. In Advances in
Cryptology - EUROCRYPT, volume 10211 of LNCS, pages 643–
673, 2017.

[64] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-
interactive zero-knowledge proof systems. In Advances in Cryp-
tology - CRYPTO ’87, volume 293 of Lecture Notes in Computer
Science, pages 52–72. Springer, 1987.

[65] Benedikt Schmidt, Simon Meier, Cas J. F. Cremers, and David A.
Basin. Automated analysis of Diffie-Hellman protocols and ad-
vanced security properties. In 25th IEEE Computer Security
Foundations Symposium, (CSF’12), pages 78–94. IEEE Computer
Society, 2012.

[66] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2L:
Anonymous atomic locks for scalability in payment channel hubs.
In S&P, pages 1834–1851. IEEE, 2021.

[67] Sri Aravinda Krishnan Thyagarajan and Giulio Malavolta. Lock-
able signatures for blockchains: Scriptless scripts for all signatures.
In S&P, pages 937–954. IEEE, 2021.

[68] Alwen Tiu, Rajeev Goré, and Jeremy E. Dawson. A proof theoretic
analysis of intruder theories. Log. Methods Comput. Sci., 6(3),
2010.

[69] Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari
Juels, and Elaine Shi. Sealed-glass proofs: Using transparent
enclaves to prove and sell knowledge. In Euro S&P, pages 19–34.
IEEE, 2017.

[70] Gavin Wood. Ethereum: A secure decentralised generalised trans-
action ledger, 2014. Available at https://gavwood.com/paper.pdf.

[71] Bitcoin wiki: Zero Knowledge Contingent Payment. https://en.bit
coin.it/wiki/Zero Knowledge Contingent Payment, 2011.

https://github.com/LLFourn/one-time-VES
https://github.com/LLFourn/one-time-VES
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://lists.linuxfoundation.org/pipermail/lightning-dev/attachments/20180426/fe978423/attachment-0001.pdf
https://lists.linuxfoundation.org/pipermail/lightning-dev/attachments/20180426/fe978423/attachment-0001.pdf
https://bitcoin.org/bitcoin.pdf
https://gavwood.com/paper.pdf
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment

