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Abstract

We describe two new probabilistic planning tech-
niques--C-MAXPLAN and ZANDER--that generate con-
tingent plans in probabilistic propositional domains.
Both operate by transforming the planning problem
into a stochastic satisfiability problem and solving that
problem instead. C-MAXPLAN encodes the problem
as an E-MAJSAT instance, while ZANDER encodes the
problem as an S-SAT instance. Although S-SAT prob-
lems are in a higher complexity class than E-MAJSAT
problems, the problem encodings produced by ZANDER
are substantially more compact and appear to be easier
to solve than the corresponding E-MAJSAT encodings.
Preliminary results for ZANDER indicate that it is com-
petitive with existing planners on a variety of problems.

Introduction
When planning under uncertainty, any information
about the state of the world is precious. A contingent
plan is one that can make action choices contingent on
such information. In this paper, we present an imple-
mented framework for contingent planning under un-
certainty using stochastic satisfiability.

Our general motivation for developing the
probabilistic-planning-as-stochastic-satisfiability
paradigm was to explore the potential for deriving
performance gains in probabilistic domains similar to
those provided by SATPLAN (Kautz & Selman 1996) 
deterministic domains. There are a number of advan-
tages to encoding planning problems as satisfiability
problems. First, the expressivity of Boolean satisfia-
bility allows us to construct a very general planning
framework. Another advantage echoes the intuition
behind reduced instruction set computers; we wish to
translate planning problems into satisfiability problems
for which we can develop highly optimized solution
techniques using a small number of extremely efficient
operations. Supporting this goal is the fact that
satisfiability is a fundamental problem in computer
science and, as such, has been studied intensively.
Numerous techniques have been developed to solve sat-
isfiability problems as efficiently as possible. Stochastic
satisfiability is less well-studied, but many satisfiability
techniques carry over to stochastic satisfiability nearly
intact (Littman, Majercik, & Pitassi 1999).
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There are disadvantages to this approach. Problems
that can be compactly expressed in representations used
by other planning techniques often suffer a significant
blowup in size when encoded as Boolean satisfiability
problems, degrading the planner’s performance. Auto-
matically producing maximally efficient plan encodings
is a difficult problem. In addition, translating the plan-
ning problem into a satisfiability problem obscures the
structure of the problem, making it difficult to use our
knowledge of and intuition about the planning process
to develop search control heuristics or prune plans.

Our planners solve probabilistic propositional plan-
ning problems: states are represented as an assignment
to a set of Boolean state variables (fluents) and actions
map states to states probabilistically. Problems are ex-
pressed using a dynamic-belief-network representation.
A subset of the state variables are declared observable,
meaning that a plan can be made contingent on any of
these variables. This scheme is sufficiently expressive
to allow a domain designer to make a domain fully ob-
servable, unobservable, or to have observations depend
on actions and states in probabilistic ways.

We describe how to map the problem of contin-
gent planning in a probabilistic propositional domain
to two different probabilistic satisfiability problems.
C-MAXPLAN, the first approach, encodes the plan-
ning problem as an E-MAJSAT instance (Majercik 
Littman 1998). A set of Boolean variables (the choice
variables) encodes the contingent plan and a second
set (the chance variables) encodes the probabilistic out-
come of the plan--the satisfiability problem is to find
the setting of the choice variables that maximizes the
probability of satisfaction with respect to the chance
variables. The efficiency with which the resulting
E-MAJSAT problem is solved, however, depends criti-
cally on the plan representation. ZANDER, the second
approach, encodes the planning problem as an S-SAT
instance (Papadimitriou 1985). Here, we intermingle
choice variables and chance variables so that values for
choice variables encoding actions can be chosen condi-
tionally based on the values of earlier chance variables
encoding observations. ZANDER encodings are substan-
tially more compact than (3-MAXPLAN encodings, and
this appears to more than offset the fact that S-SAT
lies in a higher complexity class than E-MAJSAT.

In the remainder of this section, we describe our
domain representation and the stochastic satisfiability
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framework. In the following section, we describe C-
MAXPLAN, providing evidence that its performance is
quite sensitive to the plan representation. The next
two sections introduce the S-SAT-based ZANDER encod-
ing and an algorithm for solving S-SAT instances to find
the optimal plan. The section after that reports on a set
of comparative experiments; even with our preliminary
S-SAT solver, ZANDER appears to be competitive with
existing planners across a variety of planning problems.
We conclude with some ideas for further work.

Probabilistic Planning Representation

The contingent planners we developed work on par-
tially observable probabilistic propositional planning
domains. Such a domain consists of a finite set P of
n distinct propositions, any of which may be True or
False at any (discrete) time t. state is an assignment
of truth values to P. A probabilistic initial state is spec-
ified by a set of decision trees, one for each proposition.
A proposition p whose initial assignment is independent
of all other propositions has a tree consisting of a sin-
gle node labeled by the probability with which p will
be True at time 0. A proposition q whose initial as-
signment is not independent has a decision tree whose
nodes are labeled by the propositions that q depends
on and whose leaves specify the probability with which
q will be True at time 0. Goal states are specified by
a partial assignment G to the set of propositions; any
state that extends G is considered to be a goal state.

Each of a set A of actions probabilistically transforms
a state at time t into a state at time t+ 1 and so induces
a probability distribution over the set of all states. In
this work, the effect of each action on each proposition
is represented as a separate decision tree (Boutilier 
Poole 1996). For a given action a, each of the decision
trees for the different propositions are ordered, so the
decision tree for one proposition can refer to both the
new and old values of previous propositions. The leaves
of a decision tree describe how the associated proposi-
tion changes as a function of the state and action.

A subset of the set of propositions is the set of observ-
able propositions. Each observable proposition has, as
its basis, a proposition that represents the actual status
of the thing being observed. (Note that although val-
ues are assigned to observable propositions in the initial
state, no action at time 1 makes use of these proposi-
tions in its decision trees, since there are no valid ob-
servations at time 0.)

The planning task is to find a plan that selects an
action for each step t as a function of the value of ob-
servable propositions for steps before t. We want to
find a plan that maximizes (or exceeds a user-specified
threshold for) the probability of reaching a goal state.

For example, consider a simple domain based on
the TIGER problem of Kaelbling, Littman, & Cas-
sandra (1998). The domain consists of four proposi-
tions: tiger-behind-left-door, dead, rewarded and hear-
tiger-behind-left-door, the last of which is observable.
In the initial state, tiger-behind-left-door is True with

listen-for-tiger open-left-door open-right-door
1. tiger-behind-left-door 1. tiger-behind-left-door L tlger-behind-left-deer

2. hear-tiger-behind-left-door 2. hear-tiger-behind-left-doer 2. hear-tiger-behind-left-door

Figure 1: The effects of the actions in the TIGER prob-
lem are represented by a set of decision trees.

probability 0.5, dead is False, rewarded is False,
and hear-tiger-behind-left-door is False (although irrel-
evant). The goal states are specified by the partial as-
signment (rewarded, (not dead)). The three actions 
listen-for-tiger, open-left-door, and open-right-
door (Figure 1). Actions open-left-door and open-
right-door make reward True, as long as the tiger is
not behind that door (we assume the tiger is behind
the right door if tiger-behind-left-door is False). Since
tiger-behind-left-door is not observable, the listen action
becomes important; it causes the observable hear-tiger-
behind-left-door proposition to become equal to tiger-
behind-left-door with probability 0.85 (and its negation
otherwise). By listening multiple times, it becomes
possible to determine the likely location of the tiger.

Stochastic Satisfiability

In the deterministic satisfiability problem, or SAT, we
are given a Boolean formula and wish to determine
whether there is some assignment to the variables in the
formula that results in the formula evaluating to True.
Fixed-horizon deterministic planning problems can be
encoded by SAT formulas (Kautz & Selman 1996).

A formal definition of the SAT decision problem fol-
lows. Let x = (xl,x2,...,x~) be a collection of 
Boolean variables, and ¢(x) be a CNF Boolean for-
mula on these variables with m clauses. For exam-
ple, (xl + ~-~ + x4)(x2 + x3 + x4)(~- + ~-~ + ~-~) 
a CNF formula with n = 4 variables and m = 3
clauses. This paper uses "1" and "0" for True and
False, multiplication for conjunction, and addition for
disjunction. Logical negation is defined as ~ = 1 - x.
With respect to a formula ¢(x), an assignment to the
Boolean variables xl .... , x~ is satisfying if ¢(x) = 
In other words, a satisfying assignment makes the for-
mula True. The decision problem SAT asks whether
a given Boolean formula ¢(x) in CNF has a satisfying
assignment (3Xl,...,Sxn(C(x) : 

Papadimitriou (1985) explored an extension of SAT 



which a random quantifier is introduced. The stochastic
SAT (S-SAT) problem is to evaluate a Boolean formula
in which existential and random quantifiers alternate:

3xl, ~x2,3x3,..., 3x,_1, ~xn(E[¢(x)] > 0).

In words, this formula asks whether there is a value for
xl such that, for random values of x2 (choose 0 or 
with equal probability), there exists a value of x3...
such that the expected value of the Boolean formula
¢(x) is at least a threshold 9. This type of satisfiabil-
ity consists of alternating between making a choice of
value for an odd-numbered variable with a chance se-
lection of a value for an even-numbered variable; hence,
Papadimitriou referred to S-SAT as a "game against na-
ture." In our S-SAT problems, we will allow blocks of
existential and random quantifiers to alternate. Fur-
thermore, we will allow annotated random quantifiers
such as ~0.2, which takes on value True with proba-
bility 0.2 and False with probability 0.8. S-SAT, like
the closely related quantified Boolean formula problem,
is PSPACE-complete. The specification of an S-SAT
problem consists of the Boolean formula ¢(x), the prob-
ability threshold 9, and the ordering of the quantifiers.

Different thresholds and patterns of quantifiers in
S-SAT instances result in different computational prob-
lems, complete for different complexity classes. An
S-SAT problem with a threshold of 1.0 and a single
block of existentially quantified variables is equivalent
to the NP-complete problem SAT. An S-SAT problem
with an arbitrary threshold and a single block of exis-
tentially quantified variables followed by a single block
of randomly quantified variables is equivalent to the
NPPP-complete problem E-MAJSAT. As we will de-
scribe, both E-MAJSAT formulas and S-SAT formulas
can be used to encode planning problems.

Related Work

The type of partially observable planning problem we
address, featuring actions with probabilistic effects and
noisy observations, is a form of partially observable
Markov decision process (POMDP). Algorithms that use
a fiat representation for POMDPS have been around for
many years. In this section, we focus on more recent
algorithms that exploit propositional state representa-
tions. Of course, any algorithm that can solve a plan-
ning problem in a flat representation can also be used
to solve a problem in the propositional representation
by enumerating states; in fact, this approach is often
the fastest for domains with up to five or six fluents.

One of the most well-known contingent planners for
probabilistic domains is G-BURIDAN (Draper, Hanks, 
Weld 1994), which uses tree-based, probabilistic STRIPS

operators to extend partial-order planning to stochas-
tic domains. C-BURIDAN searches for a type of con-
tingent plan whose probability of success meets or ex-
ceeds some prespecified threshold. As Onder & Pol-
lack (1997) point out, however, there are some prob-
lems with G-BURIDAN, and these could prevent it from

solving arbitrary partially observable planning prob-
lems. MAHINUR (Onder & Pollack 1997) is a proba-
bilistic partial-order planner that corrects these defi-
ciencies by combining C-BURIDAN’s probabilistic action
representation and system for managing these actions
with a CNLP-style approach to handling contingen-
cies. The novel feature of MAHINUR is that it identi-
fies those contingencies whose failure would have the
greatest negative impact on the plan’s success and fo-
cuses its planning efforts on generating plan branches to
deal with those contingencies. Onder & Pollack (1997)
identify several domain assumptions (including a type
of subgoai decomposability) that underlie the design
of MAHINUR, and there are no guarantees on the cor-
rectness of MAHINUR for domains in which these as-
sumptions are violated. Our contingent planners, C-
MAXPLAN and ZANDER, correct the deficiencies noted
by Onder and Pollack and, in addition, avoid the as-
sumptions made my MAHINUR, thus resulting in plan-
ners that are applicable to more general domains.

CONFORMANT GRAPHPLAN (Smith & Weld 1998)
deals with uncertainty in initial conditions and action
outcomes by attempting to construct a non-sensing,
noncontingent plan that will succeed in all cases.
PGRAPHPLAN (Slum & Langford 1998) employs for-
ward search through the planning graph to find the con-
tingent plan with the highest expected utility in a com-
pletely observable stochastic environment. SENSORY
GRAPHPLAN (SGP) (Weld, Anderson, & Smith 1998),
constructs plans with sensing actions that gather in-
formation to be used later in distinguishing between
different plan branches. Thus, sGP is an approach to
constructing contingent plans. However, SGP has not
been extended to handle actions with uncertain effects
(except in the conformant case) and imperfect obser-
vations, so it is only applicable to a subset of partially
observable planning problems.

Boutilier & Poole (1996) describe an algorithm for
solving partially observable planning problems based
on an earlier algorithm for completely observable prob-
lems. While promising, little computational experience
with this algorithm is available.

Our planners, C-MAXPLAN and ZANDER, are based on
earlier work on MAXPLAN (Majercik & Littman 1998),
a planner for unobservable domains. Both are based on
stochastic satisfiability and can handle general (finite-
horizon) partially observable planning problems. They
allow both states and observations to be in a compact
propositional form, and so can be used to attack large-
scale planning problems.

For the partially observable planning problems they
can solve, MAHINUR and SGP appear to run at state-
of-the-art speeds; in the Results section, we will report
favorable comparisons of ZANDER with MAHINUR and
SGP, as well as an implementation of a POMDP algo-

rithm for flat domains, on some standard test problems.

C-MAXPLAN
MAXPLAN (Majercik & Littman 1998) was initially de-



veloped to solve probabilistic planning problems in com-
pletely unobservable domains. MAXPLAN works by first
converting the planning problem to an E-MAJSAT prob-
lem, which is an S-SAT problem with a single block of
existential (choice) variables followed by a single block
of random (chance) variables. The choice variables en-
code candidate plans, and the chance variables encode
the probabilistic outcome of the plan. MAXPLAN solves
the E-MA3SAT problem using a modified version of the
Davis-Putnam-Logemann-Loveland (DPLL) procedure
for determining satisfiability. Essentially, it uses DPLL
to determine all possible satisfying assignments, sums
the probabilities of the satisfying assignments for each
possible choice-variable assignment, and then returns
the choice-variable assignment (plan) with the highest
probability of producing a satisfying assignment (goal
satisfaction). The algorithm uses an efficient splitting
heuristic (time-ordered splitting) and memoization (Ma-
jercik & Littman 1998) to accelerate this procedure.
Note that in MAXPLAN an n-step plan is encoded as a
selection of one action out of the [A[ possible actions
for each of the n steps. This is shown graphically in
Figure 2(a) for a 3-step plan, where action selection 
indicated by bold circles.

The MAXPLAN approach can also handle contingent
planning problems if given an appropriate problem en-
coding. A generic E-MAJSAT encoding for contingent
plans follows, where cl is the number of choice vari-
ables needed to specify the plan, c2 is the number of
state variables (one for each proposition at each time
step), and c3 is the number of chance variables (one for
each possible stochastic outcome at each time step):

the plan the state random outcomes

3yc: p’ Zl,..., po3 zo3
(E[(initial/goal conditions (y,z)-clauses)

(action exclusion (x)-clauses)
(action outcome (x,y,z)-clauses)] >_ 

The formula picks the plan and the sequence of states
encountered, and then randomly selects the outcome of
actionsJ The clauses insist that initial and goal condi-
tions are satisfied, one action is selected per time step,
and that the sequence of states selected is valid given
the selected actions and random outcomes.

More specifically, a contingent action in contingent
MAXPLAN (C-MAXPLAN) is expressed as a group of ac-
tions, all of which execute, but only one of which has
an impact on the state (the one whose set of conditions
matches the set of observations generated by previous
actions). Since the condition sets of the actions are
mutually exclusive, the net result is that at most one
action in the group will effectively execute (i.e. affect

1In fact, in our implementation, the random outcome
variables precede the state variables. Although the resulting
encoding isn’t precisely E-MAJSAT, the values of the state
variables are forced given the outcome variables, and so their
quantifiers are not significant.

t=l t=2 t=3

(a) 3-time-step plan in MAXPLAN

a=l a=2 a=3

(b) 3-action-step plan in C-MAXPLAN

(c) Policy encoding in C-MAXPLAN

Figure 2: MAXPLAN and the two styles of encoding in
C-MAXPLAN encode plans in different ways.

the state), depending on current conditions. Thus, in
G-MAXPLAN, it is more appropriate to refer to action
steps than time steps. The difference between MAX-
PLAN encodings and G-MAXPLAN encodings is shown
graphically in Figure 2. Figure 2(a) shows a 3-step
plan in MAXPLAN, where selected actions are indicated
by bold circles. Figure 2(b) shows a 3-action plan 
C-MAXPLAN. Actions are still selected as in MAXPLAN,

but now all actions, except for Action 1, have conditions
attached to them (the c variables in the boxes above the
action selection boxes). These conditions specify when
the action will effectively execute. In Figure 2(b), Ac-
tion 2 will effectively execute if condition cl is True
(bold circle) and condition c2 is False (bold circle with
slash). Condition c3 is indicated to be irrelevant (it can
be True or False) by a broken circle. Action 3 will ef-
fectively execute if condition Cl is False and condition
c2 is True (condition c3 is, again, irrelevant).

To encode contingent plans in this manner, we need



additional variables and clauses, and we need to alter
the decision trees of the actions (which will alter some
of the clauses as well). The key clauses in the contin-
gent plan encodings are those clauses that model the
satisfaction of conditions. At a high level, these clauses
enforce the notion that if if condition c specifies that
proposition p have truth status T and the variable in-
dicating that our current observation of p is valid is
True, and the variable indicating our perception of p
has truth status T, then c is satisfied.

Initial tests of this technique were promising; the
most basic version of C-MAXPLAN solved a contingent
version of the SAND-CASTLE-67 problem, the SHIP-
REJECT problem (Draper, Hanks, & Weld 1994), and
the MEDICAL-1ILL problem (Weld, Anderson, & Smith
1998) in 3.5, 5.25, and 0.5 cpu seconds, respectively on
a 300 MHz UltraSparcIIi. But tests on the MEDICAL-
4ILL problem (Weld, Anderson, & Smith 1998) were
disappointing; even accelerated versions of C-MAXPLAN
had not solved the problem after several days.

We obtained significantly better performance by im-
plementing three improvements. First, instead of
searching for the optimal plan of a given length, we
search for an optimal small policy to be applied for a
given number of steps. In this approach, the decision
trees from all actions for each proposition p are merged
into a single decision tree that describes the impact of
all the actions on p via a cascade of condition-fulfillment
variables. Essentially, the decision tree says: "If the
conditions specified by the policy for action a are satis-
fied, then decide the status ofp according to a’s decision
tree; otherwise, if the conditions for action b are satis-
fied, then decide the status ofp according to b’s decision
tree; ...; otherwise, the status of p remains the same."

In this encoding, we have a single action--follow-the-
policy--and the choice variables are used to describe
that policy. A policy is specified by describing the
conditions under which each primitive action (an ac-
tion in the original domain) should be executed. Fig-
ure 2(c) shows a policy: conditions (in the boxes) 
specified for each action, and one cycle of policy exe-
cution executes the first action whose conditions match
the current state. In this formulation of the problem,
the algorithm searches for the setting of these policy-
specification variables that maximizes the probability of
satisfying the E-MAJSAT formula (achieving the goals).

The primary advantage of this approach appears to
be a more compact encoding of the problem, achieved
by exploiting the fact that the status of a given propo-
sition can typically be changed by only a small percent-
age of the actions in the domain. (This is similar to the
use of explanatory frame axioms by Kautz, McAllester,
& Selman (1996) to reduce the size of their linear SAT
encodings of planning problems.)

Second, we adapted the DPLL splitting heuristic
described by Bayardo & Schrag (1997) for use in 
MAXPLAN. This heuristic selects an initial pool of can-
didates based on a score that rewards variables that ap-
pear both negated and not negated in binary clauses.

This initial pool is rescored based on the number of unit
propagations that occur for each assignment to each
variable, rewarding variables for which both truth val-
ues induce unit propagations. Essentially, this heuristic
tries to find a variable that will induce the highest num-
ber of unit propagations, thereby maximizing pruning.

Third, we implemented a thresholding technique sim-
ilar to that of C-BURIDAN and MAHINUR. If, instead of
insisting on finding the plan with optimal probability,
we supply a minimum desired probability, we can prune
plans based on this threshold. For a choice variable, if
the probability of success given an assignment of True is
higher than our threshold, we can prune plans in which
this variable would be assigned False. For a chance
variable, we can perform a similar kind of pruning (al-
though the thresholds passed down the tree must be
appropriately adjusted). But, for chance variables, if
the probability of success given an assignment of True
is low enough, we can determine that the probability
weighted average of both truth assignments will not
meet our adjusted threshold and can return failure im-
mediately (Littman, Majercik, & Pitassi 1999).

With these improvements, C-MAXPLAN can solve the
MEDICAL-4ILL problem in approximately 100 cpu sec-
onds. But, there are issues that make this approach
problematic. First, the results described above indicate
that the performance of this approach is very sensitive
to the details of the plan encoding, making it less robust
than desired. Second, if two actions could be triggered
by the same set of conditions, only the first one in the
decision-tree cascade will be triggered, so the construc-
tion of the decision tree introduces unwanted bias. Fi-
nally, plan encodings for problems in which actions need
to be conditioned on aa entire history of observations
grow exponentially with the length of the history.

ZANDER
In an S-SAT formula, the value of an existential vari-
able x can be selected on the basis of the values of all
the variables to x’s left in the quantifier sequence. This
suggests another way of mapping contingent planning
problems to stochastic satisfiability: encode the con-
tingent plan in the variable ordering associated with
the S-SAT formula. By alternating blocks of existen-
tial variables that encode actions and blocks of ran-
dom variables that encode observations, we can condi-
tion the value chosen for any action variable on the
possible values for all the observation variables that
appear earlier in the ordering. A generic S-SAT en-
coding for contingent plans appears in Figure 3. This
approach is agnostic as to the structure of the plan;
the type of plan returned is algorithm dependent.
Our S-SAT solver, described below, constructs tree-
structured proofs; these correspond to tree-structured
plans that contain a branch for each observable vari-
able. Other solvers could produce DAG-structured,
subroutine-structured, or value-function-based plans.

The quantifiers naturally fall into three segments: a
plan-execution history, the domain uncertainty, and the



first action first observation last observation last action random outcomes the state

 x1,1, ¯ ̄  ̄ , ¯ ̄  ̄, ¯ ̄, ¯ ̄  ̄, 3yl,...,
(E[(initial/goal conditions (y,z)-clauses)(action exclusion (x)-clauses)(action (w,x,y,z)-clauses)] >_ ~).

cl is the number of variables it takes to specify a single action (the number of actions),
c2 is the number of variables it takes to specify a single observation (the number of observable variables),
c3 is the number of state variables (one for each proposition at each time step), and
c4 is the number of chance variables (essentially one for each possible stochastic outcome at each time step).

Figure 3: Contingent planning problems can be encoded as an instance of S-SAT.

result of the plan-execution history given the domain
uncertainty. The plan-execution-history segment is an
alternating sequence of choice-variable blocks (one for
each action choice) and chance-variable blocks (one for
each set of possible observations at a time step). 2 In
our TIGER problem, each action variable block would
be composed of the three possible actions--listen-for-
tiger, open-left-door, and open-right-door--and
each observation variable block would be composed of
the single variable hear-tiger-behind-left-door.

The domain uncertainty segment is a single block
containing all the chance variables that modulate the
impact of the actions on the observation and state
variables. These variables are associated with random
quantifiers; when we consider a variable that represents
uncertainty in the environment, we want to take the
probability weighted average of the success probabilities
associated with the two possible settings of the variable.
In the TIGER problem, there would be a chance vari-
able (probability = 0.85) associated with the outcome
of each listen-for-tiger action.

The result segment is a single block containing all the
non-observation state variables. These variables are as-
sociated with existential quantifiers, indicating that we
can choose the best truth setting for each variable. In
reality, all such "choices" are forced by the settings of
the action variables in the first segment and the chance
variables in the second segment. If these forced choices
are compatible, then the preceding plan-execution his-
tory is possible and has a non-zero probability of achiev-
ing the goals. Otherwise, either the plan-execution his-
tory is impossible, given the effects of the actions, or it
has a zero probability of achieving the goals.

Algorithm Description
C-MAXPLAN finds the assignment to the choice vari-
ables that maximizes the probability of getting a satis-
fying assignment with respect to the chance variables.

2Although an observation is associated with a chance
variable, it marks a branch point in the plan, and we want
the result of an observation to be the sum, not the proba-
bility weighted average, of the probabilities associated with
the two possible truth settings of the chance variable. We
accomplish this by setting the probability associated with
an observation chance variable to 0.5 and adjusting the re-
sulting plan probability upward by the same factor.

ZANDER, however, must find an assignment tree that
specifies the optimal choice-variable assignment given
all possible settings of the observation variables. Note
that we are no longer limiting the size of the plan to be
polynomial in the size of the problem; the assignment
tree can be exponential in the size of the problem.

The most basic variant of the solver follows the vari-
able ordering exactly, constructing a binary DPLL tree
of all possible assignments. Figure 4 depicts such a tree;
each node contains a variable under consideration, and
each path through the tree describes a plan-execution
history, an instantiation of the domain uncertainty, and
a possible setting of the state variables. The tree in Fig-
ure 4 shows the first seven variables in the ordering for
the 2-step TIGER problem: the three choice variables
encoding the action at time-step 1, the single obser-
vation chance variable, and the three choice variables
encoding the action at time-step 2 (triangles indicate
subtrees for which details are not shown). The observa-
tion variable is a branch point; the optimal assignment
to the remaining variables will, in general, be different
for different values of this variable.

This representation of the planning problem is sim-
ilar to AND/OR trees and MINIMAX trees (Nilsson
1980). Choice variable nodes axe analogous to OR,
or MAX, nodes, and chance variable nodes are anal-
ogous to AND, or MIN, nodes. But the probabilities
associated with chance variables (our opponent is na-
ture) make the analogy somewhat inexact. Our trees
are more similar to the MINIMAX trees with chance
nodes described by Ballard (1983) but without the MIN
nodes--instead of a sequence of alternating moves by
opposing players mediated by random events, our trees
represent a sequence of moves by a single player medi-
ated by the randomness in the planning domain.

The solver does a depth-first search of the tree, con-
structing a solution subtree by calculating, for each
node, the probability of a satisfying assignment given
the partial assignment so far. For a choice variable, this
is a maximum probability and produces no branch in
the solution subtree; the solver notes which value of the
variable yields this maximum. For a chance variable,
the probability will be the probability weighted aver-
age of the success probabilities for that node’s subtrees
and will produce a branch point in the solution sub-
tree. The solver finds the optimal plan by determining



listen = I~len-for-tiger o-left = open-left-door
hear-left = hear.tiger-behind-left-door o-right = oper~dght-door

Figure 4: ZANDER selects an optimal subtree.

the subtree with the highest probability of success. In
Figure 4, the plan portion of this subtree appears in
bold, with action choices (action variables set to True)
in extra bold. The optimal plan is: listen-for-tiger; if
hear-tiger-behind-left-door is True, open-right-door; if
False, open-left-door.

We use three pruning techniques to avoid checking
every possible truth assignment. Whenever a choice or
chance variable appears alone in an active clause, unit
propagation assigns the forced value to that variable.
This is valid since, even if we postponed the assign-
ment until we reached that variable in the quantifier
ordering, we would still need to assign the forced value.
Whenever a choice variable appears always negated or
always not negated in all active clauses, variable purifi-
cation assigns the appropriate value to that variable.
This is valid since the variable would still be pure even
if we postponed the assignment until we reached that
variable in the quantifier ordering. Thresholding, as
described earlier, allows us to prune plans based on a
prespecified threshold probability of success, and is sim-
ilar to the MINIMAX tree *cutoffs described by Bal-
lard (1983).

Like the solutions found by ZANDER, the solution of
an AND/OR tree is a subtree satisfying certain con-
ditions. Algorithms for solving these trees, such as
AO* (Nilsson 1980), try to combine the advantages 
dynamic programming (reuse of common subproblems)
with advantages of branch-and-bound (use of heuristic
estimates to speed up the search process). These algo-
rithms operate by repeating a 2-phase operation: use
heuristic estimates to identify the next node to expand,
then use dynamic programming to re-evaluate all nodes
in the current subgraph. In contrast to this approach,
which must follow a prescribed variable ordering, ZAN-
DER can consider variables out of the order prescribed
by the problem, when this allows it to prune subtrees
(as in unit propagation and variable purification). 
worthwhile area of research would be to compare the
performance of these two approaches and attempt to de-

Solution Time
(¢pu seconds)

Problem Threshold
Probabilityof

Success SPLITTING UNITPURE THRESH

TiGER-I 0.5 0.02 0.02 0.01

TIGER-2 0.85 0.12 0.02 0.02

TIGER*3 0.85 2.81 0,05 0.04
TIGER’4 0.93925 72.19 0.19 0.08

SHIP-REJECT 0.9215 25.40 0.06 0.06

I~H~DICAL-41LL 1.0 196.40 1.77 0.25

EXTPAINT-4 0.3125 12,606.47 0.44 0.13

EXTPA1NT-7 0.773437 NA 164.96 31.35

COFFEE-ROBOT 1.0 46,152.25 1,827.67 769.20

Figure 5: Unit propagation, purification, and thresh-
olding can improve performance greatly.

velop techniques that combine the advantages of both.

Results
We tested three variants of ZANDER on problems drawn
from the planning literature (see Figure 5). All tests
were done on a 300 MHz UltraSparcIIi. The basic
solver, which uses only variable splitting and, essen-
tially, checks every possible assignment (SPLITTING),

the basic solver augmented with unit propagation and
purification (UNITPURE), and the basic solver with unit
propagation, purification, and thresholding (THRESH).

The TIGER problems (with horizon increasing from
one to four) contain uncertain initial conditions and 
noisy observation. Note that in the 4-step TIGER prob-
lem, the agent needs the entire observation history in or-
der to act correctly. The SHIP-REJECT problem has the
same characteristics as the TIGER problem, along with
a causal action (paint) that succeeds only part of the
time. In the MEDICAL-4ILL problem, we have uncertain
initial conditions, multiple perfect observations, and
causal actions with no uncertainty. The EXTENDED-
PAINT problems (Onder 1998) have no uncertainty 
the initial conditions, but require that probabilistic ac-
tions be interleaved with perfect observations. Finally,
the COFFEE-ROBOT problem, similar to a problem de-
scribed by Boutilier & Poole (1996), is a larger problem
(7 actions, 2 observation variables, and 8 state propo-
sitions in each of 6 time steps) with uncertain initial
conditions, but perfect causal actions and observations.

As expected, the performance of SPLITTING is poor
except on the simplest problems. But, the results for
UNITPURE and THRESH are very encouraging; the tech-
niques used in these variants are able to reduce solu-
tion times by as much as 5 orders of magnitude. These
two variants of ZANDER appear to be quite competitive
with other planners; the tests we have conducted so
far, while not exhaustive, are encouraging. UNITPURE
and THRESH solve the TIGER-4 problem in 0.19 and 0.08
cpu seconds respectively, compared to 0.04 cpu seconds



for "Lark" pruning (Kaelbling, Littman, & Cassan-
dra 1998) on the corresponding finite-horizon POMDP.
These ZANDER variants can solve the MEDICAL-4ILL
problem in 1.77 and 0.25 cpu seconds respectively, com-
pared to 44.54 cpu seconds for SGP. And both variants
can solve the SHIP-REJECT problem in 0.06 cpu seconds
compared to 0.12 cpu seconds for MAHINUR.

Further Work

ZANDER’s more straightforward problem encodings and
better performance make it a more promising candidate
for further work than C-MAXPLAN. There are a number
of possibilities for improvements. Currently, ZANDER
separately explores and saves two plan execution histo-
ries that diverge and remerge, constructing a plan tree
when a directed acyclic graph would be more efficient.
We would like to be able to memoize subplan results
(a technique used by MAXPLAN) SO that when we en-
counter previously solved subproblems, we can merge
the current plan execution history with the old history.

We would like ZANDER to evaluate plans using a
broader conception of utility than probability of suc-
cess alone. For example, ZANDER sometimes returns
an unnecessarily large plan; we would like the planner
to discriminate between plans with equal probability of
success using length as a criterion.

Better splitting heuristics could boost performance.
Although we are constrained by the prescribed quan-
tifier ordering, a splitting heuristic can be used within
a block of similarly quantified variables. Early experi-
ments indicate this can improve performance in bigger
problems, where such blocks are large (Littman, Majer-
cik, & Pitassi 1999).

We would like to create approximation techniques for
solving larger planning problems. One possibility, cur-
rently being developed, uses random sampling to limit
the size of the contingent plans we consider and stochas-
tic local search to find the best size-bounded plan. This
approach has the potential to quickly generate a subop-
timal plan and then, in the remaining available planning
time, adjust this plan to improve its probability of suc-
cess. This sacrifice of optimality for "anytime" planning
with performance bounds may not improve worst-case
complexity, but it is likely to help for typical problems.

Finally, we would like to explore the possibility of
using the approximation technique we are developing
in a framework that interleaves planning and execution.
This could improve efficiency greatly (at the expense of
optimality) by making it unnecessary to generate a plan
that considers all contingencies.
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