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Abstract

Contingent planning is the task of generating a conditional
plan given uncertainty about the initial state and action ef-
fects, but with the ability to observe some aspects of the cur-
rent world state. Contingent planning can be transformed into
an And-Or search problem in belief space, the space whose
elements are sets of possible worlds. In (Brafman & Hoff-
mann 2004), we introduced a method for implicitly represent-
ing a belief state using a propositional formula that describes
the sequence of actions leading to that state. This represen-
tation trades off space for time and was shown to be quite
effective for conformant planning within a heuristic forward-
search planner based on the FF system. In this paper we apply
the same architecture to contingent planning. The changes
required to adapt the search space representation are small.
More effort is required to adapt the relaxed planning prob-
lems whose solution informs the forward search algorithm.
We propose the targeted use of an additional relaxation, map-
ping the relaxed contingent problem into a relaxed confor-
mant problem. Experimental results show that the resulting
planning system, Contingent-FF, is highly competitive with
the state-of-the-art contingent planners POND and MBP.

Introduction
Contingent planning is the task of generating conditional
plans given uncertainty about initial state and action effects.
One has the ability to sense the value of certain world as-
pects during plan execution, and branch depending on the
observed value. The plan should be successful (achieve
all goal propositions) regardless of which particular initial
world we start from and which action effects occur.
Contingent planning can be transformed into an And-Or

search problem in the space of belief states, i.e., the space
whose elements are sets of possible world states. (We stick
to this distinction between world states and belief states.)
Bonet and Geffner (2000) introduced, in their GPT system,
the idea of planning in belief space using heuristic forward
search. But the number of possible worlds in a belief state
can be large, and so GPT, which explicitly represents these
states, usually fails to scale up. In MBP, Bertoli and Cimatti
(2001; 2002) tackle this problem by using BDDs to represent
the belief states. This often works better, but the size of the
constructed BDDs is still often prohibitive for scaling.
In this paper we utilize a third, lazy, approach to represent

belief states, introduced for conformant planning in (Braf-

man & Hoffmann 2004).1 Belief states are represented im-
plicitly through the action sequences leading to them (plus
the initial state description). During search, for every belief
state s encountered by action sequence ā, (only) a partial
knowledge about s is computed, namely the propositions p
that are known in s. p is known in s if it is true in the inter-
section of the worlds in s. Obviously, ā is a conformant plan
iff all goal propositions are known in s, and so the knowl-
edge about the known propositions suffices to perform con-
formant planning. Testing if a proposition is known, given
an action sequence ā, is co-NP complete, and is done by
reasoning about a CNF formula φ(ā) that captures the se-
mantics of ā.
The same idea can be utilized for contingent planning.

The main difference is that we now obtain an And-Or search
process, rather than the previous Or search process. The
And aspect comes from the multiple possible values of ob-
servations for sensing actions. The plan, which is now a tree
rather than a sequence of actions, has to treat every possi-
ble outcome. That is, the search space is an And-Or tree,
and the plan is a sub-tree where all leaves are goal (belief)
states. Each node in the And-Or search space can be rep-
resented using a straightforward extension of the techniques
described above. Belief states s are now represented implic-
itly through action-observation sequences ao. Testing for
known propositions is still co-NP complete, and is still done
by CNF reasoning. The construction of the formulas φ(ao)
needs to be changed only slightly.
As before, in comparison to the belief state representa-

tions used in GPT and MBP, our approach trades space for
time. Given a state s and an applicable action a, in order
to compute the known propositions in the result state s′, we
need to reason about the entire action-observation sequence
leading to s′, including those actions/observations that lead
to s. With complete knowledge of s in memory, we would
not need to do the latter. Our intuition, and empirical ex-
perience, is that even a naive SAT solver has little trouble
reasoning about the effects of an action sequence if the pos-
sible interactions are not overly complex.
A blind traversal of the search space is infeasible due to

the combinatorial explosion in possible action choices. In

1Conformant planning is the special case of contingent planning
where no observations are possible.



classical and in conformant planning, this problem has been
tackled most successfully by using heuristic functions based
on a relaxation of the planning task. In Conformant-FF this
relaxation is obtained by assuming empty delete lists and
by performing ”relaxed” reasoning about the known facts.
In a nutshell, the latter is done by transforming the clauses
of the original CNF into binary clauses, and embedding
the reasoning about this 2-CNF projection naturally in the
planning-graph structure used to perform relaxed planning.
The length of the generated relaxed plan is used to guide
(Hill-Climbing or A*) forward search.
To adapt Conformant-FF’s relaxed planning process to

contingent planning, we propose to apply another relaxation.
We observe that, to any contingent task without delete lists,
there is a plan without observations – a conformant plan –
if one assumes what we call the generous action execution
semantics: assume that, during plan execution, actions with
unsatisfied preconditions are ignored instead of making the
plan fail. A task with generous execution semantics can be
obtained by moving, for each action, the preconditions into
the conditions of the action’s effects. Applying this addi-
tional relaxation as a pre-process of Conformant-FF’s re-
laxed planning process, that process can in principle be re-
used for contingent planning with no modifications what-
soever. However, the resulting heuristic function is often
very uninformative because moving all action preconditions
into effect conditions renders Conformant-FF’s 2-CNF pro-
jection a much cruder approximation. We therefore develop
technology that applies the generous execution semantics in
a targeted way inside the relaxed planning process, making
use of that semantics only where possible and necessary.
Beside not treating partial observability, in Conformant-

FF we did not treat non-deterministic action effects. In
our new system, we do handle a simple form of such ef-
fects. We describe the respective adaptations together with
the other algorithmic techniques. We discuss extensions to
richer forms of non-deterministic effects.
Our techniques are implemented in a system we call

Contingent-FF. The system is based on the Conformant-
FF code, and does a standard weighted AO* search. We
empirically compare Contingent-FF with the state-of-the-art
contingent planners MBP (Bertoli et al. 2001) and POND
(Bryce, Kambhampati, & Smith 2004). Our experiments
cover a number of traditional contingent planning bench-
marks as well as more recent contingent versions of clas-
sical planning domains. Our planner is generally competi-
tive with MBP and POND, sometimes outperforming both
of them. The generated plans are, in most cases, similar
in terms of quality to those generated by POND, and better
than those generated by MBP.
The paper is organized as follows. Section 2 briefly de-

scribes the planning framework we consider. Section 3 de-
scribes the search space representation and the computation
of known propositions. Section 4 explains our heuristic
function. Section 5 outlines the limited form of repeated
states checking we currently use. Section 6 gives some im-
plementation details and our empirical results, Section 7
concludes the paper with a brief discussion of related and
future work.

Planning Framework
The contingent planning framework we consider adds ob-
servations and uncertainty to (sequential) STRIPS with con-
ditional effects. In the latter formalism, planning tasks are
triples (A, I, G) of action set, initial world state, and goal
world state. World states w are sets of propositions (those
satisfied in them). Actions a are pairs (pre(a), E(a)) of the
precondition – a set of propositions – and the effects – a
set of conditional effects. A conditional effect e is a triple
(con(e), add(e), del(e)) of proposition sets, corresponding
to the effect’s condition, add, and delete lists respectively.
An action a is applicable in a world state w if w ⊇ pre(a).
The result of executing a in w is denoted as a(w). If a is not
applicable in w, then a(w) is undefined. If a is applicable in
w, then all conditional effects e ∈ E(a) whose condition is
satisfied in w, i.e., w ⊇ con(e), are executed; these effects
are said to occur (unconditional effects have con(e) = ∅).
Executing a conditional effect e in w results in the world
state w−del(e)+add(e). An action sequence 〈a1, . . . , an〉
is a plan if an(. . . a1(I) . . .) ⊇ G.
We extend the above with uncertainty about the initial

state, non-deterministic action effects, and observations. Be-
lief states s are sets of world states. An action a is applicable
in s if ∀w ∈ s : pre(a) ⊆ w. In that case, a(s) is defined
as {a(w) | w ∈ s}. The initial state is a belief state rep-
resented by a propositional CNF formula I. The possible
initial world states are those that satisfy that formula. We
denote that set of world states with 2I .
Observations are encoded as follows. Beside the nor-

mal actions as above, there are now special observation ac-
tions. These are pairs (pre(a), o(a)) where pre(a) is a set
of propositions as before, and o(a) is a proposition. Such
actions observe the value of o(a), thereby splitting the be-
lief state at hand and introducing two branches into the plan,
one marked with o(a) and one marked with ¬o(a). More
formally, given a belief state s, an observation action a,
and a literal l(a) ∈ {o(a),¬o(a)}, we define a(s, l(a)) as
{w | w ∈ s, w |= l(a)} if a is applicable in s; otherwise,
a(s, l(a)) is undefined. Plans are now trees of actions in
the obvious way. The semantics are defined as follows. An
action tree T solves a belief state s if (1) T is empty and
∀w ∈ s : w |= G; or (2) the root of T , a, is applicable in
s and either (3a) a is a normal action, and removing a from
T yields a tree that solves a(w); or (3b) a is an observation
action and, for every l(a) ∈ {o(a),¬o(a)}, the tree rooted
at a’s child marked with l(a) solves a(s, l(a)). A plan for a
task (A, I, G) is a tree of actions in A that solves 2I .
Normal actions a can have non-deterministic effects.

These are effects e ∈ E(a) that may or may not occur. When
applying a to a world state w, and con(e) ⊆ w, then a(w) is
a set of two states: one where e occurred, and one where e
did not occur. Extension to belief states in the obvious way,
the definition of the semantics remains unchanged. Our cur-
rent implementation is restricted to a single unconditional
non-deterministic effect per action. Handling more, or more
general, non-deterministic effects is conceptually not differ-
ent; the algorithms as written up here treat multiple con-
ditional non-deterministic effects. Implementing the more
general techniques, and determining how well they behave



in practice, is an important open topic. By detE(a) we de-
note the deterministic effects of an action.
In our input format, we also allow negations in front

of propositions in preconditions, effect conditions, and the
goal. Such negations are compiled away in a simple pre-
process. For every proposition p we introduce a new inverse
proposition called not-p. This is introduced into the action
effects in an inverse manner (adds and deletes are swapped),
and (the obvious two) clauses encoding p ↔ not-p are in-
serted into the initial state formula. This way not-p will
always be true iff p is false, and not-p can be used in the
conditions instead of ¬p. In difference to the STRIPS con-
text, a slight complication arises from the observation ac-
tions: such actions a now observe the value of two propo-
sitions, o(a) and not-o(a). At some points, this requires an
extra treatment, which we will explain. For convenience,
by O(a) we denote the set {o(a), not-o(a)}. Also, we use
E(a) for observation actions, and O(a) for normal actions,
to avoid clumsy case distinctions; both sets are empty. If we
write a(s, l(a)) for a normal action then l(a) is assumed as
the (dummy) literal TRUE, and a(s, l(a)) = a(s).

Search Space
We perform a standard AO* forward search in belief space.
The search space is an And-Or tree whose nodes are, alter-
natingly, belief states (Or nodes) and actions (And nodes).
The Or children of a belief state correspond to the different
applicable actions. The And children of an observation ac-
tion correspond to its two different outcomes. For normal
actions (even if they have a non-deterministic effect), there
is just one child so the And node trivializes.
Each belief state s is represented only by the initial

state formula I, and the action-observation sequence (ao-
sequence for short) ao = 〈a1, . . . , an〉 leading to s. ao
corresponds to a path in the And-Or search space. Each ai

may be either a normal action, or an observation. In the lat-
ter case, ai is marked with the observed literal l(ai) (the
branch the path takes). The belief state represented by ao is
s = an(. . . a1(2

I , l(a1)), . . . , l(an)).
During search, for each belief state encountered, we com-

pute the sets of known and negatively known propositions.
A proposition p is known in belief state s if p holds in ev-
ery w ∈ s. We say that p is negatively known in s if p
does not hold in any w ∈ s. A proposition that is neither
known nor negatively known is unknown. Deciding about
whether a proposition is known or not is co-NP complete
(hardness by the same result for the conformant case (Braf-
man &Hoffmann 2004), membership by the reduction to the
complement of SAT outlined below).
In our implementation, we compute the sets of known and

negatively known propositions in a belief state by using a
CNF corresponding to the semantics of the respective ao-
sequence as follows. We use a time index to differentiate
between values of propositions at different points along the
execution of the ao-sequence. Say the ao-sequence is ao =
〈a1, . . . , an〉. We obtain our CNF φ(ao) as follows. We
initialize φ(ao) as I indexedwith time 0 (i.e., for each clause
l1 ∨ . . .∨ lk ∈ I we add l1(0)∨ . . .∨ lk(0) into φ(ao)). We
then use a1 to extend φ(ao). If a1 is a normal action:

• Effect Axioms: for every deterministic effect e of a1,
con(e) = {p1, . . . , pk}, and every proposition p ∈
add(e), we insert the clause ¬p1(0)∨ . . .∨¬pk(0)∨p(1);
for every proposition p ∈ del(e), we insert the clause
¬p1(0) ∨ . . . ∨ ¬pk(0) ∨ ¬p(1).

• Frame Axioms: for every proposition p, let e1, . . . , en

be the effects of a1, including non-deterministic effects,
such that p ∈ del(ei); for every tuple p1, . . . , pn such
that pi ∈ con(ei) we insert the clause ¬p(0) ∨ p1(0) ∨
. . . ∨ pn(0) ∨ p(1) (read this clause as an implication: if
p was true before and has not been deleted by either of ei,
it is still true after a1). Symmetrically, when e1, . . . , en

are the effects of a1 such that p ∈ add(ei), we insert
for every tuple p1, . . . , pn with pi ∈ con(ei) the clause
p(0) ∨ p1(0) ∨ . . . ∨ pn(0) ∨ ¬p(1) (if p was false before
and has not been added, it is still false after a1).2

If a1 is an observation action, we insert only the frame ax-
ioms. (Since the action has no effects, these clauses simplify
to ¬p(0)∨p(1) and p(0)∨¬p(1) for each p.) We also insert
theObservation Axiom, i.e. the unit clause l(a1)(1), thereby
imposing the constraint given by the observation. For exam-
ple, if a1 observed p to be false, we add the clause ¬p(1).
In the same fashion, we use a2 to further extend the for-

mula and so on until the axioms for an have been inserted.
For the resulting CNF, the following holds.

Proposition 1 Given a contingent planning task (A, I, G),
a belief state s given by an n-step ao-sequence ao ∈ A∗,
and a proposition p. Then p is known in s iff φ(ao) implies
p(n).

Proof: For every initial world state I ∈ 2I , the following
holds. Denote by φ(ao)I the formula that results from in-
serting the values given by I into φ(ao) at time 0. Then
the satisfying variable assignments σ to φ(ao)I – the values
of propositions/variables at time steps in ao/φ(ao) – corre-
spond exactly to all executions of ao in I , with different out-
comes of non-deterministic effects, that end up in s. (If there
is no such execution of ao in I , then φ(ao)I is unsatisfiable.)
Thusφ(ao)∧¬p(n) is unsatisfiable iff there is no initial state
I ∈ 2I , and no non-deterministic effect outcome, such that
p does not hold upon executing ao in I .

We use Proposition 1 to compute the set of known propo-
sitions as follows. Start with the empty set. Then, for each
proposition p, hand φ(ao) ∧ ¬p(n) over to the underlying
SAT solver. If the result is “unsat” then add p to the known
propositions. If the result is “sat”, do nothing. Symmetri-
cally, we compute the set of negatively known propositions
by handing the formulas φ(ao) ∧ p(n) to the SAT solver.
By Proposition 1, instead of enumerating all initial world

states and non-deterministic effect outcomes for computing

2Note that, if there is an unconditional delete (add), no positive
(negative) frame axiom is generated. Note also that the number of
frame axioms is exponential in the number of distinct conditional
effects of a single action that can add/delete the same proposition.
One could avoid this by introducing additional variables into the
CNF.We have not done so because in practice actions seldom affect
the same proposition with different effects.



whether a proposition is known or not, we can reason about
the formula φ(ao). As indicated before, this reasoning ap-
pears to be cheap in practice, when interactions between ac-
tion effects are not overly complex. Note that one can ap-
ply several significant reductions to the number of SAT calls
made, and the size of the CNF formulas looked at. In our
current implementation, these are:

• Simplify φ(ao) by inserting the values of propositions at
times i < n which are known to be true or false.

• Make SAT calls only on propositions p such that p is af-
fected by a conditional effect that possibly occurs (all con-
ditions are either known or unknown, and at least one of
them is unknown).

Once the known propositions in s are computed, the ac-
tions applicable to s are those whose preconditions are all
known in s. A belief state satisfies the goal iff all goal propo-
sitions are known.

Heuristic Function
In classical planning, a successful idea has been to guide
(forward, e.g.) search by heuristic functions based on a re-
laxation of the planning task, where the relaxation is to as-
sume that all delete lists are empty. We adapted this idea to
the conformant setting in the Conformant-FF planner, using
ideas introduced in FF (Hoffmann & Nebel 2001). We now
explain how this idea can be farther adapted to suit the con-
tingent planning setting. We start by explaining the essential
ideas behind FF’s relaxed planning approach.
To each world state during a forward search, FF computes

a relaxed plan – a plan that achieves the goals when all delete
lists are assumed empty – and takes the length of the re-
laxed plan as the state’s heuristic value. Relaxed plans are
computed as follows. Starting from a world state w, build a
relaxed planning graph as a sequence of alternating propo-
sition layers P (t) and action layers A(t), where P (0) is the
same as w, A(t) is the set of all actions whose preconditions
are contained in P (t), and P (t + 1) is P (t) plus the add ef-
fects (with fulfilled conditions) of the actions in A(t). That
is, P (t) always contains those facts that would be true if one
executed (the relaxed versions of) all actions at the earlier
layers up to A(t − 1). From a proposition layer P (m) in
which the goals are contained one can easily extract a re-
laxed plan, i.e a subset of the earlier actions that suffices to
achieve the goals when ignoring the delete lists. One can
use the following simple backchaining loop: select achiev-
ing actions at layers t < m for all goals in P (m), insert
those actions’ preconditions and the respective effect condi-
tions as new subgoals (which by construction are at earlier
layers the respective actions), then step backwards and se-
lect achievers for the subgoals. The heuristic value h(w) for
w then is the number of actions selected in backchaining –
the length of the relaxed plan. If (and only if) there is no
relaxed plan then the planning graph will reach a fixpoint
P (t) = P (t + 1) without reaching the goals. h(w) is then
set to∞, excluding the state from the search space – if there
is no relaxed plan from w then there is no real plan either.
In the conformant setting, we extended the above with ad-

ditional fact layers uP (t) containing the facts unknown at

time i. We introduced reasoning about the unknown facts,
i.e., reasoning about when such facts become known in the
relaxed planning graph, when assuming that (the relaxed
versions of) all actions in the earlier layers are executed. In
order to make the reasoning efficient, we made another re-
laxation to the planning task, on top of ignoring the delete
lists. We ignored all but one of the unknown conditions of
those effects that were unknown to occur. That is, if an ac-
tion a appeared in layer A(t), and for effect e of a we had
con(e) ⊆ P (t) ∪ uP (t), con(e) ∩ uP (t) �= ∅ – e may oc-
cur depending on the initial world state – then we assumed
that |con(e) ∩ uP (t)| = 1. We arbitrarily selected one
c ∈ con(e)∩ uP (t), and reasoned as if the only elements in
con(e) were (con(e) ∩ P (t)) ∪ {c}. With this simplifying
assumption, the implications that the (unknown) action ef-
fects induce between unknown propositions come down to
binary implications of the form c(t) → p(t + 1). The set of
all these implications forms a tree. The reasoning needed to
find out if a proposition p becomes known at i can be done
by a simple backward chaining over the tree edges that end
in p(t), followed by a SAT check to see if the initial state
formula implies the disjunction of the reachable tree leafs.
The above processes will be explained in detail below,

with pseudo-code, together with their extension to the con-
tingent setting. Note that the processes constitute a stronger
(complete but not sound) form of the real reasoning, i.e.
we over-approximate the sets of propositions that become
known at any point in time. (It becomes easier to achieve
a fact, in line with the “relaxed” planning approach.) Note
also that the implications c(t) → p(t + 1) are a 2-projection
of the real implications

∧
c∈con(e)∩uP (t) c(t) → p(t + 1).

Note finally that, in principle, it would be possible to do the
full SAT checks, without any 2-projection, to see if a propo-
sition becomes known in a layer. However, doing such a
full check for every unknown proposition at every level of
the relaxed planning graph for every search state would very
likely be too expensive, computationally.
To handle contingent relaxed planning, we need to take

into account the And-branches potentially introduced by ob-
servation actions. Given the exponential number of possible
branches, it seems likely that inside a heuristic computation
– that must be repeated in every search state – one has to
sacrifice precision for computational efficiency. Our core
observation is that, given we ignore the delete lists anyway,
we can map the relaxed contingent planning problem into a
relaxed conformant planning problem without losing com-
pleteness, i.e. preserving relaxed plan existence (details be-
low). The mapping is to include, for each action a and every
e ∈ E(a), pre(a) into con(e), and then assume pre(a) = ∅.
We call this the generous execution semantics. It can be
viewed as, during plan execution, simply ignoring actions
whose preconditions are not satisfied. When we combine
this with ignoring delete lists, we get the following.

Proposition 2 Given a contingent planning task (A, I, G).
If there is a plan – an action-observation tree – T for the
task, then there is a sequence ā of normal actions such that
ā is a plan when assuming the generous execution semantics
and empty delete lists.



Proof: Let ā be the normal actions in T , in some order re-
specting the edges in T (e.g., breadth-first). Then under the
simplifying assumptions ā is a plan. Every ao-path ao in T
(every potential plan execution) is a subsequence of ā. Since
we ignore the delete lists, every fact that is achieved by ao is
also achieved by ā. Since we assume the generous execution
semantics, every action in ā is applicable in the state of its
execution. For the actions in the ao-subsequence of ā, the
effects occur (by a simple inductive argument).

Without assuming the generous execution semantics, the
proof argument does not work because actions belonging
to different T paths than ao may have unsatisfied precon-
ditions, and therefore result in undefined states.
Appreciate that it is important that the problem we solve

inside the heuristic function is complete relative to the real
problem, i.e. existence of a real solution implies existence
of a relaxed solution. Only then can we safely skip states
for which there is no relaxed solution. Proposition 2 tells us
that, by ignoring delete lists and assuming the generous exe-
cution semantics, we obtain such a complete relaxation even
if we totally ignore the observation actions in a contingent
task. A straightforward idea is therefore to simply re-use our
conformant relaxed planning machinery, with the generous
execution semantics.
We implemented the above approach, and found it to work

well in some cases, but to behave very badly in several
purely conformant tasks that could be solved efficiently be-
forehand. The reason for the new inefficiency lies in that
our conformant relaxed planning machinery ignores all but
one of the unknown conditions of any effect. Recall that, to
obtain the generous execution semantics, we have to move
all preconditions into the effect conditions. With more effect
conditions, our machinery is likely to result in a cruder ap-
proximation, yielding worse heuristic values and bad overall
performance. The approach we have taken to ameliorate this
difficulty is, in a nutshell, to apply the generous execution
semantics, within the relaxed problem solving mechanism,
only where possible and needed. Moving a precondition
p ∈ pre(a) into the effect conditions of the effects e ∈ E(a)
is considered possible if p is observed by an earlier action in
the relaxed planning graph. The move is needed if one of the
effects contributes to the shortest way (in the relaxation) of
making some unknown proposition become known – other-
wise, the move does not affect the relaxed planning process
at all. Note that without observation actions the relaxation is
exactly the same as before.
We now describe our implemented algorithms in detail.

A lot is inherited from Conformant-FF. The new parts are
those concerned with non-deterministic effects and observa-
tion actions. These new parts are not understandable without
presenting the algorithms in total. Figure 1 shows the overall
procedure that builds a contingent relaxed planning graph.
In Figure 1, layers−n to−1 of the relaxed planning graph

correspond to the ao-sequence ao leading to the considered
belief state s. The need for this is a consequence of our deci-
sion to compute and store only partial knowledge about the
belief states. To make our relaxed planning algorithm com-
plete relative to the relaxation, we have to let it reason about

procedure build-CRPG(〈a−n, . . . , a−1〉, A, I, G)

1 Imp := ∅, P (−n) := {p | p is known in I}

2 uP (−n) := {p | p is unknown in I}

3 for t := −n . . . − 1 do
4 P (t + 1) := {p | p is known after at}

5 uP (t + 1) := {p | p is unknown after at}

6 Imp ∪ = {(p(t), p(t + 1)) | p ∈ uP (t) ∩ uP (t + 1)}

7 for all e ∈ detE(at),

con(e) ⊆ P (t) ∪ uP (t), con(e) ∩ uP (t) 
= ∅ do
8 select c ∈ con(e) ∩ uP (t)

9 Imp ∪ = {(c(t), p(t + 1)) | p ∈ add(e) ∩ uP (t + 1)}

10 endfor
11 endfor
12 propagate-observations-to-I(ao, P, uP )

13 t := 0, oP (0) := ∅

14 whileG 
⊆ P (t) do
15 A(t) := {a | a ∈ A, pre(a) ⊆ P (t) ∪ oP (t)}

16 build-timestep(t, A(t))

17 if P (t + 1) = P (t) and

18 uP (t + 1) = uP (t) and

19 oP (t + 1) = oP (t) and

20 ∀p ∈ uP (t + 1) : Impleafs(p(t + 1)) = Impleafs(p(t)) then
21 return FALSE
22 endif
23 t := t + 1

24 endwhile
25 return TRUE

Figure 1: Building a contingent relaxed planning graph
(CRPG).

what conditional effects may occur along ao, depending on
the initial world state. The negative indices of the actions in
ao are chosen to simplify the presentation.
As said, the sets P (t), uP (t), and A(t) are taken to

contain the propositions that are known to hold at t, the
propositions that are unknown at t, and the actions that are
known to be applicable at t, respectively. The binary im-
plications c(t) → p(t + 1), induced by action effects with
unknown conditions or between propositions that are un-
known at both t and t + 1, are stored in an implication
set Imp. Non-deterministic effects need not be considered
as these can not be used to establish a proposition (recall
that detE(a) denotes the deterministic effects of an action).
Let us read Figure 1 from top to bottom. Lines 1 and 2
do obvious initialization steps. Lines 3 to 11 create the
sets P (−n + 1), uP (−n + 1), . . . , P (0), uP (0), and insert
the (approximated) implications between unknown proposi-
tions: line 6 inserts a NOOP implication if p is unknown
at two adjacent layers, lines 7 to 10 insert effect-induced
implications as explained above. In line 12, we call an al-
gorithm that restricts the set of initial world states consid-
ered: only a subset 2I |s of 2I leads to the observations in
ao. The propagate-observations-to-I procedure extracts
a sufficient condition for 2I |s, i.e., it strengthens the initial
state formula with a conjunction of propositions encoding
a subset of 2I |s. We will consider that procedure in detail
below; now, let’s proceed in Figure 1. Lines 13 to 24 con-
struct the relaxed planning graph from layer 0 onwards. In
that procedure, on top of the sets P (t) and uP (t), we use
sets oP (t). These sets always contain those propositions in
uP (t) that can be observed by an earlier action. Line 13 is



an initialization step, lines 14 to 24 repeatedly call the build-
timestep procedure, that increments the planning graph by
one level. There are two termination tests: line 14, if the
goal condition is known in the new layer, we can extract a
relaxed plan, see below; lines 17 to 22, if the graph reaches a
fix point, we know a relaxed plan does not exist, therefore a
real plan does not exist, and we can skip the search state. The
action setsA(t) are set to those actions whose preconditions
are either achievable or observable with earlier actions. Note
that, by allowing actions in A(t) with preconditions that are
only observed, not known to be true, we apply the generous
execution semantics to these actions/preconditions. Pseudo-
code for the build-timestep procedure is given in Figure 2.

procedure build-timestep(t, A)

1 P (t + 1) := P (t), uP (t + 1) := uP (t)

2 Imp ∪ = {(p(t), p(t + 1)) | p ∈ uP (t)}

3 for all a ∈ A with pre(a) ⊆ P (t), all e ∈ detE(a) do
4 if con(e) ⊆ P (t) then P (t + 1) ∪ = add(e) endif
5 if con(e) ⊆ P (t) ∪ uP (t) and con(e) ∩ uP (t) 
= ∅ then
6 uP (t + 1) ∪ = add(e)

7 select c ∈ con(e) ∩ uP (t)

8 Imp ∪ = {(c(t), p(t + 1)) | p ∈ add(e)}

9 endif
10 endfor
11 for all a ∈ A with pre(a) 
⊆ P (t), all e ∈ detE(a) do
12 uP (t + 1) ∪ = add(e)

13 select o ∈ pre(a) ∩ oP (t)

14 Imp ∪ = {(o(t), p(t + 1)) | p ∈ add(e)}

15 endfor
16 for all p ∈ uP (t + 1) \ P (t + 1) do
17 if I →

∨
l∈Impleafs(p(t+1))

l then P (t + 1) ∪ = {p} endif

18 endfor
19 uP (t + 1) \ = P (t + 1)

20 oP (t + 1) := uP (t + 1) ∩ ({p | ∃a ∈ A(t) : p ∈ O(a)})

Figure 2: Building a new layer in the CRPG.

From top to bottom, the procedure does the following.
Line 1 says that every proposition that will always be true
at t, or that may be true at t, will a priori have the same
property at t + 1 (unknown propositions at t + 1 may later
be inferred to become known, see below). Line 2 inserts the
NOOP implications between unknown propositions. Lines
3 to 10 treat those actions whose preconditions are known at
t. The effects known to occur are handled in line 4, those
that may occur depending on the initial world are handled in
lines 5 to 9; the latter is done in a manner similar to what
we have explained above. Lines 11 to 15 treat those actions
with a precondition that is only observable at t. For these,
implications are inserted between an observed precondition
o ∈ pre(a) and the added propositions of the (deterministic)
effects. This corresponds to moving o – which is unknown
at t – into the effect conditions, and selecting it as the only
considered unknown one of these. That is, here we apply the
generous execution semantics together with the relaxation
that ignores all but one unknown effect condition.
Lines 16 to 18 contain the reasoning that is done to check

whether an unknown proposition becomes known at t + 1.
For the respective p, it is checked whether the initial state
formula implies the disjunction of the leaves of the Imp tree
that are reachable from p(t + 1). Impleafs(p(t′)), for any t′,

is defined as

Impleafs(p(t′)) := {l | ∃a path in Imp from l(−n) to p(t′)}

The implication I →
∨

l∈Impleafs(p(t+1)) l is checked by
a call to the SAT solver, and if the implication holds, p is
inserted into the known propositions at t + 1.3

In line 19 the procedure removes from the set of unknown
propositions those that are now known. In line 20, finally,
the observable propositions are set to those that are unknown
and that are observed by an action in A(t) (note that these
include the observed propositions’ inverse counterparts).
We will see below how a relaxed plan can be extracted

from a successfully built CRPG. Let us first consider the
procedure that computes (a sufficient condition for) the con-
straints imposed on the initial state by the observationsmade
in ao. The pseudo-code is provided in Figure 3.

procedure propagate-observations-to-I(〈a−n , . . . , a−1〉, P, uP )

1 Φ(0) := ∅

2 for t := −1 . . . − n do
3 Φ(t + 1)∪ = {p | p ∈ o(at), p ∈ P (t + 1)}

4 Φ(t) := ∅

5 for all p ∈ Φ(t + 1) do
6 if p ∈ uP (t) then Φ(t)∪ = {p} endif
7 if p ∈ uP (t) ∪ P (t) then
8 for all e ∈ E(at), con(e) ⊆ P (t) ∪ uP (t), p ∈ del(e) do
9 select a fact c ∈ con(e) ∩ uP (t)

10 Φ(t)∪ = {not-c}

11 endfor
12 endif
13 if p 
∈ uP (t) ∪ P (t) and

∃e ∈ detE(at) : p ∈ add(e), con(e) ⊆ P (t) ∪ uP (t) then
14 select one such e

15 Φ(t)∪ = {con(e) ∩ uP (t)}

16 endif
17 endfor
18 endfor

19 I := I ∧
∧

p∈Φ(−n)
p

Figure 3: Propagating (a sufficient condition for) the con-
straints given by the observations into the initial state for-
mula.

The motivation for using an approximative procedure,
computing a sufficient condition in the form of a simple con-
junction of propositions, is that the real constraints imposed
by the observations can be an arbitrarily complex formula.
Our approximation proceeds as follows. Lines 1 to 18 imple-
ment a simple backwards loop over the actions in ao. The
loop invariant is that, after an iteration t has terminated, if
all propositions in Φ(t) are true at t, then the observations
made by actions at t′ ≥ t will turn out as l(at′), i.e., as
required to reach the considered belief state. In line 3, the
observations made by at are inserted into Φ(t + 1). The
new set Φ(t) is initialized as empty. For each proposition
p in Φ(t + 1), we then insert into Φ(t) a sufficient condi-
tion for p to hold at t + 1. p was either kept true from

3It is relatively easy to see that this method is complete and
sound relative to our relaxation: the paths in Imp from a leaf to
p(t + 1) correspond to all possible ways of making p true at t + 1,
and p will always be true at t + 1 iff one of these paths will be
executed from every initial world state.



t, or added by at. For our sufficient condition, we con-
sider just one of these cases, with a preference on the first,
NOOP, case. This is available if p ∈ uP (t) ∪ P (t). The
real NOOP implication for p to hold at t + 1 has the form
p(t)∧(¬c1(t)∨. . .∨¬ck(t))∧. . .∧(¬c′1(t)∨. . .∨¬c′k′ (t)) →
p(t + 1) where the ci and c′i are the conditions of the ef-
fects of at that delete p. Lines 6 to 12 select, for each
such effect, just one of its (negated) conditions into the cre-
ated conjunction. Note that propositions in P (t) need not
be selected since these will be true anyway. If the NOOP
case is not available, i.e. if p was false at t, then at must
have a possibly occurring add effect on p. If the only such
effect is non-deterministic, there is no condition at t that
guarantees p to hold at t + 1, and no constraint is propa-
gated. Otherwise, an implication for p to hold at t + 1 is
(c1(t)∧ . . .∧ ck(t))∨ . . .∨ (c′1(t)∧ . . .∧ c′k′ (t)) → p(t+1)
where the ci and c′i are the conditions of the deterministic
effects of at that add p. Lines 13 to 16 select the condition
of only one such effect into the created conjunction. Upon
termination, in line 19 the initial state formula is strength-
ened with the conjunction created at time 0. This stronger
formula will be used in the implication checks during the
rest of the relaxed planning process, thereby taking account
of the smaller set of initial worlds relevant for the belief
state at hand. Of course, after relaxed planning has finished,∧

p∈Φ(−n) p is removed from the initial state formula again.

procedure extract-CRPlan(CRPG(〈a−n , . . . , a−1〉, A, I, G), G)

1 sub-goal(G)

2 for t :=Glayer, . . . , 1 do
3 for all g ∈ G(t) do
4 if ∃a∈ A(t − 1), pre(a) ⊆ P (t − 1),

e ∈ detE(a), con(e) ⊆ P (t − 1), g ∈ add(e) then
5 select one such a /* and e */ at t − 1

6 sub-goal(pre(a) ∪ con(e))

7 else

8 L is a minimal subset of Impleafs(g(t)) s.t. I →
∨

l∈L
l

9 for all i ≥ 0, actions a ∈ A(i), and effects

10 e ∈ detE(a) s.t. e is responsible for an edge in

11 a path from l(−n), l ∈ L, tog(t) do
12 select a at i

13 sub-goal((pre(a) ∪ con(e)) ∩ P (i))

14 o-sub-goal(pre(a) ∩ oP (i))

15 endfor
16 endif
17 endfor
18 for all g ∈ oG(t) do
19 select a ∈ A(t − 1), g ∈ o(a)

20 sub-goal(pre(a) ∩ P (t − 1))

21 o-sub-goal(pre(a) ∩ oP (t − 1))

22 endfor
23 endfor

procedure sub-goal(P ): for all p ∈ P , G(min{t | p ∈ P (t)}) ∪ = {p}

procedure o-sub-goal(P ): for all p ∈ P , oG(min{t | p ∈ oP (t)}) ∪ = {p}

Figure 4: Extracting a conformant relaxed plan.

Extraction of a relaxed plan is done when the CRPG was
built successfully, reaching the goals. The process is de-
scribed in the pseudo-code in Figure 4. It makes use of sub-
goal (proposition) sets G(1), . . . , G(Glayer), storing the
goals and sub-goals arising at layers 1 ≤ t ≤ Glayer, where

Glayer := maxg∈Gmin{t | g ∈ P (t)} is the layer where
all goals were reached. The procedure additionally uses “ob-
servation goal” sets oG(1), . . . , oG(Glayer), which keep
track of the propositions that are needed to be moved from
action preconditions into effect conditions (as made possible
by earlier observations). The observation goals construction
is not a genuine part of the relaxed planning process, it is
rather an ad-hoc enhancement we added in order to get an
estimate of how many observation actions are necessary in
reality, and how many actions are needed to achieve their
preconditions. More on this below. Now, let’s explain Fig-
ure 4 from top to bottom. By line 1, all goals are inserted into
theG sets at their respective first layers of appearance. Lines
2 to 23 implement a backwards loop over the CRPG layers.
In each layer t, lines 3 to 17 select supporting actions for the
goals g ∈ G(t). If there is an action (and effect) a at layer
t−1 that guarantees to always achieve g, then a is selected at
t−1. Otherwise, a minimal subsetL of Impleafs(g(t)) is de-
termined such that I →

∨
l∈L l, and all actions are selected,

at the respective times, that are responsible for the implica-
tion paths from L at −n to g at t. Selection of actions is to
be understood as a set union operation, i.e. at each time step
each action is selected at most once.
Without the constructs dealing with observation goals, the

actions selected by the algorithm form a plan that works un-
der the following relaxations: (1) All delete lists are empty;
(2) There is only a single (the selected) unknown condi-
tion per action effect; (3) Where needed, preconditions are
moved into effect conditions (i.e. the generous execution
semantics is applied to the observation goal preconditions).
As said, the actions selected for achievement of observa-
tion goals, and the resulting sub-goals, are not necessary
for a relaxed plan and only form an ad-hoc extension to
have some estimation of the observations necessary in re-
ality. The heuristic value to the belief state is the total
number of selected actions. For example, consider the ini-
tial state of a Bomb-in-the-toilet problem where the bomb
b may be in(b, pi) one of three packages p1, p2, p3, pi can
be flushed down the toilet only if it is known that in(b, pi),
and one can observe if in(b, pi). Then the found relaxed
plan is flush(b, p1), flush(b, p2), flush(b, p3) where, with
the relaxed execution semantics, the in(b, pi) preconditions
have become effect conditions. The observation actions
that made that possible are observe(b, p1), observe(b, p2),
observe(b, p3), and the overall heuristic value is 6 – in this
case, the true optimal plan length.

Stagnating States
In our current implementation, we do only a limited form of
repeated states checking. If a belief state s′ is generated that
descends from a belief state s on a path of normal actions,
and we can prove that s′ is equal to s, then we say that s′

stagnates and prune it from the search space – if there is a
plan tree that goes through s′ then one can skip the bit of the
tree between s and s′. The motivation for the limited test
is that, to check for stagnating states, every generated state
s′ has to be compared only with (part of) its ancestors. Our
experience from conformant planning is that comparing s′

with all seen states can be very expensive, given the effort



involved in doing a single such comparison based on our
belief state representation.
Without non-deterministic effects, belief state comparison

is very similar to what is done in Conformant-FF.We did not
find a way to test equality based on our belief state represen-
tation. Instead, we test a stronger criterion which we call
belief state equivalence. Let s and s′ be two belief states
reached via the action sequences ao and ao′, respectively.
We say that s is equivalent to s′ iff ∀I ∈ 2I : ao({I}) =
ao′({I}), i.e. from every initial world both ao-sequences
result in the same world state (in particular, s and s′ are
reached from the same initial world states). When s′ is a
descendant of s on a path of non-observation actions (thus
ao is a prefix of ao′), equivalence can be tested based on sat-
isfiability checks as follows. For a proposition p, let v and
v′ denote p’s value (the respective CNF variable) following
ao and ao′, respectively. Then s is equivalent to s′ iff the
formulas φ(ao′) ∧ v ∧ ¬v′ and φ(ao′) ∧ ¬v ∧ v′ are unsat-
isfiable for all p. I.e., we can re-use the formula generated
for s′, and see whether all propositions have the same value,
from all initial world states, in s and s′. 4

In the presence of non-deterministic effects, one can in
principle use the same SAT tests to prune stagnating states.
The problem is that they now encode too strict a sufficient
criterion: they ask if it is the case that, for every initial world
and for every outcome of the non-deterministic effects, the
resulting world state in s is the same as that in s′. Con-
sider, e.g., a single action a that non-deterministically adds
a proposition p that is initially false. If s results from ap-
plying a once, and s′ results from s by applying a another
time, then of course the two belief states are equal (namely,
s = s′ = {∅, {p}}). But p may be false after 〈a〉 and true
after 〈a, a〉 and so the above test fails. To handle such cases,
in our current implementation we weakened our equivalence
criterion as follows: we test if it is the case that, for every
outcome of the non-deterministic effects up to s, there ex-
ists an outcome of the non-deterministic effects between s
and s′, so that for every initial world the resulting propo-
sition values in s and s′ are the same. If so, s ⊆ s′ is
proved and s′ can be pruned. Note that the test holds in
the above 〈a〉/〈a, a〉 example. The test is done, in our cur-
rent code, by a naive enumeration of the outcomes nds of
the non-deterministic effects up to s, and of the outcomes
nds′ of the non-deterministic effects between s and s′. At
the bottom of this enumeration, for all (unknown) proposi-
tions p the same SAT test as before is used: we see whether
φ(ao′, nds, nds′)∧v∧¬v′ and the inverse are unsatisfiable,
where φ(ao′, nds, nds′) is the formula corresponding to ao′

with the effects nds, nds′. Note that, for a single proposi-
tion, this is basically a naive QBF solver on a formula of the
form ∀nds : ∃nds′ : ∀I : ¬(φ(ao′, nds, nds′) ∧ v ∧ ¬v′).
Indeed, solving an ∃∀∃-QBF can be easily reduced to the
complement of this equivalence test for a single proposition,
implying that the test is Πp

3-complete.
We remark that our current equivalence test is stronger

4Of course, s and s
′ need only be compared if they agree on the

sets of known/negatively known/unknown propositions; then, the
SAT tests need be done only for the unknown p.

than necessary. To prove s ⊆ s′, it would suffice to check if
it is the case that, for every initial world and for every out-
come of the non-deterministic effects up to s, there exists an
outcome of the non-deterministic effects between s and s′

so that the resulting proposition values in s and s′ are the
same. The problem with this better test is that, when imple-
mented naively, it involves enumerating the initial worlds.
Seeing if the test can be made efficient by using a non-naive
QBF-solver is a topic for future work.

Results
We implemented the techniques described in the previous
sections in C, starting from the Conformant-FF code. We
call the implemented system Contingent-FF. The system’s
overall architecture is that of Conformant-FF, except that we
now use a weighted AO* search. In the experiments reported
below, the weight was set to 5 (like in POND). The cost of an
observation node is computed as (one plus) the maximum of
the costs of its sons – that is, the search tries to minimize the
depth of the solution tree, corresponding to the worst-case
execution time of the plan. Taking the maximum, rather than
the sum as we did in an earlier version of our system, also
has an important impact on search performance; we get back
to this below. The underlying SAT solver in Contingent-FF
is a naive DPLL implementation. Contingent-FF is given as
input a PDDL-like file describing the domain and the task,
with obvious modifications for describing uncertainty about
the initial state and observation actions.
We experimentally compare Contingent-FF to the state-

of-the-art contingent planners POND (Bryce, Kambham-
pati, & Smith 2004) and MBP (Cimatti & Roveri 2000;
Bertoli et al. 2001; Bertoli & Cimatti 2002). We use a
testbed of 11 domains, of which 6 are taken from the testbed
provided with the POND planner, and 5 we created our-
selves.5 The experiments were run on a PC running at
1.2GHz with 1GB main memory and 1024KB cache run-
ning Linux, with a runtime cutoff of 900 seconds. The
POND domains are the following: BTS and BTCS, two vari-
ants of the Bomb-in-the-toilet domain, with a single toilet,
without and with clogging of the toilet, respectively. Med-
ical and MedPKS, which require treating a disease based
on the results of diagnostic tests; MedPKS (introduced with
the PKS (Petrick & Bacchus 2002) system) is a simplified
and scalable form of Medical. Logistics and Rovers, which
are classical benchmarks enriched with (observable) uncer-
tainty about the initial positions of the packages and the po-
sitions of rock/soil/images, respectively. In all POND do-
mains we run a subset of the instances provided with the
POND collection, except in Logistics were we also run one
(larger) instance we generated ourselves. Our own domains
are: BTND, a non-deterministic version of BTCS where
flushing a package non-deterministically deletes a new fact
(“unstuck(toilet)”) that then must be re-achieved. Omlette,
the well known problem that is unsolvable due to a non-
deterministic effect spoiling the bowl when breaking a bad
egg into it. Unix, motivated by the Unix domain of (Petrick

5The entire set of test examples can be downloaded from
http://www.mpi-sb.mpg.de/∼hoffmann/contff-tests.tgz



& Bacchus 2002), in which one must copy or move a file
from one directory to another. Blocks, where there is uncer-
tainty about the initial arrangement of the top 2 blocks on
each stack, and one must observe the block positions before
proceeding. Grid, where there is (observable) uncertainty
about the shapes of the locked positions. Table 1 gives the
results for all the domains.

FF FF+H POND MBP
Instance t/S/D t/S/D t/S/D t/S/D

BTS10 0.10/19/10 0.01/10/10 0.37/19/10 0.00/10/10
BTS30 3.92/59/30 2.53/30/30 11.86/59/30 0.01/30/30
BTS50 45.04/99/50 40.17/50/50 154.25/99/50 0.06/50/50
BTS70 266.13/139/70 317.10/70/70 – 0.16/70/70

BTCS10 0.04/19/10 0.01/19/19 0.23/19/10 0.01/20/20
BTCS30 4.56/59/30 5.74/59/59 13.00/59/30 0.27/60/60
BTCS50 57.45/99/50 111.87/99/99 168.16/99/50 0.84/100/100
BTCS70 342.82/139/70 895.91/139/139 – 1.73/140/140

Medical2 0.00/4/3 0.00/NS 0.12/4/3 0.00/5/4
Medical3 0.00/8/6 0.00/NS 0.14/7/5 0.00/7/5
Medical4 0.00/12/6 0.00/NS 0.14/10/5 0.01/10/5
Medical5 0.00/15/8 0.00/NS 0.15/12/6 0.01/12/6

MedPKS10 0.14/20/11 0.00/NS 0.55/20/11 8.71/20/11
MedPKS30 20.82/60/31 0.00/NS 14.86/60/31 –
MedPKS50 350.09/100/51 0.00/NS 192.52/100/51 –
MedPKS70 – 0.00/NS – –

Logistics1 0.01/10/7 0.01/11/11 0.20/10/7 0.21/29/29
Logistics3 0.01/21/11 0.01/16/16 0.86/18/9 –
Logistics5 0.53/160/23 0.11/29/29 18.45/130/23 –
Logistics7 0.79/228/24 0.39/36/36 21.32/178/23 –
LogisticsL 43.60/2401/78 2.04/126/126 – –

Rovers2 0.00/ 11/7 0.00/9/9 0.81/30/10 –
Rovers4 0.04/21 /11 0.01/15/15 0.53/20/10 –
Rovers6 0.49/181/28 0.03/31/31 11.10/107/21 –
Rovers8 0.12/62 /25 0.02/25/25 4.95/48/21 –

BTND10 0.40/53/13 51.40/28/28 – 0.01/32/32
BTND30 12.22/173/33 – – 0.50/92/92
BTND50 136.66/293/53 – – 0.96/152/152
BTND70 887.72/413/73 – – 2.60/212/212

Omlette1 0.00/UNS 0.00/NS SF 0.01/UNS
Omlette2 0.20/UNS 0.00/NS SF 0.02/UNS
Omlette3 – 0.13/NS SF 0.02/UNS

Unix1 0.02/17/14 0.00/17/14 5.10/26/21 11.58/21/18
Unix2 0.41/48/37 0.18/48/37 MEM –
Unix3 10.08/111/84 7.58/111/84 MEM –
Unix4 525.02/238/179 395.50/238/179 MEM –

Blocks3 0.00/7/5 0.01/8/6 0.20/10/6 0.33/7/5
Blocks7 0.36/56/10 0.51/56/10 – –
Blocks11 3.20/116/19 1.67/111/17 – –
Blocks15 43.20/327/85 11.86/241/54 MEM –

Grid2 0.35/ 47/15 0.02/13/13 MEM –
Grid3 1.33/269/39 0.06/23/23 MEM –
Grid4 2.17/853/80 0.40/49/49 MEM –
Grid5 2.70/1095/231 0.63/68/68 MEM –

Table 1: t is runtime (in sec.), S/D is size/depth of the plan
tree, dashes indicate time-outs, MEM: out of memory, NS:
planner output “no solution found”, UNS: proved unsolv-
able, SF: segmentation fault.

We ran Contingent-FF with (FF+H) and without (FF) a
straightforward adaptation of FF’s helpful actions technique
(which prunes successors of a state s that are not gener-
ated by actions considered useful by the relaxed plan for s).
Since the generated plans are trees of actions, to indicate
their quality we provide both tree size and depth.
In the BTS and BTCS domains, Contingent-FF is a lit-

tle more efficient than POND; MBP is a lot faster but finds
non-branching plans in all cases. Medical is not a challenge
to any of the planners, except for FF+H where the helpful
actions pruning cuts out the observation actions and, with
that, all solutions. This makes the planner stop unsuccess-
fully after exploring just a few search states. In MedPKS,

POND scales somewhat better than FF, MBP is very bad,
and FF+H behaves exactly like in Medical. In Logistics and
Rovers, MBP does not scale, and FF scales better than MBP.
Regarding plan quality, we observe that POND is in most
cases somewhat better than FF, and that FF+H finds non-
branching plans with worse depth values. We will come
back to the latter below. In BTND, POND behaves very
badly, and MBP scales by far best, again at the cost of bad-
quality plans. FF+H behaves very badly because, like in
Medical and MedPKS, the observation actions are cut out;
in difference to Medical and MedPKS, however, this does
not lead to an empty search space quickly but makes the
planner search large fruitless regions of the belief space. We
could not get POND to run in our (unsolvable) Omlette do-
main; MBP scales far better here than FF, which spends too
much time in the tests for repeated states. For Unix, FF is the
only reasonably efficient solver; note that the tasks (their un-
derlying directory structure) scale exponentially in the size
parameter. In Blocks, FF is clearly better than POND and
MBP, scaling up quite comfortably and finding branching
plans. Interestingly, here helpful actions pruning improves
both runtime and plan quality significantly. In Grid, POND
andMBP can’t even solve our smallest instance, while again
FF scales relatively well. Similarly to Logistics and Rovers,
FF+H is faster and finds non-branching plans; these plans
are, however, smaller in depth than the branching plans
found by FF. The latter contain a lot of superfluous actions.
It is unclear to us what the reason for this odd behavior is.
It is important to note that, in all examples where POND

ran out of memory, it did so during the building of its La-
beled Uncertainty Graph (the basis for its heuristic compu-
tation). If that is due to details in our encoding of the exam-
ples, or to inefficiencies in POND’s implementation, or to
real weaknesses of POND’s approach, is hard to tell.
One interesting observation in the above concerns the pre-

cise encoding of the interplay between observation actions
and conditional/unconditional action effects. In conformant
test domains, actions can handle different world states by
effects that occur only when a condition c is satisfied. E.g.,
in BTS, dunking a package into a toilet disarms the bomb
only if the bomb is in the package. In the POND contin-
gent test suites, and in our Grid suite, the conformant bench-
marks were modified only by the introduction of additional
observation actions. This gives planners the opportunity to
do observations, but it does not enforce them. An alterna-
tive encoding is to move the conditions c into the precondi-
tions of the respective actions, making it impossible to apply
such an action without knowing if or if not the relevant ef-
fect will occur. The affected domains – the domains whose
version treated above does not enforce observations – are
BTS, BTCS, BTND, Logistics, Rovers, and Grid. Enforcing
observations in these domains often changes planner perfor-
mance considerably. Table 2 shows the results for the modi-
fied domains, indicated by a leading “e” in their names.
The most striking observation in eBTS, eBTCS, and

eBTND, as compared to BTS, BTCS, and BTND, is that
MBP completely loses its ability to scale up. In eBTS and
eBTCS, Contingent-FF (in both versions) and POND be-
come somewhat better, in eBTND it is only FF+H that im-



FF FF+H POND MBP
Instance t/S/D t/S/D t/S/D t/S/D

eBTS10 0.06/19/10 0.00/19/10 0.16/19/10 0.46/56/10
eBTS30 2.23/59/30 2.11/59/30 5.72/59/30 –
eBTS50 28.80/99/50 26.67/99/50 76.41/99/50 –
eBTS70 166.89/139/70 160.75/139/70 474.94/139/70 –

eBTCS10 0.04/19/10 0.02/19/10 0.17/19/10 1.07/30/11
eBTCS30 3.71/59/30 2.19/59/30 5.99/59/30 –
eBTCS50 30.05/99/50 27.78/99/50 78.56/99/50 –
eBTCS70 174.76/139/70 165.03/139/70 488.43/139/70 –

eBTND10 0.23/28/12 0.02/28/12 – –
eBTND30 9.56/88/32 0.82/88/32 – –
eBTND50 132.65/148/52 7.90/148/52 – –
eBTND70 860.26/208/72 39.88/208/72 – –

eLogistics1 0.00/10/7 0.00/10/7 0.20/10/7 15.31/20/15
eLogistics3 0.01/21/11 0.00/19/9 0.86/18/9 –
eLogistics5 0.42/160/23 0.14/156/23 18.44/130/23 –
eLogistics7 0.66/228/24 0.21/223/23 21.14/178/23 –
eLogisticsL 44.68/3389/78 25.95/6590/138 – –

eRovers2 0.00/11/7 0.00/11/8 0.79/30/10 –
eRovers4 0.02/21/11 0.00/21/11 0.53/20/10 –
eRovers6 0.15/169/23 0.08/157/21 10.95/107/21 –
eRovers8 0.03/59/22 0.02/57/21 4.79/48/21 –

eGrid2 0.10/43/14 0.01/13/13 MEM –
eGrid3 0.53/283/39 0.12/65/29 MEM –
eGrid4 1.91/893/67 0.85/335/47 MEM –
eGrid5 2.39/1089/231 1.46/460/137 MEM –

Table 2: Results with enforced observations.

proves, dramatically in this case. In the classical domains
enriched with uncertainty, the main difference under en-
forced observations lies in the different behavior of FF+H.
Whereas, previously, FF+H found non-branching plans, it
now behaves more similarly to FF, improving on runtime in
all cases, and on plan quality in all cases except the large
Logistics example.
In an earlier version of Contingent-FF, we ran an AO*

search that tried to minimize solution tree size rather than
depth, taking the cost of a node to be the sum of the costs of
its children, rather than the maximum as we do now. With
enforced observations, the earlier version of Contingent-FF
behaved a lot worse, being able to solve only the smallest
examples in Blocks, eLogistics, eRovers, and eGrid. The
reason for this is that, in these domains, many actions have
to be re-used in all branches of the solution. This is not taken
into account in our heuristic function, introducing, under the
sum operator, a strong bias to not do observations.

Discussion
We described a contingent planner, Contingent-FF, that
builds on our conformant planner, Conformant-FF, extend-
ing its sparse belief space representation, and the heuristic
techniques building on it, to handle observation actions and
non-deterministic action effects. Contingent-FF is competi-
tive with POND and MBP.
Our planner is unique in its belief state representation, but

is only one among a number of contingent planners, many of
which are quite recent. One of the first contingent planners
is CNLP (Peot & Smith 1992), which used non-linear plan-
ning techniques. More related are Graphplan-based plan-
ners, the first being SGP (Weld, Anderson, & Smith 1998),
which used multiple planning graphs, one for each possible
initial world, keeping track of the relationship between these
graphs. POND (Bryce, Kambhampati, & Smith 2004) is a
more recent descendant of this lineage which replaced the
use of multiple planning graphs with a single planning graph

in which propositions/actions are labeled with formulas de-
scribing the initial worlds under which they can be true/can
be applied. Contingent-FF is a forward-search planner in the
space of belief-states, and was preceded by GPT (Bonet &
Geffner 2000) and MBP (Bertoli et al. 2001), both of which
use the same idea. The main differences between these plan-
ners are the belief state representations used and the partic-
ular techniques used for generating a heuristic.
The most important open topic for Contingent-FF is, in

our opinion, to extend the system to richer forms of non-
deterministic effects. In particular, faster and/or more pow-
erful techniques for repeated states checking in the presence
of such effects must be developed. Note that, conceptually,
it is not difficult to modify our approach to non-deterministic
effects that result in a list of arbitrary alternative outcomes,
rather than occurring or not occurring individually. One just
needs to encode the possible outcomes in CNF format, and
include that into the formula describing the action sequence.
Note also that one can, conceptually, easily integrate ob-
servation actions with multiple outcomes, including cases
where an observation failed (to make this make sense, one
needs a slightly more powerful search algorithm able to con-
struct loops in the plan). Of course, it is not a priori clear
how well such approaches would work in practice.
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