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Abstract

The importance of the problems of contingent planning with
actions that have non-deterministic effects and of planning
with goal preferences has been widely recognized, and sev-
eral works address these two problems separately. However,
combining conditional planning with goal preferences adds
some new difficulties to the problem. Indeed, even the no-
tion of optimal plan is far from trivial, since plans in non-
deterministic domains can result in several different behav-
iors satisfying conditions with different preferences. Plan-
ning for optimal conditional plans must therefore take into
account the different behaviors, and conditionally search for
the highest preference that can be achieved. In this paper,
we address this problem. We formalize the notion of opti-
mal conditional plan, and we describe a correct and complete
planning algorithm that is guaranteed to find optimal solu-
tions. We implement the algorithm using BDD-based tech-
niques, and show the practical potentialities of our approach
through a preliminary experimental evaluation.

Introduction

Several works deal with the problem of contingent planning,
i.e., the problem of generating conditional plans that achieve
a goal in non-deterministic domains, see, e.g., (Hoffmann &
Brafman 2005; Rintanen 1999; Cimatti et al. 2003). In these
domains, actions may have more than one outcome, and it is
impossible for the planner to know at planning time which
of the different possible outcomes will actually take place
at execution time. The importance of the problem of plan-
ning with goal preferences has also been widely recognized,
see, e.g., (Brafman & Chernyavsky 2005; Briel et al. 2004;
Smith 2004; Brafman & Junker 2005). In planning with
preferences, the user can express preferences over goals and
situations, and the planner must generate plans that meet
these preferences. More and more research is addressing
these two important problems separately, but the problem of
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contingent planning with goal preferences has not been ad-
dressed yet. This is clearly an interesting problem, and most
applications need to deal both with non-determinism and
with preferences. However, providing planning techniques
that can address the combination of the two aspects requires
to solve some difficulties, both conceptually and practically.
Conceptually, even the notion of optimal plan is far from
trivial. Plans in non-deterministic domains can result in sev-
eral different behaviors, some of them satisfying conditions
with different preferences. Planning for optimal conditional
plans must therefore take into account the different behav-
iors, and conditionally search for the highest preference that
can be achieved. In deterministic domains, the planner can
plan for (one of) the most preferred goal, and in the case
there is no solution, it can iteratively look for less preferred
plans. This approach is not possible with non-deterministic
domains. Since actions are non-deterministic, the planner
will know only at run-time whether a preference is met or
not, and consequently a plan must interleave different levels
of preferences, depending on the different action outcomes.
In this setting, devising planning algorithms that can work in
practice, with large domains and with complex preference
specifications, is even more an open challenge.

In this paper we address this problem, both from a concep-
tual and a practical point of view. Differently from the de-
cision theoretic approach taken, e.g., in (Boutilier, Dean, &
Hanks 1999) we allow for an explicit and qualitative model
of goal preferences. The model is explicit, since it is possi-
ble to specify explicitly that one goal is better than another
one. It is qualitative, since preferences are interpreted as an
order over the goals. Moreover, the model takes into account
the non-determinism of the domain. If we specify that a goal
g1 is better than g2, we mean that the planner should achieve
g1 in all the cases in which g; can be achieved, and it should
achieve g» in all the other cases.

We define formally the notion of optimal conditional plan,
and we devise a planning algorithm for the corresponding
planning problem. The algorithm is complete and correct,
i.e., it is guaranteed to find only optimal solutions, and to
find an optimal plan if it exists. We have designed the algo-
rithm to deal in practice with complex problems, i.e., with
large domains and complex goal preference specifications.
Intuitively, the underlying idea is to generate first “universal
plans” that are guaranteed to achieve least preferred goals.



The plan is “universal” in the sense that it is not restricted
to a set of initial states, and the algorithm finds instead the
set of states from which a plan exists. We can thus store
once for all and then re-use the “recovery” solution for all
those sets of states in which a plan for a goal with higher
preference cannot be found. We then plan for the next more
preferred goal, by relaxing the problem and allowing for so-
lutions that either satisfy it or result in states where plans
for the least preferred goal can be applied. We iterate the
procedure by taking into account the order of preferences.

The algorithm works on sets of states, and we implement
it using BDD-based symbolic techniques. We perform a
preliminary set of experimental evaluations with some ex-
amples taken from two different domains: robot navigation
and web service composition. We evaluate the performances
w.r.t. the dimension of the domain, as well as w.r.t. the com-
plexity of the goal preference specification (increasing the
number of preferences). The experimental evaluation shows
the potentialities of our approach.

The paper is structured as follows. We first review basic
definitions of planning in non-deterministic domains. Then
we propose a conceptual definition of conditional planning
with goal preferences, we describe the planning algorithm
for the new goal language, and evaluate it. Finally, we dis-
cuss related works and propose some concluding remarks.

Background

The aim of this section is to review basic definitions of plan-
ning in non-deterministic domains which we use in the rest
of the paper. All of them are taken, with minor modifica-
tions, from (Cimatti et al. 2003).

We model a (non-deterministic) planning domain in terms
of propositions, which characterize system states, of ac-
tions, and of a transition relation describing system evolu-
tion from one state to possible many different states.

Definition 1 (Planning Domain) A planning domain D is
a4-tuple (P, S, A, R) where

‘P is the finite set of basic propositions,

S C 2P is the set of states,

A is the finite set of actions,

o RCS x A xS is the transition relation.

We denote with Act(s) = {a: 38’ R(s,a, s’)} the set of ac-
tions that can be performed in state s, and with Exec(s, a) =
{s’ : R(s,a,s")} the set of states that can be reached from s
performing action a € Act(s).

An example of the planning domain, that will be used
throughout the paper, is defined as follows.

Example 1 Consider the simple robot navigation domain
represented in Figure 1. It consists of a building of 6 rooms
and of a robot that can move between these rooms perform-
ing the actions described in Figure 1. Notice that action
”goRight” performed in "Hall” moves the robot either to
"Room 1” or to "Room 2” non-deterministically. Notice
also that the door between ”Room 3” and " Store” might be
locked, therefore the action ”"goRight” performed in ”Room
37 is also non-deterministic.
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Figure 1: A simple domain

The state of the domain is defined in terms of fluent room,
that describes in which room the robot is currently in, and
of fluent door, that describes the state of the door between
”Room 37 and ”Store”, which is initially ”Unknown”, and
becomes either "Open” or ”Locked” when the robot tries
to move from "Room 3” to "Store” (only in the former case
the robot will successfully reach the ”Store”).

We represent plans by state-action tables, or policies,
which associate to each state the action that has to be per-
formed in such state. As discussed in (Cimatti e al. 2003),
plans as state-actions tables enable to encode conditional be-
haviors.

Definition 2 (Plan) A plan 7 for a planning domain D =
(P,S, A, R) is a state-action table which consists of a set
of pairs {(s,a) : s € S,a € Act(s)}

We denote with StatesOf(7) = {s : (s,a) € 7} the set of
states in which plan 7 can be executed.

We describe the possible executions of a plan with an ex-
ecution structure.

Definition 3 (Execution Structure) Let 7 be a plan for a
planning domain D = (P,S, A, R). The execution struc-
ture induced by w from the set of initial states T C S is
a tuple K = (Q,T), where Q C Sand T C §x S are
inductively defined as follows:

1. ifs €1, then s € Q, and
2. ifs€ Qand3(s,a) € mands' € Exec(s,a), thens' € Q
and T (s, 8").

A state s € Q is a terminal state of K if there is no s' € Q
such that T'(s, s').

A planning problem is defined by a planning domain D, a
set of initial states Z and a set of goal states G.

Definition 4 (Planning Problem (without preferences))
Let D = (P,S, A, R) be a planning domain. A planning
problem for D is a triple (D,Z,G), where T C S and
gcs

Example 2 A planing problem for the domain of Example 1
is the following:
e 7 : room = Hall N\ door = Unknown

e G : room = Store



Notice that we represent sets of states as boolean formulas
on basic propositions. The intuition of the goal is that the
robot should move from "Hall” to ”Store”.

Intuitively, a solution to a planning problem is a plan which
can be executed from any state in the set of initial states Z
to reach states in the set of goal states G. Due to the non-
determinism in the domain, we need to specify the “quality”
of the solution by applying additional restrictions on “how”
the set of goal states should be reached. In particular we dis-
tinguish weak and strong solutions. A weak solution does
not guarantee that the goal will be achieved, it just says that
there exists at least one execution path which results in a ter-
minal state that is a goal state. A strong solution guarantees
that the goal will be achieved in spite of non-determinism,
i.e., all execution paths of the strong solution always termi-
nate and all terminal states are in a set of goal states.

Definition 5 (Strong and Weak Solutions)

Let D = (P,S, A, R) and P = (D,Z,G) be a planning
domain and problem respectively. Let w be a plan for D and
K = (Q,T) be the corresponding execution structure.

e T is a strong solution to P if all the paths in K are finite
and their terminal states are in G.

o 71 is a weak solution to P if some of the paths in K termi-
nate with states in G.

We call a state-action pair (s, a) € 7 strong if all execution
paths from (s, a) terminate in the set of goal states. We call
it weak if it is not strong, and at least one execution path
from (s, a) terminates in the set of goal states. Intuitively,
a weak solution contains at least one weak state-action pair,
while a strong solution consists of strong state-action pairs
only.

Example 3 Consider the following plan 71 for the domain
of Example 1:

state action
room = Hall goDown
room = Room3 A door = Unknown | goRight

Plan m causes the robot to move down to "Room 3”
and after that move right to “Store”. It is a weak solu-
tion for the planning problem from Example 2, indeed the
door can non-deterministically become ”Locked” in ac-
tion “goRight”, in which case the plan execution terminates
without reaching the “Store”. This planning problem has
indeed no strong solutions at all.

In (Cimatti et al. 2003), an efficient BDD-based algorithm
is presented to solve strong (and weak) planning problems.
The key feature of the algorithm is that it builds the solution
backwards, starting from the goal states, and adding a pair
(s,a) to the plan 7 only if the states in Exec(s, a) are ei-
ther goal states or already included in StatesOf(7). This ap-
proach has the advantage that a state is added to the plan only
if we are sure that the goal can be achieved from that state,
and hence no backtracking is necessary during the search.

Planning for goals with preferences

This section addresses the problem of finding solutions to
the problem of planning with preferences. We start by giving
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a definition of a reachability goal with preferences and of
plans satisfying such a goal. Then we will move to the core
of the paper: plan optimality.

Definition 6 (Reachability Goal with Preferences)

A reachability goal with preferences Gy;s+ is an ordered list
(91, ---, gn), where g; C S. The goals in the list are ordered
by preferences, where g is the most preferable goal and g,,
is the worst one.

For simplicity, we consider a totally ordered list of prefer-
ences, even if the approach proposed in the paper could be
easily extended to the case of goals with preferences that are
partial orders.

Definition 7 (Planning Problem with Preferences)

Let D (P,S, A, R) be a planning domain. A plan-
ning problem with preferences for D is a triple (D, T, Gist),
where T C S and G5t = (g1, .-, gn) is a reachability goal
with preferences.

Example 4 Let us consider a goal with preferences for the
domain of Example 1 which consists of two preference goals
Guist = (91, g2), where:

e g1 = {room = Store}
e go = {room = Lab}

The intuition of this goal is that the robot has to move to
”Store” or "Lab”, but "Store” is a more preferable goal
and the robot has to reach ”Lab” only if ”Store” becomes
unsatisfiable. The planning problem from Example 2 can be
extended to the planning problem with preferences, defined
by the triple (D, T, Gist) -

Plans as state-action tables are expressive enough to be
solutions for planning problems for reachability goals with
preferences.

Definition 8 (Solution)

A plan 7 is a solution for the planning problem P
(D,Z,{g1, .., gn}) if it is a strong solution to the planning
problem (D,Z, \/ g:).

1<i<n

This definition of plan does not take into account goal
preferences. All plans are equally preferable regardless from
which goals from the list are satisfied. To overcome this
limit, we develop an ordering relation between plans and
define a notion of plan optimality.

In the definition of the ordering relation among plans, we
have to take into account that, due to non-determinism, dif-
ferent goal preferences can be reached by considering differ-
ent executions of a plan from a given state. In our approach,
we will take into account the “extremal” goal preferences
that are reached by executing a plan in a state, namely the
goal with the best preference and that with the worst prefer-
ence. Formally, we denote with pref(m, 5)"**' the goal with
best preference (i.e., of minimum index) achievable from s:
pref(m,s)?*" = min{i : 3s’ C g; and &', is a terminal state
of the execution structure for 7 that can be reached from
s}. The definition of goal pref(m, s)*™*" with worst prefer-
ence reachable from s is similar. If s ¢ StatesOf(w) then
pref(m, )bt = pref(r, s)"*" = —oo.



In the following definition, we compare the quality of two
plans m; and 79 in a specific state s of the domain. We
use an optimistic behavior assumption, i.e., we compare the
plans according to the goals of best preferences reached by
the plans (i.e., pref(m1, 5)7" and pref(ms, s)?¢*"). In case the
maximum possible goals are equal, we apply a pessimistic
behavior assumption, i.e., we compare the plans according
to the goals of worst precedence (i.e., pref(m, s)**™ and

pref(ﬂ-Q, S)W’UVST).
Definition 9 (Plans Total Ordering Relation in a State)
Let 1 and T2 be plans for a problem P. Plan T is better
than mo in state s, written T < o, if:
o pref(my, s)"" < pref(ma, s)",
o pref(my, 8)"" = pref(ms, 5)P" and

pref(my, s)""" < pref(my, s)""
If preflm:, s)/ = pref(s, s) and pref{m;, s)*" =
pref(ma, $)"°"™" then w1 and o are equivalent in state s, writ-
ten w1 ~g To.
We write m1 < mo if m1 <s T OF M1 g To.

or

We can now define relations between plans 7; and 7o
by taking into account their behaviors in the common states
Scommon (1, T2) = StatesOf(71) N StatesOf (2.

Definition 10 (Plans Ordering Relation)
Let 1 and 2 be plans for a problem P. Plan T is better
than plan o, written m < o, if:

o 1 =, o for all states s € Scommon (T1, T2), and
o 1 < o for some state ' € Secommon(T1,T2).

If 1 >4 ma forall s € Scommon (71, 72), then the two plans
are equally good, written T ~ Ta.

Example S Let us assume that the door in the domain of
Example 1 can never be ”Locked” and, hence, the action
”goRight” performed in "Room 3" deterministically moves
the robot to ”Store”. Therefore the plan m, defined in Exam-
ple 3 is a solution for the planning problem with preferences
defined in Example 4. We also consider another solution mo
that is defined as follows:

state action
room = Hall goRight
room = Room?2 | goDown
room = Room1 | goRight
These plans have only one common state s = {room =
Hall}. We have pref(my,s)t! = pref(m,s)"o
1 because all execution paths satisfy gi1.  However

)bem‘ ) worst

pref(ma, s = 1, but pref(ma, s = 2 because there
is an execution path that satisfies go. Therefore 1 < ma.

Notice that the plans ordering relation is not total:
two plans are incomparable if there exist states s1,S2 €
Scommon(ﬂ—la 7T2) such that 7 <51 T2 and 7o <55 T1- How-
ever, in this case we can construct a plan 7 such that 7 < m;
and 7 < 9, as follows:

e if (s,a) € 7 and either s ¢ StatesOf(my) or m1 <, 72,
then (s, a) € ;

e if (s,a) € mo and either s ¢ StatesOf(m;) or my < 71,
then (s,a) € .
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Figure 2: Intuition of the planning algorithm.

goRight

As a consequence, there exists a plan which is better or equal
to any other plan and we call such plan optimal.

Definition 11 (Optimal Plan)
Plan 7 for problem P is an optimal plan if 1 < 7 for any
another plan 7' for the same problem P.

Example 6 If the door in the domain of Example 1 can be
”Locked”, then plan 7o of Example 5 is optimal for the prob-
lem defined in Example 4.

We remark that one could adopt more complex definitions
for ordering plans. For instance, one could consider not only
the goals with maximum and minimum preferences reach-
able from a state, but also the intermediate ones. Another
possibility would be to compare the quality of plans taking
into account the probability to reach goals with a given pref-
erence, and/or to assign revenues to the goals in the prefer-
ence list. This however requires to model probabilities in
the action outcomes, while our starting point is to have a
qualitative model of the domain and of the goal. With re-
spect to these and other possible models of preferences, our
approach has the advantage of being simpler, and the experi-
ments show that it is sufficient in practice to get the expected
plans.

Planning Algorithm

We now describe a planning algorithm to solve a planning
problem P = (D, Z, Gj;s:). Our approach consists of build-
ing a state-action table 7; for each goal g;, and then to merge
them in a single state-action table 7. To build tables 7;, we
will follow the same approach exploited in (Cimatti et al.
2003) for the case of strong goals without preferences, i.e.,
we perform a backward search for the plan that guarantees
to add a state to a plan only if we are sure that a plan exists
from that state. In the context of planning with goal prefer-
ences, however, performing a backward search also requires
to start from the goal of lowest preferences and to incremen-
tally consider goals of higher preference, as shown in the
following example.



function BuildPlan (D, gList);

02 for (i:=|gList]|;i>0;i——) do

03 SA := StrongPlan(D, gList[i]);

04 oldSA := SA;

05 wSt := StatesOf(SA) U gList[i];

06 ji=1+1;

07 while (j<|gList]|)

08 wSt := wSt U StatesOf(pList[j]) U gList[j];
09 WeakPrelmg := {(s,a): Fzec(s,a) N StatesOf (SA)# 0};
10 StrongPreIlmg := {(s,a):0# Exec(s,a) C wSt};

11 image := StrongPrelmg N WeakPrelmg;

12 SA := SAU{(s,a) € image: s ¢ StatesOf (SA)};

13 if (oldSA # SA) then

14 SA := SA U StrongPlan(D, StatesOf (SA) U gList[i]);
15 oldSA := SA;

16 wSt := StatesOf (SA) U gList[i];

17 j o= i+1;

18 else

19 j++s

20 fi;

21 done ;

22 pList[i] := SA;

23 done ;

24 return pList;

25 end;

01 function StrongPlan(D,g);

02 SA := 0;

03 do

04 oldSA := SA;

05 sSt := StatesOf(SA) U g;

06 StrongPrelmg := {(s,a):0# Ezec(s,a) C sSt};

07 SA := SA U{(s,a) € StrongPrelmg: s ¢ StatesOf (SA)};
08 while (oldSA # SA);

09 return SA;

10 end;

Figure 3: BuildPlan function

Example 7 Suppose we have the domain presented in Ex-
ample I and the planning problem with preferences of Ex-
ample 4, i.e., the goal consists of two preferences Gijst =
(g1 = {room = Hall}, go = {room = Lab}).

Our requirement on the plan is that the robot should at
least reach the Lab. For this reason, we start by searching
for states from which a strong solution o for goal go exists.
We incrementally identify states from which go is reachable
with a strong plan of increasing length. This procedure stops
when all the states have been reached from which a strong
plan for gs exists. An example of such a plan ms on our
robot navigation domain is depicted on the top right part of
Figure 2. In this case, the only state from with the Lab can
be reached in a strong way is Room/]1.

We then take goal g1 into account, and we construct a
plan w1, which is weak for g1, but which is a strong solution
for goal g1V gs. As in the previous step, we initially build
as a strong solution for the goal g1, using a backward-search
approach. This way, we select those actions that guarantee
to reach our preferred goal (see plan 7} in Figure 2). Once
such strong plan for g1 cannot be further extended, we per-
form a weakening of the plan, i.e., we try to find a weak
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state-action pair for w1 which is, at the same time, a strong
action-pair for m U ma. Intuitively, if strong planning be-
comes impossible, we look for a weak extension of the m
which leads either to the strong part of the m, or to the plan
for the less preferable goal To. In our example, we add state-
action pair (room = Hall, goRight) during the weakening
process. Notice that having already computed 7, is a nec-
essary condition to apply the weakening. After the weaken-
ing, we continue by looking again for strong extensions of
plan w1, until a new weakening is required. Strong planning
and weakening are performed cyclically until a fixed point
is reached. In our simple example, we reach the fixed point
with a single weakening, and the final plan 7 is shown in
Figure 2.

In case of an arbitrary goal Gusi = {(91,-..,9n), the
weakening process for the plan w; consists of several iter-
ations. We first try apply weakening using m; U m;41, then
m; U mip1 U mita, and so on, until at least one appropriate
state-action pair is found.

In the final step of our algorithm we check whether the
initial states I are covered by plans 7, and wo and, if this is
the case, we extract the final plan ™ combining ™, and 2 in



a suitable way.

We now describe the algorithm implementing the idea just
described in Example 7. The core of the algorithm is func-
tion BuildPlan, which is shown on Figure 3.

This function accepts a domain D = (P, S, A, R), a list
of goals, and returns a list of plans, one plan for each goal.
The algorithm builds a plan pList[i] for each goal gList[i]
[lines 02-23], starting from the worst one (i = |gList|) and
moving towards the best one (i = 1). For each goal gList][i]
we do following steps:

e We first do strong planning for goal g List|[i] and store the
result in variable S A [line 03]. Function StrongPlan
is defined in (Cimatti et al. 2003), and we report it for
completeness at the end on Figure 3.

e When a fixed point is reached by function StrongPlan,
a weakening step is performed. Variable oldS A is initial-
ized to S A [line 04] — this is necessary to check whether
the weakening process is successful.

o In the weakening [lines 05-21], we incrementally consider
goals of lower and lower preference, starting from goal
with index 7 = ¢ + 1, until the weakening is successful.
Along the iteration, we accumulate in variable wSt the
states against which we perform the weakening. Initially,
we define wSt as those states for which we have a plan for
gList[i], namely, the states in SA and those in gList][i]
[line 05]. We then incrementally add to wS* the states for
gList[j] [line 08].

e During the weakening process, we look for states-action
pairs [line 11] which lead to S A in a weak way [line 09],
and that, at the same time, lead to wSt in a strong way
[line 10]. We add to S A those state-action pairs that cor-
respond to states not already considered in S A [line 12]
— as explained in (Cimatti et al. 2003), removing pairs
already contained in S A is necessary to avoid loops in the
plans.

e If we find at least one new state-action pair [lines 13-
18], then we extend S A performing strong planning again
[line 14], and re-start weakening, re-initializing oldS A, 7,
and wSt [line 15-17].

o If we reach a fixed point, and we cannot increment S A
neither by strong planning nor by the weakening process,
then we save S A as plan pList[i] [line 22] and start plan-
ning for the goal gList[i — 1].

The top level planning function is the following:
function Planning (D, I, gList);
pList := BuildPlan (D, gList);
if T C U (StatesOf(pList[i])UgList[j])
1<i<|gList|
m = extractPlan(gList, pList);
return 7;
else
return 1 ;
fi ;
end ;

Function Planning accepts the planning domain D, the set

of domain initial states /, and the goal list g List, and returns
a plan T, if one exists, or L. Function Planning checks if

the plans computed by BuildPlan for all the goals in list
gList are enough to cover the initial states . If yes, then a
plan 7 is extracted and returned. Otherwise, _L is returned.
Function extract Plan builds a plan by merging the state-
action tables in pList in a suitable way. More precisely, it
guarantees that a state-action pair from pList[i] is added to
7 only if this state is not managed by a plan for a “better”
goal: (s,a) € m only if (s,a) € pList[i] for some 7, and
s & StatesOf(pList[j]) U gList[j] forall j < i.

The following theorem states the correctness of the pro-
posed algorithm. For lack of space, we omit the proof, which
is based on techniques similar to those exploited in (Cimatti
et al. 2003) for the case of strong planning.

Theorem 1 Function Planning(D, 1, gList) always ter-
minates. Moreover, if Planning(D, I, gList) = © # 1,
then 7 is an optimal plan for problem (D, I, gList), accord-
ing to Definition 11. Finally, if Planning(D, I, gList) =
L, then planning problem (D, I, gList) admits no strong
solutions according to Definition 8.

Experimental Evaluation

We implemented the proposed planning algorithm on the top
of the MBP planner (Bertoli ef al. 2001). MBP allows for
exploiting efficient BDD-based symbolic techniques for rep-
resenting and manipulating sets of states, as required by our
planning algorithm.

In order to test the scalability of the proposed technique,
we conducted a set of tests in some experimental domains.
All experiments have been done by the 1.6GHz Intel Cen-
trino machine with 512MB memory and running a Linux
operating system. We consider two domains. The first one
is a robot navigation domain, which is defined as follows.

Experimental domain 1 Consider the domain represented
in Figure 4. It consist of N rooms connected by doors
and a corridor. Each room contains a box. A robot
may move between adjacent rooms if the door between
these rooms is not blocked, pick up a box in a room and
put down it in the corridor. The robot can carry only
one box at the same time. A state of the domain is de-
fined in terms of fluent room that ranges from 0 to N
and describes the robot position, of boolean fluent busy
that describes whether the robot is carrying a box at the
moment, of boolean fluents door [i] [7F], that describe
whether the door between rooms i and 7 is blocked,
and of boolean fluents box [1] describing whether the
box in room 1 is on its place in the room. The ac-
tions are pass—1i—-7j, pick-up, put—-down. Actions
pass—1i-7j, which changes the robot position from i to 7,
can non-deterministically block door [1] [7].

The planning goal expresses different preferences on how
boxes are supposed to be delivered to the box storage in the
corridor. The most preferable goal is “deliver all boxes”.
The set of boxes to be delivered is gradually reduced for
goals of intermediate preference. The worst goal is “reach
the corridor”. It means that the plan has to avoid situa-
tions where all doors of the room occupied by the robot are
blocked. Notice that the door used by the robot to enter the
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Figure 4: A robot navigation domain
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Figure 5: Experiments with robot navigation domain

room can become blocked, so it may be necessary to follow
a different path to leave the room, which may lead to more
blocked doors and unreachable boxes.

We fixed number of goals and tested the performance of
the planning algorithm with respect to the number of rooms
in the domain. The results for 2, 3 and 5 goals are shown on
the Figure 5. It shows that the proposed technique is able to
manage domains of large size: it takes less than 600 seconds
to plan for 5 goals in the domain with 9 rooms (i.e., more
than 229 states).

The second experimental domain is inspired by a real ap-
plication, namely automatic web service composition (Pis-
tore, Traverso, & Bertoli 2005; Pistore et al. 2005). Within
the Astro project', we are developing tools to support the
design and execution of distributed applications obtained by
combining existing “services” made available on the web.
The planning algorithm described in this paper is success-
fully exploited in that context to automatically generate the
composition of the existing services, given a description of

!'The detailed description of the Astro project can be found on
http://www.astroproject.org.

933

the requirements that the composition should satisfy.

Experimental domain 2 The planning domain describes a
set of “component services”, where each service has the fol-
lowing structure:

isReady?

Recovery

The initial action "isReady” forces the component service to
non-deterministically decide whether it is able to deliver the
requested item (i.e., booking a hotel room or a flight, renting
a car, etc.) or not. In the latter case, the only possibility is
to cancel the request. If the service is available, it is still
possible to cancel the request, but it is also possible to ex-
ecute the non-deterministic action ”getData”, which allows
us to acquire information on the service (i.e., the name of
the booked hotel, or the id for the car rental).

The planning goal expresses different preferences on the
task that the web service composition is supposed to deliver.
For instance, the most preferred goal g; could be “book ho-
tel and flight, and rent a car”, the second preference g2 could
be “book hotel and flight without car”, and the last prefer-
ence g3 could be “book hotel and train” — similar goals are
very frequent in the domain of web service composition.

We considered two sets of experiments. In the first set,
we tested the performance of the planning algorithm with
respect to the size of the planning domain. We considered
goals with 1, 7, and 15 preferences, and for all these cases
we considered domains with an increasing number of ser-
vices. The results are shown in the left side of Figure 6. The
horizontal axis refers to the number of services composing
the domain (notice that n services means 7" states in the do-
main). In the vertical axis, we report the planning time in
seconds. In the second set of experiments, we test the per-
formance with respect to the size of goals. The results are
shown in the right side of Figure 6, where we fixed the size
of the domain to 10, 20 and 30 services, and increase the
number of preferences in the goal Gy;s; (horizontal axis).

Both sets of experiments show that the algorithm is able
to manage domains of large size: planning for 25 goals in
a domain composed from 30 services (i.e., more than 282
states) takes about 600 seconds.

Conclusions and Related Work

In this paper we have presented a solution to the problem of
conditional planning with goal preferences. We have pro-
vided a theoretical framework, as well as the implementa-
tion of an algorithm, and we have shown that the approach
is promising, since it can deal with large state spaces and
complex goal preferences specifications.
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Figure 6: Experiments with service composition domain

Decision theoretic planning, e.g., based on MDP
(Boutilier, Dean, & Hanks 1999) is a different approach
that can deal with preferences in non-deterministic domains.
However, there are several differences with our approach,
both conceptual and practical. First, in most of the work
on decision theoretic planning goals are not defined explic-
itly, but as conditions on the planning domain, e.g., as re-
wards/costs on domain states/actions, while our goal pref-
erence model is explicit. Second, we propose a planner that
works on a qualitative model of preferences. In decision the-
oretic planning, optimal plans are generated by maximizing
an expected utility function. Finally, from the practical point
of view, the expressiveness of the MDP approach is more
difficult to be managed in the case of large state spaces.

Apart from planning based on MDP, most of the ap-
proaches to planning with goal preferences do not address
the problem of conditional planning, but are restricted ei-
ther to deterministic domains, and/or to the generation of
sequential plans. This is the case of planning for multiple
criteria (Refanidis & Vlahavas 2003), of the work on over-
subscription planning (Briel et al. 2004; Smith 2004), of
CSP-based planning for qualitative specifications of condi-
tional preferences (Brafman & Chernyavsky 2005), and of
preference-based planning in the situation calculus (Bien-
venu & Mcllraith 2005). In the field of answer set pro-
gramming, (Eiter et al. 2002) addresses the problem of
generating sequences of actions that are conformant opti-
mal plans in domains where non-deterministic actions have
associated costs. (Son & Pontelli 2004) proposes a lan-
guage for expressing plan preferences over plan trajectories,
whose foundations are similar to those of general rank-based
languages for the representation of qualitative preferences
(Brewka 2004).
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