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Abstract: Prerequisite chains are crucial to acquiring new knowledge efficiently. Many studies have
been devoted to automatically identifying the prerequisite relationships between concepts from
educational data. Though effective to some extent, these methods have neglected two key factors:
most works have failed to utilize domain-related knowledge to enhance pre-trained language models,
thus making the textual representation of concepts less effective; they also ignore the fusion of
semantic information and structural information formed by existing prerequisites. We propose a
two-stage concept prerequisite learning model (TCPL), to integrate the above factors. In the first stage,
we designed two continual pre-training tasks for domain-adaptive and task-specific enhancement, to
obtain better textual representation. In the second stage, to leverage the complementary effects of the
semantic and structural information, we optimized the encoder of the resource–concept graph and
the pre-trained language model simultaneously, with hinge loss as an auxiliary training objective.
Extensive experiments conducted on three public datasets demonstrated the effectiveness of the
proposed approach. Our proposed model improved by 7.9%, 6.7%, 5.6%, and 8.4% on ACC, F1, AP,
and AUC on average, compared to the state-of-the-art methods.

Keywords: concept prerequisite relationships; pre-trained language model; relational graph convolutional
networks; contrastive learning

MSC: 68T50

1. Introduction

With the popularity of online education platforms, accessing learning resources has
become increasingly convenient; however, the problem of effectively and systematically
learning from vast learning resources has become an issue of concern. Concepts are the
smallest unit of learning for learners, and constructing the order of concept learning and
organization is crucial for learning new knowledge. The prerequisite relationships between
concepts can be used to help learners generate reliable learning paths [1], and for some
downstream tasks in the education field, such as knowledge tracing [2] and cognitive
diagnosis [3].

‘Concept prerequisite’ refers to the idea that some basic concepts must be understood
before tackling more complex or advanced topics: for instance, to comprehend the concept
BERT in natural language processing, one should first master the concept Transformer;
similarly, understanding multi-head attention and feed-forward network is necessary before
mastering the concept Transformer. Concept prerequisite learning aims to establish a
coherent learning sequence between concepts in resources from various sources: specifically,
this involves identifying whether two concepts have a prerequisite relationship.

This task has attracted the interest of many researchers. Previous works [4–6] have
proposed handcrafted rules and features for learning concept prerequisites from knowledge
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graphs, the scientific corpus, and learner behavioral data respectively, and the literature [7]
utilizes link information to mine concept prerequisites from Wikipedia. By contrast, recent
works have utilized machine learning methods to predict concept prerequisites. These
approaches can be divided into two categories: classification-based methods and link-
prediction-based methods. Classification-based methods, such as [8,9], mostly follow
the text-matching framework, focusing on constructing feature vectors representing the
matching relationship between two sentences, and using Siamese networks for prediction.
Li et al. [10] found that the BERT [11] model’s performance in identifying concept prerequi-
site relationships was inferior to that of traditional pre-trained language models, and thus,
few works have employed the BERT model to obtain concept embedding. Link-prediction-
based methods, such as [10,12], typically construct resource–concept heterogeneous graphs,
and apply variational graph autoencoder (VGAE) [13] for prediction.

However, existing research has neglected two crucial factors, and thus, learning
concept prerequisites remains challenging. Firstly, textual representation is obtained by a
traditional pre-trained language model, which is highly reliant on the training corpus: it
requires concepts to appear at certain times in training corpora, to obtain effective concept
representations, and the representation is fixed according to the statistics of the training
corpus. Secondly, the complementary effects of textual and structural information should
be further explored: most existing approaches either use textual representations to initialize
inputs for graph-based models, or structural representations as inputs for classifiers, which
is not an effective way to fuse the two types of information.

This paper, therefore, proposes a two-stage concept prerequisite learning model
(TCPL) that combines the strength of two perspectives to solve the challenges above.
Firstly, we incorporate domain-specific knowledge, to enhance the pre-trained language
model in the continual pre-training stage, so as to obtain better textual representation:
specifically, we design the relationship discrimination task to distinguish whether the
course contains the given concept, and the pre-trained language model is continually
trained on a domain-related corpus with a masked language model for domain-adaptive
enhancement, and relationship discrimination tasks for task-specific enhancement. Then,
in the joint learning stage, we aim to obtain a better structural representation, and to
integrate it with textual features: specifically, Relational Graph Convolutional Networks (R-
GCN) are used to obtain the structural representation of concepts in the resource–concept
heterogeneous graph. To leverage the complementary effects of textual and structural
information, we simultaneously optimize the parameters of the whole model, including
the text encoder and the graph encoder, with hinge loss as an auxiliary training objective.
The main contributions of this paper are summarized as follows:

• A two-stage framework for concept prerequisite learning is proposed. The pre-trained
language model is enhanced by two continual pre-training tasks in the first stage, to
obtain better textual representation, the textual and structural information is fused in
the second stage, and the prerequisite relationships between concepts are predicted
end-to-end;

• A joint optimization approach of R-GCN and pre-trained language models is proposed,
with hinge loss as an auxiliary training objective, instead of using them separately as
feature extractors, allowing the two models to gradually generate concept representa-
tions more suitable for concept prerequisite prediction tasks;

• Extensive experiments were conducted on three real datasets, to evaluate the proposed
model. The experimental results demonstrated the effectiveness of the proposed
model, compared to all baseline models.

2. Related Works
2.1. Concept Prerequisite Prediction as Text Matching

Concept prerequisite prediction based on the classification perspective refers to classi-
fying and determining the relationship between two concepts, similar to the text-matching
task. Early research mainly relied on designing features and rules. Liang et al. [7] proposed
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the reference distance model, based on the possibility of a prerequisite relationship between
concepts measured by their link density. Liu et al. [14] proposed classification, learning to
rank, and the nearest-neighbor search method, to infer prerequisite relationships with a
directed graph. Pan et al. [15] first used representation learning to obtain hidden represen-
tations for concepts, and proposed seven features based on these representations, to infer
relationships. Roy et al. [9] proposed a supervised method, PREREQ, which used a neural
network for concept prerequisite relationship recognition, using topic modeling and the
paired latent Dirichlet allocation model, to obtain the latent representation of concepts, and
prediction based on Siamese networks. Jia et al. [8] considered the relationship between
concepts and resources based on PREREQ, and also considered auxiliary tasks, extending
this method to the weakly supervised learning setting. Li et al. [16] applied a pre-trained
language model to encode text, and utilized link information from web pages between
concepts using a graph model.

Previous works based on the classification perspective have mainly referred to the text
matching task, emphasizing the semantic information of concept text; however, the concept
prerequisite relationship is directional, and has transitivity. These works did not utilize
structural information formed by prerequisite relationships already well-established.

2.2. Concept Prerequisite Prediction as Link Prediction

Works that take concept prerequisite prediction as link prediction focus on predicting
implicit relationships, by constructing a graph based on existing prerequisite relationships.
Li et al. [17] constructed a dataset called LectureBank, and proposed constructing a concept
map with each concept in the dataset as a node, for the first time. They then applied a
VGAE to learn concept prerequisites from a link prediction perspective; however, infer-
ring solely from existing prerequisites is very limited: in most works, it mainly refers to
prerequisites between concepts. Li et al. [10] expanded the concept map into a resource–
concept heterogeneous graph, and proposed an R-VGAE model, to consider the multiple
relationships between two types of nodes: resource and concept. Li et al. [18] further
explored cross-domain concept prerequisite chain learning, using an optimized variational
graph autoencoder. However, these models did not distinguish the importance of differ-
ent nodes, when aggregating neighbor node information. Based on the resource–concept
heterogeneous graph, Zhang et al. [12] employed a multi-head attention mechanism and
a gated fusion mechanism, to enhance the representation of concepts, and, finally, used a
variational graph autoencoder to predict the premise relationships between concepts.

Research based on the link prediction perspective has mainly focused on modeling
structures, thereby neglecting the textual semantic information of concepts. While [10,12]
used pre-training models to obtain textual representations of concepts as the initial input
of the graph model, they were all based on traditional pre-trained models, where the
representation of each concept was fixed according to the training corpus.

2.3. Continual Pre-Training of Language Models

Most publicly available pre-trained language models are trained on general domain
corpora (such as Wikipedia), resulting in poor performance when applied in specific
domains or tasks. Recently, some studies have proposed pre-training language models on
professional corpora. MathBERT [19] created a mathematical vocabulary and continual pre-
training on a large amount of mathematical text. OAG-BERT [20] is pre-trained continually,
based on the Open Academic Graph, and integrates heterogeneous entity knowledge.
COMUS [21] continually pre-trains language models for math problem understanding,
with a syntax-aware memory network.

In addition to pre-training language models for specific fields, some works have also
attempted to design task-oriented pre-training tasks for target applications, such as Sen-
tiLR [22] for sentiment analysis, CALM [23] for commonsense reasoning, and DAPO [24]
for dialog adaption. In order to tackle challenges such as the inability of pre-trained
language models to connect with real-world situations, some works have proposed implic-
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itly introducing knowledge, by designing pre-training tasks with knowledge constraints.
ERNIE1.0 [25] extended the basic unit of MLM from characters to word segments, and
proposed two masking strategies: phrase-level and entity-level. SenseBERT [26] introduced
a semantic-level language model, which required the model to predict the hypernym cor-
responding to the masked word. ERICA [27] designed two contrastive learning tasks, to
improve the model’s understanding of document-level entities and relationships.

3. Preliminaries
3.1. Resource–Concept Graph

Resources in educational data refer to learning resources that have higher granularity,
or are more detailed than the concept. These can be a course or a lecture file, such as a
machine learning course for the logistic regression concept. Typically, these resources contain
richer textual information. It is a common saying that “some core concepts should be
mastered in this course”, so between concepts and courses, there exists an inclusive or a
non-inclusive relationship, and a course can also be the prerequisite for another course:
for example, basic probability and statistics is the prerequisite for machine learning. In order to
reflect the relationship between courses and concepts in educational data, we constructed a
resource–concept heterogeneous graph, as shown in Figure 1.

Concept Resource Relation

Figure 1. Resource–concept graph, with two types of nodes, and three types of edges. The brown
arrow refers to the prerequisites between the concepts, the dark blue arrow refers to the related
relationship between the resources, and the dotted line refers to the containment relationship between
the concepts and the resources.

The resource–concept graph was denoted as G = (V , E), where V was the set of nodes,
including two different types, concept and resource, and E was the set of edges, including
three different types: (1) the edge between the resource nodes Err representing the related
relationship between the resources; (2) the containment relationship between the resources
and the concept nodes Erc, representing the resource containing the concept; (3) the existing
prerequisites between the concept nodes Ecc .

3.2. Task Formulation

We denoted the set of concepts as C = {c1, c2, . . . , cn}. Given an unannotated
concept pair

{
ci, cj

}
, Err, Erc, Ecc in the resource–concept graph, and their text, denoted as

CText =
{

xi
1, . . . , xi

m, xj
1, . . . , xj

n

}
, where m was the number of words in concept ci, and n

was the length of concept cj, our goal was to learn a function Fθ ,

Fθ(CText, Err, Erc, Ecc)→ {0, 1}, (1)
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which could predict whether concept ci was the prerequisite of concept cj, by mapping
the concept pair to a binary class based on the text of concepts and the relationships in the
resource–concept graph, where 0 meant there was no prerequisite relationship, while 1
indicated the existence of a relationship.

4. Method

The overall architecture of the model, as shown in Figure 2, was divided into the
pre-training and joint optimization stages. The continual pre-training stage aimed to incor-
porate domain-related knowledge, to enhance the pre-trained language model, while the
joint learning stage aimed to leverage the complementary effects of textual and structural
information. Specifically, in the continual pre-training stage, concept-related knowledge
was injected into the pre-trained language model via training with a masked language
model, and relationship discrimination tasks in the domain-related corpus. In the joint
learning stage, concept pairs were inputted, to enhance the BERT model, so as to obtain
textual representation; meanwhile, the corresponding resource–concept heterogeneous
graph was inputted to the R-GCN model, to obtain structure representations of resource
and concept nodes. Structural representation of concepts was concatenated with the tex-
tual representation, and then fed to the classification layer. Finally, the BERT model, the
R-GCN model, and the classification layer were simultaneously optimized with training
objective L.

domain-adaptive      enhancement

task-specific      enhancement

[CLS] Conditional probability [SEP]Markov chain[SEP]

R-GCN

MLP

…CLSh
1

ch 1

s

nh −

s

nh

Enhanced Transformer Encoder

Continual pre-training stage Joint learning stage

Transformer Encoder

=

sequence rep(+) sequence rep(-)

contrastive loss

pull

push

input

output

Task 2 Relation Discrimination

[CLS] [SEP]positive course

[CLS] negative course [SEP]

Task 1 MLM with Domain Corpus

[CLS] Machine learning studies [MASK] and 
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Figure 2. The architecture of our proposed approach. In the continual pre-training stage, the pre-
trained language model is enhanced, and fine-tuned with R-GCN in the joint learning stage.

4.1. Continual Pre-Training Stage
4.1.1. Masked Language Model

As the captions of MOOC videos [28,29] contain a number of core concepts about
the course, we utilized the masked language model (MLM) task, to achieve domain-
adaptive enhancement for a better understanding of the concepts. Specifically, we used
the caption text of a MOOC video as a sequence, then randomly selected 15% tokens of
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the input sequence to be masked, of which 80% were replaced by a special token [MASK],
10% remained unchanged, and the remaining 10% were replaced by a token randomly
selected from the vocabulary. As the [MASK] token did not appear in downstream tasks,
the probability selection was meant to alleviate the inconsistency between the pre-training
and fine-tuning stages. The objective was to predict the original tokens of the masked
ones as

LMLM = ∑
ti∈Vmask

− log p(ti|x̃), (2)

where Vmask denoted the tokens masked in caption text, and x̃ denoted the masked se-
quence.

4.1.2. Relationship Discrimination

In order to inject knowledge about areas of the concepts into the pre-trained language
model, to achieve task-specific enhancement, we designed a relationship discrimination task
based on contrastive learning. Contrastive learning aims to acquire effective representation,
by bringing semantically similar neighbors closer together, while separating dissimilar
non-neighbors [30]: therefore, the relationship discrimination task was proposed, to bring
concept and course representations that had relevant relationships close together, and to
push apart those that did not. We followed the contrastive framework in [31].

We used BERT as a text encoder to obtain representation, and this is introduced in
detail in Section 4.2.1. Constructing positive and negative pairs was a key point in the
contrastive framework. We used data from [18,28,29]: specifically, given a concept ci, we
selected a course k+i that contained this concept as positive, and a course k−i from another
domain, e.g., biology, as negative: for example, given the concept relational database, the
course Databases for Informatics was selected as a positive course, as its description contained
the concept, and the course Basic for Informatics was selected as a negative one. Moreover,
we used in-batch negatives [32]. We let hci , hk+i

, hk−i
denote the representations of concept ci,

course k+i , and course k+i , respectively. The training objective InfoNCE [33] was defined by

LRD = −
N

∑
i=1

log
e

sim(hci ,hk+i
)/τ

∑N
j=1 e

sim(hci ,hk+j
)/τ

+ e
sim(hci ,hk−j

)/τ
, (3)

where sim(hci , hki
) = h>ci

hki
/‖hci‖

∥∥hki

∥∥ calculated the cosine similarity, N was the batch
size, and τ represented the temperature hyperparameter. The role of the temperature
hyperparameters was to dig out difficult negative samples, with smaller temperature
hyperparameters increasing the distance between difficult negative samples and positive
samples.

4.2. Joint Learning Stage
4.2.1. Text Encoder BERT

After the continual pre-training stage, enhanced BERT was used to encode concept
text. Given the text of a concept pair, along with a special token [CLS] at the first position,
and [SEP] to separate the text of different concepts

{
[CLS], x1

1, . . . , x1
m, [SEP], x2

1, . . . , x2
n
}

,
then a conversion to a sequence of BERT embeddings could be made, by summing the
position embedding, segment embedding, and token embedding.

BERT is composed of L Transformer [34] encoder layers. Specifically, it consists of
stacks of multi-head self-attention layers (denoted by MHAttn(·)) and point-wise feed-
forward networks (denoted by FFN(·)). With the output of the (l − 1)-th layer represented
as Cl−1, the input and the update process can be formalized as follows:

C̃l = LayerNorm
(

MHAttn
(

Cl−1
)
+ Cl−1

)
; (4)
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Cl = LayerNorm
(

C̃l + FFN
(

C̃l
))

, (5)

where Cl =
{

hCLS, h1
1, . . . , h2

n
}

. We adopted hCLS, the final hidden embedding of special
token [CLS] as textual representation for the concept pair.

4.2.2. Graph Encoder R-GCN

After constructing the resource–concept graph, R-GCN were used to encode this
heterogeneous graph. In R-GCN, the representation of node vi was updated as follows:

vl+1
i = σ

∑
r∈R

∑
j∈N r

i

1
ci,r

W(l)
r h(l)

j + W(l)
i h(l)

i

, (6)

where N r
i was the set of neighbor nodes, given node vi and relationship r ∈ R, and where

ci,r was a normalization constant, W(l)
r was the linear transformation parameter matrix of

layer l, and h(l)
i was the hidden representation of node vi in the l-th layer.

As Equation (6) expresses, R-GCN update the features of a node by aggregating
information from its neighboring nodes, and incorporating their feature representations
into its own; furthermore, this allows for incorporating relationship-specific parameters
when performing feature aggregation. Thus, the importance of different relationships
in the resource–concept graph is taken into consideration when learning the structural
representation of concepts.

4.2.3. Joint Learning Layer

After obtaining textual representations h ∈ RH of concept pair(ci, cj) from the text
encoder, and nodes features V from the graph encoder, we extracted corresponding concept
structure representation vi, vj ∈ RNd from V. H was the dimension of textual representa-
tion, and Nd was the dimension of structural representation. Then, we concatenated textual
and structural representations describing features from different aspects: X = [h, vi, vj].
The probability that concept pairs have prerequisite relationships was calculated as follows:

p = Sigmoid(WBX) ∈ R2, (7)

where X ∈ R2Nd+H , WB ∈ R2×(2Nd+H) was the parameter matrix in the classification
layer. For concept prerequisite prediction, we used binary cross-entropy (BCE) loss as a
training objective:

LB = −
n

∑
k=1

(yk log pk + (1− yk) log(1− pk)), (8)

where yk ∈ {0, 1} was the true label of the relationship between concepts, pk denoted
the possibility for concept pair k to have a prerequisite relationship, and n denoted the
batch size.

In order to enable both models to gradually generate more effective representations
during training, especially for obtaining better structural representation, we used hinge
loss as an auxiliary training objective. Hinge loss aims to achieve a higher score for valid
triplets, and is formulated as follows:

LH = ∑
tk
ij∈G

max
(

γ + dt′kij
− dtk

ij
, 0
)

, (9)
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where γ > 0 is a margin hyperparameter, dtk
ij
= ‖ei + rk − ej‖1 is the translation dis-

tance [35], and t
′k
ij is the corrupted triplet, issued as

t
′k
ij =

{
< e

′
i , rk, ej > |e

′
i ∈ E\ei∪ < ei, rk, e

′
j > |e

′
j ∈ E\ej

}
. (10)

The overall training objective was formulated as follows:

L = ηLB + (1− η)LH , (11)

where η was the hyperparameter that traded off the impact of the auxiliary loss. The pa-
rameter of the text encoder and graph encoder would be updated during training.

5. Experiments
5.1. Experimental Setup
5.1.1. Datasets and Evaluation Metrics

We conducted experiments on three public datasets, to evaluate our proposed model
and baselines. The statistics of the datasets are provided in Table 1. The number of
concepts was denoted by |C|, while |R| was the number of resources. The number of
concept prerequisite edges, the number of edges between resource nodes, and the number
of edges between resource and concept nodes were represented by

∣∣∣Cedge

∣∣∣, ∣∣∣Redge

∣∣∣, and∣∣∣Tedge

∣∣∣, respectively. The three public datasets were:

• The University Course dataset (UCD) [29], which includes 654 computer science
courses from universities in the USA, and 407 concepts. There are also prerequisite
relationships of courses and concepts, respectively, in this dataset. For edges between
courses and concepts, we assumed that a relationship existed if a concept appeared in
the course captions;

• The LectureBank dataset (LBD) [17], which includes lecture files and topics from five
domains: artificial intelligence; machine learning; natural language processing; deep
learning; and information retrieval. We considered lecture files as resources, topics
as concepts in this dataset, and hierarchy relationships between topics. For resource
edge construction, we computed the cosine similarity of lecture file embedding, and
set the threshold as 0.9;

• The MOOC dataset (MD) [9], which contains 382 MOOC video texts of computer
science courses, and the same topic and number of concept prerequisite relationship
pairs as in the University Course dataset. The construction of edges between resources
and concepts was the same as the UCD dataset.

Table 1. The statistics of the datasets.

Dataset |C| |R|
∣∣∣Cedge

∣∣∣ ∣∣∣Redge

∣∣∣ ∣∣∣Tedge

∣∣∣
UCD 407 654 1008 861 580
LBD 307 250 471 995 265
MD 406 382 1004 1404 3634

We adopted widely used evaluation metrics, including Accuracy, F1 score, Average
Precision, and Area Under the ROC Curve (AUC). Accuracy represented the proportion
of all classified samples that consisted of correctly predicted samples. F1 score was the
weighted average of precision and recall. Precision was the proportion of positive samples
that were correctly predicted as positive among all the samples predicted as positive. AP
was the average precision obtained by taking the mean of the precision values on the PR
curve. AUC represented the probability that the model scores positive examples would be
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higher than the negative ones. All the evaluation metrics had larger values, indicating the
better performance of the model.

5.1.2. Baseline Models

We compared our proposed method to the following baseline models:

• PREREQ [9]: we used the Pairwise Latent Dirichlet Allocation model to obtain the
latent representation of concepts, and fed them into a Siamese network, to infer the
relationships between concepts;

• BERT-base [11]: we fine-tuned on datasets, and used the [CLS] vector of concept pairs
for prediction;

• DAPT-BERT [36]: continual pretraining BERT on domain-related corpus. We used
the captions of computer science courses [28], with the masked language model task
for implementation;

• VGAE [13]: the AU unsupervised model combines the ideas of autoencoder and
variational inference; it samples the latent variables from a multidimensional Gaussian
distribution, and the decoder predicts the label, based on the latent variables;

• R-GCN [37]: the core idea of R-GCN is to process tasks by learning the embedding
vectors of nodes and relationships; it has strong scalability in dealing with multiple
types of relationships;

• R-GCN(BERT): using the textual representation of concepts from BERT as the initial-
ization of R-GCN;

• R-VGAE [10]: a model that combines the advantages of R-GCN and VGAE; it updates
the original GCN encoder of VGAE to R-GCN that consider relationships and use
DistMult as the training objective for reconstruction; it initializes node features with
two types of features, TF-IDF and Phrase2vec [38];

• MHAVGAE [12]: this model constructs a resource–concept heterogeneous graph,
initializing node feature with word2vec [39], and then uses multi-head attention and
gating mechanisms to enhance concept representation; finally, it uses a variational
graph autoencoder to predict the relationships between concepts.

5.1.3. Implementation Details

The experiments were conducted in Python, with the deep learning toolkit PyTorch,
and we trained our model on NVIDIA GeForce RTX 3090. For performance comparison
of all models, we divided the dataset into a training set, a validation set, and a test set, at
a rate of 8:1:1. For the baseline models, the results of R-GCN https://github.com/tkipf/
relational-gcn (accessed on 12 June 2023), VGAE https://github.com/zfjsail/gae-pytorch
(accessed on 12 June 2023) R-VGAE https://github.com/Yale-LILY/LectureBank/tree/
master/LB-Paper/LectureBank2 (accessed on 12 June 2023), and MHAVGAE https://
github.com/zhang-juntao/MHAVGAE (accessed on 12 June 2023) were re-evaluated by us,
using the released code. All the hyperparameters were set, following the suggestions from
the original papers, to obtain optimal results. For BERT-related models, we implemented
them based on HuggingFace Transformers [40].

For our model, in the pre-training stage, we initialized the weights of BERT with
BERT-base https://huggingface.co/bert-base-uncased (accessed on 12 June 2023), then
pre-trained on a corpus with a total of 32 batch sizes for 150 steps. The max length of input
sequences was set to 512, τ was set to 0.05 for the relationship discrimination task, using the
AdamW [41] optimizer, and the learning rate was set to 2× 10−4. In the joint learning stage,
we trained our model using the AdamW optimizer for 20 epochs at most, and the batch size
was set to 64. For fairness, we deleted the corresponding concept edge in the test set in the
resource–concept heterogeneous graph, when training. As the parameters of R-GCN and
fully connected layers were randomly initialized, and the parameters of the BERT model
were updated, based on a large amount of the pre-training corpus, the learning rates were
set differently, according to the different networks. The learning rates of the R-GCN and
fully connected layers were set to 0.01, and the learning rate of the BERT model was set

https://github.com/tkipf/relational-gcn
https://github.com/tkipf/relational-gcn
https://github.com/zf jsail/gae-pytorch
https://github.com/Yale-LILY/LectureBank/tree/master/LB-Paper/LectureBank2
https://github.com/Yale-LILY/LectureBank/tree/master/LB-Paper/LectureBank2
https://github.com/zhang-juntao/MHAVGAE
https://github.com/zhang-juntao/MHAVGAE
https://huggingface.co/bert-base-uncased
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to 10 × 10−6. The hyperparameter that balanced the two kinds of losses was set to 0.5,
0.7, and 0.7 on the three datasets, respectively. The margin hyperparameter γ was set as
1. The number of R-GCN layers was set as 2, and the embedding size of the first layer
was set to 16, 32, and 128 on the three datasets, respectively. The second layer contained
32 hidden units.

5.2. Main Results

As mentioned in Related Works, the baselines could also be divided into two groups,
where the first group consisted of classification models, and the second group interpreted
concept prerequisite learning as link prediction based on graph-network-based models.
The experiment results of five runs of all methods are reported in Table 2, and the optimal
results are marked in bold.

Table 2. Overall performance of the UCD, LBD, and MOOC datasets. The optimal results are marked
in bold, and the sub-optimal results are underlined.

Dataset Method ACC F1 AP AUC

UCD

PREREQ � 0.5433 0.5866 0.5309 0.6702
BERT-base 0.6916 0.6635 0.6412 0.7433
DAPT BERT 0.7173 0.7085 0.7497 0.7944
R-GCN 0.6450 0.5989 0.6333 0.6548
VGAE 0.6700 0.6413 0.7534 0.6972
R-GCN (BERT) 0.6100 0.5244 0.5964 0.6200
R-VGAE 0.6950 0.6772 0.8073 0.7661
MHAVGAE 0.7450 0.7330 0.8201 0.7797
TCPL (ours) 0.8088 0.7900 0.8434 0.8668

LBD

PREREQ � 0.4875 0.5130 0.5032 0.5557
BERT-base 0.6526 0.6207 0.6143 0.6516
DAPT BERT 0.6526 0.6374 0.7677 0.7176
R-GCN 0.5394 0.5921 0.5870 0.5840
VGAE 0.5904 0.5792 0.5733 0.6053
R-GCN (BERT) 0.5120 0.5239 0.5357 0.5536
R-VGAE 0.6538 0.6764 0.6467 0.6338
MHAVGAE 0.6774 0.6899 0.7608 0.7256
TCPL (ours) 0.7737 0.7774 0.8380 0.8393

MOOC

PREREQ � 0.5429 0.5746 0.5286 0.6248
BERT-base 0.7645 0.7776 0.8313 0.8461
DAPT BERT 0.7628 0.7851 0.8428 0.8564
R-GCN 0.6500 0.5532 0.5742 0.6208
VGAE 0.6550 0.5818 0.7371 0.7045
R-GCN (BERT) 0.6120 0.5346 0.5333 0.6037
R-VGAE 0.7050 0.7204 0.7978 0.7544
MHAVGAE 0.7485 0.7653 0.8832 0.8789
TCPL (ours) 0.8400 0.8411 0.9115 0.9076

� Results are from [12].

The classification group included three typical methods based on deep learning: PRE-
REQ; BERT-base; and DAPT BERT. The results indicated that continual pre-training on
a domain-related corpus helps improve model performance. Compared to the graph-
network-based group based on these results, we found that, while the classification group
performed close to or even better on Accuracy and F1 scores than the graph-network-based
group, the performance on AP tended to be poorer, compared to graph-based methods.
For a binary classification task, AP reflects the classifier’s ability to correctly identify positive
samples while incorrectly categorizing negative samples when the probability threshold
is varied. Unlike graph-based methods that predict the existence of prerequisite relation-
ships by performing inner products on node representations and specifying thresholds,
classification models often choose the label with the highest predicted probability as the
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final prediction, which is equivalent to a constant threshold of 0.5; therefore, graph-based
methods tend to score higher on this metric. We found that the graph-based methods,
R-VGAE and MHAVGAE, performed better than the BERT model. Moreover, the overall
performances of the models on the LBD dataset were generally worse than on the UCD
dataset, mainly due to the lower edge density in the LBD dataset.

As for the graph-based models, MHAVGAE—which utilizes multi-head attention
and gating mechanisms—performed better than the other methods. The unsupervised
VGAE method performed better than R-GCN. However, using BERT to obtain concept
representations as the initial node inputs for R-GCN resulted in decreased performance,
as the node representations in the graph neural networks were often of low dimensionality.
The high-dimensional concept representations obtained by BERT could cause overfitting,
and were not in the same representation space as those obtained by graph neural networks.
Despite this, the comprehensive performance of these models was not as good as our pro-
posed model. The reason was that, except for the BERT+RGCN baseline model, the models
mentioned above all used traditional pre-trained language models as initialization for
concept representation, which had two limitations: firstly, it required text corpora that
included concepts with a certain frequency of occurrence, to obtain concept representations;
secondly, using concept representations as the initial input for the graph model did not
guarantee that the model made full use of the text features of the concepts when predicting,
unlike the joint optimization method proposed in this paper, which was shown to be
effective in the experimental results.

The experimental results show that our proposed model significantly improved per-
formance on all metrics, compared to the baseline model. The proposed model achieved
an improvement of 7.9%, 6.7%, 5.6%, and 8.4%, on average, on ACC, F1, AP, and AUC,
respectively, compared to the baseline model with a suboptimal F1 value, demonstrating
the proposed model’s effectiveness. Our proposed model was also from the classification
perspective, but combined the strength of link prediction, and ultimately outperformed
all baselines, for three main reasons: (1) design of a continual pre-training stage to inject
domain-related knowledge into the pre-trained language model; moreover, use of our
enhanced BERT to encode the text of concepts, which not only eliminated the restriction
mentioned above, as in traditional pre-trained language models such as word2vec and
phrase2vec, but also enabled the obtaining of better textual features based on the rich
knowledge encoded in the model; (2) for the constructed resource–concept heterogeneous
graph, using R-GCN to obtain resource-enhanced concept representations allowed the
incorporation of information related to other concept-related resources in the final con-
cept structural features used for prediction; (3) jointly optimizing the text encoder and
graph encoder, rather than using them merely as feature extractors, fully leveraged the
complementary effects of the features obtained by both encoders.

5.3. Ablation Study

Our proposed approach contains several complementary modules: thus, we conducted
an ablation study, to prove the effectiveness and contribution of these modules. Specifically,
we removed the module of BERT, the R-GCN, the optimization goal BCE loss and hinge
loss, or the continual pre-training, respectively. The results are provided in Table 3, where
w/o CP means without continual pre-training. We implemented it by replacing the text
encoder in the joint learning stage with BERT-base.
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Table 3. The ablation study performance comparison.

Method
UCD LBD MD

ACC F1 AP AUC ACC F1 AP AUC ACC F1 AP AUC

TCPL 0.8088 0.79 0.8434 0.8668 0.7737 0.7774 0.838 0.8393 0.8400 0.8411 0.9115 0.9076
-w/o BERT 0.6450 0.5989 0.6333 0.6548 0.5394 0.5921 0.587 0.584 0.6500 0.5532 0.5742 0.6408
-w/o R-GCN 0.6916 0.6635 0.6412 0.7433 0.6526 0.6207 0.6143 0.6516 0.7645 0.7776 0.8313 0.8461
-w/o hinge loss 0.8062 0.7877 0.7768 0.8416 0.7333 0.7039 0.8176 0.7958 0.7463 0.7584 0.7026 0.7555
-w/o BCE loss 0.4493 0.6177 0.4828 0.5372 0.5395 0.5270 0.5494 0.5528 0.5249 0.6056 0.5907 0.5841
-w/o CP 0.8017 0.7798 0.8366 0.8608 0.7605 0.7598 0.8163 0.8135 0.8192 0.8256 0.8812 0.8870

Table 3 shows the effectiveness of these modules or continual pre-training in our
proposed model. When each encoder was implemented separately, the performance
decreased significantly in all metrics, with a minimum drop of 12% compared to our
proposed approach. This demonstrated that the proposed model effectively leveraged
the complementary effects of the different aspects of information learned by the two
encoders. When removing one training goal, our model performance also became poorer.
In particular, the model performance decreased sharply when we removed the BCE loss,
which implied that it was essential to train our model effectively with BCE loss. Training
without hinge loss had a more significant impact on the LBD dataset than on the UCD
dataset: it weakened the model’s effectiveness mainly on AP on the UCD dataset, but
reduced the overall performance on the LBD and MD datasets. In addition, removing
continual pre-training also resulted in reduced efficacy on all datasets. However, continual
pre-training did not significantly improve the model’s performance, especially on the UCD
dataset: this may have been due to the relatively small size of the training corpus, and the
max length of input in our experiment.

We also tried the gated mechanism, to fuse textual and structural representation,
but the results indicated that it hurt the model performance. We concluded that the reason
was the different dimensions of textual and structural representation, and we will explore
more effective ways of fusion in the future.

5.4. Model Analysis

In our model, the hyperparameter η and embedding size are vital parameters. Here,
we report the performance of our model, based on the above different hyperparameters.

5.4.1. Hyperparameter η

We analyzed the effects of different hyperparameters η. We set the learning rate
at 0.01, the embedding dimension at 16, and we varied η as {0.3, 0.4, 0.5, 0.6, 0.7}. The
experimental results are reported in Figure 3. Based on the results, we found that on the
University Course dataset, with η increasing from 0.3 to 0.5, the model performed better,
while increasing from 0.5 to 0.7 resulted in decreasing model efficacy. When η was 0.5, our
model performed at its best. In the LectureBank dataset, the situation was different. The
model performance showed a slight improvement, followed by a subsequent decline, as the
parameter increased from 0.3 to 0.6, and the model achieved optimal performance when
η was 0.7: this was because this hyperparameter controlled the ratio of two types of loss,
and the BCE focused more on classification, while the hinge loss aimed at learning better
structural representation. The statistics of the datasets show that the LectureBank dataset
had fewer edges between concepts: in that circumstance, textual information was more
helpful for model performance. On the MOOC dataset, our proposed model’s performance
was relatively stable, as the hyperparameter changed. The model performed best when η
was 0.3 or 0.7, illustrating that this ratio was effective on the MOOC dataset.
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Figure 3. Performance comparison with different hyperparameter η.

5.4.2. Embedding Dimension

We set the embedding size of the R-GCN to η in {16, 32, 64, 128, 256}, to investigate
the effect on model performance when the dimension of textual representation from BERT
was fixed at 768, and the hyperparameter η was set to 0.5, 0.7, and 0.7, respectively. The
experimental results are provided in Figure 4. Based on the results, we found that our model
achieved the best performance when the embedding size was 16 on the University Course
dataset. Furthermore, as the embedding size increased, the model performance initially
decreased at 32 dimensions, then improved at 64 dimensions, and remained relatively
stable, with only minor fluctuations in performance observed up to 256 dimensions. On the
LectureBank dataset, our model performed best when the embedding size was 32, and the
model’s performance fluctuated more as the embedding size changed. On the MOOC
dataset, the model performed best when the embedding size was 128 or 256.
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Figure 4. Performance comparison with different embedding size.

6. Conclusions

In this paper, we have proposed TCPL, a two-stage framework for concept prerequisite
learning. In the continual pre-training stage, we designed the relationship discrimination
task, together with a masked language model to enhance the pre-trained language model,
so as to obtain better textual representations of the concepts. In the joint learning stage, we
leveraged the complementary effects of the semantic and structural information. Specif-
ically, we constructed a resource–concept graph, and utilized hinge loss with BCE loss,
to simultaneously optimize the pre-trained language model and graph encoder R-GCN.
Our approach outperformed all competitive baselines in experimental studies on three
public datasets.

Nonetheless, this study demonstrated three major limitations: firstly, our proposed
model cannot utilize information from other modalities, such as vision or speech; secondly,
we mainly evaluated our model on computer science subjects, which cannot guarantee
the best performance when applied to datasets from other areas; thirdly, there are many
relationship between concepts, but our proposed model was only trained to predict prereq-
uisite relationships.
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In the future, we will explore a more practical approach to modeling heterogeneous
graphs, and an effective way to merge different feature types. Additionally, we plan to
consider multiple types of relationships beyond merely the prerequisites between concepts.
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