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CONTINUATION-CONJUGATE GRADIENT METHODS FOR THE LEAST
SQUARES SOLUTION OF NONLINEAR BOUNDARY VALUE PROBLEMS*

R. GLOWINSKIt, H. B. KELLER}{ AND L. REINHARTS

Abstract. We discuss in this paper a new combination of methods for solving nonlinear boundary value
problems containing a parameter. Methods of the continuation type are combined with least squares
formulations, preconditioned conjugate gradient algorithms and finite element approximations.

We can compute branches of solutions with limit points, bifurcation points, etc.

Several numerical tests illustrate the possibilities of the methods discussed in the present paper; these
include the Bratu problem in one and two dimensions, one-dimensional bifurcation and perturbed bifurcation
problems, the driven cavity problem for the Navier-Stokes equations.

Key words. nonlinear boundary value problems, bifurcation, continuation methods, nonlinear least
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1. Introduction. We present in this paper a powerful combination of techniques
that are used to solve a variety of nonlinear boundary value problems containing a
parameter. Indeed the resulting method can be employed to study a large class of
nonlinear eigenvalue problems. The individual techniques include: arclength or pseudo-
arclength continuation, least squares formulation in an appropriate Hilbert space
setting, a conjugate gradient iterative method for solving the least squares problem
and finite element approximations to yield a finite dimensional problem for compu-
tation.

In § 2 the solution techniques are described in some detail. Specifically in § 2.1
the last squares formulation of a broad class of nonlinear problems, say in the form

(1.1) AU =T(U),

are formulated in an appropriate Hilbert space setting. Then in § 2.2 a conjugate
gradient iterative solution technique for solving such least squares problems is presen-
ted. In § 2.3 a pseudo-arc length continuation method for nonlinear eigenvalue problems
in the form

(1.2) Lu=G(u, \)
is discussed. This involves adjoining a scalar linear constraint, say
(1.3) I(u, A, s)=0,

and with U = {u, A} the previous least squares and conjugate gradient techniques can
be applied to the system (1.2), (1.3). One big advantage of our specific continuation
method is that simple limit or fold points of the original problem (1.2) are just regular
points for our reformulation in the form (1.1). The entire procedure thus enables us
to determine large arcs of branches of solutions of (1.2) with no special precautions
or change of methods near limit points.
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These techniques, as described in § 2, apply to the analytical problem. However
they go over extremely well when various discrete approximations are applied to yield
computational methods of great power and practicality. We illustrate this by considering
several nonlinear boundary value problems of some difficulty and current interest. In
each of these problems the discretization is obtained by some finite element formulation.
The well-known Bratu problem on a square domain is treated in § 3. Several ordinary
differential equation examples displaying bifurcation and the effects of perturbed
bifurcation are treated in § 4. We show how to use perturbed bifurcation and continu-
ation to obtain the bifurcating solutions. Finally in § 5 the Navier-Stokes equations
are solved for the driven cavity problem.

Actually the techniques described in this paper have also been applied to the
solution of nonlinear boundary value problems, more complicated than those con-
sidered in the following sections. Among these problems, we shall mention the Von
Karman equations for nonlinear plates and the computation of the multiple solutions
of the full potential equation modelling transonic flows for compressible inviscid fluids.

2. Solution techniques. We introduce in this section the methods we shall apply
in §§ 3, 4, 5, to the solution of quite general nonlinear boundary value problems. They
include least squares, conjugate gradient and arc length continuation methods. ’

Let V be a Hilbert space (real for simplicity) equipped with the scalar product
(+, ) and the corresponding norm || - ||. We denote by V' the dual space of V,by (-, )
the duality pairing between V and V’, and by || - ||, the corresponding dual norm, i.e.

@) fla= sup LoV

S el TEY
The problem that we consider is to find u € V such that
(2.2) S(u)=0,
where S is a nonlinear operator from V to V.

2.1. Least squares formulation of problem (2.2). A least squares formulation of
(2.2) is obtained by observing that any solution of (2.2) is also a global minimizer over
V of the functional J: V>R defined by

(2.3) J(v) =383

Hence a least squares formulation of (2.2) is:
Find u e V such that

(2.4) J(uysJ(v) VveV

In practice we proceed as follows. Let A be the duality isomorphism corresponding to
(+,-)and (-,-). Thatis Yve V, Ave V' satisfies

(2.5) (A, wy=(v,w) Vwel,

(2.6) ol = [ Avll,  (or equivalently || fll,=[AT'f], ¥fe V).
It follows that

(2.7) J(v)=XA¢ &) (=3ll€]),

where £ is a (nonlinear) function of v obtained via the solution of the well-posed linear
problem

(2.8) A¢=S(v).
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We observe that (2.4) has the structure of an optimal control problem, where
(i) v is the control vector,
(i) ¢ is the state vector,
(iii) (2.8) is the state equation,
(iv) J is the cost function.
As a final remark we observe that any solution of the minimization problem (2.4) for
which J vanishes is also a solution of the original problem (2.2).

2.2. Solution by a conjugate gradient algorithm. We suppose from now on that S
is differentiable implying in turn the differentiability of J over V. We denote by S’ and
J' the Fréchet derivatives of S and J respectively.

From the differentiability of J it is quite natural to solve the minimization problem
(2.4) by a conjugate gradient algorithm; among the possible conjugate gradient
algorithms we have selected the Polak-Ribiére variant (cf. Polak [1]) whose very good
performance has been discussed by Powell[2] (see also Shanno [28]). The Polak-Ribiére
method applied to the solution of (2.4) provides the following algorithm.

Step 0: Initialization. For some given

(2.9) u’eV,
compute g°¢ V as the solution of

(2.10) Ag’=TJ'(u°),
and set

(2.11) 2%=g°

Then, for n=0, with u”, g", z" known, compute u"*', g"*!, z"*! by:
Step 1: Descent. Compute:
(2.12) p. =arg min J(u" - pz"),
peR
and then set

(2.13) wt=u"-p,z"

Step 2: New descent direction. Define g"*' € V as the solution of
(214) Agn+1=Jr(un+l);

then compute

A n+l__ _n n+1 n+l __ n’ n+1
(2.15) A —g0)e >(:(g 8", 8 ))
(Ag", g") (8", 8"

and set

(216) Zn+1 — gn+l+ ,ynzn.

Set n=n-+1 and return to Step 1.

The two costly steps (because they need some auxiliary computations) of algorithm
(2.9)-(2.16) are:

(i) The solution of the one-dimensional minimization problem (2.12) to obtain
pn. We have done the corresponding line search by dichotomy and parabolic interpolation,
using p,_, as starting value' (see [3] for more details). We recall that each evaluation

! If the nonlinearity is polynomial we can use faster methods.
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of J(v), for a given argument v, requires the solution of the linear problem (2.8) to
obtain the corresponding £

(ii) The calculation of g"*' from u™*"' which requires the solution of two linear
problems associated with A (namely (2.8) with v =u""" and (2.14)).

Calculation of J'(u™) and g": Owing to the importance of Step 2, let us detail the
calculation of J'(u") and g".

Let ve V; then J'(v) may be defined by

(2.17) (J'(v), wy=lim Ywe V.

t#0

J(v+w)—J(v)
t

We obtain from (2.7), (2.8), (2.17) that

(2.18) (J'(v), w)=(A& n)

where ¢ and 7 are the solutions of (2.8) and

(2.19) An=S'(v)-w,

respectively. Since A is self-adjoint (from (2.5)) we also have from (2.18), (2.19) that
(2.20) (J'(v), w)=(Ag n)=(An, £ =(S'(v) - w, &).

Therefore J'(v) € V' may be identified with the linear functional

(2.21) w->(S'(v)-w, £).

It follows then from (2.14), (2.20), (2.21) that g" is the solution of the following linear
variational problem:

Find g" € V such that
(Ag", w)=(S"(u")-w, £") VweV,

(2.22)

where £" is the solution of (2.8) corresponding to v=u".

Remark 2.1. Tt is clear from the above observations that an efficient solver for
linear problems related to operator A (in fact to a finite-dimensional approximation
of A) will be a fundamental tool for the solution of problem (2.2) by the conjugate
gradient algorithm (2.9)-(2.16).

Remark 2.2. The fact that J'(v) is known through (2.20) is not at all a drawback
if a Galerkin or a finite element method is used to approximate (2.2). Indeed we only
need to know the value of (J'(v), w) for w belonging to a basis of the finite-dimensional
subspace of V corresponding to the Galerkin or finite element approximation under
consideration.

Convergence of algorithm (2.9)-(2.16): We introduce the concept of regular solution
of problem (2.2) by the following definition.

DEFINITION 2.1. A solution u of (2.2) is said to be regular if the operator S'(u)
(e £(V, V")) is an isomorphism from V onto V'

Using a modification of the finite-dimensional techniques of Polak [1], it has been
proved in Reinhart [3] that if problem (2.2) has a finite number of solutions and if
these solutions are regular, then the conjugate gradient algorithm (2.9)-(2.16) converges
to a solution of (2.2), depending upon the initial iterate u° in (2.9). This convergence
result requires that u° is well chosen, as in Newton’s method. Hence the role that
continuation methods may play is apparent.
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2.3. Arc length continuation methods. Consider now the solution of nonlinear
problems depending upon a real parameter A ; we would like to follow in the space
V XR branches of solutions {#(A), A} when A belongs to a compact interval of R.

These nonlinear eigenvalue problems can be written as follows

(2.23) S(u,A)=0, AeR, ucV.
Equation (2.23) reduces quite often to
(2.24) Lu=G(u,A), AeER, ucy,

where L: V> V' is a linear elliptic operator, and where G is a nonlinear Fredholm
operator (see e.g. Berger [4] for the definition of Fredholm operators).

A classical approach is to use A as the parameter defining arcs of solutions. If for
A = Ao problem (2.23) has a unique solution u = u, and if that solution is isolated, that
is

BN
(2.25) s° =£( Uo, Ao) is an isomorphism from V onto V',

and if {#, A}> S(4, 1) is C' in some ball around {uo, Ao}, then the implicit function
theorem implies the existence of a smooth arc of regular solutions u=u(A) for
|A — Ao| < p. Therefore, for A given sufficiently close to A, we may solve problem (2.23)
just as problem (2.2). These procedures, however, may fail or encounter difficulties
(slow convergence for example) close to a nonisolated solution.

To overcome these difficulties we replace problem (2.23) by the following system

(2.26) S(u,A)=0,

(2.27) Ku, A, s)=0,
where I: VXRXR—>R is chosen such that s is some arc length (or a convenient
approximation to it) on the solution branch. We look then for a solution {u(s), A(s)},

s being given (but not A). If in addition to {u,, Ao} we know a tangent vector to the
path {u(so), A(so)} (where ¢ denotes the derivative of v with respect to s) satisfying:

(2.28a) S.(tto, Ao)1i(50) + Sy (tto, Ag)A(5) =0,

(2.28b) li(so) >+ [A(s) P =1,

then we can use

(2.29) I(u, A, s) = (1(so), u(s) — u(se)) + A(so}(A(s) = A(50)) — (s — 50) =0,

for |s — so| sufficiently small.
Let us define Ue VXR by U ={u, A}; then problem (2.26), (2.27) can be written

as
(2.30) T,(U)=0,
where

- Tls( U)
(2.31) TS(U)~<TZS(U)>
with

(2.32) T (U)=S(u, A), T, (U)=I(u, A, s).
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The main interest of this new formulation is that the ordinary limit points of (2.26)
become regular solutions of (2.30) (see H. B. Keller [5], [6] for more details).

Using the notation of § 2.1 a least squares formulation of (2.30) (generalizing
(2.4)) is given by:

Find U(s)={u(s), A(s)} such that

(2.33)

J(UGH=T(W) YW={w, ule VXR,
with
(2.34) J (W) =X Aw, W)+l

where, in (2.34), w and 4 are (nonlinear) functions of {w, u} via the solution of the
linear problems

(235) Aﬁ’ = Tls(w’ ,LL),
(2.36) fz = TZS(Wa #‘)s
respectively.

We consider now a conjugate gradient algorithm (in fact, a variation of algorithm

(2.9)-(2.16)) to solve the least squares problem (2.33); this algorithm is defined as
follows.

Step 0: Initialization. For some given
(2.37) U°={u° A%
compute G°={g?% g%} € VXR as the solution of

aJ;

(2.38) Agh=—(U%,
Ju
aJ.

2.39 T=—(U°
(2.39) g =73 u°),
and set
(2.40) Z°=G".

Then for n= 0, with U", G", Z" known, compute U""", G"*! Z"*! as follows.
Step 1: Descent. Compute

(2.41) pn = Arg Mi&l J(U"—pZ"),
pe
(2.42) Urtt=U"—p, 2"

GGe. " =u"—p 2 A" = A" —p,20).
Step 2: Calculation of the new descent direction. Define G""'={gi*", gi*'}e VXR
as the solution of

aJ,

(2.43) Agﬂ“z‘—-—(U"H),
ou

(2.44) gt =gy,

A



CONTINUATION-CONJUGATE GRADIENT METHODS 799

then compute
n+1 n+1 n+1

_(Algi —gl), guh+(gh " —gh)gh
(Agl, g +lgif

n

(245) n+1 n n+1 n+1 n n+1
=(gu —8u8u )T (gh —g808x
lgal®+lgal? '
and set
(2.46) Zn+1 — Gn+1 + 'YnZn'

Set n<n+1 and return to Step 1.

The various comments given in § 2.2, concerning algorithm (2.9)-(2.16), still hold
for algorithm (2.37)-(2.46). In particular as we pointed out in Remark 2.1 is the
importance of efficient methods for solving linear problems related to operator A. This
remark still holds, indeed, since in the context of § 2.3, A is replaced by the block-
diagonal isomorphism &f: VXR-> V'XR defined by

A 0
A= .
(5 9
We do not go into the details of the calculation of aJ,/du, 3J,/dA since it is just a
trivial modification of the calculation done in § 2.2 to obtain J'.

A crucial step in the continuation method is a “good” initialization choice in
(2.37). The obvious choice

(2.47) {u®, A% ={u(so), A(50)}
is naive and a better choice is provided by using the tangent of (2.28) in the extrapolation:

u? = u(so)+ (s — so) (o),

(2.48) .
A= A(80) + (5 — 56)A(so).

This results in much faster convergence, especially close to the limit points. This
initialization technique leads to the so-called continuation method with incremental load
and is of order 2 (see Deuflhard [38]). We shall return to this initialization problem
in §2.4.

Convergence of algorithm (2.37)-(2.46). The fundamental advantage of the arc
length continuation approach is that it provides an efficient solution method in the
neighborhood of the so-called limit (or fold) points of problem (2.23). A precise
formulation of the concept of simple limit points is given by the following definition.

DEFINITION 2.2. Let {1y, Ao}€ V XR be the solution of problem (2.23). We say
that {ug, Ao} is a simple limit point if:

48 S
(2.49) dim Ker (6—u(u0, /\0)) = codim Range (g;(uo, A0)> =1,

3S oS
(2.50) a—/\(uo, Ao) £ Range <5;(u0, /\0)>.

We show in Fig. 3.2 an example of such a limit point (located on a solution curve of
S(u, A) =0 where Aq= Acg).

The main justification of arc length continuation methods follows from the next
proposition.
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ProposiTION 2.1. Any simple limit point solution of problem (2.23) is a regular
solution of problem (2.30).

For a proof, see Keller [39], Decker-Keller [40].

From a practical point of view, Proposition 2.1 is of fundamental importance for
the following reasons.

(i) Since simple limit points for problem (2.23) are regular points for problem
(2.30), the conjugate gradient algorithm can be used to compute these limit points via
the least squares formulation (2.33). This property is a direct consequence of the
convergence properties of the conjugate gradient algorithm mentioned in § 2.2 and
discussed in details in {3].

(ii) Using a perturbation technique, bifurcation points can be approximated by
simple limit points. Then the solution methods described in the present § 2 can be
applied; several examples of such situations will be discussed in § 4.

2.4. Implementation of the arc length continuation method. To help potential users
of continuation methods discussed in the previous sections, we summarize here the
essentials of these methods. We solve the nonlinear problem (2.23) via the solution of
a family (parametrized by s) of nonlinear system (2.26), (2.27). In practice we approxi-
mate (2.26), (2.27) by the discrete family of nonlinear systems described below, where
As is an arc length step, positive or negative (possibly varying with n) and where
u"=u(nlAs), A\"=A(nAs):

Initialization. We suppose that we know a solution {u°, 1%} of (2.23); we take it
as origin of the arc of solutions, i.e. u’=u(0), A°=A(0). We suppose also that we
know the tangent (1(0), A(0)) satisfying (2.28a, b) (or at least an approximation to it;
see Remark 2.3).

Continuation. Then for n=0, with u”", A" known and also u"~
u(0), A(0) if n=0), we obtain {u"*', A""'}e V xR as the solution of:

A" (resp.

(2.51) S(u™', A" =0,
and
(2.52) (' = u®, w(0)+ (A= ADA(0)=As if n=0,

n___.n—1 An___An—l
(2.53) (u"+1—u",y——A%—~)+(/\"“——)\")(T)=As ifn=1.

Remark 2.3. It may occur that obtaining {:(0), A(0)} is by itself a complicated
problem; however obtaining a second solution of (2.23), close to {u°, A°}, may be easy
(using the nonlinear least squares-conjugate gradient methods of §§2.1, 2.2, for
example). This supposes that we are sufficiently far from a singular point. Let us denote
this second solution by {u~", A"'}; to approximate {1(0), A(0)} we compute first As® by

(2.54) (As®? = u®—u P+ A= A7),
and approximate 4(0), A(0) by
ul—u? A%=r!
(2.55) T o
As As

respectively. The sign of As® depends upon the orientation chosen for the arc of
solutions and of the relative positions of {u°, A°} and {u™", A7'} on it.

Remark 2.4. Relations (2.52), (2.53) employ difference quotients to replace or
approximate the tangents used in (2.28b) and (2.29). From this idea we can derive



CONTINUATION-CONJUGATE GRADIENT METHODS 801

many other schemes for the approximation of (2.26), (2.27). Methods for the automatic
adjustments of As are important but we do not discuss them here; see Rheinboldt [41].
A least squares conjugate gradient method for solving in V XR systems very close to
(2.51)-(2.53) has been discussed in §2.3. To start this algorithm we have used
{2u” —u""', 24" = A""'} as an initial guess to compute {u"**, A"*'}. This is just another
use of the difference approximation to the tangent, but now in (2.48).

3. Application to the solution of the Bratu problem.

3.1. Formulation of the problem, properties of its solutions. As a first test problem
for the solution techniques discussed in § 2 we consider the numerical solution of a
modified Bratu problem, i.e. find a solution u of the nonlinear boundary value problem:

—Au=2Ae"+f in Q,
u=0 on 3.

3.1)

Here Q is a bounded domain of R and aQ its boundary. We denote by x ={x,~}fi,
the generic point of R"™ and define dx by dx=dx, - - - dxx. The (quite classical)
Sobolev-Hilbert space

(3.2) HY Q) ={u ve Lz(Q),gf-e L*(Q),Vi=1,---,N,v=0on aQ},

equipped with the scalar product

(3.3) (4, ) iy = J Vu:Vodx
Q

and the corresponding form

1/2
(3.4) ol HyQ) = (L} Wl’lz dx) s

provides a functional framework well suited to the solution of (3.1) by variational
methods, and most particularly by those discussed in § 2.

For simplicity we consider only situations for which f is a nonnegative constant
(=0 in the Bratu case). We suppose also that A =0, since problem (3.1) has a unique
solution in Hy(€2) if A =0; such a result can be proved using monotonicity methods,
like those discussed in e.g. Lions [7], and based on the fact that the operator

v>—Av—Are’—f

is monotone over H{(Q) if A <0. If A >0, problem (3.1) and closely related nonlinear
problems, have been considered by many authors; with regard to recent publications
let us mention among others Crandall-Rabinowitz [8], [9], Amann [10], Mignot-Puel
{11], Mignot-Murat-Puel [12], Keller-Cohen [30], Keener-Keller [31]; in particular
we find in [12] an interesting discussion showing relationships between (3.1) and
combustion phenomena and in [30] a relationship to joule-heating in conductors. The
following has been proved for A >0:

There exists a critical value of A, say A*> 0, such that:

(i) If A> A*, then problem (3.1) has no solution.

(ii) If A €10, A*] (resp. A €]0, A*[), then problem (3.1) has at least one solution
(resp. two solutions) belonging to H)() N W>P(Q) Vp=1, where

v dv
[
ax; 3X; 0x;

W2’”(9)={v e LP(Q),Vi=ij= N}.
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(iii) If A =A% there exists a unique u*e H) Q)N W>(Q), Vp=1; moreover
{u*, A*} is a simple limit point for the equation

S(u, A)=0,
where the operator S is defined over Hy()) XR by
S(v, u)=—Av—pe’—f.

In the above theoretical references it is also proved that these solutions which are
not limit points are regular solutions. It follows from all these properties that the
solution techniques discussed in § 2 can be applied to the solution of (3.1) if A >0.
Their application to the computational solution of (3.1) requires, however, a finite
dimensional approximation of this last problem; such an approximation—by finite
element methods—is considered in the following sections. Problem (3.1) has been
investigated numerically by, among others, Kikuchi [13], Simpson [14], Moore-Spence
[15], Chan-Keller [16] (by arc length continuation and multigrid finite difference
methods), Reinhart [3], to which we refer for more details and further references.

3.2. Finite element approximation of the Bratu problem.

3.2.1. Variational formulation of the Bratu problem. Triangulation of . Funda-
mental discrete spaces. A variational formulation of the Bratu problem (3.1), well suited
to finite element approximations and to the solution techniques of § 2, is given by

Find {u, A} € H){(Q) XR such that
(3.5)

I Vu-Vvdx=J (re"+flvdx Yve H(Q).
Q Q

We describe only the approximation of problem (3.1) for N =2 (the one-dimensional
case, N =1, is much simpler); we suppose also for simplicity that €} is a polygonal
domain of R?. We consider now a standard family of finite element triangulations
{Tn}, of Q, i.e. for a given h, I, is a finite collection of (closed) subtriangles, T, of
), such that
(i) U TeJ, T=A,
(i) VT, T'e 9, T# T', we have either
(x) TNT =0,
(xx) or T, T' have only one vertex in common,
(*¥+x) or T, T' have only a whole edge in common,
(iii) h is the maximal length of the edges of the Te 7.
An example of such a triangulation is shown in Fig. 3.1, for =10, 1] x]0, 1[.
We approximate H () by the finite-dimensional space:

(3.6) Vor ={vs|0,€ C%Q), v,|7€ P, VT T, v,=0 on oQ}

where P, is the space of polynomials in x,, x, of degree =1. It follows that dim V, = Ny,
where N, is the number of vertices of 7, interior to Q and Vg, = HyQ).

3.2.2. Formulation of the approximate problems. As an approximate problem it is
quite natural to take:

Find {u,, A} e Vy, XR such that
(3.7) {uy, Oh

J Vu,,-Vv,,dx=J. (Ae" "+ flu,dx Yo, e Vy,
a Q
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X2 A

>
g

1 X1

F1G. 3.1. Finite element triangulation for the Bratu problem.

Problem (3.7) is equivalent to a system of nonlinear equations in R™o+*', To obtain
this system we suppose that the set 2,, of the vertices of 9}, has been ordered so that

(3.8) Son ={P} 1o

i=1>
and that to each P, of 2,, we have associated the function w; satisfying
(3.9) w; € VOh, W,(I)}) = 6,] Vi= l,_] = NOh-

The set By, = {w;} fi"; is a basis of the vector space V,,, and we clearly have the important
relation, Vv, € Vy,:

NOh
(3.10) vp= Y vu(P)w,
i=1
Using (3.10) in (3.7), we get the nonlinear system:
NOh
Y (J Vw;-Vw, dx) u,(P;)
ji=1 \Ja

(3.11)

0h

N,
=j (/\ exp(Z u,,(Pj)wj) +f> w; dx, 1=i= Ny
o j=1
Here the unknown vector is {{u,,(P,-)}},I.\i’;', AeRMor xR,

Since Vw, Vw; are piecewise constant functions, the calculation of the left-hand
side is an easy task. The integrals occurring on the right-hand side of (3.11) can be
calculated exactly. However in order to reduce the computational work, we evaluate
these integrals approximately. Two possibilities are as follows:

(i) Calculate IQ e"rw; dx using the two-dimensional Simpson rule on each triangle
Ted,, ie.

(3.12) J' ¢ (x) dx =3 measure (T) i o (m;r),

Jj=

where m, 1, m,1, my1 are the midpoints of the three edges of T. Formula (3.12) is exact
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if ¢ € P, (P,=space of polynomials of degree =2). We need to apply Simpson’s rule
only on those triangles of 7, with P; as a common vertex.
(ii) Apply to .[9 e"nw; dx the two-dimensional trapezoidal rule, i.e.

3

(3.13) J' ¢ (x) dx = measure (T) X ¢(Pr),

Jj=

where Py, j=1,2,3 are the vertices of T; formula (3.13) is exactif ¢ P,. If 7, is a
regular triangulation, like the one of Fig. 3.1, using (3.13) to calculate the right-hand

sides of (3.11) we recover classical finite difference schemes for the discretization of
(3.1).

3.3. Numerical solution of the discrete Bratu problem by arc length continuation
methods. We now apply the continuation methods of §§ 2.3, 2.4 to solve the discrete
Bratu problem (3.7). This leads to the following algorithm:

(a) Initialization. Set

(3.14) A%=0.
The corresponding u$ is the unique solution of the followng discrete linear Dirichlet
problem (given in variational form).

Find 4% € V,, such that
(3.15)

J Vu?,-Vv,,dx=I fondx Vv, e V.
Q (¢

This is equivalent to a linear system (obtained by setting A =0 in (3.11)) whose matrix
is symmetric and positive definite. We take {u}, O} as the point on the arc of solutions
{u,(s), A(s)} for which s =0. Denote dX(s)/ds by X(s) for X =u, or X =A. Then
by differentiation of (3.7), with respect to s, we obtain at s =0:

J Vi, (0) - Vo, dx = A(0) J ey, dx Yo, € Vg,
(3.16) ? °
u,,(O) € VOh'

We also require as a definition of s:
(3.17) J IV 11, (0)]? dx + A*(0) = 1.
Q

Define i, as the solution of

itn € Vo
(3.18) ne oo

I Vﬁh'Vvhdx=J e“gvhdx Vv, € Vo
[} 0

Then from (3.16)-(3.18) we have
(3.19) 16 (0) = A(0)diy,

(3.20) A2(0) = (1 +J |V i, dx)_ .

Since we are interested in solving the Bratu problem for A > 0 and we have set A(0)=0
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we must orient the solution arc in such a way that dA/ds (= A) = 0. Thus (3.20) yields:
—-1/2
(3.21) )1(0)=<1+J' \4/Ak dx) .
[9)

(b) Continuation. With As (> 0) as a fixed step in arc length, we define for n=0
an approximation {ui*’, A"} (€ Von XR) of {u,((n+1)As), A((n+1)As)} as the
solution of the following nonlinear variational system:

Find {u}™', A"} e V,,, =R such that

(3.22a) Vul*'-Vo,dx = J' (A" e + v dx Vo, € Vo,
0 Q

(3.22b) V(uh—ud) Vi, (0) dx+ (A= A)A(0)=As if n=0,
JO

.

(3.22¢) V(uﬁ“—-uﬁ)-V(
Q

Up— U

1 An_An—J
) dx+()\"“——)\”)<———
As

As

>=As if n=1.

To solve the nonlinear system (3.22), we use the nonlinear least squares conjugate
gradient techniques of § 2.3. We give a detailed description of the operations involved
in the solution process for this first application.

A convenient nonlinear least squares formulation of (3.22) is:

Find {u}*, A"} € Vou XR such that
Jn+1(u;:+l,/\n+l)§]n+l(wh, #’) V{Wh, [L}E VOhXR'
Here the functional J,.,(-, -) is defined by

(3.23)

o )=} || 1V ax+HaP

Q

where w, and g are nonlinear functions of {w,, u} obtained as the solutions of the
linear problems:

Wy € Vop,

(3.24)
J' V»T)h-VU;, dx = J
Q

Q

Vw, Vo, dx—J (we™+fv,dx Vo, € Vg,
O

n__ .. n—1 )\n_An—l
(3.25) ;z=j V(Wh—uﬁ')'V<uL‘)dx+(M-A")<—-——)+As.
a As As

In this particular case, the conjugate gradient algorithm (2.37)-(2.46) reduces to:
Step 0: Initialization. For a given
(3.26) {uh, A%} € Vo XR,

compute {g% g%} e V,, XR as the solution of:

oJ,
(3.27) J' Vgg'VU;, dx:<" +-1(u(;),, AO), Uh> VU;,E V()h,
I Jup
aJ,
(3.28) gh =" (u, A°).

A
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Then set
(3.29) {z%, 23} ={g%, g3}

and for m=0, assuming that {uj’, A™}, {gv,gx}, {z7,z¥} are known, compute
{um+1 /\m-H} {gm+l, g)\ +1} {Zm+1 ;\n+1} by

Step 1: Descent. Find p,, €R such that, VpeR:

(330) Jn+1(uhm"szu"n,/\m"PmZ;\")é-’nﬂ(u;-n—qu, _pZ/\)
Then set
(3.31) up = up =z AT =A™ = p2

Step 2: Calculate new descent direction. Compute {gi"", gV "'} € Vo, XR as the
solution of:

aJ,
(3.32) J Vgr*l.Vy,dx = <———ﬂ(u;,”+l,)\"'“), u,,> Vo, € Vo
1o} oup
aJ,
333 m+1= n+1 m+1’ )\m+1 .
(3.33) gy = (uh )
Evaluate
(3 34) Y J’ﬂ v(gm+] ) Vgum+l dx+(gm+l“g,\ )gm+1
" In Vil dx+|gi
and
(3.35) i = gl 2, 20T = g YR

Then set m =m+1 and return to step 1.

As in § 2.4 we can use {2u;—u} ", 2A" —A""'} in (3.26). The partial derivatives
8J, 11/ 0us, 8J,,1/3A {(occurring in (3.32), (3.33)) can be evaluated using the derivative
calculation technique of § 2.2. At {w,, u} this gives:

aJ, . W~
<———+1(w,,,,u), vh>=[ Vwy,- Vo, dx—uj e rnwyuy, dx
Q

ouy, Q
(3.36) _
. up—up! .
+[,L Vi——— -Vvh dx Vl)he V()h,
Q As
/\n An—l .
(3.37) /.L) M (T) - Jﬂ e"nwy, dx.

Here of course {Wy, fi} are obtained from {w,, u}, through the solution of (3.24), (3.25).
As convergence test we took

(3.38) Jn(up LA™ ) =,
For the examples we used £ =107°,

3.4. Numerical examples. We have employed the above indicated procedures to
solve problem (3.1) in three specific cases:

A f=0, Q=10,1[;
B. f=1, Q=]0,1[;
C. f=0, Q=]0,1[x]Jo, 1[.
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Cases A and B have been discretized by one-dimensional finite elements, using a
space discretization step h =0.1. Case C has been approximated using a triangulation
I, as shown in Fig. 3.1, consisting of 512 triangles. The unknowns are the values taken
by the approximate solution u, at the interior nodes of 7, ; we have 225 such nodes.
The continuation algorithm described in § 3.3 has been applied with fixed As =0.1.

We show in Fig. 3.2 the variation of u, (0.5,0.5) (maximal value of u,) as a
function of A for case C. The numerical results agree very well with those of Kikuchi
[13], obtained by quite different methods.

uh(.S,.S)

1,20 ]

5.60 ]
80 ]
400 ]

3,20 |

1,60 ]

0,80 ]

PRRRTINY

F1G. 3.2. Solution u, at {x, y}={0.5, 0.5} of the Bratu problem on the unit square (case C).

With As = 0.1, the solution of the above three test problems never required more
than 3 to 4 iterations of the conjugate gradient algorithm (3.26), (3.35) to obtain
{up™', A"} from {u}, A"} and {u} ', A""'} via the solution of the least squares problem
(3.23). This efficiency is partly due to the good initialization of algorithm (3.26)-(3.35)
provided by the initial guess {2uf—u} ', 20" —A" "'} and partly due to the small step
size of As. Using the above methods there were no difficulties close to and at the limit
point.

We point out that each iteration of the conjugate gradient algorithm (3.26)-(3.35),
requires the solution of several discrete linear systems with a fixed coefficient matrix
independent of n and m; since this matrix is symmetric and positive definite we use
only one Cholesky factorization, taking into account the sparsity of the matrix. The
solution procedure is thus quite efficient.

4. Applications to the solution of bifurcation problems via perturbed bifurcations.
4.1. Synposis. Generalities. In this section we discuss the numerical treatment of
nonlinear second order boundary value problems whose branches of solutions exhibit
bifurcation. To do this we perturb the original problem into a new one whose branches
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of solutions do not bifurcate but instead have limit or fold points. The solution branches
can then be computed by the continuation methods of § 2.3. The process is based on
the use of a simple perturbation method related to the concept of perturbed bifurcation,
see Keener-Keller [32], Matkowsky-Reiss [33]. By continuing from the perturbed to
the unperturbed problem we can recover the bifurcating solution branches.

4.2. First example: A nonlinear Dirichlet problem. With () a bounded domain of
R™ (N = 1), we consider the solution in V = H3(Q), of the nonlinear Dirichlet problem:

—Au=Au*+8 in Q,
(4.1)
u=0 on 9.

Here § €R is the perturbing parameter. The nonperturbed problem (8 =0) has two
solution branches for A = 0:

(i) the trivial branch {u, A} ={0, A}, VA €R.

(i) a nontrivial branch which never crosses the trivial one (see Fig. 4.1). By
symmetry with respect to {u, A} > {—u, —A} about {0, 0} we easily obtain the unperturbed
solutions of (4.1) corresponding to A =0. Thus in general the unperturbed problem
with 8 =0, has three disjoint solution branches: u=0, A €R and two “hyperbolic”
branches, one for A > 0, and one for A <0. For the perturbed problem, 6 # 0, it follows
from Mignot-Puel {11] that only two distinct branches exist. One of these is a perturba-
tion of one of the hyperbolic branches and it contains only regular solutions. The other
is formed from the perturbed trivial branch joining the other hyperbolic branch and
it contains one simple fold point. Figure 4.1 shows some of these solution branches
for 6 =0.

This problem with § =0 is not, technically, a bifurcation problem. Rather we may
say that it exhibits bifurcation at A = +0c0. However it furnishes a clear example of our
perturbation techniques. We now describe our procedure for computing the nontrivial
branch of solutions of the unperturbed problem (4.1) with A 20. With fixed §>0,
“sufficiently small”, we solve (4.1) by a continuation method, as described in § 2.3,
using {u, A} ={u$, 0} as starting point. Here uj e Hy(Q) is the solution of

-Aul=8 inQ,

(4.2) o
u;=0 on 9.

For 8> 0 and sufficiently small, the upper part, C; of the branch of solutions of the
perturbed problem, away from the limit point {5, A5 } is a good approximation of the
nontrivial branch of solutions of the nonperturbed problem. We take two distinct
points on C3, say {us, As,} and {u,, A5} and compute the nontrivial solutions of the
unperturbed problem corresponding to values A = A; and A = A;,. These solutions can
be obtained using simply the least squares conjugate gradient method of §§2.1, 2.2
(i.e. without continuation), taking us, and u;, as starting points. If necessary, however,
continuation with respect to 8 can be used to reach the value 6 =0.

Once two distinct solutions (sufficiently close to each other) on the nontrivial
branch of solutions of the unperturbed problem have been obtained, we can use
continuation, again, to compute the whole unperturbed branch. Fig. 4.1 illustrates the
indicated process. Indeed the curves in this figure are the results of computation using
0 =10, 1] in (4.1). We discuss these calculations below where also the influence of step
size As and other factors are considered.

The above technique has been applied to compute the nontrivial solutions of more
complicated nonlinear boundary value problems. We discuss some such examples in
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§§ 4.3 and 4.4. The Von Karman equations for nonlinear plates are treated in Reinhart
31, [17].

Computational Results and Tests. The methods of § 2 were applied to (4.1) with
0 =10,1[ for § =5, 4, 3, 2, 0. The nontrivial branch of solutions corresponding to § =0
is obtained by the method indicated on Fig. 4.1. We have used h=0.1 and As=0.1
for the space discretization and the continuation algorithm, respectively. The numerical
results are shown on Fig. 4.1, where we have plotted max, .o 17 #n(x) = u,,(.5) versus A.

The computed results agree with those obtained elsewhere by other methods.

Using (4.1) with § =35 as a test problem we show in Fig. 4.2(a) the number of
conjugate gradient iterations necessary to solve the least squares problem encountered
at each step of the continuation process. The convergence test is as indicated in (3.38),
with £ =107°,

If one takes vy, =0 in algorithm (2.37)-(2.46) (instead of vy, given by (2.45)) we
recover a steepest descent algorithm for solving the least squares problem (2.33). In
the particular case of (4.1) with 8§ =4 we have done a comparison between the
performances of the steepest descent and conjugate gradient algorithms when applied
to the continuation solution. The computed results are summarized on Fig. 4.2(b)
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(b) Steepest descent (8 =4).
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(c) Conjugate gradient (8 =4).



810 R. GLOWINSKI, H. B. KELLER AND L. REINHART

(steepest descent) and 4.2(c) (conjugate gradient). They show clearly the superiority
of the conjugate variant in the neighborhood of the limit point. Note that the steepest
descent case ‘“‘oscillates”, each step taking more or less iterates depending upon the
previous rate of convergence. This effect is less apparent in the conjugate gradient
case. Finally we note some effects of the size of As upon the convergence of our
continuation method, particularly in the neighborhood of the limit point.

(a) If As is too large, the algorithm does not converge close to the limit point.
We can explain this behavior by the fact that the initial guess at the solution, provided
by {2uj—uj ', 22" —~A""'} or {u}, A"} is too far from the branch of solutions.

(b) The smaller the As, the smaller is the number of iterations close to the limit
points. However if we are sufficiently far from the limit point the number of iterations
is quite small and essentially independent of As.

(c) The smaller the As, the better is the approximation to the location of the limit
point.

In conclusion, we should use large As if we are sufficiently far from the limit
point, and decrease As if we are close to the limit point (further details concerning
the choice of As may be found in [3], [5], in Rheinboldt [41] and in Perozzi [34]).

4.3. Bifurcation from a trivial branch.

4.3.1. Synopsis. Generalities. In this section we study simple nonlinear eigenvalue
problems with bifurcations from the trivial branch. In the perturbed form, these
problems are:

Find ue H{(Q) such that
—Au=Au+f(u, A)+8 inQ,

(4.3)
u=0 on 9.
Here f satisfies:
(4.4) f(0,A)=0 VieR
and
(4.5) £.(0,0)=0 VAreR.

For § =0 we note that {u, A}={0, A} is a solution of (4.3) for all A €R. This is the
trivial branch and we seek nontrivial branches bifurcating from it. The linearized
problem about u =0, reduces to:

—Aw=Aw in (),
(4.6)

w=0 on o

It is well known (i.e. Crandall-Rabinowitz [18] or Keller-Langford [36]) that if A; is
an eigenvalue of multiplicity one of (4.6), then the pair {0, A;} is a simple bifurcation
point for solutions of the unperturbed problem: § =0 in (4.3). If w; is a corresponding
eigenfunction then it is also well known (i.e. Keller-Langford [36] or Brezzi-Rappaz-
Raviart [19]) that the bifurcation is symmetric for «; =0 and asymmetric or transverse
for a; # 0 where:

(4.7) aiEJ W?(x)J G(x, £)f1.(0, A;) dé dx.
0 Q

Here G(x, &) is the Green’s function for (—A) on (). These cases are illustrated by the
curves for 6 =0 in Figs. 4.3 and 4.4, respectively. If § # 0 we have the local behavior
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FIG. 4.3. —u"=Au+Au*/2+ 6 in 10, 1[, u(0)=u(1) =0.

indicated on Figs. 4.3 and 4.4, for the solutions of the perturbed problem (4.3). These
configurations are called perturbed bifurcation in Keener-Keller [32] or imperfect

bifurcations in Matkowsky-Reiss [33]. We shall study in particular the cases of (4.3)
in which

(4.8) f(u,)\)EAuz,
2

and

(4.9) flu, A)=—u’.

v Y
2.9 64 1z e 192 25.6 32.8

FIG. 44. —Au=Au—u>+8in 10,1 x10, 1{ (=Q), u=0 on Q.
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It easily follows from (4.6) and (4.7) that for Q =10, 1{:

(4.10a) o;=0,Vi=1,2-- when f is as in (4.9),

(4.10b) a;=0fori=2,4,6,--- when fis as in (4.8),
a;#0fori=1,3,5,---.

Similarly for =10, 1[ x]0, 1[ it follows that for the smallest eigenvalue A,:

{= 0 for (4.9),
(431

(4.11) #0 for (4.8).

Using finite element approximations and the continuation methods discussed in
§4.2, we have computed approximate solutions of the perturbed and unperturbed
problems near the first eigenvalue of the linearized problems. In Fig. 4.3 we show
results for Q =10, 1[ and f(u, A) = Au?/2.

Both perturbed and unperturbed asymmetric bifurcation phenomena at the first
eigenvalue of the linearized approximate problem are illustrated. For f(u, A)=—u’
and Q =10, 1[ x]0, 1[ we have symmetric bifurcation phenomenon {a,, =0) at the first
eigenvalue of the linearized problem. The results are shown on Fig. 4.4 for both
perturbed and unperturbed cases. For more details about the numerical procedure we
refer to [3]. We refer also to [17] where it is shown (theoretically and computationally)
that the solutions of Von Karman equations for nonlinear plates have the same
qualitative behavior as observed here for f(u)=—u?> (for the first eigenvalue of the
linearized problem).

4.4. Bifurcation from a nontrivial branch.
4.4.1. Formulation and properties of the solutions. We discuss in this section the
solution of the nonlinear boundary value problem of Neumann type:
Find {u, A}e H'(0, 1) XR such that:

”

u u
—-—+tu=2Ae"on 10, 1f,
ku

12
(4.12) u'(0)=u'(1)=0.

Problem (4.12) has a branch of solutions {u, A} with u = const. on 0, 1[. This constant
is any root of

(4.13a) u=2Ae"
Alternatively each u €R is a root of (4.13a) for the value
(4.13b) A=ue™

The “almost trivial”” solution branch of (4.12) given by (4.13) is shown in Fig. 4.5a.
To find solutions bifurcating from the nontrivial branch, we note that the linearized
form of (4.12) about the nontrivial branch is

"

w .
——tw=2Ae"w in]0,1[,
T

(414) w'(0)=w'(1)=0.

It easily follows that A e” must have one of the values

(4.15) re*=1+k% k=0,1,---.
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Since the relation u = A e holds, we find that the set of ““singular’” points {1, A} = {1, A}
is a discrete set defined for k=0, 1, .- -, by:

(4.16) we=1+k%  Ae=(1+k?) e (9,
We can take as eigenfunctions wy in (4.14):
(4.17) wi(x) = cos kmx, k=0,1,---.

The first “singular” point (obtained by taking k=0 in (4.16)) is {1, e"'}.

We can show that it is a simple limit point for problem (4.12). This reduces to
showing that #’e is not in the range of: —d?/dx’¢ subject to ¢'(0) = ¢'(1) =0. But
this follows since 7’e #0.

On the other hand {u;, A,}={2, 2e "%} is a simple bifurcation point and it can be
proved (using e.g., [36] or [19]) that the bifurcation at {u,, A,} is a symmetric one. All
points {u,, A} for k> 1 are also bifurcation points.

4.4.2. Numerical results. To compute the nonconstant solutions of (4.12) we use
that combination of finite element approximation and continuation techniques already
used in the previous sections. To avoid difficulties close to the bifurcation points during
the continuation process we introduce a perturbation of the problem in the boundary
conditions to get

u" u

—?+u =)Xe" on]o, 1,
(4.18)

—u'(0)=u'(1)=06.
We observe that if {u, A} is a solution of (4.18) and if u* is defined by u*(x)=u(1—x),
then {u*, A} is a solution with 8 replaced by —8. This property of course holds if § =0.
It holds also for the approximate problems.

With N a positive integer and h =1/ N, we define x; by

xi=ih, i=0,'°',N,

and we use piecewise linear elements and the trapezoidal rule in our variational
formulation. The resulting system of N +2 nonlinear equations is identical to the
standard finite difference formulation of the Neumann problem (4.18). Our solution
algorithm is but a trivial modification of that described in § 3.

Using the continuation strategy summarized in Fig. 4.1 we have computed
branches of solutions of the perturbed problem (4.18) and also the nonconstant

- 2

»

_____________ -1

F1G. 4.5a. Constant solutions, u = Ae*, of (4.12).
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solutions of the unperturbed problem (4.12). The following results have been obtained
using N =20 (i.e. h = 0.05) for the approximate problems, and & =0.01 as perturbation
parameter.

The variation of u,(0) with A is shown in Fig. 4.5b. (Clearly the behavior of u,(1)
is also described by this figure). Since the first bifurcation is symmetric, the tangent to
the branch of nonconstant solutions of this bifurcation point has to be vertical; it is
so with good precision. Actually, using smaller As and amplifying the vertical variations,
we have shown in Fig. 4.6 the variations of u,(0) and the above property of vertical
tangent appears even more clearly.

5. Application to the Navier-Stokes equations for incompressible viscous fluids.

5.1. Formulation of the Navier-Stokes equations. Let Q be a domain of RN (N =
2,3 in practice) and I" be its boundary. The steady flows of an incompressible and
viscous Newtonian fluid, in (2, are modelled by the Navier-Stokes equations:

(5.1) —vAu+(u-Viu+Vp=f inQ,
(5.2) V-u=0 inQ (incompressibility condition).

In (5.1), (5.2):
u={u;}, is the flow velocity,
p is the pressure,
v is a viscosity parameter,
f is a density of external forces,
(u-V)u is a symbolic notation for the vector-function {u; au,-/axj},il.
Typical boundary conditions associated with (5.1), (5.2) are

(5.3) u=ug onT,

where ug is a given function defined over I" and satisfying (from the incompressibility
condition (5.2))

(5.4) J ug-ndl=0

where n is the outward normal unit vector on T'.

The Navier-Stokes equations for incompressible viscous fluids have motivated a
countless number of papers, reports, books, conferences, workshops, from both the
theoretical and numerical points of view. Concentrating on books only, we mention,
among others: Lions [7], Ladyzhenskaya [20], Temam [21], Girault-Raviart [22],
Rautmann [23], Thomasset [24], Glowinski [42, Chapt. 7]; we refer also to the numerous
references contained in these books.

It follows in particular from [7], [20], [21] that if f and u, are sufficiently smooth,
then problem (5.1), (5.2), (5.3) has a solution {u, p} belonging to (H'())™ X(L*(Q)/R)
(the pressure p is clearly determined only to within an arbitrary constant). If we
suppose in addition that v is sufficiently large (or equivalently—if » is given—that f
and ug are sufficiently small), then problem (5.1)-(5.3) has unique solution in
(H'(Q)Y x(L*(Q)/R).

5.2. Stream function-vorticity formulation of the Navier-Stokes equations. We
suppose from now on that  is a bounded domain of R?. We also assume for simplicity
that Q) is simply connected (see e.g. Glowinski-Pironneau [25] for the case where () is
multiply connected). With I" the boundary of ), let n, s be respectively the unit vector
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of the outward normal at () on I' and the unit vector of the corresponding oriented
tangent.

There exists from (5.2) a stream function ¢ (determined only to within an arbitrary
constant) such that

oY oY
5.5 = — = e
(5.5) U %, u; 9%,

b

and it follows from (5.1), (5.5) that ¢ satisfies the following (well-known) nonlinear
biharmonic equation

a3 EYA af, ofi .
5.6 AYy+— — Ay ——— — Ay =241 Q.
(5-6) AT ax, X, v 9x, 0%, v 90X, 90X, n

Concerning the boundary conditions we have

oy
(5.7) a—S:uB n onl.

Since | ug-ndI'=0, (5.7) implies that

(5.8) 41/(M)=J ug-ndll VMeT,

where My,eI" (M, can be arbitrarily chosen and we have prescribed (M,;) =0). We
also have

oY
(5.9) a_n= -s-ug onl.

Actually (5.6), (5.8), (5.9) is a particular case of the more general family of nonlinear
biharmonic problems

W 9 £

5.10 vA%Y +—— — A — A Q,
( ) dja,axzwaxzald/fm
(5.11) Y=g, onl,

a
(5.12) -il: g, onl.

an

An equivalent formulation of (5.10)-(5.12) as a nonlinear system of coupled second
order elliptic equations is

Jdw 0 Jdw 0
(5.13) A+ 22 30y,
dx, 0X, 09Xy 90X

(5.14) -Ay=w in(},

with the boundary conditions (5.11), (5.12). In (5.13), (5.14), w is the voritcity of the
flow.

5.3. Variational formulations. We suppose that g = {g,, g.} is sufficiently smooth
(see [25] for the precise requirement), so that there exists ¢, such that, |l =g,
(0Y0/9n)|-= g,. Let us define V, by

(5.15) Vg={¢’(bEHz(Q),d"I‘:glaZ_:/:'r:gZ};
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then V, is a nonempty, closed, affine subspace of H*(Q), where

¢ ¢
9% 9x;

H2(9)={¢ 2L e 1), vi ]}
In particular V,={¢|d € H*(Q), ¢|r= (a¢/an)lr =0}= H}(Q)) is a closed subspace of
H?*(Q). We recall—Q being bounded—that ¢ - (fo, |A¢[* dx)"/? is a norm on V,
equivalent to the H*-norm.

A variational formulation of (5.10)-(5.12) is then:

Find Y€ V, such that Ve V,
(5.16)
Y 3¢ oY %)

0X, 0X; 90X, 90X,

VJ A(//A¢dx+J' Al[l( d =I fo dx.
Q 0

To obtain a variational formulation of (5.11)-(5.14) seems to be more complicated;
in fact, introducing 6 € L*(Q) such that 8 =—A¢ and using (5.14), it follows from
(5.16) that the pair {w, ¢} satisfies

{w, yte W,
and V{8, ¢} W, we have

(5.17)
vJ w0dx+J w(ﬂp—%—%%> dx=J fo dx,
Q Q 09X, 90X, 94X, 94X, Q
where
(5.18) Wo=1{{0, ¢}|0c L*(Q), p Vo, —Adp =0 in Q},
(5.19) W, ={{6, p}| 6 L*{Q), e V,, —A¢ =6 in Q}.

Conversely if a pair {w, ¢} satisfies (5.17), then {w, } is also a solution of the nonlinear
boundary value problem (5.11)-(5.14) (and ¢ a solution of (5.10)-(5.12)).

The variational formulation (5.17) of problem (5.11)-(5.14) contains second order
derivatives in the definition of W, and W,; having in view the approximation of
(5.11)-(5.14) by simple finite element methods, it is of great interest to have a variational
formulation of (5.11)-(5.14) containing first order derivatives, only. Such a goal is
easily achieved since W, and W, have the alternative definitions

(5.20) W0={{0,¢}e LZ(Q)xHé(Q),J V¢-qux=J

Q

6qdx,Vqe H‘(Q)},

W, = {{9, ¢te L(Q)xH'(Q), =g, onT,
(5.21)

J V¢-qux=J- ()qu+J’ gzqu,quHl(Q)},
QO Q r

respectively. The equivalence between (5.18), (5.19) and (5.20), (5.21) follows easily
from the Green’s formula

J a—d)qdr j A¢qu+J Vé$-Vgdx Vqge H'(Q), V¢e HY(Q),
rd a
and the assumption that I" (=9Q) is sufficiently smooth {or Q convex).

A variational formulation such as (5.17), (5.20), (5.21) is usually known as a mixed
variational formulation.



818 R. GLOWINSKI, H. B. KELLER AND L. REINHART

5.4. Continuation solution of problem (5.10)5.12).

5.4.1. Synopsis. We apply now the solution methods of §2 to the nonlinear
boundary value problem (5.10)-(5.12). As parameter A we choose A = 1/v; A is directly
proportional to the Reynolds number if we fix the boundary conditions as A varies.

We consider first (in § 5.4.2) the solution of (5.10)-(5.12) via the variational
formulation (5.16); the solution of (5.10)-(5.12) via (5.17) will be discussed in § 5.4.3.
A mixed finite element implementation will be discussed in § 5.5.

5.4.2. Solution of (5.10)—(5.12) via the variational formulation (5.16). The space
V, (= H3(Q)) which plays a fundamental role in the sequel is equipped with the inner
product

{v, w}-> J AvAwdx
O

and the corresponding norm v - ({,, |Av[* dx)'/%.
Taking A as parameter the problem to be solved is

(5.22) A%/;z)‘(% —‘?—Al/;—M im//)ﬂf in Q,
0X, 93X, 0x; 90X,
(5.23) =g onl,
(5.24) Q—‘szgz onT.
an

A variational formulation of (5.22)-(5.24) is given by:
Find Y€ V, such that V'V,

[N T N P
Q a 0X; 0X5 83X, 94X, Q

Description of the continuation procedure. In the particular case of problem (5.22)-
(5.24) the continuation techniques of §§ 2.3, 2.4 lead to the following algorithm:
(a) Initialization.

(5.26) Take A°=0;

(5.25)

the corresponding ¢ is the unique solution of the following linear variational problem:

Find ¢ V, such that
(5.27)

J AY’Apdx=0 VeV,
Q

Problem (5.27) is in fact equivalent to the linear biharmonic problem

A*y°=0 inQ,
(5.28)

a 0
y°=g,onT, é/i—=g2 onT.

We take {¢/°, 0} as the origin of the arc of solutions passing through it, and define the
arc length s by

(5.29) (85)*= J |A8Y|* dx+(81)2.



CONTINUATION-CONJUGATE GRADIENT METHODS 819

Denote dX/ds by X ; by differentiation of (5.25) with respect to s, we obtain at s =0
W’ a¢ oy’ 6«15)
— e —— —— | (X

0X; 8x; 08Xy 0X,

j A (0) A dx = A(0) J A¢:°(
(5.30) “ °
+A(0) J fodx VeV, 0)eV,.
Q
We have also by definition of s

(5.31) j |Ag(0)? dx+A%(0) =1.
0
Define l//A as the solution of the following problem
J; € VOa
0 0
j A:ﬁA(bdxzj A¢°(a—‘/f— o6 _%_ 3?) dx+J’ fodx VeV,
0 Q 1]

ax; X, 90X, 34X

(5.32)

We clearly have from (5.30)-(5.32), that
(5.33) §(0) = A(0) 4,

—-1/2
(5.34) ;\(0)=(1+J |AgP dx) .

b) Continuation. With As (>0) an increment of arc length, we define for n=0
an approximation {¢" "', A"*} (¢ V, XR) of {¢s((n+1)As), A((n+1)As)} as the solution
of the following nonlinear variational system:

Find {y"*', A"} € V, XR such that
n+1 n+1
J’ A(//n+1A¢ dx:ArH—l J A(/In+l (ad] %_alﬁ %) dx
O O

X, 9x, 99Xy 9x,

(5.352)
+Am! J fodx VeV,
O

(5.35b) JA(n//‘-t//O)A([r(O)dx+(A1—A°)}\(O)=As ifn=0,

n__ pn—1 n _An-l
(5.35¢) I A(lp"“—lp")A(‘/’—i—) dx+(/\"“—)«")(i\—————) =As ifnzl.
Q As As
With V; equipped with the inner product
{v, w}—)J- AvAwdx
0

a convenient nonlinear least squares formulation of (5.35) is then:

Find {y""',\"""}e V, XR such that

ot A" =00 m) VX nle Ve XR.
Here the functional J, (-, -) is defined by

(5.36)

2,
s

(5.37) T (X u)=%j |AX|? dx +3|
O
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where x and g are nonlinear functions of {y, w}, obtained as the solutions of the linear
problems, respectively:

X~€ VO,
(5.38) V¢eV,we have
I A)ZA¢dx=I AxAd dx—p j Ax(ﬂ 9¢ _ X ﬂ*i) dx—p J 1 dx,
Q 0 Q axl axZ axz axl Q
. n__ gn—1 An —A"—l
PP ORI U 1 PTG (s
Q As As

Problem (5.38) is a biharmonic problem.

The least squares problem (5.36) can be solved by the conjugate gradient algorithm
described in § 2.3; since the nonlinearity in (5.35a) is quadratic one should verify that
each iteration requires the solution of “only” 3 linear biharmonic problems of the
following type:

A’w=f in
(5.40) 4 .

ow
w= onTl, —= onT.
& an 43

Finite element solvers for (5.40) will be discussed in § 5.5; they are founded on the
mixed variational formulation (5.17).
More details about the conjugate gradient solution of (5.36) are given in [43].

5.4.3. Solution of (5.10)—(5.12) via the mixed variational formulation (5.17). Using
A =1/v as parameter, the nonlinear mixed variational problem (5.17) becomes

Find {w, y} € W, such that ¥ {0, ¢} W, we have
J w0dx+AJ w(ﬁf{i%—ﬂ%) dx=AJ S dx,
0 n 0

0Xx; 0X, dX; 34X,

(5.41)

with W, and W, still defined by (5.20), (5.21), respectively.
Description of the continuation procedure. We clearly have from § 5.4.2.
(a) Initialization.

(5.42) Take A°=0;:

then {w°, ¢°} is the unique solution of the following linear mixed variational problem
(equivalent to (5.27)):

Find {«°, ¢°} e W, such that
(5.43) £

I w’0dx=0 V{0, d}ec W,
O

We take then {{0°, ¢°}, 0} as the origin of the arc of solutions passing through it and
define the arc length s by

(5.44) (8s5)*= J (8w)? dx+(81)°.
o
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By differentiation of (5.41) with respect to s, we obtain at s =0

0 0
A

X, 8X, 08X, 06X

J @(0)6 dx = A(0) J

Q

(5.45)
+A(0) qusdx V{6, pte W,, {&(0), §(0)}e W,

Since we have
L |&(0) dx+A%(0) =1,
we obtain from (5.45) that
A= (1+ L P dx)-m, [6(0), $(0)} = A(0) {8, ),

where {d, li;} is the solution of the linear mixed variational problem

{‘69 dIA} € W()a

0 0
J a30dx=J w°(%@—%%> dx+J fodx V{0, b}e W,
Q 0 0

dx, 8x; 90X, 94X,

(5.46)

(b) Continuation. With As (>0) an elementary arc length we define for n=0
an approximation {{w"",y""'},A" e W, XR of {{o((n+1)As), ¢((n+1)As)},
A((n+1)As)} as the solution of the following nonlinear mixed variational system:

Find {{o"*", y"*"}, A"} € W, XR such that
n+1 n+1
I w,,ﬂodx:wlj o (a«/f 3 Y gg) i
Q o

ax, 9x, ox, 6x,

(5.47a)
+Am! J fodx V{6, p}e W,
Q

(5.47b) J(wl—-wo)cb(O)dx+(A1—A°)}\(O)=As ifn=0,
Q

n__ . n—1 n__ yn—l1
(5.47¢) J(o)"“-a)")(u——-) dx+(A"+‘—A")(L~§—)=As ifnz1.
Q As As

The space W, can be equipped with the inner product

{{011 ¢1}a {023 ¢2}}—> Jﬂ 01 02 dx'

A convenient least squares formulation of (5.47) is then
Find {{o™", """}, A"} e W, XR such that

jn+1({w"+la (II'H-I}, An+1) éjn%—l({ﬁa X}a I“') V{{ﬂ, X}, /J'} € Wg XR,
where in (5.48) the functional j,.,,(-, +) is defined by

(5.48)

(5.49) Jarr{m, X3 1) =%J |9 dx+3]al%
0
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In (5.49), {7, x} and & are nonlinear functions of 7, y, u obtained as the solutions of
the linear problems

{n, xte W,,
(5.50) V{6, ¢} W, we have
J ﬁedx=J’ nodx—pj n(fl—i‘é—i’i-"—‘% dx—;uj fb dx,
Q Q Q Q

X, dx; 0Xx; 8%,

(5.51) ﬂ=L(n_w")(%) dx+(u~A")("—’Z—2—_—>—As,

respectively; problem (5.50) is equivalent to the biharmonic problem (5.38).

The conjugate gradient algorithm (2.37)-(2.46) can be applied, again, in this
context, each iteration requiring, as in § 5.4.2, the solution of 3 linear biharmonic
problems (see {43] for more details).

Remark 5.1. The main motivation of the mixed variational formulation discussed
in §§ 5.3 and 5.4.3 is that it provides a convenient framework for the approximation
of linear and nonlinear biharmonic problems, by very simple finite element methods
like those discussed in the following section. Another application is discussed in [17];
it concerns the Von Karman equations for nonlinear plates.

5.5. Finite element approximation.

5.5.1. Triangulation of (). Fundamental discrete spaces. We suppose for simplicity
that () is a polygonal domain of R*>. With 7, a triangulation of () obeying the conditions
given in § 3.2.1 we define the following finite-dimensional functional spaces:

(5.52) H} ={v,|v,€ C%Q), vy|re P,VTe T},
(5.53) H(l)th}.mH(I)(Q) (={Uh|UhGH}., Uh|r=0)

with P,=space of polynomials in x,, x, of degree =k; H} and H}, approximate
H'(Q) and H(Q), respectively.

We approximate then the spaces W, and W, (defined by (5.20) and (5.21),
respectively) by

(5.54) WOhZ{{oha d’h}eH;sz(l)h,j Vd’h'Vthx:J thth,VQhEH;u},
Q Q

Wen = {{Bha $nte HyxH), ¢p=ginonT,
(5.55)

J’ Vi, Vg,dx= J 0,qn dx + J gngn AU, Vgy € H;.}

Q 9] r

Here g,, and g,, are convenient approximations to g, and g,, respectively. We observe
that Wy, & W,; similarly W,;, ¢ W,, even in the simple case where g1, = g, 82» = £2.

5.5.2. Approximation of the Navier-Stokes equations via the {w, )} formula-
tion. Using A =1/ v as parameter, a mixed variational formulation of the Navier-Stokes
equations was given in § 5.4.3 by (5.41). We approximate (5.41) by:

Find {wy, Y.} € Wy, such that V{0, ¢,} € Wy, we have

J whOhdx'F/\j wh(%%_i‘/j—ha—ﬂ> dx:AJ ﬁl¢hdx,
Q [¢) )

dx; 90X, 09X, 34X,

(5.56)
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with f, a convenient approximation to f. We refer to Girault-Raviart [22] for the
convergence properties of {wy, .} as h-> 0.

Concentrating on the numerical solution of problem (5.56) by continuation least
squares methods we easily adapt the algorithms of §§ 2.3 and 5.4.3 to the solution of
the approximate problem (5.56) (see Reinhart [3] for more details on the solution of
(5.56) by the methods of the present paper).

In fact applying the discrete analogues of the methods described in § 5.4.3 to the
solution of (5.56) requires an efficient solver for the various discrete linear biharmonic
problems coming from the mixed finite element approximation. Such a solver is
particularly required by the conjugate gradient algorithm in solving the least squares
problem encountered at each step of the continuation process (we have to solve 3
linear biharmonic problems at each iteration).

5.5.3. On the solution of the discrete linear biharmonic problems.

5.5.3.1. Generalities. Synopsis. A careful examination of the algorithms discussed
in § 5.4.3 shows that the discrete linear biharmonic problems to be solved are in fact
mixed finite element approximations of biharmonic problems of the following class:

A%y =T, ~%—%—Aﬁ in Q
ax; 9dx,

(5.57)

iy
Y=g, —| =g
on r

Here fie L?(9)), Vi=0,1,2,3, and the derivatives occurring in (5.57) have to be
understood in the sense of distributions. Assuming that g,, g, are sufficiently smooth,
problem (5.57) has a unique solution in V, (see § 5.3 for the definition of V, and V,);
this solution ¢ is also the unique solution of the following variational problem:

Find yr € V, such that Vo e V,
(5.58)

J A¢A¢dx=j (mmj—‘*ﬁ f—"’~f3A¢>
I3} 0 X 60Xy

1
An equivalent mixed variational formulation of (5.58) is given by:

Find {w, ¢} € W, such that V{6, ¢} e W,

a0
Jﬂwadx J(f0¢+f,al fax2+f30) dx,

where W, and W, are defined by (5.20) and (5.21), respectively.

Starting from the mixed formulation (5.59) we shall discuss in the following
sections the finite element approximation of (5.59) and solution methods for the
approximate problems.

(5.59)

5.5.3.2. Finite element approximation of (5.59). Following Ciarlet-Raviart[26] and
Glowinski-Pironneau [25] we approximate (5.59) by

Find {wh, l/lh}e Wgh such that V{Hh, QS;,}E WOh
CL 0®n

Xq

(5.60)
+f3h 0;,)

where W, and W,, are still defined by (5.54) and (5.55), respectively, and where fj,
is, for i=0, 1, 2, 3, a convenient approximation to f.

J 0,0, dx = J (f0h¢h+f1h +f2h
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It is quite easy to prove that (5.60) has a unique solution; concerning the conver-
gence of {wy, ¥} to {—Ay, ¢} as h >0, it follows from Ciarlet-Raviart [26], Scholz [27]
that

(5.61) lim i—Ay — wh 20y =0, lim 4 = ¥ull 'y =0

for all k=1 (in the definition of H}; cf. (5.52)). Actually the convergence result (5.61)
supposes that some mild assumptions on the angles are satisfied as h > 0 (see the two
above references for more details).

5.5.3.3. Decomposition properties of the approximate problem (5.60). We here
follow and extend on some points in Glowinski-Pironneau [25].

A direct solution of (5.60) is a nontrivial task; however taking into account the
very special structure of (5.60) we shall be able, via a decompositon principle, to reduce
its solution to the solution of a family of discrete Poisson problems which are much
easier to solve.

The starting point of our discussion is the fact that the pair {w,, ¥}, solving (5.60),
is characterized by the existence of p, such that

e Hj,
(5.62a) p:' ’ . .
i) 3
Vpn Vo, dx = J (foh¢h +f1h““‘h+f2h"“‘h) dx Ve Hpp,
JO Q axl ax2
whEH},,
(5.620)
whOhdx=J (f3,,+p,,)0,,dx VO;,GH},,
JQ 0
yneHi, =g onT,
(5.620) .
Vlﬁh'thdx:J w;,q;,dx+I gthhdr vthH;,
JO 0 r

To prove the characterization (5.62) we observe that (5.60) is equivalent to the
minimization problem:

Find {w, ¢} € Wy, such that

(5.63)
Jn(@n ) = ju(0h, dn) V{04, dn}e Wy,
where
(5.64) Jn(6n d) =3 J 63, dx —J (fohd)h +f1hg;¢h+fzhgﬁ+f3h9h) dx.
QO O X1 8x2

Hence p, appears as a Lagrange multiplier for the linear equality constraints satisfied
by {ws, ¥} in (5.62¢) (and in the definition of W, ; see (5.55)).

To go further into the decomposition properties we introduce a space .4, with
the following properties:

My, is a complementary space (not precisely defined for the moment) of Hg,
in H}, i.e. M,< H} and H),® M, = H},.

It follows from (5.65) that the bilinear form #, X 4, » R defined by

(5.65)

{An s}~ J Appy dT
r
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is a scalar product over M, The key step is in fact to introduce a bilinear form
a,: My X My, - R, defined as follows:

Let A, € M, and let p,, respectively ¢, be the solutions of the following approximate
problems:

(5.66a) IVPh'V¢th=0 Vo, Hyu, preHi, pu—An€Hgp,
Q

(5.66b) J Vi, Vo, dx:j Pnpn dx V¢h€H(1)h, l”hEH(l)h-
o Q

Then we define the bilinear form a,(-, ) by

(5.66¢) an(Ap, pp) = J. Pritn dx —J- Vi Vi dx Y, € M,
Q Q

It then follows from [25, § 3.5] that a,(-, -) is symmetric and positive definite.

Application to the decomposition of the approximate problem (5.60). Let {w, ¢}
be the solution of (5.60) and let A, be the component in .4, of the function p, occurring
in the characterization (5.62). Let p,, ¥, be the solutions of

(5.67) Jvﬁh'v¢hdx=0 Véne Hon, Pn—An€Hgp,
o

(5.68) J Vl/_/-h‘VqSh dx:j Pnn dx V¢hEH(l)h, l.17;.51‘1(1».-
O 0
Let pon and i, be the solutions of

J Vpon Ve, dx

(5.69)
d 0
= J’ <f0h¢h +flhﬂ+f2h££) dx Y, € Hop, pon € Hon,
[s) ax; 9x,
J Vipor Vb, dx
a
(5.70)

=I (Pon+ fin) bn dx V¢h€H(l)h’ l//hEH}., Yor=gin onl.
")

We clearly have p;, = py, + por, and ¢, = ¢, + Yop.
We shall now show that A, is the solution of a variational problem in /.
THEOREM 5.1. Let {wy, ¢} be the solution of (5.60) and let A, be the component
in My, of p, defined from {w,, ¥} by (5.62). Then A, is the unique solution of the linear
variational problem

an(An pn) = J Vion* Vi dx — J (Pon = fsn) phn dx
(5.71) ° f

“J anitn AU VYu,e My, Ane My
r

which is equivalent to a linear system with a positive definite matrix.
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Proof. We have from (5.66)-(5.68) that

ap(Ap, pn) = | Pupen dx — J Vi Vi, dx
JQ Q

o~

= | (Pn—Pon)kn dx—j V(i — on) - Vup dx
o

JQ

(5.72)

o

= Vifon' Vs dx—J (Pon+ fon) pn dx
Q 0

o

—<J V(ﬁh‘vﬂhdx—J (Ph'*‘fzh),uhdx) Yy € M.
Q Q

But from (5.62b, ¢) we have

J Vlﬁh‘vﬂvhdx—j (Ph"'ﬂh)ﬂhdx:J V‘ﬁh‘vﬂhdx—J wppy dx
Q a a Q

= J Canin AT Yy, € My,
Q

which, together with (5.72), proves (5.71). The uniqueness is obvious since a,(-, *) is
positive definite. The equivalence with a positive definite linear system is a classical
result in the approximation of linear variational problems. [

Remark 5.2. To compute the right-hand side of (5.71) it is necessary to solve the
two approximate Dirichlet problems (5.69) and (5.70). Similarly if A, is known, to
compute p;, w, and ¢, it is necessary to solve

PheH;uph_/\hEH(l)h’

(5.73)
d d
J Vpu- Vo, dx = J (ﬂ)h¢h +f1h‘ﬁ+fzhﬂ) dx Véu€ Hop,
(e} Q axl axZ
wy € H;l’
(5.74)
J whOh dx = J (f"ih +ph)0h dx VH,, € H},,
Y] Q
UneHy, dn=ginonT,
(5.75)

j Vi, -V, dx = J; (pn+fon)ndx V€ Hpp,
a

i.e. two discrete Dirichlet problems, (5.73) and (5.75), and (5.74) which is a much
simpler linear problem (w, is in fact the L>-projection on H}, of the function p;, + f).

Recapitulation. 1t has been shown that solving the discrete biharmonic problem
(5.60) is equivalent to solving (5.69), (5.70), (5.71), (5.73), (5.74), (5.75) sequentially.
Problems (5.69), (5.70), (5.73), (5.75) are discrete Dirichlet problems, for the operator
-A, for which very efficient direct or iterative solvers exist. The variational problem
(5.74) is even simpler to solve, since the matrix of the equivalent linear system is very
sparse, has a condition number O(1) and is in fact an approximation to the identity
operator. Finally the only nonstandard step is the solution of the variational problem
(5.71) which is discussed in the following § 5.5.3.4.

5.5.3.4. Solution of problem (5.71). Several methods for the solution of (5.71) have
been discussed in [25, §§ 4 and 5]. Let us mention among them a conjugate gradient
method which yields a solution algorithm for the discrete biharmonic problem (5.60);
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the cost per iteration is essentially the solution of two discrete Dirichlet problems for
the operator —A; numerical experiments show a convergence in O(N}/?) iterations,
where N, =dim ;. We find also in [25, § 4] a detailed analysis of a direct method
for solving (5.71) requiring the construction of the symmetric, positive definite (and
full) matrix A, of the linear system equivalent to (5.71). In fact one does not construct
A,, but (using the Cholesky factorization method) a lower triangular-regular matrix
L, such that A, = L,L; since the construction of L, requires (cf. [25, § 4]) the solution
of 2N, discrete Dirichlet problems it seems preferable to use the conjugate gradient
algorithm. However in practice we prefer direct solvers for the following reasons:

(i) Since the 2N, discrete Dirichlet problems mentioned above have all the same
matrix which is symmetric and positive definite, a Cholesky factorization done once
and for all will result in an important saving of computational time.

(ii) If a large number of linear discrete biharmonic problems have to be solved—as
in time dependent problems or during an iterative process like those discussed in this
paper—the solution method of (5.60), founded on the construction of L, offers (from
our numerical experiments) a more economical strategy than the conjugate gradient
algorithms discussed in [25, § 51.

The above comments justify the choice of the direct solution of (5.71) for the
numerical experiments described in § 5.6.

We have given in [43] the description of a new conjugate gradient algorithm with
scaling (i.e. preconditioning). If the speed of convergence is measured in number of
iterations, the new algorithm is faster than those discussed in [25, § 5]. However the
new algorithm requires the solution of three discrete Dirichlet problems instead of
two, for each iteration, as in the algorithm (5.26)-(5.33) [25, pp. 197-198].

Remark 5.3 (On the choice of M,). Suppose that H} is composed of ordinary
Lagrangian finite elements of order k (k=1, 2 in most applications). It follows then
from [25] (for which we refer for more details) that the best choice for ., is given by

(5.76) My, =) wn € Hy, pnlr =0 VYT Fy, such that s TNT =}

With such a choice the elements of #,, are completely determined by the values attained
at those nodes of 7, belonging to I'. Thus we should take as basis functions for
those basis functions of H} associated with the boundary nodes (again, see [25] for
more details).

5.6. Numerical experiments.
5.6.1. Formulation of the test problem. With (=10, 1] x]0, 1[ we consider the
following Navier-Stokes test problem:

—vAu+(u-V)u+Vp=0 inQ,
(5.77) V-u=0 inQ,

Y _{{1,0} if x,=1,
WXL 2N =1400,00 if 0=x,<1.

Hence problem (5.77) is the classical driven cavity problem. The corresponding {w, ¢/}

formulation is

VAw+<:—;i j—:;—gxﬂl %?;) =0 in(Q,
(5.78) -AYy=w inQ,
1 ifx,=1,

oY _
Yy =0o0n F,an(xx,x2)|r"{0 if0=x,<1.
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5.6.2. Triangulation of 2. The triangulation 7, used to approximate (5.77), (5.78)
by the methods of § 5.5, is shown on Fig. 5.1. It contains 800 triangles and since
piecewise quadratic elements are used (i.e. k=2 in (5.52)), it corresponds to 160
boundary nodes and 1581 interior nodes (vertices and midpoints); we have therefore
a nonlinear system of about 3300 unknowns to solve after discretization.

FiG. 5.1

5.6.3. Numerical results—further comments. The numerical procedure described
in § 5.4.3 has been applied to the solution of the approximate problem (5.56) associated
with (5.78) (using A =1/»=Re). The computations have been done on a CRAY-1
computer, with special vectorized subroutines (in particular every subroutine concern-
ing profile matrices (product, Cholesky factorization, resolution of triangular linear
systems) has been vectorized).

We have used As =100 for 0= A =1400, As =200 for 1400= A =2600, As =400
for A = 3000.

The conjugate gradient iterations were stopped as soon as the least squares cost
functional was less than 107°. The computations have been done with double precision
variables.

Figures 5.2, 5.3, 5.4, 5.5, 5.6 show the variations of the least squares cost functional
as a function of the number of conjugate gradient iterations, for A = 100, 400, 1600,
2000, 3000, respectively; as expected the number of iterations necessary to obtain the
convergence is an increasing function of A (=Re).

For Re =3000, the average CPU for one iteration of conjugate gradient is about
0.9 second on the CRAY-1 computer.

The stream lines for Re =100, 400, 1600, 2000, 3000 are shown in Figs. 5.7-5.11
respectively. The values of the stream function along the lines are:

¥ =—0.12, —0.1, —0.08, —0.06, —0.04, —0.02, 0.0
=0.0025, 0.001, 0.0005, 0.0001, 0.00005.

Even for small values of the Reynolds number, there appear two secondary vortices
in the lower upstream and downstream corners. These vortices grow larger as the
Reynolds number increases. For values of Re beyond 1500, a third secondary vortex
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appeared in the upper, upstream corner. These qualitative results agree with the
numerical tests done by Olson-Tuann [29] using other finite element methods, by
Schreiber-Keller [35] using continuation and finite difference methods and by Winters-
Cliff [44] using finite elements and refinements in the corners.

A most interesting question is the possible occurrence of multiple solutions as the
Reynolds number increases beyond some critical value. So far, we did not observe
such behavior in the range of Re that we considered in our computations, i.e. 0=Re =
3000. Actually and to our knowledge the computed solutions obtained in the range
0=Re = 5000 by various authors using different methods agree quite well; this observa-
tion suggests that multiple solutions can only appear for greater values of Re. Neverthe-
less it would be interesting to refine the numerical techniques in order to detect such
a behavior.

6. Conclusion. We have discussed in this paper the solution of nonlinear boundary
value problems containing a parameter by a combination of arc length continuation
methods, least squares—conjugate gradient algorithms and finite element approxima-
tions. The resulting methodology is quite general and has been applied to the solution
of second order and fourth order nonlinear boundary value problems whose branches
of solutions may exhibit limit points and bifurcation.
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