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CONTINUATION THEOREMS FOR PERIODIC PERTURBATIONS 
OF AUTONOMOUS SYSTEMS 

ANNA CAPIETTO, JEAN MAWHIN AND FABIO ZANOLIN 

ABSTRACT. It is first shown in this paper that, whenever it exists, the coincidence 
degree of the left-hand member of an autonomous differential equation 

x' - g(x) = 0, 

in the space of periodic functions with fixed period w, can be computed in 
terms of the Brouwer degree of g. This result provides efficient continuation 
theorems specially for w-periodic perturbations of autonomous systems. Ex-
tensions to differential equations in flow-invariant ENR's are also given. 

I. INTRODUCTION 

In this paper we are concerned with the periodic boundary value problem 
(BVP) 

(1.1 ) 
( 1.2) 

X' = F(t, x), 
x(O) = x(w), 

where F: [0, w] x Rm ----+ Rm is a Caratheodory function (w> 0). We recall 
that if F : R x Rm ----+ Rm is w-periodic in the first variable, then any solution 
of (1.1 )-( 1.2) can be extended to a classical (i.e. absolutely continuous) w-
periodic solution of (1.1) defined on the whole real line. Accordingly, without 
overindulging in terminology, we call in what follows w-periodic any solution 
of (1.1) satisfying (1.2). 

The periodic BVP plays a central role in the theory of ODEs for its signif-
icance in several applications (see [30, 58, 59]). Many authors have treated 
problem (1.1 )-( 1.2) by means of topological methods; in such a framework, 
continuation theorems tum out to be specially suitable for the existence prob-
lem. Basically, the "continuation" is performed through an admissible homo-
topy carrying the given problem to a simpler one. This simpler one may be an 
autonomous equation whose w-periodic solutions consist in an odd number of 
nondegenerate equilibria, like in Stoppelli's pioneering work [63], or a linear 
equation having only the trivial w-periodic solution (see e.g. [43], references 
for Theorem IV.5). By the fundamental properties of topological degree theory, 
such an approach will only succeed in problems having an odd degree. 
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Two different methods have been developed by M. A. Krasnosel'skii [30] 
and J. Mawhin [43] which carry the problem to simpler ones induced by some 
associated autonomous vector field. On the one side, in [30, Chapter 2] a ho-
motopy through the trajectories of (1.1) is considered and the existence of a 
fixed point of the Poincare map is proved via a degree theoretic assumption on 
the autonomous function F (0, .): Rm -+ Rm . In this case, the admissibility 
of the homotopy is guaranteed by the so-called w-irreversibility condition. On 
the other hand, in [43] system (1.1) is embedded into the parametrized family 
of equations x' = Af(t, x; A), A E (0,1), with f(t, x; 1) = F(t, x) and 
the solvability of (1.1 )-( 1.2) is ensured via a degree theoretic assumption on 
the autonomous averaged vector field 70 : Z ~ (l/wHow f(s, z; 0) ds. In this 
case another transversality condition is required for the admissibility of the 
homotopy. 

Both Krasnosel'skii's and Mawhin's theorems have found useful applications 
in the literature (see for instance the references in [2, 22, 31, 43, 52, 59, 60]. 
For other different but related results see [35, 57, 62]. 

An important situation which occurs in several applications corresponds to 
the case when the nonautonomous field F(t, x) splits as 

( 1.3) F(t, x) := g(x) + e(t , x) , 

where e(·, .) satisfies suitable growth conditions (e.g. is bounded). 
In such a situation, it is natural to choose the homotopy field f(t, x; A) := 

g(x) + Ae(t, x), A E [0, 1]; however,none of the previously quoted continu-
ation theorems can be directly applied. 

The aim of our work is to provide a new continuation result for (1.1 )-( 1.2) 
which is particularly suitable for dealing with nonlinearities like (1.3). To do 
this, we assume that 

F(t,x):=f(t,x; 1), 
where f = f(t, x; A) : [0, w] x Rm x [0, 1] -+ Rm is a Caratheodory function 
such that for A = 0 the map f is autonomous, i.e. there is a continuous function 
fo : Rm -+ Rm such that 

fo(x) = f(t , x; 0) , 
for almost all t E [0, w] and all x E Rm. A crucial point in the proof of con-
tinuation theorems is to show that the "degree" (or, in more general situations, 
the fixed point index) of (suitable) operators defined in function spaces is equal 
to the Brouwer degree of a (corresponding) autonomous map which takes val-
ues in Rm. For example, in [43, Theorem IV.13] the continuation technique is 
associated to the homotopy 

l1w (A, x) ~ (1 - A)- f(s, x(s); A)ds + Af(s, x; A) w 0 

leading for A = 0 to the integro-differential system 

( 1.4) l1w x' - - f(s, xes) ; O)ds = 0, w 0 

whose w-periodic solutions are constant and given by the zeros of 70 , In [43, 
Lemma VI. 1], the continuation is made through the homotopy 

(A, x) ~ (1 - A)VV(X) + AF(t, x), 
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for some Cl function V: Rm ---- R. This gives, for A = 0, the gradient system 
(1.5) x' - VV(x) = 0, 
whose w-periodic solutions are given by the zeros of V V. In both cases, it is 
easy to compute the (coincidence) degree (or, in more general situations, the 
fixed point index), in a suitable space of w-periodic functions, of the opera-
tor associated to the left-hand member of (1.4) (resp. (1.5)), in terms of the 
Brouwer degree in Rm of the mapping 70 (resp. vv ). For a homotopy 

(A, x) t-+ f(t , x; A) , 
connecting F(t, x) (for A = 1) to a general autonomous field fo(x) for A = 0, 
the computation of the (coincidence) degree of the operator defined by the left-
hand member of the equation 
(1.6) x' - fo(x) = 0 
is made more difficult by the presence of possible nonconstant closed orbits 
with period less than w. Theorem 1 in §II.l shows however that a similar 
connection still holds between the coincidence degree and the Brouwer degree 
of 10. To obtain this result, we use an "approximation" procedure for the map 
10 based on the Kupka-Smale theorem [7, 54]. The Kupka-Smale theorem 
ensures the existence of a sequence ('Pk) of Cl-functions, ('Pk) ---- 10, such 
that for each (J > 0, for every compact subset K of Rm and for all kEN, 
system x' = 'Pdx) has finitely many rest points or closed orbits with period 
less or equal than (J which are contained in K. By means of this result, and 
using the additivity/excision property of the coincidence degree, we can perform 
admissible homotopies which lead to the conclusion. 

Notice that Theorem 1 can be viewed as a contribution to the computation 
of coincidence degree in spaces of periodic functions. 

Now, there are various ways to express the problem of w-periodic solutions 
of (1.6) in terms of fixed points of operators defined in the space of continuous 
functions on [0, w]. Using duality theorems developed in [31, Chapter III] 
and [43, Chapter III] and Theorem 1, one can also express the Leray-Schauder 
degree of these operators in terms of the Brouwer degree of 10, and this is 
the object of Corollary 1. Finally, similar results also hold which connect the 
Brouwer degree of the Poincare-Andronov operator for w-periodic solutions to 
the Brouwer degree of 10 (Corollary 2). 

In §II.2 we apply Theorem 1 to the proof of Theorem 2, a continuation the-
orem for the periodic solutions to (1.1 )-( 1.2) when the family of parametrized 
equations is 

x' = f(t, x; A), A E [0, 1], 
with f(t, x; 1) = F(t, x) and f(t, x; 0) = fo(x) , and it is assumed that 
the Brouwer degree of the map 10 is different from zero. Theorem 3 is an 
extension of Theorem 2 to the case where the phas(' space Rm is replaced by a 
closed convex set with nonempty interior. Theorem 4 is a continuation theorem 
similar to Theorem 2 but expressed in terms of the Poincare-Andronov operator. 

Although §II already provides examples comparing the applicability of The-
orem 2 to that of other continuation results, more applications are given in §III 
for the important case where F splits as 

F(t, x) = g(x) + e(t, x), 
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where e(t, x) satisfies suitable growth conditions and the performed homotopy 
IS 

f(t, X; A) = g(X) + Ae(t , x). 
A first class of results are of perturbational type, i.e. require lel oo to be suf-
ficiently small. In this case, the assumptions upon g are rather mild and the 
results generalize in various ways earlier contributions of Amel'kin-Gaishun-
Ladis [1], Berstein-Halanay [3], Cronin [9, 10, 11], Gomory [23], Halanay [25, 
27], Hale-Somolinos [28], Lando [32, 33], Pliss [56], Srzednicki [62] and Ward 
[66]. A second class of results, of global type, deals with the case where g is 
positively homogeneous of some order and the corresponding results improve 
in various directions earlier contributions of Dancer [13], Fonda-Habets [17], 
Fonda-Zanolin [18], Fucik [19], Krasnosel'skii-Zabreiko [31], Lazer-McKenna 
[36], Lasota [34] and Muhamadiev [47, 48]. 

In §IV, an extension of Theorem 2 to flow-invariant Euclidean Neighbour-
hood Retracts is performed (Theorem 5). We recall that a metric space C is 
an ANR (Absolute Neighbourhood Retract) if and only if it is homeomorphic 
to a neighbourhood retract of a Banach space Y. If Y is finite dimensional, we 
say that C is an ENR (Euclidean Neighbourhood Retract). In such a general 
framework we use (continuous vector fields and) the fixed point index of com-
pact operators defined on the space of continuous functions which take values 
in the given ENR. Moreover, Theorem 5 enables us to deal with some cases 
when the phase space is not the whole Rm but e.g. a regular manifold, a closed 
convex set or a conical shell. Beside a flow-invariance condition for the given 
ENR, we introduce the so-called "property (A)", which ensures that the ENR 
we work with is invariant not only for the flow induced by x' = fo(x) but for 
the flow induced by x' = qJk(X) as well, where (according to the Kupka-Smale's 
theorem) (qJk) is the sequence of functions approximating 10. We point out 
that property (A) holds (obviously) true when the phase space is Rm itself (as 
in §§II and III); moreover, it is always satisfied in the cases we quoted above 
(e.g. regular manifolds and closed convex sets) as well. The proof of Theorem 
5 is carried out by embedding (1.1)-(1.2) in a functional-analytic framework 
which is inspired by the study of the Poincare map (like in [6]); on the other 
hand, we use, instead of the Brouwer degree, the "index of rest points". 

We end this section with a list of notations. The m-dimensional real eu-
clidean space Rm is endowed with the usual scalar product ('I')!' norm I· I 
and distance d(·, .). Given two subsets C l , C2 of Rm, we denote by 

d(Cl , C2) := inf {Ia - bl : a E C l ,b E C2} , 
the distance between the sets C l and C2• R+ is the set of nonnegative reals. 
Given Xo E Rm and R > 0, we denote by B(xo, R) (resp., B[xo, R]) the 
open (resp., closed) ball of center Xo and radius R. Given any metric space 
W, for A c B c W by intBA, frBA, clBA we mean, respectively, the interior, 
boundary and closure of the set A relatively to B. We omit the subscript when 
B = W = Rm. If W is a normed space, I· Iw denotes its norm and Iw 
the identity operator in W. As a usual convention, the subscript is omitted for 
W=Rm. 

For a closed set S c Rm, by 

T(z; S):= {v E Rm : liminfd(z + hv, S)/h = o} , 
h-+O+ 
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we mean the (Bouligand) tangent cone to S at z, while, for a closed convex 
set K c Rm we denote by N(z, K) the set of (nonzero) outer normals to K 
at z E fr K. 

Let OJ > 0 be a fixed constant. For a function y : [0, OJ] --+ Rm ,we use 
the respective norms IYloo := sup{ly(t)I: t E [0, OJ]}, Iyll := fow ly(s)lds in the 
associated function spaces and we set 

l1w y:= - y(s)ds. 
OJ 0 

Finally, if C is an ANR and If/ : cleV --+ C (with V bounded and open 
relatively to C) is a compact map with If/(x) =j:. x for x E freV, we denote 
by ic(lf/, V) the corresponding fixed point index (see [24,50]). By dB and deg 
we mean, respectively, the usual Brouwer degree in Rm and the Leray-Schauder 
degree in a normed vector space. 

II. THE MAIN RESULT 

We deal with the periodic boundary value problem: 
(2.1) x' = F(t, x), 

(2.2) x(O) = x(OJ) , 
where 
(2.3) F(t,x):=f(t,x; 1) 
and f = f( t , x ; A) : [0, OJ] X Rm x [0, 1] --+ Rm satisfies the Caratheodory con-
ditions,i.e. f(·,X;A) is (Lebesgue) measurable for each (X,A), f(t,·;·) is 
continuous for a.e. t and, for each r > 0, there exists fir ELI ([0, OJ], R) such 
that If(t, x; A)I :::; fir(t) holds for a.e. t E [0, OJ] and all Ixl :::; r, A E [0, 1]. 
Accordingly, solutions for x' = f(t, x; A) are intended in the generalized (i.e. 
Caratheodory) sense. With small abuse in the terminology, we call OJ-periodic 
any solution satisfying the boundary condition (2.2). 

As we mentioned in the introduction, we assume that for A = 0 the map f 
is autonomous, i.e. there exists a continuous function 10 : Rm --+ Rm such that 
(2.4) fo(x) := f(t, x; 0) 
for almost every t E [0, OJ] and each x E Rm . A particular but significant case 
in which such a situation occurs is when f splits as 

f(t, x; A) = fo(x) + Ae(t , x; A) ; 
this is examined in detail in §III. 

The proof of continuation results for problem (2.1 )-(2.2) is based, essentially, 
on the homotopy invariance of the topological degree and on estimates for the 
degree of some operators associated to system 
(2.5) x' = fo(x). 
This second goal is achieved showing that, under certain circumstances, it is 
sufficient to evaluate the (finite dimensional) Brouwer degree of the vector field 
10. In the first part of this section, we prove some results in which the above 
programme is developed for various operators related to (2.5). 

In what follows, the (real) Banach spaces Z := LI([O, OJ], Rm), Y:= 
C([O, OJ], Rm) and X := {x E Y: x(O) = x(OJ)} , with their usual norms, are 
considered. Notice that points of Rm are identified with constant functions. 
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11.1. Estimates for the degree. For the first result, we recall some basic facts from 
coincidence degree theory, borrowing notation and terminology from [43]. We 
define L : dom LeX --t Z, Lx = x', a Fredholm mapping of index zero, 
with domL = {x EX: x(·) is absolutely continuous }. 

Let Mo be the Nemitzky operator from X to Z induced by the map fo, 
i.e. Mo: x(·) ~ fo(x(.)). 

In this situation, problem (2.5)-(2.2) can be transformed into the equivalent 
coincidence equation: 
(2.6) Lx = Mox, X E domL. 
If we introduce the linear projectors Q : Z --t coker L c Z, Qz:= z = 
(I/OJ)ioOJ z(s)ds and P:= Qlx: X --t ker LeX and we denote by Kp,Q: Z --t 

ker P n dom L the generalized inverse of L, then equation (2.6) is equivalent 
to 

x = Ro(x) := Px + Kp,QMox + JQMox = x - (JQ + Kp,Q) (L - Mo)x, 
where J: 1m Q = Rm --t ker L = Rm is a linear isomorphism, so that I - Ro = 
T(L - Mo), for some linear isomorphism T (see [43, 44, 55, 65]). 
In the sequel, for simplicity, we take J:= I (the identity in Rm). 

Let Q c X be bounded and open (relatively to X). 
It is a standard fact to check that Ro : clxQ --t X is compact. Therefore, the 
coincidence degree of Land Mo in Q is defined by 

DL(L - M o, Q) := deg(lx - Ro, Q, 0) , 
provided that 

Lx =f. Mox for all x E frxn n domL. 
From [43, p. 19] we know that the definition of the coincidence degree is inde-
pendent of the projectors P and Q. 
We note that a similar framework may be introduced by a different choice of 
the function spaces. In particular, the use of Z := Li([O, OJ], Rm) is not 
necessary at this point. However, such a choice is convenient as we deal later 
with nonautonomous nonlinearities satisfying only the Caratheodory conditions 
(see [43, Chapter VI]). 

The following theorem, which is crucial for the proof of Theorem 2, may be 
considered of some independent interest as a contribution to the coincidence 
degree theory. 
Theorem 1. Assume that there is no x(·) E frxQ such that x' = fo(x). Then, 
(2.7) DdL - Mo, .Q) = (-l)mdB (fo, Q n Rm , 0). 
Proof. First of all, we observe that, as Q is bounded, there is a constant R > 0 
such that Ixloo < R, for every x E clxQ. Furthermore, we point out that the 
assumption is equivalent to 
(2.8) Lx =f. Mox, 
for all x E dom L n frxQ; therefore, the coincidence degree DL (L - M o, .Q) 
is well defined. 

The proof is performed by means of a corollary of the Kupka-Smale's theo-
rem [7, p. 68]; this result ensures the existence of a sequence of Ci-functions 
(9'k) , 9'k: Rm --t Rm, such that: 

(a) (9'k) --t fo uniformly on compact sets; 
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(b) for every compact subset K of Rm and for all kEN, system 

x' = rpk(X) 

47 

has finitely many singular orbits (i.e., rest points and closed orbits) with 
minimal period in [0, w + 1] which are contained in K. 

Let Nk,Ji be the Nemitzky operator induced by the functions x f-+ flfo(x) + 
(1 - fl)rpk(X) , fl E [0, 1]. We claim that there is ko > 0 such that, for all 
k ~ ko and for all fl E [0, 1] 

(2.9) for all x E dom L n frxQ. 

This fact will imply, in particular, that 

(2.10) for all Z E frxQ n Rm , k ~ ko. 
Then, a classical compactness argument ensures that, for any k ~ ko, there is 
c51 = c51 (k) such that 

(2.11) rpk(Y) =1= 0 for all Y E B(frxQ n Rm , c5d. 
To obtain (2.9), it is sufficient to observe that the sequence of operators Nk,Ji 
converges, as k --t +00, to Mo in Z uniformly on clxQ x [0, 1] and that, by 
(2.8), 

inf {I(L - Mo)xlz : x E domL n frxQ} > O. 
Hence, the claim is proved and, using the homotopy property of the coincidence 
degree (see [22, Theorem III.2]), we can write 

(2.12) DL(L - M o, Q) = DL(L - N k, 1, Q) = DL(L - Nk,O, Q), 

for every k ~ ko and, in particular, 

(2.13) 

Let us fix k* ~ ko. For brevity, we set 

rp := rpk* , Nrp := Nk*,o , 

Consider the singular orbits (i.e. rest points and closed orbits) with minimal 
period in [0, W + 1] of the system 

(2.14) x' = rp(x). 

By the Kupka-Smale theorem,. there exist finitely many such orbits which are 
contained in B(O, R). We denote these orbits by Sl, ... ,Sn' They are mu-
tually disjoint. Pick, for each i = 1, ... , n, a point Zi E Si. Then, Zi is a 
periodic point (possibly a rest point). We can assume that Zi is a rest point 
for 1 ::; i ::; p (p ~ 0 an integer) and a periodic point for p + 1 ::; i ::; n. 
We denote its minimal period by Ti (p + 1 ::; i ::; n). We can also assume 
that Ti ::; w for p + 1 ::; i ::; q and w < Ii ::; w + 1 for q + 1 ::; i ::; n. We 
denote by k i the largest integer such that k i Ti ::; W (p + 1 ::; i ::; q), so that 
(ki + I)Ti > W (p + 1 ::; i ::; q). We denote by Xi(') the solution of (2.14) 
with Xi(O) = Zi (p + 1 ::; i::; n). 

We claim that for each Wi such that 

w < Wi < min{(kp+l + I)Tp+l' ... , (kq + I)Tq, Tq+l, ... , Tn, W + I} := T , 
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the problem 
(2,15) X' = tp(x) , x(O) = X(W') 
has no solution x(·), with x(t) E B(O, R) for all t, other than the equilibria 
Z" ... , zp. 

Indeed, if x(·) satisfies (2.15) and is contained in B(O, R), then S = {x( t) : 
o ::; t ::; Wi} is a singular orbit of (2.14) contained in B(O, R). If it is not a 
rest point, then S = Si for some p + 1 ::; i ::; n and hence there exists 0i E R 
such that 

o ::; t ::; Wi. 

In particular, 
Xi(W' + Oi) = xi(od. 

This is impossible for q + 1 ::; i ::; n as then Wi < Ti and Ti is the smallest 
period. This is impossible for p + 1 ::; i ::; q as in this case ki Ti < Wi < 
(ki + I)Ti . 

Therefore the claim is proved. 
Now, the solutions of (2.15) correspond, by the transformation 

y(t) = x (~ t) , t E [0, w], 

to the solutions of the problem 
Wi 

(2.16) y'(t) = w tp(y(t)) , y(O) = y(w). 

Thus, problem (2.16) has, by construction, no nontrivial (i.e. nonequilibrium) 
solution on clxQ and, by assumption, no rest point on frxQ (as its rest points 
are the same as those of (2.14) and all its possible solutions in B(O, R) are rest 
points). Now, as (2.14) has no solution on frxQ, the homotopy invariance of 
coincidence degree implies that 

(2.17) DdL - Nrp, Q) = DL (L - ~ Nrp, Q) , 

for all w::; Wi < r. Fix some Wi E (w, r). 
Now, by excision, 

(2.18) DL(L-~Nrp,Q)= L DL(L-~Nrp,B(Zj,6)), 
1S;;:Sp 
Zj EO. 

where 

6 = min{6" 17/2} , 
Now, the problems 

17 = min { d (Si , Sj) : 1 ::; i =I j ::; n }. 

Wi 
x'(t) = ).-tp(x(t)) , 

w 
x(O) = x(w) 

have no solution on frxB(zj, 6). 

).E(O,I], 

Indeed,ifthereexists ).*E(O, 1] and x(.) EfrxB(zj,6) such that 

x'(t) =).* Wi tp(x(t)) , x(O) = x(w), 
w 
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then 

y(t) := x C, ~~, ) 
will satisfy 

y'(t) = qJ(y(t)) , y(o) = Y(A*W') 

and hence {y(t): t E [0, A*W'] } = S;* , for some 1 :$ i* :$ n. Moreover, 

forall tE[O,A*W'] 

so that, by the choice of 0, i* = j and y(.) is constant and equal to Z j for 
all t E [0, A*W'], a contradiction. 

Thus we can argue as in [22, pp. 28-29] and obtain 

(2.19) 
DL (L - ~ Nrp, B(zj, 0)) = dB (-JQNrp, B(zj, 0) n Rm , 0) 

= (-I)mdB(qJ, B(zj, 0) n Rm, 0) 
for 1 :$ j :$ p, Z j E O. Consequently, from (2.18) we have 

(2.20) 
DL(L-~Nrp,B(Zj,O)) = (_1)m L dB(qJ,B(zj,o)nRm , 0) 

I,>},>p 
ZjEn 

= (-I)mdB(qJ, OnRm, 0). 
The result follows by (2.17), (2.20) and (2.13). The proof is complete. 

Theorem 1 is a generalization of Lemma VI.1 in [43], where the case 10 = 
-V'V, with VEC\(Rm,R) and OnRm=B(O,r), r>O, is treated. 

We remark that (2.19) holds for any linear orientation preserving isomor-
phism J : Rm ----+ Rm (see [43]), and so (2.7) is independent of the choice of 
P, Q, J, whenever det J > 0. In the more general case in which J : 1m Q = 
Rm ----+ ker L = Rm is an arbitrary linear isomorphism, we can write, instead of 
(2.7), 

IDL(L - Mo, 0)1 = IdBUo, 0 n Rm, 0)1. 

From Theorem 1, using the duality theorems developed in [43, Chapter III] 
and [31, Chapter III], we can find other relations between the degree of some 
fixed point operators related to (2.5)-(2.2) and the Brouwer degree of 10. To 
this end, the following maps <1>; : Y ----+ Y, i = 1 , 2, 3, are defined: 

<1>\ (x)(t) := x(w) + fot fo(x(s)) ds, 

<l>2(X)(t) := x(O) + fow fo(x(s)) ds + fot fo(x(s)) ds, 

<l>3(X)(t) := x(O) + (w - t) fow fo(x(s)) ds + fot fo(x(s)) ds. 

All the <1>;, i = 1 , 2, 3, are completely continuous and their corresponding 
fixed points are exactly the solutions of (2.5)-(2.2). Moreover, <l>31x : X ----+ X. 
Let 0 c Y be bounded and open (relatively to Y). In [43], the following 
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equalities are proved, provided that there is no x E fryn, solution of (2.5)-
(2.2): 

deg(/y - 4>, , n, 0) = deg(/y - 4>2, n, 0) = deg(/y - 4>3 , n, 0) 
= deg(Ix - 4>3 Ix , n n X, 0). 

Indeed, it is sufficient to apply, respectively, Theorem III. 1 , Theorem III.4 and 
Proposition III.5 in [43, Chapter III]. Related results can be found in [31, 28]. 

Now, we have 
Corollary 1. Assume that there is no x EX n fryn such that x' = fo(x). Then, 
for i = 1 , 2, 3, 
(2.21) deg(/y - 4>i, n, 0) = (-l)mdB (fo, nnRm, 0). 
Proof. It is sufficient to recall that, by [43, Theorem 111.6, Theorem III.7], 

deg(/y - 4>3, n, 0) = DL(L - Mo, nnX) 
and then Theorem 1 can be applied. 

In [48], the author stated the equality 
deg(/y -4>" n, 0) = dB{-fo, nnRm, 0) 

for the case when n is a ball and fo is positively homogeneous of order 1, as-
suming that equation (2.5) does not possess nontrivial periodic solutions of any 
period. Hence, Corollary 1 improves Muhamadiev's theorem in [48, Theorem 
5, m = 1] (see the next section for a more detailed discussion). 

Finally, we give an analogous result for the Poincare map. Suppose that 
equation (2.5) defines a flow in Rm, i.e. assume uniqueness and global exis-
tence for the solutions of the Cauchy problems associated to (2.5). For each 
z E Rm, we denote by x(', z) the solution of (2.5) with x(O, z) = z. Thus, 
the Poincare-Andronov operator on [0, OJ] is defined by 

Voz := x(OJ, z). 
Let GeRm be an open bounded set. Then, the following result holds. 

Corollary 2. Assume that Voz i- z for all z E fr G. Then, 
(2.22) dB(l - Vo, G, 0) = (-1) mdB(fo, G, 0). 
Proof. We fix R> 0 such that 

R > sup{lx(t, z)l: 0:::; t:::; OJ, z E clG}. 
Then, for n:= {x E Y: x(O) E G, Ixloo < R}, we have 
(2.23) deg(/y - 4>, , n, 0) = dB(l - Vo, G, 0). 
Indeed, (2.25) can be obtained either from [31, Theorem 28.5], observing that 
GeRm and n c Y have a "common core" with respect to the OJ-periodic 
boundary value problem (2.5)-(2.2), or from [43, Theorem IIU1, Corollary 
III.12]. Hence, Corollary 1 can be applied and the thesis follows. 

Recall that in [3] and [30] the equality dB(l - V, G, 0) = dB( - fo, G, 0) is 
proved under the stronger condition that x(t, z) i- z for all t E (0, OJ] and 
Z E fr G (that is, assuming that all the points of fr G are of OJ-irreversibility 
[30]). 

Now, we are in position to state some existence results. 
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11.2. Continuation theorems. In the sequel, we use the notation introduced at 
the beginning of the chapter. Recall that 

f(t, x; 0) = fo(x) , f(t, x; 1) = F(t, x). 

First, we give our main result for the solvability of 

(2.1 ) 
(2.2) 

x' = F(t, x), 
x(O) = x(ro). 

Theorem 2. Let Q c X be an open-bounded set such that the following conditions 
are satisfied: 
(PI) there is no x(·) E frxQ such that 

(2.1;.) x'=f(t,X;A), AE[O,I); 

Then (2.1)-(2.2) has at least one solution x(·) E clxn. 
Proof. We use the framework of coincidence degree theory as in Theorem 1. 
The classical Leray-Schauder continuation theorem [37] could be used instead, 
by the equivalence stated at the beginning of the §II.l. 

Besides the spaces and the operators considered there, we further define M := 
M(x;A):Xx[O,I] ...... Z: 

M(x; A)(t) := f(t, x(t) ; A). 

Observe that M(·; 0) = Mo. 
According to [43, Chapter VI], M is L-compact on clxQx[O, 1]. We remark 

that x(·) is a solution of x' = f(t, x; A), A E [0, 1], with x(O) = x(ro) , 
if and only if x E dom L is a solution of the coincidence equation Lx = 
M(x; A), A E [0, 1]. In particular, (2.1 )-(2.2) is equivalent to Lx = M(x; 1) 
(according to (2.3)). 

Without loss of generality, we suppose that (pd holds for A E [0, 1] in 
(2.1;.). Otherwise, the result is proved for x E frxQ. Accordingly, by the defi-
nition of M(.; A) and using (pd we have 

Lx:/; M(x; A), A E [0,1], 

for all x E domL n frxQ. Thus, we can apply the homotopy property of the 
coincidence degree and obtain: 

(2.24) DL(L - Mo, Q) = DL(L - M(·; 0), Q) = DL(L - M(·; 1), Q). 

Assumption (PI) (for A = 0) ensures that Theorem 1 can be applied, so that 
(2.7), (2.24) and (P2) imply 

IDL(L - M(·; 1), n)1 = IdB(fo, Q n Rm , 0)1 :/; O. 
Hence, by the existence property of the coincidence degree, there is x E dom Ln 
Q such that Lx = M(x; 1); thus x(·) is a solution to (2.1)-(2.2), with x(·) E 
dom L n Q. The proof is complete. 

An immediate consequence of Theorem 2 which is just based on a (suitable) 
choice of the set n c X is the following: 
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Corollary 3. Let G be a bounded open subset of Rm. Suppose that the following 
conditions are satisfied: 

(jd ("bound set" condition) for any x(·), solution of (2. I;.} - (2.2) such 
that x(t) E cl G for all t E [0, lV], it follows that x(t) E G for all 
tE[O,lV]; 

(j2) dB(fo, G, 0) =I- o. 
Then (2.1 )-(2.2) has at least one solution x(·) such that x(t) E cl G, for all 
t E [0, lV]. 
Proof. It is sufficient to define (in the setting of Theorem 2): 

Q := {x EX: x(t) E G V t E [0, lV n 
and to check that (PI) and (P2) are fulfilled. For brevity, we omit the details. 

Remark 1. Corollary 3 is a continuation theorem analogous to [39]. Namely, 
in [39] the bound set condition is required for equation 

(2.25) x' = Ah (t , x ; A) , AE(O,l), 

with h(t, x; 1) = F(t, x), and, in place of (j2), the Brouwer degree of the 
averaged vector field ho(z) := (l/lV) fow h(s, z; O)ds is considered. 

A comparison between the continuation theorem for (2.25) and Corollary 3 
can be made by means of the following examples. 

Example 1. Let us consider the plane system 

X;=X2, x~=-.uxt+vxl+p(t), 

with pELI([O, lV], R) ,.u > O,V > 0, x+ := max{x, O}, x- := max{ -x, O}, 
which comes from the study of the equivalent second order scalar equation 
x" + .ux+ - vx- = p(t). 

It is easy to prove that Corollary 3 can be applied with 

f(t, x; A) := (X2, -.uxt + vX1 + Ap(t)) , A E [0,1], 

and G = B(O, R), for R > 0 sufficiently large, provided that 

(2.26) n(.u- 1/2 + v- 1/2) =I- lV/n, for every n EN. 

Indeed, in this case a priori bounds for the lV-periodic solutions are available 
(see [13, 19]). On the other hand, if we consider the system 

x; = AX2, x~ = A( -.uxt + vX1 + p(t)) , A E (0, 1], 

the a priori bounds for the lV-periodic solutions can be found only if 

(2.27) it-In (.u- 1/2 + v- 1/2 ) =I- lV/n, for every n EN and it E (0, 1]. 

Note that (2.27) holds if and only if (.u- 1/2 + v-1/2) > lV/no 
Hence, it is easy to choose .u and v such that (2.26) holds, while (2.27) 

does not. This elementary example shows that there are situations in which 
Theorem 2 may be more directly used. In §III we provide some more substantial 
applications. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PERIODIC PERTURBATIONS OF AUTONOMOUS SYSTEMS 53 

Example 1 deals with a periodically perturbed autonomous system. In the 
case of a general nonautonomous equation 

x' = F(t, x), 

a natural choice for the homotopy in applying Theorem 2 is to take 

f(t, X;..1.) = (1 - ..1.)F(x) + ..1.F(t, x), 

where F is the averaged vector field defined by 

11w F(x) = - F(s, x)ds. 
w 0 

Example 2. We consider the problem 

(2.28) x' = h(t , x) + p(t) , 

(2.2) x(O) = x(w), 

where h: [0, w] x Rm ---+ Rm is a CaratModory function positively homoge-
neous of order a =f:. 1 in x and p E LI([O, W], Rm). We define h: Rm ---+ Rm 
by 

hex) = - h(s, x)ds 11w 

w 0 

and we assume that h(z) =f:. 0 for Izl = 1 so that dB(h, B(O, ,), 0) is defined 
and constant for each , > O. Let us define H: X x [0, 1] ---+ Z by 

H(x; ..1.)(t) := (1 - ..1.)h(x(t)) + ..1.h(t, x(t)) + M(a)p(t), 

where 

J(a)=max{o, I!=:I}. 
We first show that there is some '0 > 0 such that, for each A. E [0, 1], the 
equation 

Lx = H(x;..1.) 
has no solution x with Ixloo = " for all 0 < , ~ '0 if a > 1 and , ;::: '0 if 
a<1. 

If this is not the case, there are sequences ('k) in (0, +00), (Xk) in X and 
(..1.k) in [0,1] such that IXkloo='k, 'k~l/k ifa>l, 'k;:::k ifa<l, 
and 

x" = (1 - ..1.k)h(Xk) + ..1.kh(t, Xk) + ..1.kJ(a)p(t) 
(k EN). Letting Uk = xk/lxkloo = Xk/'k , we get 

(2.29) uk = 'k,,-I[(l - ..1.k)h(Uk) + ..1.kh(t, Uk)] + ..1.k'kIJ(a)p(t) 

so that, a.e. on [0, w], 
IUk(t)1 ~ 'k,,-I p(t) + y(t), 

for some p, y E LI([O, W], R). Consequently, there are subsequences (..1.jk)' 
(Ujk) and ..1.* E [0, 1], v E C([O, w], Rm), Ivloo = 1 such that (Ujk) ---+ v 
uniformly on [0, w] and (..1.lk) ---+ ..1.*. From 

Uk(t) - Uk(O) = 'k,,-I lot [(l-..1.dh(Uk) +..1.kh(s, Uk) +..1.k'k"J(a)p(s)]ds, 
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we get 
v(t) - V(O) = 0, t E [0, W], 

so that v is constant and Ivloo = 1. From (2.29) we also get 

0= fow [(1 - Ak)h(Uk) + Akh(s, Uk) + Akrk"c5(a)p(s)] ds 

and hence, letting A ---+ +00, 

0= wh(v) , 

a contradiction. 
Hence, 

DL(L - H(·; 1), B(O, r)) = DL(L - H(·; 0), B(O, r)) 

and by Theorem 1 and our assumption, 

DL(L -H(·; 0), B(O, r)) = (-l) mdB (h, B(O, r), 0). 

Then, if dB (h, B(O, 1), 0) f. 0, (2.28)-(2.2) will have at least one solution 
for each p E Li ([0, w], Rm) if a < 1 and, when a > 1, there will be some 
80 > 0 such that, for Ip 11 ~ 80, one has 

DL(L - H(.; 1) - p , B(O, ro)) = DL(L - H(·; 1), B(O, ro)) f. 0 

and (2.28)-(2.2) has at least one solution. This last situation is related to earlier 
work of Halanay [26] and Mawhin [42]. 

A simple consequence of Corollary 3 is based on the fact that, whenever a 
priori bounds for the solutions of (2.1;.) can be performed, then the "bound 
set" condition Ud is satisfied. More precisely, we have 
Corollary 4. Assume that there is a compact set K c Rm containing all the 
solutions of (2.1;.)-(2.2) and such that {z E Rm : Jo(z) = O} c K. Let GeRm 
be an open bounded set such that KeG and suppose that 

U2) dB(Jo, G, 0) f. O. 
Then (2.1 )-(2.2) has at least one solution with values in K. 

A result analogous to Corollary 3 can be performed in the case when the 
phase space is not Rm but a closed convex subset C of Rm with nonempty 
interior, provided that a flow-invariance condition for the set C is satisfied. 
More precisely, we have 
Theorem 3. Let G c C· be a bounded set which is open relatively to C, where 
C c Rm is a closed convex set with int C f. 0. Assume that the following 
conditions are satisfied: 
(cd for each u E fr C n G there is Y/ E N(u, C) such that 

(f(t, u; A)IY/) ~ 0 fora.e. t E [0, w] and A E [0,1]; 

(C2) for any x(·), w-periodic solution of 

x'=f(t,x;A), AE[O,I), 

such that x(t) E cl G for all t E [0, w], it follows that x(t) E G for all 
tE[O,W]; 
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(C3) the fixed pointindex ic(r(J + 10) ,G) is defined and 
ic(r(J + 10), G) ¥= 0 

55 

where r: Rm -t C is the canonical projection. Then (2.1 )-(2.2) has at least one 
solution x(·) such that x(t) E clcG, for all t E [0, w]. 

For the proof of Theorem 3, it is sufficient to use the claims in Theorem 1 and 
to argue as in [5], where a continuation theorem for the existence of solutions 
to (2.1 )-(2.2) which remain in a convex set is performed. Obviously, Corollary 
4 can be modified accordingly. 

In §IV we prove a continuation theorem which is a generalization of Theorem 
2 to the case when the phase space is an Euclidean Neighbourhood Retract 
(ENR); however, the proof of this result is obtained by embedding (2.1 )-(2.2) 
in a functional-analytic framework which is different from [43]. 

Another consequence of Corollary 3 can be deduced in the case of planar 
systems (m = 2) for which equation (2.1,d takes the form 
(2.30) x; = X2 - Ag,(XI) + AP(t) , x~ = - g2(t , XI ; A) , 
where gl: R -t Rand P: [0, w] -t R are continuous functions and g2: [0, w] 
x R x [0, 1] -t R satisfies the Caratheodory conditions. 

Systems like (2.32) come in a natural way from the study of the parametrized 
Lienard equation in the scalar case (x E R) 

x" + AIfII (x)x' + 1f12(t, x; A) = Ap(t) , 
imposing gl (xt) := J;I IfII (s) ds, g2:= 1f12, P(t):= J~ p(s) ds (usually, Jow p = 0 
is also assumed in order to get P(O) = P(w)). In this particular situation, the 
following one-sided continuation theorem can be proved. 
Corollary 5. Suppose that g2(t, z; 0) := g2(Z) and assume that there are 
constants R 2': d > 0 such that 

g2(t,z;A)·z>0, fora.e. tE[O,w]andall AE[O, 1), Izl2':d, 
and 

max{ XI (t) : t E [0, w]} ¥= R, for any solution (XI (t), X2(t)) of 
(2.30)-(2.2), with A E [0, 1). 

Then system (2.30) has at least one w-periodic solution for A = 1. 
The proof of Corollary 5 can be performed through the construction of an 

open rectangle G = (-M , R) x (-M , M) C R2 such that condition (j I) of 
Corollary 3 is satisfied with respect to the solutions of (2.30)-(2.2). The choice 
of the constant M 2': R follows by the estimates developed in [46] and [51]. We 
omit the rest of the proof referring to these papers for the needed computations. 
We note that Corollary 5 (or some slight variants of it) is the basic tool for the 
proof of some recent results concerning the periodic BVP for some Lienard and 
Duffingequations under one-sided growth restrictions on the restoring term 1f12 
(see [15, 16]). Our result also improves [15, Lemma 1]. 
Remark 2. We point out that the results of this section may be extended to the 
periodic BVP for nth order differential systems: 

(2.31 ) 
(2.32) 

x(n) + F(t, x, x', ... ,x(n-I)) = 0, 

x(i) (0) = xU) ( w) , i = 0, 1, ... , n - 1 , 
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with F: [0, w] x Rnm -. Rm, by means of the standard reduction of (2.31)-
(2.32) to the periodic BVP for a system of n first order equations in Rm. 

More precisely, we assume that there are f: [0, w] x Rnm x [0, 1] -. Rm , 
which fulfils the Caratheodory assumptions and fo: Rnm -. Rm, such that 

F(t I (n-I)) f(t I (n-I). 1) ,X,X, ..• ,x =- ,x,x, ... ,x , , 

fr. ( I (n-I)) - -f(t I (n-I) . 0) oX,x, •.. ,x - ,X,X, ... ,X ,. 

We also define qo: Rm -. Rm, by 

qo(z):= fo(z, 0, ... , 0), 

Then, we have 

Corollary 6. Assume that there is R > 0 such that 

max{lx(i)loo : i = 1, ... , n - I} < R, 

for all possible solutions x(·) of 

x(n) = f(t, x, x' , ••• , x(n-I) ; A) , A E [0, 1), 

satisfying the boundary condition (2.32). Suppose that, for r 2:: R, 

dB(qo, B(O, r), 0) =I O. 

Then (2.31 )-(2.32) has at least one solution. 

The proof follows straightforwardly from Corollary 4, arguing like in [40], 
and therefore it is omitted. 

We recall that in [14, p. 677] a similar result has been obtained for a second 
order scalar equation using a different approach based upon some equivariant 
degree theory. 

As a final result, we give a continuation theorem based on the study of the 
Poincare map. 

For each z E Rm, A E [0, 1], we denote by x(·, z; A) the solution of x' = 
f(t, x; A) such that x(O, z; A) = z. As usual, to do this, we assume uniqueness 
and global existence for the solutions of the Cauchy problems associated to 
(2.1;.). The Poincare-Andronov operator U;. = U;.(z) : Rm -. Rm is defined as 
follows: 

U;.(z) = x(w, z; A). 

Then, we have 

Theorem 4. Let GeRm be open and bounded. Assume that the following 
conditions are satisfied: 

U;. (z) =I z for all z E fr G , A E [0, 1); 
dB(fo, G, 0) =I O. 

Then (2.1 )-(2.2) has at least one solution. 
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Proof. Without restriction, we can suppose that (ml) holds with A E [0, 1]. 
Then, it is sufficient to observe that assumption (ml) ensures that the map 
(I - V).) is an admissible homotopy, so that, by the homotopy invariance of the 
Brouwer degree, 

dB (I - VI, G, 0) = dB (I - Vo, G, 0). 
Furthermore, Corollary 2 is applicable, so that 

dB (I - VI, G, 0) = (-l) mdB(fo, G, 0). 
Hence, there is z E cl G such that VI (z) = z. The proof is complete. 

Extensions to differential-delay equations may be performed as well, combin-
ing Theorem 1 with the arguments developed in [41]. 

III. ApPLICATIONS 

In this section we deal with the problem of the existence of solutions x(·) to 

(3.1 ) 
(3.2) 

x' = F(t, x), 
x(O) = x(w), 

such that x(t) E cl G for all t E [0, w], where G is an open bounded subset 
of Rm. 

We state some consequences of Theorem 2 and of its corollaries which illus-
trate the range of applicability of our main result. 

Throughout this section, we assume that the nonlinear field F splits as 

(3.3) F(t, x) = g(x) + e(t, x), 
where the function g : Rm --+ Rm is continuous and e : [0, w] x Rm --+ Rm 
satisfies the Caratheodory assumptions. First, we consider the case of "small 
perturbations"; then, we study large perturbations of positively homogeneous 
vector fields. 
111.1. Small perturbations. 

Corollary 7. Assume that the following conditions are satisfied: 
(k l ) for any w-periodic solution x of 

(3.4) x' = g(x) 
such that x(t) E cl G for all t E [0, w], it follows that x(t) E G for all t E 
[0, w]; 

Then thereis eo > 0 such that, for any forcing term e(·, .) with le(·, z) 100 ::; eo 
for all z E cl G, system (3.1) has at least one w-periodic solution x(·) such 
that x(t) E cl G for all t E [0, w]. 
Proof. We apply Corollary 3 with fo = g. We imbed (3.1) in the family of 
parametrized equations 

(3.1).) x' = f(t, x; A) := g(x) + Ae(t, x), A E [0, 1], 

and we claim that there is eo > 0 such that for every function e(·, z) with 
le(·, z)loo ::; eo for all z E cl G, the set G is a "bound set" for (3.1).). 
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Indeed, assume by contradiction that, for each n EN, there is a function 
en such that le(·, z)loo $ lin for all z E clG and there is an w-periodic 
function Xn ( .) satisfying 
(3.5) x~ = g(xn) + Anen(t, Xn), An E [0, 1], 
such that xn(t) E clG for all t and xn(tn) E frG for some tn E [0, w]. By 
Ascoli-ArzeUt's theorem we have that there is an w-periodic solution x* (.) of 
(3.4), with x*(t) E cl G "It, such that (up to subsequences) Xn ---+ x* uni-
formlyon [0, w]. Moreover, for tn ---+ t*, we have x*(t*) E frG. Thus, pass-
ing to the limit in (3.5), a contradiction with (k l ) is reached and the claim is 
proved, so that Ud is satisfied for e(·, .) sufficiently small. Thus we can apply 
Corollary 3 and the proof is complete. 

With elementary changes in the proof it can be seen that the result is still 
true when e(t, x) = e(t) and bounds for leII are considered. 

Corollary 7 enables us to recover a number of previous results, thanks espe-
cially to the rather weak condition (k l ). For example, (k l ) is satisfied whenever 
the flow nO induced by (3.4) is dissipative (i.e. there is a compact set K c Rm 
such that for each x E Rm there is tx ;::: 0 with n°(t, x) E K for all t ;::: tx) ; 
indeed, if this is the case, then dB(g, G, 0) = (-I)m X(Rm) = (-I)m, for every 
G:J K, where X is the Euler-Poincare characteristic (see [31], [61, Theorem 
6.1]). Hence, Corollary 7 guarantees the existence of periodic solutions for small 
periodic perturbations of autonomous dissipative systems. In this manner, we 
recover some classical results contained in [11, 28, 56]. 

Now, we discuss other results for the existence of solutions to (3.1 )-(3.2) 
where some conditions less general than (k l ) are required. 

In the two-dimensional case, J. Cronin [9, 10, 11] and A. C. Lando [32, 33] 
deal with periodic perturbations of autonomous systems of the form: 
(3.6) x' = X(x , y) + eEl (t) , y' = Y(x, y) + eE2(t). 

Following Gomory's approach [23], the authors are led to construct a simple 
closed curve J (containing the origin in its interior) such that the unperturbed 
system 
(3.7) x' = X(x, y), y' = Y(x, y) 

has no closed orbits intersecting J. 
Clearly, in this situation (k l ) is satisfied and condition (k2) either is ex-

plicitly required (see [32, 33]), or it is an implicit consequence of other hy-
potheses. For instance, in [9, 10, 11] it is assumed that "the point at infinity is 
strongly stable relative to (3.7)". However, in this case it can be proved that 
dB((X, Y), B(O, R), 0) = 1, for R sufficiently large. From the above discus-
sion, it follows that Corollary 5 contains all the results proved in [9, Theorem 
2], [10, Theorem 6], [11, Theorem 2], [32, Theorem 3], [33, Theorem 3]. 

On the other hand, we observe that none of the above quoted theorems is 
suitable for dealing with systems like 
(3.8) x' = _y3 + eEl (t) , y' = x 3 + eE2(t) 

(see [10, p. 159]), while Corollary 7 applies. 
We also note that many regularity hypotheses which are required in [9, 10, 

11, 32, 33] are avoided using our approach. 
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Another condition (stronger than (kd /\ (k2» leading to the existence of w-
periodic solutions of (3.6) was given in [1, Theorem 2], where it is assumed 
that the origin is an isolated critical point with nonzero index and it is not an 
isochronous center of period wlk (k EN). In fact, in this case it is sufficient 
to take G = B(O, 0), with 0 > 0 sufficiently small. On the same line, see [3, 
Theorem 2]. Finally, we mention that, by means of Corollary 7, we can give an 
easy proof of 
Nemitzkii's Conjecture (first settled by A. Halanay [25]). If the autonomous sys-
tem (3.7) has a limit cycle, then there is least one w-periodic solution of (3.6) , 
for e sufficiently small. 

Again, Corollary 7 may be applied, choosing G such that fr G is "sufficiently 
close" to the limit cycle. 

In the higher dimensional case, Corollary 7 is an improvement of [1, Theorem 
1], [3, Theorem 1], [27, Theorem 3.13], where, besides (k2) , various specific 
conditions are required, such as, e.g. [27], 

"The origin is the only critical point of (3.7) in a neighbourhood G of itself, 
and (3.4) has no periodic solutions of period w', 0 < w' $ w, passing through 
points of fr G ". 

Corollary 7 is also a generalization of [62, Theorem 4], [66, Theorem 4.1, 
(cd], where, instead of (kd, the existence of a compact isolating neighbour-
hood K for the flow induced by (3.4) is required. 

Indeed, if this is the case, then G = int K is suitable for the validity of 
Corollary 7. Again, equation (3.8) provides an example of applicability of our 
result while [62, 66] cannot be used (see also Example 3 below). 

We end this subsection with an example of a system which is nondissipative 
and such that, furthermore, the corresponding autonomous system has the origin 
as a global center. For related results see [20, 53]. 
Example 3. We deal with the forced nonlinear second order scalar equation: 
(3.9) x" + /{I(x) = p(t), 
where /{I: R -+ R is continuous and p : R -+ R is continuous, w-periodic and 
such that 

p:= (1/w) fow p(s)ds = O. 

As is well-known, equation (3.9) is equivalent to the phase-plane system: 
x' = y + P(t), y' = -/{I(X) , 

where 
P(t):= fot p(s)ds. 

We assume that the function /{I satisfies: 

(3.10) /{I(X)·X > 0 for Ixi i= 0, 

(3.11) lim \}I(x) = +00, 
Ixl-++oo 

with \}I(x):= foX /{I(I;)dl; . 

From (3.10) and (3.11), it follows that the origin in R2 is a global center for 
the autonomous system 
(3.12) (x', y') = g(x, y) := (y, -/{I(x» , 
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so that there is no compact isolating neighbourhood cl G of the origin (with G 
open). 

Moreover, for any open bounded set G C R2 , 

dB(g, G, 0) = 1 for 0 E G, dB(g, G, 0) = 0 for 0 ¢ G. 

Hence, Theorem 4.1 in [66] cannot be applied. 
On the other hand, in order to use Corollary 7 it is sufficient to find a bound 

set G for (3.12), i.e. an open bounded set with 0 E G such that there is no 
w-periodic solution of (3.12) "tangent" to fr G. To this end, we consider, for 
any c > 0, the sublevel set \}Ie := {(x, y) E R2 : (1/2)y2 + \}I(x) < c}. Then, 
fr\}le is a periodic orbit with minimum period: 

Te = v1 Le 
J\}I(c/- \}I(e;) de; , with d < 0 < c, \}I(d) = \}I(c). 

Hence, it is sufficient to find c > 0 such that Te =f. win for all n EN. Such a 
choice of c is always possible if the continuous map 

T =: (0, +00) ...... (0, +00), c f-t Te , 

is not constant. 
Then, the following result follows from Corollary 7: 

Proposition 1. For any continuous map If/: R ...... R satisfying (3.10), (3.11) 
and having a nonconstant associated time-map T, there is eo > 0 such that 
equation (3.9) has an w-periodic solution for every w-periodic forcing term 
p(.) with jpiI :'5 eo . 

Recall that, if If/ is continuously differentiable and odd, then, by a classical 
theorem of Urabe [64, §13.3, Corollary 4], T(·) is constant if and only if If/ : 
R ...... R is linear. 

111.2. Asymptotically homogeneous systems. In this subsection, we deal with 
perturbations of autonomous systems with positively homogeneous nonlinear-
ity. More precisely, we consider equations of the form 

(3.13) x' = g(x) + e(t, x) , 

with g: Rm ...... Rm continuous and such that, for some a > 0, 

(Ld g(kx) = kQg(x) , for all k > 0, X E Rm 

and e : [0, w] x Rm ...... Rm satisfying the Caratheodory conditions and such 
that 

(L2) lim (je(t, x)jljxjQ) = 0, uniformlya.e. in t E [0, w] ; 
Ixl-++oo 

Systems of the form (3.13) have been widely studied; see, for instance, [31, 
34,36,45,47,48]. In [31, §41], [47] the more general case in which the function 
g may depend on t is considered too. However, as we show below, there are 
situations that can be settled in the framework of Corollary 4 but do not fit in 
[31,48]. 

In the first result of this subsection we consider the case of g homogeneous 
of degree one. 
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Corollary 8. Assume (L,), (L2 ) with a = 1. Suppose that the following condi-
tions are satisfied: 

x = 0 is the only w-periodic solution of 

X' = g(x); 

dB (g , B(O, R o), 0) =f. 0, for some Ro > O. 
Then there is at least one w-periodic solution to (3.13). 

Note that, from (L3) , the origin is the unique singular point of g, and 
(Ld, (L4) imply that dB (g , B(O, R), 0) =f. 0, for every R > O. 

Proof. We apply Corollary 4, with K = B[O, R] for R > 0 sufficiently large, 
G = B(O, Rd, R, > R, fo = g, f(t, x; A) = g(x) + Ae(t ,x). In order to 
find R and, as a consequence, to prove the existence of a priori bounds for the 
solutions of (3.1;.), assume by contradiction that there is a sequence (xn ) of 
w-periodic functions, with IXnl oo ---> +00 and such that, for every n EN, 

(3.15) x~=g(xn)+Ane(t,xn), AnE[O,I]. 

Now we set, for all n EN, 

Yn(·):= xn(·)/lxnl oo , 

so that, dividing (3.15) by IXnloo and using (Ld we get 

(3.16) y~ = g(Yn) + (Ane(t, xn)/lxnloo) . 

We observe that we can apply Ascoli-Arzela's theorem; therefore, there exists 
y*, with IY*loo = 1, such that (up to subsequences) Yn ---> y* uniformly on 
[0, w]. Thus, taking the limit as n ---> +00 in (3.16) and using (L2) we obtain 

(y*)' = g(y*). 

Therefore, by (L3), y* = 0, which is a contradiction. 
Thus, we have proved that there is R > 0 such that, for every w-periodic 

solution x(·) of (3.14), x(t)EB[O,R] for all tE[O,W]. Therefore, using 
(L4) we see that Corollary 4 is applicable and we get the existence of an w-
periodic solution of (3.13) such that x(t) E B[O, R] for all t E [0, w]. The 
proof is complete. 

Remark 3. Corollary 8 is a generalization of the results (in the case a = 1) in 
[48], where, besides (Ld, (L2) and (L4) , the fact that there are no cycles or 
nontrivial equilibrium states for the autonomous system x' = g(x) is assumed. 
In other words, (L3) must hold for periodic solutions of any period. Hence, 
the range of applicability of our corollary is wider than Muhamadiev's one. For 
instance, Muhamadiev's theorem does not apply to Example 1 in §II; indeed, in 
that situation, for Ii, v > 0, the origin is a global center for the autonomous 
system 

I I + -X,=X2, X2=-IiX, +vx, ' 
while our result applies, provided that (Ii, v) does not belong to the Dancer-
FuCik spectrum [19]. 

We also point out that, apparently, Corollary 8 (or, more precisely, the evalu-
ation of the Leray-Schauder degree ofthe Nemitzkii operator induced by (3.14) 
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in terms of the Brouwer degree of g) cannot be obtained by means of the tech-
niques developed in [31]. To this regard, see the problem raised in [31, p. 
256]. 

Now, we state the analogue of Corollary 8 for nth order systems of the form 

(3.17) x(n) + F(x, x', ... , x(n-I») = e(t, x, x', ... , x(n-I»). 

Corollary 9. Assume that the following conditions are satisfied: 
(fl ) F(kx, kX', ... , kx(n-I») = kF(x, x' , ... , x(n-I») , for all k > 0 and 
(x, x', ... , x(n-I») E Rnm ; 
(f2) lim le(t, x, x', ... , x(n-I»)I/(lxl+lx'l + ... + Ix(n-I)I) =0, 

ixi+ix'i+···+ix(n-l)i ..... +oo 
uniformlya.e. in t E [0, w]; 
(f3) x(t) = 0, for all t E [0, w], is the only w-periodic solution of 

x(n) + F(x, x', ... , x(n-I») = o. 
(f4) dB(q, B(O, r), 0) =f. 0, for r> 0, where q(x):= F(x, 0, ... , 0). 
Then, (3.17) has at least one w-periodic solution. 

As for the proof, it is sufficient to repeat the argument in the proof of Corol-
lary 9 and to apply Corollary 6. 

Remark 4. The particular case when q(x) = F(x , 0, ... , 0) = V'V(x) , with 
V: Rm ~ R a positively homogeneous potential of degree 2 has been consid-
ered by many authors (see, e.g., [31, §12.4], [36]). Corollary 9 improves the 
result in [36], where system 

x" + V'V(x) = pet) 

is studied. Indeed, besides assumptions analogous to (fd, (f2) , (f3) , it is as-
sumed in [36] that Vex) > 0 for x =f. 0 so that (f4) holds as well (see [31, 
Theorem 12.6]). This remark shows that Corollary 9 contains the classical theo-
rems in [13, 19] on jumping nonlinearities, where asymptotically homogeneous 
autonomous equations are considered, and some of the results in [17, 18]. An 
easier proof of the theorem in [36] has been recently obtained in [45]. 

As a second consequence of Corollary 4, we perform a result for asymptoti-
cally positively homogeneous systems of order a, with a =f. 1. 

Corollary 10. Assume (LI ), (L2) , (L4) and suppose, respectively, either 

(L3) x = 0 is the only bounded solution of x' = g(x) (if a > 1); 

or 

(L)) g(x) =f. 0 for x =f. 0 (if a < 1). 

Then, (3.13) has at least one w-periodic solution. 

The proof can be obtained by repeating essentially the proof of Corollary 8, 
or following Muhamadiev's argument [48]. 

By means of [48] and Corollary 4 it is easy to extend the result to systems of 
the form 

(3.18) x' = g(t, x) + e(t, x), 
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using a homotopy between (3.18) and either the "freezed" system x' = g(O, x) 
for a > 1, or the "averaged" system x' = g(x) for a < 1. 

We do not give any new contribution for (3.18), except for the abstract 
theorem we use; hence, we do not state such results in detail. 

Finally, we mention that by means of the (continuation) Theorem 2 it is 
possible to obtain a result on the so-called "regular guiding functions" (see [4], 
[31, §14]). In this way, we can easily recover [8, 12, 23], where a perturbation 
of a polynomial in R2 is studied. 

IV. AN EXTENSION TO FLOW-INVARIANT ENRs 

In a recent paper [6], a variant of Mawhin's continuation theorem has been 
obtained for differential systems inducing a flow on some closed ENRs. In what 
follows we give a similar extension of Theorem 2, provided that a Kupka-Smale 
approximation property holds. 

Let C c Rm be a closed ENR. In this section, our goal is to prove the 
existence of a solution x(·) to 

( 4.1) 
(4.2) 

x' = F(t, x), 
x(O) = x(w), 

such that, for all t E [0, w], x(t) belongs to a certain subset of C. 
The particular case when C = Rm has been treated in the previous sections. 
As before, we assume that 

(4.3) 

where 

F(t,x):=f(t,x; 1), 

f = f(t, x; A): [0, w] x C x [0, 1] ---+ Rm 

is a continuous function which is locally lipschitzian in x, uniformly in t, A. 
Once for all, we point out that such assumption is not strictly necessary in 
our proofs, but it provides the uniqueness of the solutions to all the Cauchy 
problems which we will consider henceforth. Moreover, we assume that for 
A = 0 the map f is autonomous, i.e. there exists a function fo : C ---+ Rm 
such that 

(4.4) fo(x) = f(t, x; 0), 

for all tE[O,W], xEC. 
In this more general situation, we need a "flow-invariance" hypothesis ensur-

ing that system 

(4.5) x' = f(t, x; A) 

induces a local process in C, for all A E [0, 1]. More precisely, we want that, 
for each (to, xo) E [0, w) x C and for all A E [0, 1], the Cauchy problem 

x' = f(t, x; A), x(to) = xo, 
has a solution x(·) : dom x(·) ---+ C defined on a right maximal neighbourhood 
of to. 

Nagumo's theorem (see [49, 67]) ensures that this fact holds true if and only 
if 

(id f(t, z; Ie) E T(z; C) for all t E [0, w], z E frC, Ie E [0,1], 
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where T(z; C) is the (Bouligand) tangent cone to C at z. In other words, 
condition (i,) means that the function f is "subtangential" to C at z E fr C. 

Remark 5. Assumption (id is obviously satisfied in the case when C = Rm. 
If set C is a regular manifold and f( t , .; A) is a tangent vector field, then 
f(t, z; A) E T(z; C) n -T(z; C), so that (id holds (see [21]). If C is a 
closed convex set with nonempty interior (like in [5]) then (id can be written 
as 
(4.6) 

(f(t, z; A)ll1) :::; 0 for all t E [0, w], z E frC, A E [0, 1] and 11 E N(z). 
Now, we introduce the crucial "approximation" 

Property (A). If 

(4.7) fo(z) E T(z; C) forall z E frC, 

then there exists a sequence of locally lipschitzian functions (qJ k), qJ k : C ---t Rm 
such that: 

(a') qJk(Z) E T(z; C) for all z E fr C, kEN; 
(b') (qJk) ---t fo uniformly on compact sets; 
(c') for every compact subset K of C and for all kEN, system 

x' = qJk(X) 
has finitely many singular orbits (i.e., rest points and closed orbits) with 
minimal period in [0, W + 1] which are contained in K. 

We stress the fact that if the set C is a manifold (with or without boundary) 
and fo is a tangent vector field to C, then property (A) is satisfied. Indeed, 
this is a consequence of the Kupka-Smale theorem. In particular, property 
(A) is satisfied in the case when C = Rm (as in §II above). If the set C 
is a closed convex set with nonempty interior (as in [5]), then it is easy to 
prove that property (A) is satisfied. Indeed, if (4.5) holds one can show, by a 
standard perturbation argument, that there are sequences (I/fk) and (15k) ! 0 
such that I/fk ---t fo uniformly on compact sets and (l/fk(z)ll1) :::; -15k < 0 for all 
z E fr C, 11 E N(z). Now, by the Kupka-Smale theorem, we have that, for each 
kEN, there is a sequence (qJk,n)~o satisfying (a'), (b') and (c'). Finally, 
a diagonal argument leads to the conclusion. 

Before stating our main result, we recall the definition of the "index of rest 
points". 

Assume (i,) and consider system 

(4.8) x' = fo(x). 
The locallipschitzian continuity of the function fo ensures that (4.8) induces 
a local semidynamical system nO with phase space C. We recall that if (id 
holds then, taking A = 0 in (id, it is immediately seen that the set C is 
positively invariant for (4.8). Let G c C be a bounded set, open relatively to 
C. If 

(4.9) fo(x) =f. 0 for all x E freG, 

then there exists eo > 0 such that the" e-Poincare map" n~ : x f-+ nO(e, x) is 
fixed point free on the set freG, for all 0 < e :::; eo. Hence, the fixed point 
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index ic(n~, G) is defined and it is constant with respect to e E (0, eo] (see 
[61]). Thus, the integer 

J(nO, G) := lim ic(n~ , G) 
e--+O+ 

is well defined, and it is called the "index of rest points". 

Remark 6. We recall some facts about the computation of the index of rest 
points. If G = C (C compact), then J(nO , G) = X(C), where X denotes the 
Euler-Poincare characteristic (see [21,61]). If clG c intC, then J(nO, G) = 
(-l)mdB Uo, G, 0) (see [31,61]). If C is a closed convex set with nonempty 
interior, then J(nO, G) = ic(r(J + 10) , G), r: Rm -t C being the canonical 
projection (see [5]). If C is a manifold (satisfying suitable assumptions) and 
10 is a vector field tangent to C, then J(no, G) = X( - 10), where X is the 
"characteristic of the vector field" 10 introduced in [21]. 

In what follows, we denote by r the complete metric space of the continuous 
functions x(·) : [0, w] -t C endowed with the distance d*, d*(Xl' X2) := 
IXl - x2100 . We recall the following crucial result (see [29]): the space (r, d*) 
is a metric ANR if and only if the set C is an ANR. This theorem will enable us 
to work with the fixed point index of compact operators defined in the function 
space r. Notice that in what follows points of C will be identified with constant 
functions. Now, we are in position to state our main result. 

Theorem 5. Assume (it} and (A). Let Q c r be an open bounded set such that 
the following conditions are satisfied: 

(iz) there is no x(·) E frrQ, with x(O) = x(w), such that 

(4.1;.) x'=f(t,x;A), AE[0,1); 

(h) J(no, Q n G) =1= O. 
Then (4.1 )-( 4.2) has at least one solution x(·) E clrQ. 
Proof. We begin by observing that, as Q is bounded, there is a constant R> 0 
such that 

Ixloo < R, for every x E clrQ. 
Now, consider a sequence of locally lipschitzian functions (qJk) , qJk : C -t 

Rm, with qJk -t 10, uniformly on C n B[O, R], and satisfying (a') and (c') , 
according to property (A). 

As a first step, we claim that, without loss of generality, we can suppose that 
(d') for each kEN, the problem 

x' = qJk(X) , x(O) = x(w) 
has no nontrivial solution in C n B(O, R). 

Indeed, consider the singular orbits (i.e. rest points and closed orbits) with 
minimal period in [0, w + 1] of the system x' = qJk(X). By (c') , there exist 
finitely many such orbits Sl, ... ,Snk ' which are contained in C n B(O, R). 
Let Zj (1 ::; i ::; Pk, Pk 2: 0 an integer) be the rest points among the Sj . 
Arguing as in the proof of Theorem 1 (from step (2.14) to step (2.17)), we can 
find, for each kEN, a constant rk > w such that, for each w < w' < rk , 
the problem 

x' = qJk(X) , x(O) = x(w') 
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has no solution x( 0), with x(t) E C n B(O, R) for all t, other than the 
equilibria Zl, ••• , ZPk • 

Hence, if we choose, for each kEN, 

, . { 1 } W < wk < mm Tk, W + k ' 
and define 

'Pk(Z) := (W~/W)'Pk(Z), for each Z E C, 
we get a sequence of locally lipschitzian functions ('Pk) , 'Pk: C -+ Rm, with 
'Pk -+ fo, uniformly on CnB[O, R], which satisfies (a') (by the cone property 
of T(z; C)) and such that the problem 

x' = 'Pk(X) , x(O) = x(w), 

has no nontrivial solution in C n B(O, R). The claim is thus proved. 
Then, in the sequel, we can assume (d'). 
As a next step, we proceed along the lines of the proof of Theorem 1 in [6]. 
We suppose that (h) holds with A E [0, 1] in (4.1;J (otherwise, the result 

is proved for x E frrn ). 
Let us consider the Cauchy problem 

(4.10) 
(4.11) 

y' = f(t , y; A) , 
Y(O') = z. 

Without loss of generality, we can assume f bounded, possibly replacing it by 
a modified function like f(t, x; A)p(lxl) , as in the proof of Theorem 1 in [6]. 
Since, in this situation, uniqueness and global existence for (4.10)-(4.11) are 
guaranteed, then if we denote by u( 0' , Z , 0; A) the solution of (4.10)-(4.11) a 
one-parameter family of processes is defined. 

Besides, we introduce a one-parameter family of compact operators defined 
on r x [0, 1] as follows: 

M(x; A):= u(O, x(w), 0; A), A E [0,1]. 
By (it}, M: r x [0, 1] -+ r; furthermore, Ascoli-Arzela's theorem ensures 
that M is compact on clrn x [0, 1]. By the definition of M , it is easily 
seen that x is a fixed point of M(o; A) if and only if x(o) is a solution of 
(4.10) such that x(O) = x( w). Accordingly, our aim is to prove the existence 
of a fixed point of the operator M( 0; 1). This fact, together with (4.3), implies 
the thesis. 

By assumption (i2) , we have that M(x; A) =1= x for all x E frrn and 
A E [0, 1], so that M is an admissible homotopy and 

ir(M(o; 1), n) = ir(M(o; 0), n). 
Observe that the existence of a fixed point of the operator M( 0; 0) is equivalent 
to the existence of an w-periodic solution of the autonomous system (4.8). 

Now, by property (A) and the preceding claim, there is a sequence ('Pk) 
satisfying (a'), (b') , (c') and (d') , relatively to C n B[O, R]. Let us denote, 
for every kEN, by 7C k , Il the dynamical system induced by 

y' = J1fo(y) + (1 - J1)'Pdy) , 
with J1 E [0, 1]. 
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Thus, for each kEN, a one-parameter family of dynamical systems is 
defined. Assumptions (id and (A) imply that the set C is flow-invariant for 
the dynamical systems nk, Jl as well. 

Indeed, this follows from the convexity and the cone property of some tangent 
cones which can be equivalently used in place of T(z; C) (cf. Lemma 1 in [6] 
for the detailed proof of an analogous result). 

On the other hand, assumption (i2) implies that Io(z) =1= 0 for all z E 
frrO n C; hence, by the compactness of frrO n C, we obtain that there is 
eo E (0, w) such that 

(4.12) 

for all z E frrO n C, e E (0, eo]. 
Now, as before, we introduce, for every kEN, an operator Nk defined on 

r x [0, 1] by 
Nk(X; J.l) := nk,Jl(., x(w)); 

observe that Nk: r x [0, 1] -+ r and that it is compact on clrO x [0, 1]. 
Moreover, 

for all kEN. 
We claim that there is ko such that, for all k 2: ko and for all J.l E [0, 1], 

N k (. ; J.l) is an admissible homotopy. This fact will imply, in particular, that if 
we denote by nk:= nl,k the flow induced by Xl = rpk(X) , then 

(4.13) nk(eo, Z) =1= z, forallzECnfrrO, k2:ko. 
Moreover, a classical compactness argument implies that, for any k > ko , 
there is ,)1 = ,)1 (k) > 0 such that 

(4.14) nk(eo,Y)=I=y, forallYEB(frrOnC,,)I). 

Indeed, it is sufficient to observe that the sequence of operators (Nk) converges 
to M(.; 0) uniformly on clrO x [0, 1] and that 

inf{d*(x, M(x; 0)): x E frrO} > 0 

(recall that M(·; 0) is compact on frrO and frrO is closed). Hence, the claim 
is proved and we can write 

( 4.15) 

for every k 2: ko and, in particular, 

( 4.16) 

Let us fix k* 2: ko. For brevity, we set rp := rpk* , N := Nk* , n'P := nk* , ,)1 := 
,)1 (k*). Let SI, ... , Sn C C n B(O, R) be the singular orbits (i.e. rest points 
and closed orbits) with minimal period in [0, w + 1] of the dynamical system 
n'P induced by 

( 4.17) Xl = rp(x) , 

which are contained in C n B(O, R). 
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Arrange the indexes so that Zj , for 1 ~ i ~ p, are the rest points of n'f! 
in C n B(O, R), that is Zj = Sj , for i = 1, ... , p. 

By (d') , we know that x(·) E clrn is a fixed point of the operator N(·; 0) 
if and only if x(t) = Zj , for all t E [0, w], with Zj E n n C. Hence, by 
excision, 

(4.18) ir(N(.; 0), n) = L ir(N(·; 0), B(zj, J», 

where 

J = min{J1 , 11/2} , 

ISj$p 
ZjEo. 

11 = min{d(Sj, Sj): 1 ~ i i= j ~ n}. 

Now, we introduce a third homotopy by whom, roughly speaking, we "move 
along the orbits" of the dynamical system n'f!. 

We define an operator H on r x [0, 1] as follows: 

H(x; P) := n'f!(x(w) , (1 - p)eo + p.). 

As before, H: r x [0, 1] --+ r and it is compact on clrn x [0, 1]. Moreover, 

( 4.19) N(·;O)=H(·; 1). 

We observe that x is a fixed point of H(·; P) if and only if x(t) == 
y (( 1 - p)e + p t), with y ( .) a Yo-periodic solution of 

y' = tp(y) , y(O) = x(w) 

and Yo := (1 - p)e + pw. 
By the same argument used in the proof of Theorem 1 (from step (2.18) to 

step (2,19», we have that H(·; P) has no fixed points on frrB(zj, J), for 
each j = 1 , ... ,p (z j En) and each p E [0, 1], so that 

(4.20) ir(H(·; 1), B(zj, J» = ir(H(.; 0), B(zj, J». 
Since the only fixed points of H(·; 0) in clrn are the Zj, j = 1, ... , p 
( Zj En), by excision it follows that 

(4.21) ir(H(.; 0), n) = L ir(H(·; 0), B(zj, J», 
l$i$p 
ZjEo. 

Therefore, from (4.18), (4.19), (4.20) and (4.21) we obtain that 

ir(N(.; 0), n) = ir(H(.; 0), n). 
Since H(·; 0) : r --+ C, then by the contraction property of the fixed point 
index (see [50]) we have 

ir(H(.; 0), n) = ic(H(.; 0), n n C). 
Furthermore, using the fact that 

H(x; 0) = n'f!(eo, x(w») = nfo(x(w») , 

we get 
ic(H(.; 0), n n C) = ic(nio' n n C). 

Finally, by the choice of k*, we can use (4.16), so that 
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ic(nfo' n n C) = ic(n~o' n n C) = ic(n~ , n n C), 

for e E (0, eo]. 
In conclusion, we have proved that ir(M(.; 1), n) = ic(n~, Q n C) is con-

stant with respect to e, for e > 0 small enough. 
Then, 

ir(M(.; 1), Q) = lim ic(n~, n n C) = [(nO, n n C). 
£--+0+ 

Assumption (h) provides the existence of a fixed point x E n of M(·; 1). 
The proof is complete. 

Remark 7. We point out that a generalization of Corollaries 3 and 4 to the case 
of flow-invariant ENRs can be performed arguing as in §II. Besides an analogous 
"bound set" or "a priori bounds" condition (respectively), it is sufficient to 
assume, according to Remark 7, that 
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