
Continuity and Anomalous Fluctuations in Random Walks in Dynamic
Random Environments: Numerics, Phase Diagrams and Conjectures
Avena, L.; Thomann, P.

Citation
Avena, L., & Thomann, P. (2012). Continuity and Anomalous Fluctuations in Random Walks
in Dynamic Random Environments: Numerics, Phase Diagrams and Conjectures. Journal Of
Statistical Physics, 147(6), 1041-1067. doi:10.1007/s10955-012-0502-1
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/61417
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/61417


ar
X

iv
:1

20
1.

28
90

v2
  [

m
at

h.
PR

] 
 2

2 
M

ay
 2

01
2

Continuity and anomalous fluctuations

in random walks in

dynamic random environments:

numerics, phase diagrams and conjectures.

L. Avena 1

P. Thomann 1

March 13, 2018

Abstract

We perform simulations for one dimensional continuous-time random walks in two dy-
namic random environments with fast (independent spin-flips) and slow (simple symmet-
ric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic
speeds and the scaling limits of such random walks. We observe different behaviors de-
pending on the dynamics of the underlying random environment and the ratio between
the jump rate of the random walk and the one of the environment. We compare our data
with well known results for static random environment. We observe that the non-diffusive
regime known so far only for the static case can occur in the dynamical setup too. Such
anomalous fluctuations give rise to a new phase diagram. Further we discuss possible
consequences for more general static and dynamic random environments.
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1 Introduction

1.1 Random walk in static and dynamic random environments

Random Walks in Random Environments (RWRE) on the integer lattice are RWs on Z
d evolv-

ing according to random transition kernels, i.e., their transition probabilities/rates depend on
a random field (static case) or a stochastic process (dynamic case) called Random Environ-
ment (RE). Such models play a central role in the field of disordered systems of particles.
The idea is to model the motion of a particle in an inhomogeneous medium. In contrast with
standard homogeneous RW, RWRE may show several unusual phenomena as non-ballistic
transience, non-diffusive scalings, sub-exponential decay for large deviation probabilities. All
these features are due to impurities in the medium that produce trapping effects. Although
they have been intensively studied by the physics and mathematics communities since the
early 70’s, except for the one-dimensional static case and few other particular situations, most
of the results are of qualitative nature, and their behavior is far from being completely un-
derstood. We refer the reader to [23, 26] and [1, 14] for recent overviews of the state of the
art in static and dynamic REs, respectively.

In this paper we focus on two one-dimensional models in dynamic RE. In particular, the
RW will evolve in continuous time in (two-states) REs given by two well known interacting
particle systems: independent spin flip and simple symmetric exclusion dynamics. Several
classical questions regarding these types of dynamical models are still open while the behavior
of the analogous RW in a i.i.d. static case is completely understood. We perform simulations
focusing on their long term behavior. We see how such asymptotics are influenced as a function
of the jump rate γ of the dynamic REs. The idea is that by tuning the speed of the REs, we
get close to the static RE (γ close to 0) or to the averaged medium (γ approaching infinity).
We observe different surprising phases which allow us to set some new challenging conjectures
and open problems.

Although the choice of the models could appear too restrictive and of limited interest, as it
will be clear in the sequel, such particular examples present all the main features and the rich
behavior of the general models usually considered in the RWRE literature. The conjectures
we state can be extended to a more general setup (see Section 4.3).

The paper is organized as follows. In this section we define the models and give some
motivation. In Section 2 we review the results known for the analogous RW in a static
RE. Section 3 represents the main novel. We present therein the results of our simulations
which shine a light on the behavior of the asymptotic speed (Section 3.1) and on the scaling
limits of such processes (Sections 3.2 and 3.3). When discussing each question we list several
conjectures. In the last Section 4 we present a brief description of the algorithms, we discuss
the robustness of our numerics and possible consequences for more general RE.

1.2 The model

We consider a one-dimensional RW whose transition rates depend on a dynamic RE given by
a particle system. In Section 1.2.1, we first give a rather general definition of particle systems
and then we introduce the two explicit examples we will focus on. In Section 1.2.2 we define
the RW in such dynamic REs.
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1.2.1 Random Environment: particle systems

Let Ω = {0, 1}Z. Denote by DΩ[0,∞) the set of paths in Ω that are right-continuous and have
left limits. Let {P η, η ∈ Ω} be a collection of probability measures on DΩ[0,∞). A particle
system

ξ = (ξt)t≥0 with ξt = {ξt(x) : x ∈ Z}, (1.1)

is a Markov process on Ω with law P η, when ξ0 = η ∈ Ω is the starting configuration. Given
a probability measure µ on Ω, we denote by Pµ(·) :=

∫
Ω P η(·)µ(dη) the law of ξ when ξ0 is

drawn from µ. We say that site x is occupied by a particle (resp. vacant) at time t when
ξt(x) = 1 (resp. 0).

Informally, a particle system is a collection of particles (1’s) on the integer lattice evolving
in a Markovian way. Depending on the specific transition rates between the different config-
urations, one obtains several types of particle systems. Each particle may interact with the
others: the evolution of each particle is defined in terms of local transition rates that may
depend on the state of the system in a neighborhood of the particle. For a formal construction,
we refer the reader to Liggett [18], Chapter I.

In the sequel we focus on two well known examples with strong and weak mixing properties,
respectively.

(1) Independent Spin Flip (ISF)

Let ξ = (ξt)t≥0 be a one-dimensional independent spin-flip system, i.e., a Markov process
on state space Ω with generator LISF given by

(LISF f)(η) =
∑

x∈Z

[λη(x) + γ (1− η(x))] [f(ηx)− f(η)], η ∈ Ω, (1.2)

where λ, γ ≥ 0, f is any cylinder function on Ω, ηx is the configuration obtained from η by
flipping the state at site x.

In words, this process is an example of a non-interacting particle system on {0, 1}Z where
the coordinates ηt(x) are independent two-state Markov chains, namely, at each site (indepen-
dently with respect to the other coordinates) particles flip into holes at rate λ and holes into
particles at rate γ. This particle system has a unique ergodic measure given by the Bernoulli
product measure with density ρ = γ/(γ + λ) which we denote by νρ (see e.g. [18], Chapter
IV).

(2) Simple Symmetric Exclusion (SSE)

The SSE is an interacting particle system ξ in which particles perform a simple symmetric
random walk at a certain rate γ > 0 with the restriction that only jumps on vacant sites are
allowed. Formally, its generator LSSE, acting on cylinder functions f , is given by

(LSSEf)(η) = γ
∑

x,y∈Z

x∼y

[f(ηx,y)− f(η)], η ∈ Ω, (1.3)

where the sum runs over unordered neighboring pairs of sites in Z, and ηx,y is the configuration
obtained from η by interchanging the states at sites x and y.

It is known (see [18], Chapter VIII) that the family of Bernoulli product measures νρ, with
density ρ ∈ (0, 1), characterize the set of equilibrium measures for this dynamics.
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Remark 1.1. Note that the ISF and the SSE are completely different types of dynamics.
They are both Markovian in time but while the ISF has no spatial correlations, the SSE has
space-time correlations. The ISF has very good mixing properties due to the fact that once γ
and λ are given, no matter of the starting configuration, it will converge exponentially fast to
the unique equilibrium given by νρ with ρ = γ/(γ + λ). On the contrary, the SSE dynamics
is strongly dependent on the starting configuration and therefore does not satisfy any uniform
mixing condition. In fact, it is a conservative type of dynamics with a family of equilibria given
by {νρ : ρ ∈ (0, 1)}. Because of these substantial differences, in the sequel we will informally
say that the ISF and the SSE are examples of fast and slowly mixing dynamics, respectively.

1.2.2 RW on particle systems

Conditional on the particle system ξ, let

X = (Xt)t≥0 (1.4)

be the continuous time random walk jumping at rate 1 with local transition probabilities

x → x+ 1 at rate p ξt(x) + (1− p) [1 − ξt(x)],

x → x− 1 at rate (1− p) ξt(x) + p [1− ξt(x)],
(1.5)

with
p ∈ [1/2, 1). (1.6)

In words, the RW X jumps according to an exponential clock with rate 1, if X is on
occupied sites (i.e. ξt(Xt) = 1), it goes to the right with probability p and to the left with
probability 1− p, while at vacant sites it does the opposite.

We write P ξ
0 to denote the law of X starting from X(0) = 0 conditional on ξ, and

Pµ,0(·) =
∫

DΩ[0,∞)
P ξ
0 (·)Pµ(dξ) (1.7)

to denote the law of X averaged over ξ. We refer to P ξ
0 as the quenched law and to Pµ,0 as

the annealed law. In what follows, when needed, we will denote by

X(p, γ, ρ), (1.8)

the RW X just defined either in the ISF or in the SSE environment starting from νρ and
jumping at rate γ. Note that in the ISF case, the parameter λ is uniquely determined once
we fix γ and ρ.

From now on we assume w.l.o.g. ρ ∈ [1/2, 1). The choice of p, ρ ∈ [1/2, 1) is not restrictive,
indeed, due to symmetry, it is easy to see the following equalities in distribution

X(p, ρ, γ)
P
= X(1− p, 1− ρ, γ)

P
= −X(p, 1− ρ, γ). (1.9)

1.3 On mixing dynamics

In our models, the REs at each site have only two possible states (0 or 1), in most of the
literature on RWRE, the models are defined in a more general framework where infinitely
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many states are allowed. The first paper dealing with RW in dynamic RE goes back to [9].
Since then, there has been intensive activity and several advances have recently been made
showing mostly LLN, invariance principles and LDP under different assumptions on the REs
or on the transition probabilities of the walker. See for example [3, 5, 7, 8, 10, 14, 19] (most
of these references are in a discrete-time setting). For an extensive list of reference we refer
the reader to [1, 14].

One of the main difficulties in the analysis of random media arises when space-time cor-
relations in the RE are allowed. Both models presented in Section 1.2.1 fit in this class but,
as mentioned in Remark 1.1, their mixing properties are substantially different. The ISF
dynamics belongs to the class of fast mixing environments which is known to be qualitatively
similar to a homogeneous environment. In fact, a RW on this type of RE exhibits always
diffusive scaling.

The SSE is an example of what we called slowly mixing dynamics. For a RW driven by
these latter types of dynamics, we are not aware of any results other than [2, 4, 12]. One of
the main result of our simulations is that the RW in (1.4) on the SSE, similarly to the RW
in a static RE (see Section 2.2), may exhibit non-diffusive behavior (see Section 3.2). This
latter result is related to trapping phenomena (see Sections 2.4 and 2.6) and suggests that,
when considering non-uniform slowly mixing environments, the medium looks substantially
different than a homogeneous one. This is confirmed by the rigorous annealed large deviation
results in [2] (see the last paragraph in Section 2.3). Note that these results are due to the
correlation structure of the RE but also depend on the following essential ingredients which
produce some strong trapping effect: the one dimensional setting, the RW and the SSE being
both nearest-neighbor, and the presence of local drifts to the right and to the left for the RW.

1.4 Particle systems as random environments

The reader may wonder why we consider random environments given by particle systems.
Particle systems represent a natural physical example of a two-state dynamical RE. Particle
system theory has been intensively developed in the last thirty years and results from this
theory can be used in the present context (see e.g. [1, 2, 3, 4, 12, 13, 20]). Several results
proven for such particular models can be extended to more general settings. Finally, as shown
in this paper, these dynamics are not too complex from an algorithmic point of view allowing
to obtain good approximations for the asymptotics.

2 Static case and trapping phenomena: review

We present in this section well known results for the analogous model in an i.i.d. static medium.
Consider a static random environment η ∈ {0, 1}Z with law νρ, the Bernoulli product measure
with density ρ ∈ [1/2, 1). Given a realization of η, let X = (Xt)t≥0 be the random walk with
transition rates (compare with (1.5))

x → x+ 1 at rate pη(x) + (1− p)[1− η(x)] = c+(η),

x → x− 1 at rate (1− p)η(x) + p[1− η(x)] = c−(η),
(2.1)

with
p ∈ [1/2, 1). (2.2)
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2.1 Recurrence and LLN

In [22] it is shown that X is recurrent when ρ = 1
2 and transient to the right when ρ > 1

2 .
In the transient case both ballistic and non-ballistic behavior occur (see Figure 1), namely,
limt→∞Xt/t = vstatic exists for Pνρ-a.e. η, and

vstatic

{
= 0 if ρ ∈ [12 , p],
> 0 if ρ ∈ (p, 1].

(2.3)

In particular, for ρ ∈ (p, 1],

vstatic = vstatic(ρ, p) = (2p − 1)
ρ− p

ρ(1− p) + p(1− ρ)
. (2.4)
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Figure 1: The sides of this square represent degenerate cases. In particular when p = 1/2
or ρ = 1, the RW X does not feel anymore the environment behaving as a Simple Symmetric
Random Walk (SSRW in the picture) or as a homogeneous RW with drift 2p − 1 (RW(p) in
the picture), respectively. When p = 1 we are in a trivial degenerate case. When ρ = 1/2 we
are in the recurrent case. Inside the square, by (2.3), above the diagonal we have transience
with positive speed, while at and below the diagonal a non-ballistic transient regime holds,
i.e. transience at zero-speed.
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2.2 Scaling limits

The scaling limits of one-dimensional RWRE have been derived in quite a general framework
in a series of papers (see [17, 21] and [25, 26] for a review of those results and references).
It turns out that diffusive, super-diffusive or sub-diffusive regimes can occur. By diffusive
regime, we mean that Xt − vt divided by

√
t converges in distribution to a non-degenerate

Gaussian distribution, while we refer to super- or sub-diffusive regime when Xt − vt has to
be rescaled by some factor of order tα, with α bigger or smaller than 1/2, respectively, to
converge weakly to some non-degenerate distribution. We now review the different scalings in
the i.i.d. static RE. In what follows we focus only on the annealed law.

WhenX is recurrent, [21] showed that X is extremely sub-diffusive and it converges weakly
to a non-degenerate random variable Z, namely,

σ2Xt

(log t)2
(Pνρ)−→
t→∞

Z, (2.5)

where σ2 is a positive constant and Z is a random variable with a non-trivial law that was
later identified by Kesten [16]. In this case, X is called Sinai’s random walk.

When X is right-transient, [17] proved that the key quantity to determine the right scaling
is the root s of the equation

Eνρ

[(
c−(η)

c+(η)

)s]
= 1, (2.6)

where c−(η) and c+(η) represent the rates to jump to the left and to the right, respectively
(see (2.1)). In particular, they proved that when s > 2, X is diffusive with Gaussian limiting
distribution, while for s ∈ (0, 2] super- or sub-diffusivity occur with some non-trivial stable
law of parameters (s, b) as limiting distribution (b is a constant, see also Theorem 2.3 in [26]
for more details and references). The proof is based on the analysis of hitting times and makes

use of the extra assumption that log
[
c−(η)
c+(η)

]
has a non-arithmetic distribution. This latter is

a delicate technical assumption (see also Remark 3 in [17]) not satisfied in our model since

log

[
c−(η)

c+(η)

]
= [2η(0) − 1] log

(
1− p

p

)
(2.7)

does have an arithmetic distribution. At the present state of the art, the role of this assump-
tion is not entirely clear. There are examples in the literature in which by dropping it, the
convergence in distribution does not hold (see e.g. [6] Section 8 and references therein). For
our model (2.1), we performed simulations (see Figures 3 and 4) which clearly suggest that
the arithmetic law of (2.7) does not play any role, namely, the scaling behavior of X is like in
the general case under the assumption of a non-arithmetic law. The following list summarizes
the different scalings of X.

• Diffusive: s > 2, scaling order
√
t.

• Super-diffusive: s ∈ (0.5, 2).

– s ∈ (1, 2): scaling order t1/s.

– s = 1 : scaling order t/ log t.

– s ∈ (0, 1): scaling order ts.
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• Diffusive: s = 0.5, scaling order
√
t.

• Sub-diffusive: s ∈ (0, 0.5), scaling order ts.

In our model, the explicit solution of (2.6) is given by

s = s(p, ρ) =
log

(
1−ρ
ρ

)

log
(
1−p
p

) > 0, for p, ρ > 1/2. (2.8)

Figure 2 shows the phase diagram in (ρ, p) of the regimes just described.
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Figure 2: The sides of the square represent degenerate cases (see Figure 1). When ρ = 1/2
we are in the so called Sinai case in which X is recurrent and extremely sub-diffusive. We
call “leaf” the region around the diagonal delimited by the curves f1(p) = (1 − p)2/p2 and
f2(p) = (p −

√
p(1− p))/(2p − 1) corresponding to s = 2 and s = 0.5, respectively. The area

above the leaf corresponds to the diffusive case with s > 2, inside the leaf we have the super-
diffusive regime while in the lower remaining region for s ∈ (0, 0.5) we have the sub-diffusive
regime.
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As we mentioned, we tested numerically the results presented so far (see Section 4.1 for
a description of the algorithms we implemented). Figures 3 and 4 show that our numerics
match the theoretical picture just described.
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Figure 3: For each of the points marked with a black square, a dot or a cross, we performed
numerical experiments (similar to those explained in Section 3.3) to determine the scaling
exponents of X = X(p, ρ). The symbols square, dot or cross mean that for the corresponding
points, our numerical estimates gave a sub-, a super- or a diffusive scaling exponent, respec-
tively. Note that except for a small region in between super-diffusive and diffusive regimes
(it is reasonable to have numerical fluctuations close to a phase transition), the experiments
confirm the theoretical picture. Figure 4 provides a few explicit examples of our numerics in
the different regimes.
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the different scaling regimes. In the right bottom picture the (p, ρ)-points associated to each
labelled plot are specified. In each plot we overlapped the densities obtained with independent
experiments at the different times n = 2N , over samples of size M , properly rescaled. In
particular, (1),(2),(3),(4) and (5) correspond to ballistic diffusive, ballistic super-diffusive,
transient zero-speed super-diffusive, transient zero-speed sub-diffusive and recurrent Sinai
case, respectively.
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2.3 Large Deviations for the empirical speed

For the empirical speed of a one-dimensional RW in a static RE, quenched and annealed
Large Deviation Principles (LDPs) and refined large deviations estimates have been obtained
in a series of papers (see e.g. [11, 15, 24, 26]). We just mention that for the RW X defined
through (2.1), when v > 0, the rate function associated to the LDP at rate t is zero on
the whole interval [0, v]. Roughly speaking, this is saying that for θ ∈ [0, v), P (Xt/t ≈ θ)
decays sub-exponentially in t. We recall that for homogeneous RW such a decay is always
exponential. This phenomenon is due to trapping effects which we briefly introduce in the
next section.

Large deviation estimates for the dynamical models in Section 1.2 were obtained in [2].
In particular, it is shown that in the ISF case the rate function has a unique zero (as for
homogeneous RW) while in the SSE case, the rate function (at least under the annealed
measure) presents a flat piece as we just described for the i.i.d. static case.

2.4 Trapping phenomena

The anomalous behaviors like the transient regime at zero-speed, the non-diffusivity, as well
as the sub-exponential decay of the large deviations probabilities we reviewed, are due to the
presence of traps in the medium, i.e., localized regions where the walk spends a long time
with a high probability. To get an intuition, the next picture shows an explicit example of a
trap. For a deeper insight of trapping phenomena we should introduce the random potential
representation of the environment for which we refer the reader to the literature (see e.g. [21]
and other references in [26]).

Figure 5: An example of a trap, even though the global drift is to the right, i.e. ρ > 1/2,
a long interval with vacant sites creates a region with local drift against the global one. To
cross such a trap X needs an average number of trials that is exponential in the size of the
interval.

2.5 The averaged medium

In the sequel we will refer to the RW in the averaged medium, Y (averaged), for the homoge-
neous nearest neighbor RW with transition rates

x → x+ 1 at rate p ρ+ (1− p) (1 − ρ),

x → x− 1 at rate (1− p) ρ+ p (1− ρ),
(2.9)

where ρ, p ∈ [1/2, 1). It easily follows that such a RW is right transient as soon as p > 1/2
and ρ 6= 1/2. Moreover, by the law of large numbers for i.i.d. sequences, we get that

lim
t→∞

Yt(averaged)

t
= vaveraged(p, ρ)

= (2ρ− 1)(2p − 1), a.s.

(2.10)
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This RW would correspond to the walker defined in (1.4) which observes at each lattice
position a constant density of particles ρ. That is, between two jumps of the walker the
environment is replaced by one that is an independent sample drawn from νρ.

In the dynamical models of Section 1.2.1, both particle systems are assumed to be in
equilibrium with density ρ and exhibit some decay of correlations in time. Hence, roughly
speaking, if γ approaches infinity, the environment becomes asymptotically independent be-
tween two jumps of the walker. Therefore, under the annealed law, we expect for both models
that there is some convergence to the averaged medium as γ → ∞.

2.6 Towards the dynamic RE: dissolvence of traps

In the previous sections we saw that the RW X in the static RE η ∈ {0, 1}Z sampled from
the Bernoulli product measure νρ presents “slow-down phenomena” due to the presence of
traps. The dynamical models in Section 1.2.2 can be interpreted as the model in the static
RE when we “switch on” some stochastic dynamics which allows particles of the RE to move
(SSE dynamics) or to be created/annihilated (ISF dynamics). The natural question is then:

How does the dynamics of the random environment influence

the trapping effects present in the static case?

In the sequel we will present the outcome of simulations for the empirical speed of X in
the different REs of Section 1.2.1 and we will compare them with the static and the averaged
medium case. Note that νρ is an equilibrium measure for both particle systems we use: ISF
and SSE.

At a heuristic level, one should expect that the evolution of particles in dynamic REs favors
the dissolvence of traps, consequently the RW X in the dynamic RE should be “faster” than
in the static medium. In other words, the long stretches of holes present at time zero, and
responsible of the slow-down phenomena in the static case, get destroyed by the movement of
particles in the dynamic case. As a counter effect the dynamics can create new traps during
the evolution of the RW X. Nevertheless, in the static case, the traps are frozen, while in
the dynamic case, all the traps have an a.s. finite survival time. Such intuitive arguments
suggest that the displacement of the RW X should be bigger in the dynamic case than in the
static one. Figure 6 illustrates this intuitive domination; it represents simulated trajectories
of the RW in the three different random environments (static, ISF, SSE) starting from the
same configuration sampled from νρ at a given p.

Furthermore, depending on the specific dynamics of the underlying particle system, the
survival time and the nature of a typical trap have to be different. In fact, if we consider a
trap as in Figure 5 formed by an interval filled of holes. It is clear that in the ISF case, since
particles can be created at each site at a given rate, such a trap gets easily destroyed. In the
SSE cases, due to the conservation law, to dissolve such a trap, we have to wait for particles
from outside the interval to invade it.
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Figure 6: Three simulated trajectories of X in the static, ISF and SSE environments starting
from the same configuration. (p, ρ) = (0.7, 0.8), and γ = 0.1 for ISF and SSE. These trajec-
tories are compared in the bottom right picture showing the intuitive domination mentioned
above. The background of the other plots displays realizations of the corresponding RE. In
particular gray and white mean presence or absence of particles, respectively. Note that in
the ISF case, due to the independence in space of the dynamics, the RE has been updated
only around the RW trajectory, (see the description of the algorithm in Section 4.1).
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3 Results and conjectures

In this section we finally present the outcome of the simulations for the asymptotics of X in
the different cases. Section 3.1 concerns the asymptotic speed as a function of the parameters
(ρ, p, γ) while Sections 3.2 and 3.3 focus on the scaling limits. We give formal conjectures and
discuss them based on the analysis of the data. The data will be presented in the form of
figures. In the sequel, the jump rate γ of the RE plays a central role. Throughout the paper
we assumed, for simplicity, the RW jumping at rate 1, if instead we let it jump at any other
rate λ > 0, the same results would hold replacing γ by γ/λ.

3.1 Asymptotic speed

Denote by Xn = Xn(ρ, p, γ) the position of the RW in (1.4) after n exponential times of rate
1. In this section we analyze the behavior of the asymptotic speed which we obtained by
evaluating for large n

vn = vn(ρ, p, γ) :=
1

nM

M∑

i=1

X(i)
n , (3.1)

over a sample of M independent experiments (the values of M ’s and n’s will be specified in
the figures.)

Conjecture 3.1. Let γ > 0, (p, ρ) ∈ [1/2, 1)× [1/2, 1), and assume ξ is the SSE, then Pµ− ξ
a.s.

∃ lim
t→∞

Xt(p, ρ, γ)

t
=: v(p, ρ, γ) ∈ R.

Conjecture 3.1 should hold in great generality at least for translation invariant RE. At the
present state of the art, the existence of an almost sure constant speed has been proven for
dynamic REs with “good” mixing properties in space and time (see [3, 5, 13, 20]) except in
[4] which instead uses a strong elliptic condition. In particular, Conjecture 3.1 is a rigorous
statement if ξ is the ISF (see [3, 20]).

Conjecture 3.2. Let ξ be either the SSE or the ISF. For any γ > 0, p ∈ (1/2, 1), the function
ρ 7−→ v(p, ρ, γ) is continuous and non-decreasing.

Note that the monotonicity is trivial once the existence of v(p, ρ, γ) is given. Indeed, it
follows by the fact that for any ρ < ρ′, the RWs Xt(p, ρ, γ) and Xt(p, ρ

′, γ) can be coupled
so that they remain ordered. Figure 7 below illustrates the mentioned monotonicity. In
particular, it refers to the outcome of the numerics produced in the case of the SSE with
p = 0.8. We remark that the same qualitative picture holds in the ISF case and for any other
choice of p ∈ (1/2, 1).
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Figure 7: The lower and the upper dashed curves correspond to the speeds in the static (2.4)
and the averaged medium (2.10) cases, respectively. The different solid curves represent the
function ρ 7−→ v(0.8, ρ, γ) at the different γ’s specified. In particular, each curve is obtained
after interpolating 11 points at distance 0.05, where each point has been obtained by averaging
over a sample with at least M = O(103) simulations of the empirical speed vn in (3.1) with
n = 216. This picture has been produced by using the SSE as RE.

Conjecture 3.3. Let ξ be either the SSE or the ISF. Then the function γ 7−→ v(p, ρ, γ) is
continuous and non-decreasing. Moreover

lim
γ↓0

v(p, ρ, γ) = vstatic(p, ρ), (3.2)

lim
γ→∞

v(p, ρ, γ) = vaveraged(p, ρ). (3.3)

Conjecture 3.3 is supported by the results of the experiments presented in Figures 7 and
8. To state the next conjecture which describes the behavior of the speed as a function of p,
we introduce some quantities defined in terms of γ for fixed ρ ∈ (1/2, 1).

Conjecture 3.4. Let ξ be either the SSE or the ISF. Fix ρ ∈ (1/2, 1). Define

γ1(ρ) := inf{γ > 0 : v(p, ρ, γ) > 0 for all p > 1/2}, (3.4)
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γ2(ρ) := inf{γ > 0 : p 7−→ v(p, ρ, γ) is concave }, (3.5)

γ3(ρ) := inf{γ > 0 : p 7−→ v(p, ρ, γ) is non-decreasing }. (3.6)

Then, the function p 7−→ v(p, ρ, γ) is continuous. Moreover,

0 ≤ γ1(ρ) < γ2(ρ) < γ3(ρ) < ∞. (3.7)

Conjecture 3.4 states the existence of several critical γ’s for which we see a different
behavior of the speed as a function of p. Figure 8 below shows such a scenario in the SSE case
at a given ρ = 0.8. Again, the same qualitative picture holds for any other ρ ∈ (1/2, 1) or by
considering the ISF. Above γ3(ρ) the function p 7−→ v(p, ρ, γ) is increasing, while it starts to
become non-monotone for γ < γ3(ρ). Below γ2(ρ) it looses the concavity and for γ ≤ γ1(ρ) it
possibly starts to have a vanishing piece. A crucial issue is to understand if

γ1(ρ) > 0. (3.8)

The positivity of γ1(ρ) would imply a surprising transient regime with zero speed which so
far has been proven only in the static case (see Section 2.1). In the case of the ISF, it follows
from [20] that γ1(ρ) = 0. It might still be that γ1(ρ) > 0 in the SSE case. Unfortunately,
we feel not able to conjecture anything based on our numerics since on one hand in the
corresponding region γ ≪ 1, at the time scales we could achieve, the simulation may just be a
weak perturbation of the static case, and on the other hand this is a very delicate phenomenon
to test statistically since of course in any transient regime the expected speed at finite time
is strictly positive. We therefore leave (3.8) as a key open problem of this model.

The loss of monotonicity for low γ’s is related to the strength of the traps. In the static
case, the speed p 7−→ v(p, ρ, γ) looks like the dashed lower curve in figure 8 at any fixed
ρ ∈ (1/2, 1). For p big enough it starts to become decreasing until it vanishes. Intuitively,
this is saying that when we increase p, no matter what the size of a typical trap is, the holes
tend to act almost as reflecting barriers.
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Figure 8: ρ = 0.8. The lower and the upper dashed curves correspond to the speeds in the
static (2.4) and the averaged medium (2.10) cases, respectively. The different solid curves
represent the function p 7−→ v(p, 0.8, γ) at the different specified γ’s. Each solid curve is
obtained after interpolating 26 points at distance 0.02, where each point has been obtained
by averaging over the outcome of samples with at least M = O(103) independent simulations
of the empirical speed vn in (3.1) with n ≥ 218. This plot has been produced by using the
SSE as a RE.
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Figure 9 presents a quantitative version of Conjecture 3.4 in both the ISF and SSE cases.
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Figure 9: Quantitative phase diagrams describing Conjecture 3.4 in the ISF and the SSE
environments. To each (ρ, γ) we associate the symbols m, c or +. They mean that the
corresponding speed is a monotone, concave and non-concave function of p. γ3(ρ) would
correspond to the curve in between the regions of m’s and c’s, while γ2(ρ) would be the line
separating the regions with c’s and +’s.
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3.2 Scaling limits and phase diagram: SSE

We now turn to the analysis of the scaling limit of X. The ISF case belongs to the class of
dynamic RE with strong mixing properties and it is known that for such dynamics for any
γ > 0, X satisfies a functional CLT (see e.g. [20]). In the sequel we therefore focus only on the
SSE case. We just mention that we checked numerically the known diffusivity of the ISF case.
We obtained excellent agreement in this case except for very few points close to degenerate
cases, i.e. for γ too small and (p, ρ) ≈ (1, 1) (see also the discussion in Section 4.2).

Our main conjecture is:

Conjecture 3.5. Let ξ be the SSE. There exist two monotone functions γ̃1, γ̃2 : [1/2, 1)2 7−→
R
+ with

i) γ̃i equals zero only on the sets Ai, i = 1, 2, defined by

A1 := {(p, ρ) ∈ [1/2, 1]2 : ρ ≤ f1(p)}, (3.9)

A2 := {(p, ρ) ∈ [1/2, 1]2 : ρ ≤ f2(p)}, (3.10)

with f1(p) =
(1−p)2

p2 and f2(p) =
p−

√
p(1−p)

2p−1 (see Figure 2),

ii) γ̃1 < γ̃2 whenever they are non-zero,

iii) γ̃i is increasing in p and decreasing in ρ, for any (p, ρ) ∈ [1/2, 1)2 \Ai, i = 1, 2,

and such that for any (p, ρ) ∈ [1/2, 1)2, we have the following cases

1. X(p, ρ, γ) is sub-diffusive for any γ < γ̃1(p, ρ)

2. X(p, ρ, γ) is super-diffusive for any γ̃1(p, ρ) < γ < γ̃2(p, ρ)

3. X(p, ρ, γ) is diffusive for any γ > γ̃2(p, ρ) or at γ = γ̃1(p, ρ)

This conjecture is the most interesting novel result of our numerics. Figures 10 and 11
show the qualitative scenario stated in Conjecture 3.5. Recall the “super-diffusive leaf” in
Figure 2, note that the functions f1 and f2 represent the lower and the upper boundary of
the leaf, respectively. The fact that for the ISF (and more generally for RE with space-time
correlation with exponential or fast polynomial decay) at any γ > 0 we have a diffusive scaling,
can be rephrased by saying that for any γ > 0 the leaf vanishes and any point (p, ρ) ∈ [1/2, 1)2

corresponds to diffusive regime. On the other hand, in case of the SSE, Conjecture 3.5 says
that as soon as we switch on the SSE dynamics (i.e. for small γ > 0) the leaf is still present
and starts to move towards the p-axis as γ increases until a certain critical γ for which the leaf
completely disappears. Note that the disappearance of the leaf for γ big enough is consistent
with the fact that as γ increases we get closer and closer to the averaged medium case which
is clearly diffusive. This observed phenomenon (although it could still be local, see Section
4.2) suggests that due to the slow-mixing properties of the exclusion dynamics, traps play a
crucial role to determine the scaling limit of X. In particular, depending on the ratio of the
jump rate of the walker and the one of the SSE, we can observe diffusivity or not.
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Figures 12–13–14–15–16 show some of the data supporting Conjecture 3.5. In Section 3.3
we describe how we obtained these phase diagrams.
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Figure 12: The section of the phase diagram in the recurrent case, i.e. ρ = 0.5. On the left the
qualitative picture, on the right the outcome of our experiments supporting the qualitative phase
diagram. The crosses, the dots, and the black squares mean that for the corresponding (ρ, γ) points
our test gave an exponent equal (diffusive), bigger (super-diffusive), or smaller (sub-diffusive) than 1/2,
respectively. More precisely, we assigned a cross at any estimated exponent in between [0.49, 0.51].
Note that as in the lower part of the leaf for the static case (see Figure 2), on the line dividing the
sub- and super-diffusive regimes the scaling is diffusive.

21



0.5 0.6 0.7 0.8 0.9 1.0

p

γ

diffusive

superdiffusive

subd.

0.5 0.6 0.7 0.8 0.9 1.0

1e
−

08
1e

−
05

1e
−

02
1e

+
01

p
γ

1e
−

08
1e

−
06

1e
−

04
1e

−
02

1e
+

00
1e

+
02

x x x

x x

x x x

x x x

x x x

x
xx
xxxx xx xx xx x
x x
x x
x x
x xx x xx x xx x x xx x x x
x x x x x
x x x x x x
x x x x x x x

Figure 13: The section of the phase diagram at ρ = 0.7. On the left the qualitative picture, On the
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to diffusive, super- and sub-diffusive regimes, respectively.
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Figure 15: Sections of data supporting the phase diagram in Conjecture 3.5 increasing in ρ. Crosses,
dots, and squares correspond to diffusive, super- and sub-diffusive regimes, respectively.
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Figure 16: Sections of data supporting the phase diagram in Conjecture 3.5 increasing in p. Crosses,
dots, and squares correspond to diffusive, super- and sub-diffusive regimes, respectively.
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3.3 Scaling exponents: estimating the variance for SSE

This section is devoted to the description of the estimates we used to obtain the phase diagram
described in Conjecture 3.5, i.e. the scaling exponents of X in the SSE environment.

Figure 17 below shows the same section as in Figure 12 where instead of marking “diffusive
and non-diffusive points”, we give the explicit values of the scaling exponents.
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Figure 17: A quantitative version of the phase diagram in Figure 12. The numbers written at each
point (p, 0.5, γ) are the scaling exponents α⋆(p, ρ, γ) that were estimated as described below.

Each of these exponents is obtained by analyzing the variances of X at different times.
More precisely, for each fixed triple (p, ρ, γ), for fixed number of jumps n, we compute the
sample standard deviation of Xn(p, ρ, γ), namely,

SDn :=

√√√√ 1

M − 1

M∑

i=1

(
X

(i)
n − vnn

)2
,

over a sample of M independent experiments, with M of order at least 103 (the values of M
are specified in the figures) and vn as in (3.1). We then evaluate the function

α(n) :=
log(SDn)

log n

on a log n scale, see Figures 18–19–20–21–22–23. In particular, for each value of n (in the
experiments n grows like 2N , with N specified in the figures) we have performed independent
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experiments. The proper scaling exponent is approximated by the value of α(n) with the
biggest n which we denote by α⋆ = α⋆(p, ρ, γ) (those are the numbers in Figure 17). Indeed,
assume SDn = cnα, for some positive c = c(p, ρ, γ), then α(n) = log c

logn + α converges to α as
n goes to infinity.

The next figures show examples of these estimates in all described regimes. Therein we
plotted and overlapped the empirical densities of Xn− vnn (obtained with samples of size M)
for different values of n to see that indeed they coincide when rescaled by nα⋆

. In the non-
diffusive cases (i.e. α⋆ 6= 1/2), we also add the plot of the same empirical densities rescaled by
n1/2 to see that under diffusive scaling they do not coincide. In particular, they are ordered in
time and the variances have the tendency of either vanishing (sub-diffusive) or concentrating
(super-diffusive).
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Figure 18: Recurrent, sub-diffusive. (p, ρ, γ) = (0.76, 0.5, 0.01). The left picture illustrates the be-
havior of the logarithm of the standard deviation of Xn (the solid line). The dotted line represents
the estimated exponent α⋆(0.76, 0.5, 0.01), while the dashed one represents the diffusive value 0.5. The
middle plot shows that the densities obtained at different times n = 2N rescaled by nα

⋆

almost per-
fectly match. In the right most plot, the same densities under diffusive scaling, looking carefully at
the tails and around 0, one can see that they are ordered in time and tend to concentrate in 0 as time
increases. M denotes the sample size. The data at different times n were obtained with independent
experiments.
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Figure 19: Recurrent, super-diffusive. (p, ρ, γ) = (0.8, 0.5, 4). As in the previous figure, the left picture
illustrates the behavior of the logarithm of the standard deviation of Xn (the solid line). The dotted
line represents the estimated exponent α⋆(0.8, 0.5, 4), while the dashed one represents the diffusive
value 0.5. The middle plot shows that the densities obtained at different times n = 2N rescaled by nα

⋆

almost perfectly match. In the right most plot, the same densities under diffusive scaling, note that
in this case they are ordered in time and tend to vanish as time increases. M denotes the sample size.
The data at different times n were obtained with independent experiments.
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Figure 20: Recurrent, diffusive. (p, ρ, γ) = (0.56, 0.5, 0.1). As in the previous figures, the left picture
illustrates the behavior of the logarithm of the standard deviation of Xn. The dotted line represents
the estimated exponent α⋆(0.6, 0.5, 0.1). The right plot shows that the densities obtained at different
times n = 2N coincide under diffusive rescaling.
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Figure 21: Transient, sub-diffusive. (p, ρ, γ) = (0.74, 0.55, 0.001). Estimated reliable time: n̄ = 238

(see Section 4.2).
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Figure 22: Transient, super-diffusive. (p, ρ, γ) = (0.86, 0.6, 0.25). Estimated reliable time: n̄ = 212,
effective running time n = 218 (see Section 4.2).
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Figure 23: Transient, diffusive. (p, ρ, γ) = (0.56, 0.9, 0.001). Estimated reliable time: n̄ = 2305 (see
Section 4.2).

For the sake of completeness, we mention that we tried also some other methods to guess
the right scaling exponent. A quite apt but not entirely stable method was to look for the
exponent minimizing the total variation distance between the densities at different times.
Another method was to fit an appropriate curve through the standard deviations directly. All
of them gave the same qualitative picture we described here.

4 Robustness of simulations and more general RWRE

4.1 Algorithms

To simulate the RW in the static RE, in the ISF and in the SSE, we implemented an algorithm
which can be briefly described as follows.

1) Take as INPUT (p, ρ, γ, n) ∈ (0.5, 1) × [0.5, 1) × R
+ × N, with n being the number of

jumps of the RW X.

2) Consider an interval I of size 3n centered at the starting position of the RW.

3) Initialize the RE according to a Bernoulli product measure of parameter ρ.

4) At exponential time of rate 1, update the RW position according to the underlying state
of the RE.

5) For each x in I, at exponential time of rate γ update the RE at position x.

6) Give as OUTPUT the position of the RW after n steps.

Note that Step 5) depends on the RE. For the static case, γ = 0 implies that we never
update the RE. In the ISF case, due to the independence in space of the dynamics, we update
the RE only locally at the position of the RW X (see Figure 6). The case of the SSE has
been implemented using a version of the SSE either on the torus (i.e. with periodic boundary
conditions) or by sampling at rate γ the state of the RE at the boundaries of I from νρ (both
approaches produce the same outcome). In particular, the size of I has been chosen of size
3n. Particles coming from the boundaries will typically travel a distance of order

√
γn up to

time n which guarantees that the dynamics of X is not significantly affected by those particles
(note that the biggest γ we considered in our numerics is of order 100).
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4.2 Heuristics versus locality

Conjecture 3.5 suggests a completely different scenario for the scaling limits depending on
whether the RE is fast (ISF) or slowly mixing (SSE). This latter result is certainly the most
interesting suggested by our numerics. Indeed, in all the papers dealing with RWDRE only
diffusivity has been proven since, due to technical difficulties, most of the tools available are not
suitable to treat RE presenting space-time correlations except under strong mixing conditions.
The non-diffusivity in the experiments for the SSE could still be a local phenomenon. Namely,
the time we run the algorithm could in principle be too small and what we are observing is only
a perturbation of the static case or due to other local effects: e.g. presence of constants, too
small γ, parameters in a neighborhood of the boundary of two phases or close to degenerate
cases. Therefore, to be more confident that we are truly observing the right asymptotic
scalings, and to have some stronger evidence in favor of Conjecture 3.5, we need to understand
whether the running time of each experiment is large enough.

We present here a heuristic argument to guess a reliable running time for small γ. The
idea is that in each simulation the RW should perform a number of jumps sufficiently large to
ensure that the time it takes the walker to cross a typical trap is comparable with the time
in which this trap dissolves.

Consider a trap of size L of consecutive holes (a stretch of size L in Z where the state
of the RE is 0), assume the walker starts at time 0 on the left-most hole. Let τL denote the
number of jumps the walker needs before reaching the right-most hole of the trap. By using
a standard gambler’s ruin argument we see that

E[τL] ≥
(p/q)L − 1

(p/q)− 1
.

On the other hand we can estimate the “mixing time” of the trap to be of order (γ−1L)2.
Indeed, a particle at the boundary of the trap (since it is performing a simple symmetric RW
at rate γ) would need in average this amount of time to cross the trap.

If E[τL] is much smaller than (γ−1L)2, this would mean that within the time the RW
crosses the trap, the dissolvence effect due to the dynamics of the SSE is not big enough
to play a substantial role. Therefore we would like to choose L big enough so that the two
quantities are at least comparable, namely, we have to solve (when possible) the equation

(p/q)L − 1

(p/q)− 1
= (γ−1L)2.

Once we compute (numerically) the solution L = L(p, γ) of this equation, we have to be sure
that the RW X travels a distance big enough so that it will meet with high probability such a
big trap. The probability of observing such a disaster can be easily estimated by a geometric
argument since the probability of a stretch of hole of size L is (1− ρ)L. Therefore to be sure
that the RW X(p, ρ, γ) will meet and cross at least one disaster with high probability we have
to run the algorithm for n̄ = n̄(p, ρ, γ) steps, with n̄ big enough so that Xn̄ ≥ L(1− ρ)L with
high probability.

It turns out that the order of such a n̄(p, ρ, γ) varies a lot depending on (p, ρ, γ). In
most of the parameter space is unfortunately too big to be achieved in a reasonable amount
of computing time. In the caption of Figures 21-22-23 we wrote the explicit corresponding
values of n̄. The fact that in most of the cases we could not run the algorithm up to such
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an n̄, does not imply that the outcome of the associated experiment is only local and not
asymptotically reliable, as the argument to deduce n̄ is only a rough estimate. On the other
hand, the fact that for several super-diffusive cases (as in the example in Figure 22) we could
achieve the associated n̄ is a strong suggestion in favor of Conjecture 3.5.

4.3 Concluding remarks

As mentioned before, at the current state of the art, most of the tools (regeneration, renor-
malization, coupling, martingale approximation, etc.) developed to analyze RWRE (both
static and dynamic REs) are still inappropriate to deal with space-time correlations unless
the environment satisfies some uniform and fast enough mixing condition. This is not the case
in the example of the SSE, that is why the LLN and the scaling limits for a RW driven by
these types of REs are serious mathematical challenges. It is reasonable to think that if the
observed unusual regimes in Conjecture 3.5 will be rigorously proven, a similar phenomenol-
ogy can occur for other one dimensional “slowly mixing” RE (e.g. other conservative particle
systems) providing that the RW is nearest-neighbor and has local drifts in both directions.
In principle, we might expect some analogous scenario even in dimensions higher than one
for static and dynamic REs presenting again some strong correlation structure. The latter
observation is supported by the fact that a one-dimensional RW in a dynamic RE can be seen
as a two dimensional directed RW in a static RE by interpreting the time as an extra spatial
dimension (see e.g. [3]).

We conclude with a table summarizing briefly some of the one-dimensional rigorous and
numerical results we presented so far. Cells in gray mean that the corresponding result is
non-rigorous.

Static Dynamic

SSE (slowly mixing) ISF (fast mixing)

Recurrence ρ = 1/2 ρ = 1/2 ρ = 1/2

LLN v > 0,
with v ≥ 0 v > 0

ρ 6= 1/2 unclear for small γ

γ big: diffusive,
Scaling anomalous diffusive

γ small: anomalous

LDP rate t flat flat unique
for v > 0 piece piece zero
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