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CONTINUITY AND MAXIMUM PRINCIPLE FOR POTENTIALS 
OF SIGNED MEASURES 

IVAN NETUKA, Praha 

(Received June 10, 1974) 

The classical theorem of EVANS-VASILESCO states that a Newtonian potential Ufi 
of a positive measure /x with compact support К is continuous provided its restriction 
to К is continuous [8], [19]. 

On the occasion of the "5 . Tagung über Probleme und Methoden der Mathema
tischen Physik" in Karl-Marx-Stadt (1973), Prof. B.-W. SCHULZE advanced in a dis
cussion the following problem: Does the theorem extend to the case of potentials of 
signed measures? 

Using fine topology arguments we prove the following 

Theorem 1'. Let ß be a signed measure with support К in the m-dimensional 
euclidean space R'" (m > 2) and let Ufi be finite in R'". If the restriction of Uß to К 
is continuous on K, then the potential Up. is continuous in the whole space. 

It is known from the classical potential theory that for every Newtonian potential 
of a positive measure fi with compact support К the following maximum principle of 
MARÎA-FROSTMAN [16], [9] holds: 

sup Up(x) = sup Up(x). 
xeR*^ xeK 

An extension of this important property to the case of potentials of signed measures 
is contained in the following theorem ([z] "*" and [z] ~ denote respectively the positive 
and negative parts of a number z). 

Theorem 2'. If fi is a signed measure with support К c: R'" and Up. is finite in R"", 
then 

[ inf C//i(x)] ~ = inf Up{x) ^ sup Up{x) = [ sup UpixJ] "*" . 
xeK xeR'^ xeR"^ xeK 

In fact, we establish the above results as a consequence of theorems proved below 
in the context of Brelot's axiomatics of harmonic spaces in which a somewhat stronger 
form D* of the axiom of domination is fulfilled. It should be noted here that D* is 
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in particular true for a class of elMptic partial differential equations investigated in 
connection with the axiomatic potential theory in [12], [13], [3] and [14]. 

In what follows we shall suppose that X is a strong harmonic space in the sense 
of [2] in which the following axiom D* is satisfied: . 

D*: A finite potential p with compact support S(p) is continuous provided its 
restriction to S(p) is continuous. 

We are going to show that the axiom D of domination (see [7], Chap. 9, [10], 
Chap. II) is fulfilled in X. Indeed, suppose that p is a locally bounded potential on X 
such that its restriction to S(p) is continuous and fix Xo e S(p), It is sufficient to verify 
that p is continuous at XQ. Choose a relatively compact neighborhood U of XQ. By 
Satz 5.1.4 of [2] there are potentials p^, P2 such that p^ is harmonic in the complement 
of Ü, P2 is harmonic in U and p = p^ + ^2- Then S{pi) cz U n S(p) is compact and 
the restriction of p^ to S(pi) is continuous. By D*, in particular, p^ is continuous at XQ. 
Since P2 is continuous at Xy, the same is true for p, 

(Note that D does not imply D* as shown by an example in [6], Corollary 1.2.) 
By the result of KÖHN-SIEVEKING [15], X is an elHptic space and since the Brelot 

convergence axiom is satisfied ([2], Satz 1.5.6), each component of Z is a harmonic 
space in the sense of the axiomatics developed by M. BRELOT (see [5]). 

As for the axiom D*, note that it is fulfilled in the Greenian case and more generally 
in the case A2 of Brelot's axiomatics (see [10], Theorem 10.15 and Section 2.7). 
In particular, D* is true in any strong harmonic space associated to partial differential 
equations of elliptic type investigated in [12] (see théorème 36.2), [3] (see p. 12), [13] 
(cf. p. 222) and [14] (cf. p. 338). For the validity of D* in the classical case of the 
Laplace equation for domains having a Green function see [11], Theorem 6.20. In 
particular, Theorems Г, 2' follow immediately from Theorems 1, 2 below and the 
Riesz representation theorem for potentials. 

If и cz X, then ÔU is the boundary of U in X, while the symbol djU stands for 
the fine boundary of U (that is, the boundary of U in the fine topology on X). We 
shall use the following result of B. FUGLEDE [10], which was in the classical case 
proved under certain restrictive conditions by M. Brelot [4]. 

Proposition. Let и be a harmonic function on an open set U a X, let p be a finite 
potential on X and M a X a polar set. If и ^ —p onU and 

fine Mm w(x) ^ 0 

for any у e dj-JJ — M, then и ^ 0 on U. 

For the proof we refer to the more general Theorem 9.1 in [10]. We remark only 
that by Theorem 10.15 in [10], any finite potential is semibounded and by Theorem 
8.7 in [10], every harmonic function is finely harmonic. 
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We also make use of the following property of any finite potential p on X: 

(1) Rf^^ = p on X , 

which follows from Lemma 6.8 in [10]. 
Let us denote by ^ * the set of all diff'erences of two finite potentials on X. If 

V G ^* , then S(v) {= the support of v) is the complement of the maximal open set 
on which V is harmonic. It should be noted here that any i? G ̂ * is finely continuous. 

Lemma. Suppose that ve^^. Then there are finite potentials p, q such that 
V = p — q and S(p) u S(q) cz S(v). 

Proof. Denote К — Sip) and L/ = Z — K. By the hypothesis there are two finite 
potentials v^, Vi such that v = v^ — ^2. Put p — Rf^, q = R^^, w = p — q. Then p, q 
are finite potentials harmonic on U ([2], Korolar 2.3.5), so that S(p) и S(q) cz S{v) 
and the function w is, of course, finely continuous. Since for г = 1, 2 the set {x еК; 
R^X^) < Vi(x)} is polar ([7], Corollary 9.2.3, Theorem 9.1.1, Corollary 6.3.6), 
there is a polar set M such that for any x G К — M the equality w(x) = v{x) holds. 
Consider now on (7 the harmonic function и = w — v. Obviously, 

— q — i\uuUP + V2 

and for any x e dfU — M 
fine lim u{y) = 0 . 

By the Proposition, м = 0 on I/. We see that the finely continuous function v — w 
vanishes on X — M. Since polar sets are nowhere dense in the fine topology ([7], 
Proposition 6.2.3), v = w — p ~ q everywhere on X. 

The proof is complete. 

Theorem 1. Let ve^^ and let the restriction of v to S(v) be continuous. Then v 
is continuous on X. 

Proof. Write V = p — q where p, q have the property described in the Lemma. 
Put I/ = Z - S(vX / = ü I at/ ( = the restriction of v to dU) and и = v\U. Note 
that и is resolutive ([7], Theorem 2.4.2) and since 

(2) \f\up-^q, 

f is resolutive by Proposition 2.4.1 and Corollary 2.4.1 in [7]. Of course, |Я^| ^ 
S p + q. Let us denote by M the set of all points at which the set S(v) is thin. Then 
M a ÔU and M is exactly the set of all non-regular points of U. Consequently, M is 
a polar set ([7], Corollary 9.2.3, Theorem 9.1.1). Since v is finely continuous on Z , 
we have for any x e dfU 

(3) fine hm uXy) = / (x) 
y-*x 
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In view of the fact that / is continuous on dU and all points of dU — M are regular, 
we have for any xeôU — M 

(4) /(х) = ИтЯУ(з;), 

and, consequently, 

(5) fine lim H'^f(y) = f(x), xedj-U - M , 
y-^x 

Since on X 

we conclude from (3) and (5) by the Proposition that i/ = Щ on JJ and it follows 
from (4) that for any xedU — M 

(6) lim v{y) = v{x) . 
y-^x 
yeU 

It remains to investigate the points of M. Fix an x e M and recall that S(p) u S{q) с 
с S(v), so that X — и 3 S(p) u S(q). Since {x} с M is a polar set, we obtain 
([7], Corollary 6.2.1) 

Л^-%х) = ^^-(^-^^^>(x) 
and (1) yields 

Since evidently Лp~* '̂̂ ''̂ "(x) g p(^), we conclude 

АГ<"-Щх) = р(х), 

analogous equality being true for q. Consequently, 

Since | / | is dominated by a potential (see (2)) we obtain by Corollary 7.2.6 in [7] 

limuH'^=fix) 

for any ultrafilter UonU converging to x. It follows that 

fix) = lim H'jiy) = lim v(y) 
y-*x y~*x 

yeU 

and (6) holds for any x e dJJ. By the hypothesis for any x e 31/ we have 

(7) lim v{y) = v{x) 
y-^x 

yeS(v) 

and we conclude easily from (6) and (7) that v is continuous on X. 
The proof is complete. 
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Theorem 2. Suppose that constant functions are harmonic. If ve^*, then 

[ inf i'(x)] ~ = inf v{x) ^ sup v(x) = [ sup v{x)'} ̂  . 
xeSiv) xeX xeX xeS(v) 

Proof. Since V e ^* imphes — r e ^ * it is sufficient to establish the equahty 

(8) sup v(x) = [ sup v(x)] "̂  . 
xeX xeS(v) 

Let p, q be finite potentials such that v = p — q. Put к = sup v(x) and suppose 
that k^O, Then "̂̂ '̂̂ > 

fine lim v(y) = v(x) ^ 0 , xe dj{X - S{v)) 
y-^x,yeX — S(v) 

and since v ^ p, WQ conclude by the Proposition that t; ^ 0 on X. Hence if /cj = 
= sup v(x) S 0, then p + q "^ —V "^ —ki o n Z and k^ == 0, because p + q is 

xeX 

a potential and constant functions are harmonic. On the other hand, if /c, > 0, 
then the above reasoning shows that к > 0. Let us consider the function и = к — v. 
We have 

fine lim u(y) = u{x) ^ 0 , x e df(X — S(v)) 
y-*x,yeX — S{v) 

and и = к — (p — q) ^ —p. By the Proposition, v -^ к on X — S(v) and (8) is 
proved. 

Corollary. If V G ^ * vanishes on S(v), then v = 0 on X. 

The problem arises whether any v e i^* satisfying the hypotheses of Theorem 1 
is necessarily a difi'erence of two continuous potentials. The following example shows 
that this is not the case even if we require in addition that v is a difference of two 
bounded potentials with compact support. In this example, X is the harmonic space 
associated to the Laplace equation in R"", m > 2. 

Example . Choose strictly positive numbers c„, Q„, Q'„ in such a way that Q'„ < Q„, 
Cn \ 0, Q'JQ,, -> 1, 

< 1 , 
n= 1 \CJ 

(^k ^ Qk > <^k+i + Qk^-i for any к and cj\ci - c„| ^ 2 provided / Ф n. (We may put 
c„ = 2~", g„ = a(n!)^"'", Q'„ = (n/(n +1)) Q„, where a > 0 is sufficiently small.) Put 

z„ = [c„, 0 , . . . , 0] 6 Я'" , Ü ; = [с, + Q„, О, ..., 0] , i;; = [c„ - Q„, 0 , . . . , 0] 

and denote by Q^ and O^ the ball with centre z„ and radius Q„ and on» respectively. 
Define 

Л0п1\^- ЦГ~' for X^ß„ 
P"^^^ 4 1 f ^ 

^ 1 for X 6 0„ , 
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/ M ^ - z „ | r - ' for хфи'„ 
^""^ ^(QJQX-' for xeQ'„, 

00 00 

Р = 11РП, p=T.Pn^ 
0 = 1 П = 1 

Clearly, J? and p' is a Newtonian potential of a positive measure v and v' with support 
00 00 

in {0} u и dQ^ and {0} u (J dQ'„, respectively. Since 
n = l n=l 

КО) = p'(0) < 1 , p(z„) ^ p„{z„) = 1 , PXZ„) ^ p'„iz„) > 1 

and z„ -* 0, we conclude that p and p' are not continuous at 0. Fix now у e dQ^ 
and put Q = {k - \, k, к + I}. \ï n < к - I, then 

while for n > /с -f 1 

\y - zJC-' 1 |,;; - z„|'"-^ ^ |z,.,i - z^-»-^ à с Г ' • 2^-"- . 

We see that 

HQ пф2 \\y - z„|/ пфа \c, 
00 

It follows easily that p is a bounded potential continuous at any point of U dQ^. 

One estabUshes analogously that p' is a bounded potential continuous at any point 
00 

of и dQ'„, Putting /x = V — v\ we obtain a signed measure with support К = 
n = 1 00 00 

= {0} u и ôQ„ Kj и ди'^. If fi = ß^ — ß~ is the Jordan decomposition of /л, then 
n = l n = l 

obviously ju"̂  = V, / i" = v' and the potential (7/г is continuous at any point of 
00 

к — {0}. We are going to prove that (Ufi) | К is continuous at 0. For у e\J dQ,^ 
k=i 

we have Ufiiy) = 0, while U^(z) = 1 - (QJQX'^ for z e dQ^ Since 1/̂ 1(0) = 0 
and QJQI -> 1, the continuity of ((7/̂ 0 | -K at 0 is obvious. 

Suppose that Uß = (7/iĵ  — (7/̂ 2, where д^, ß2 ^ге positive measures with continu
ous potentials. Then ß = ß^ — ß2 ^Y ^^^ unicity theorem and ß^ ^ ß^, ßi è ß" 
by the minimal property of the Jordan decomposition (see [18], 6.14). Since any 
potential of a positive measure is lower semicontinuous, the potential Uß'^ == 
= Ußi — V{ßi — ß^) is also upper semicontinuous. Consequently, Uß"^ is a con
tinuous potential, which is a contradiction. 

Remarks . 1. In [1] (p. 354) an example of a bounded continuous potential w 
(in R^) with the following property is given: If м, v are subharmonic functions such 
that w = M — t; in R}, then both и and v are unbounded at the origin. 
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2. Suppose that Ĝ  is a continuous function on R"" x R'^ (m > 2) and put 

G{x, y) = |x - yp-''" + G,(x,y) , хФ y, 

G(x, x) = + 00 . 

With any signed measure д with compact support we associate the potential Gß 
defined by 

Gfi{x) == \G(x, y) d^y) (х) = Гс(х, 

for those X for which the integral is meaningful. Observing that the potential G^ 
(defined in the obvious way) is continuous on R"", we deduce immediately from 
Theorem Г the following 

Proposition. Let ß be a signed measure with compact support К and let Gß be 
finite on R"", Then the potential Gß is continuous on the whole space, provided its 
restriction to К is continuous. 

This proposition applies for example to the potentials corresponding to the 
Helmholz equation in jR̂  : 

Aw + Âw = 0 (Я G R^) . 

Indeed, the kernel is given (up to a constant multiple) by 

cos X\x - y\ ^ 

V-y\ 
G(x, x) = + 00 

and it is obvious that the function 

cos À\X ~ y\ - I 

\x - y\ 

is extensible to a continuous function G^ on R^ x R^, 

3. Theorems Г and 2' were announced in [17]. 

Added 26. 6. 1974. During the conference on potential theory (Oberwolfach, 
16. 6.-22. 6. 1974) Prof. MoKOBODZKi gave another proof of Theorem 1 based on 
properties of réduits and specific order. Prof. FUGLEDE noted that potentials p, q 
from Lemma can also be constructed as follows: If г = û  — V2 where Vi,V2 are 
finite potentials and w is the specific infimum of î i, ̂ 2, then one may put p = v^ — w, 
q = V2 — w. 
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Added 4. 6. 1975. A strong domination axiom (D) equivalent with D* has recently been 
investigated by K. JANSSEN and NGUYEN-XUAN-LOC (see Math. Z. 141 (1975), 185—191; Z. 
Wahrscheinlichlceitstheorie und Verw. Gebiete 31 (1975). 147—155). 
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