Pacific Journal of Mathematics
ε-CONTINUITY AND MONOTONE OPERATIONS William H. Julian

ε-CONTINUITY AND MONOTONE OPERATIONS

William Julian

Abstract

We prove constructively in the sense of Bishop that a monotone, ε-continuous operation from $[0,1]$ into a metric space is 2ε-uniformly continuous. We derive a suitable version of Brouwer's fan theorem.

1. Introduction. Zaslavskii [ABR, Theorem 7.3] gives an example of a real valued function on $[0,1]$ which is continuous at each computable point but which fails to be uniformly continuous. Zaslavskii [ABR, Theorem 7.14] and Mandelkern [MND1, MND2] show constructively in the Russian and Bishop sense, respectively, that a monotone, continuous, real valued function on $[0,1]$ is uniformly continuous. In this paper, we weaken the hypothesis of continuity to ε-continuity, generalize the definition of monotone so that the map can be into any metric space, and consider (non-extensional) operations instead of functions. We prove constructively $[\mathbf{B S H}]$ that a monotone, ε-continuous operation from $[0,1]$ into a metric space is 2ε-uniformly continuous. Delimiting examples show that the 2ε in the conclusion is best possible.
2. Valuated fans. The binary fan F consists of all finite or empty strings from $\{0,1\}$. Denote a string $a \in F$ by $a_{1} a_{2} \cdots a_{n}$ where $a_{i} \in$ $\{0,1\}$, and the empty string by \varnothing. The length $|a|$ of a is the cardinality n of the string a. The descendants of string a are strings containing a as an initial segment. The immediate descendants of a are $a 0=a_{1} a_{2} \cdots a_{n} 0$ and $a 1=a_{1} a_{2} \cdots a_{n} 1$. Note $\varnothing 0=0$ and $\varnothing 1=1$. A branch B is the set of initial segments of a countable string $B_{1} B_{2} \cdots$ from $\{0,1\}$. We shall write $B \sim B_{1} B_{2} \cdots$.

A valuated fan F is the binary fan together with a function V mapping F into the set N of non-negative integers. A valuation is sub-additive if $V(a) \geq V(a 0)+V(a 1)$, for all $a \in F$.

A valuation is branch bounded if for any branch B of F there is an integer n so that if $a \in B$ and $|a| \geq n$, then $V(a)=0$. A valuation is bounded if there is an integer m so that if $a \in F$ and $|a| \geq m$, then $V(a)=0$.

The valuated fan generated by $a \in F$ consists all descendents of a but with their initial segments a deleted; the valuation is the induced valuation.

We now arrive at a theorem implied by Brouwer's fan theorem [HTG] but that is valid in the sense of Bishop [$\mathbf{B S H}$].

Proposition 1. Every branch bounded, sub-additive valuation on the binary fan is bounded.

Proof. We induct on the value $V(\varnothing)$. If $V(\varnothing)=0$ we are done, so let $V(\varnothing)>0$. Construct a branch B starting at \varnothing by induction. If $a \in B$ and $V(a 1)=V(\varnothing)$, then append $a 1$ to B. Otherwise append $a 0$. Since F is sub-additive, if $a \in F$ and $V(a)=V(\varnothing)$ then $a \in B$. Since F is branch bounded, there is an integer n so that if $|a| \geq n$ and $a \in B$, then $V(\varnothing)=0$. Hence if $|a| \geq n$ then $V(a)<V(\varnothing)$. Construct the 2^{n} fans F_{i} generated by those $a \in F$ with $|a|=n$. In each, the induced value $V_{i}(\varnothing)$ is strictly less than $V(\varnothing)$ in F. By induction, each is bounded: There are integers m_{i} such that if $|b| \geq m_{i}$ and $b \in F_{i}$, then the induced value $V_{i}(b)=0$. Hence if $a \in F$ and $|a| \geq n+\max \left\{m_{i}\right\}$, then $V(a)=0$.
3. Assigning valuations. In this section we show how an operation from $[0,1]$ induces a valuation on the binary fan. To each $a=a_{1} a_{2} \cdots a_{n}$ $\in F$ assign the diadic rationals

$$
\begin{aligned}
& . a=\sum a_{k} 2^{-k}=. a_{1} a_{2} \cdots a_{n} \quad \text { (binary) } \\
& . a^{+}=. a+2^{-|a|}
\end{aligned}
$$

and the interval $I(a)=\left[\cdot a, . a^{+}\right]$. To each branch $B \sim B_{1} B_{2} \cdots$ assign the real number

$$
B=\sum B_{k} 2^{-k}=. B_{1} B_{2} \cdots \quad \text { (binary) }
$$

Note that if $a \in B$, then.$B \in I(a)$.
Definition. We denote two subsets of $[0,1]$ by
$B[0,1]=\{x \in[0,1] \mid x$ has an explicit binary representation $\}$,
and

$$
D[0,1]=\{x \in[0,1] \mid x \text { has a terminating binary representation }\} .
$$

Note that $x \in B[0,1]$ iff $x \geq d$ or $x \leq d$ for every diadic rational $d \in D[0,1]$.

Definition. Let f be an operation on $B[0,1]$ into a metric space M, d and $\varepsilon>0$. Fix one value of $f(x)$ for each $x \in D[0,1]$. A valuation on the
binary fan induced by f, ε is assigned so that

$$
V(a)=P \text { implies } P-2^{-2|a|}<\rho(a)<P+1-2^{-2|a|-1},
$$

where $\rho(a)=\varepsilon^{-1} d\left(f\left(. a^{+}\right), f(. a)\right)$.
Note that if $\rho(a)>P-2^{-2|a|-1}$, then $V(a) \geq P$, and if $\rho(a)<1-$ $2^{-2|a|}$, then $V(a)=0$.
4. Monotone operations. In this section we consider what valuation is induced on the binary fan by a monotone operation into a metric space. The notion of "between" replaces "order" in the definition of monotone.

Definition. Let M, d be a metric space. A point $x \in M$ is between a and $b \in M$ if

$$
d(a, x)+d(x, b)=d(a, b)
$$

In addition if x is distinct from a and b, then x is strictly between a and b.

The notion of "between" has been discussed by Blumenthal [BLM]; his use of "between" corresponds to our usage of "strictly between". We distinguish the present notions of "between" and "strictly between" in the next definition:

Definition. An operation f from a metric space M_{1} to a metric space M_{2} is monotone if whenever x is strictly between a and $b \in M_{1}$, then $f(x)$ is between $f(a)$ and $f(b)$.

Lemma 1. If x and y are between a and b then $d(x, y) \leq d(a, b)$.
Proof. Let x and y be between a and b. Thus, adding

$$
d(a, z)+d(z, b)=d(a, b)
$$

for z equal to x and z equal to y, we obtain

$$
2 d(x, y) \leq d(a, x)+d(a, y)+d(b, x)+d(b, y)=2 d(a, b)
$$

The next lemmas and a counterexample stated without proof show how order and between are related on the real line.

Lemma. If x is between distinct points a and b and not strictly between them, then $x=a$ or $x=b$.

Lemma. A real number x is (strictly) between a and $b \in R$ if ($a<x<$ b) $a \leq x \leq b$, or if $(a>x>b) a \geq x \geq b$.

Lemma. If x is strictly between a and $b \in R$, then $a<x<b$ or $b<x<a$.

Counterexample. If x between a and $b \in R$ implies $a \leq x \leq b$ or $a \geq x \geq b$, then for all $a \in R$, either $a \geq 0$ or $a \leq 0$.

A real valued function which is monotone in the present sense need not be increasing or decreasing.

Lemma. If f is a monotone operation on $S \subset R$ to a metric space M, d and $a \leq x<b$ are in S with $d(f(a), f(x))+d(f(x), f(b))>$ $d(f(a), f(b))$, then $x=a$.

Next we show that a monotone operation on $[0,1]$ induces a sub-additive valuation on the binary fan.

Proposition 2. If f is a monotone operation from $B[0,1]$ to a metric space M, d and $\varepsilon>0$, then the valuation induced by f, ε is sub-additive.

Proof. Now $|a 0|=|a 1|=|a|+1$, so

$$
V(a 0)-2^{-2|a|-2}<\rho(a 0) \quad \text { and } \quad V(a 1)-2^{-2|a|-2}<\rho(a 1) .
$$

Noting that monotonicity of f implies that $\rho(a)=\rho(a 0)+\rho(a 1)$, we find

$$
V(a 0)+V(a 1)-2^{-2|a|-1}<\rho(a) .
$$

Hence $V(a) \geq V(a 0)+V(a 1)$ and the valuation is sub-additive.
5. ε-continuous operations. In this section we turn our attention to what valuation on the binary fan is induced by an ε-continuous operation.

Definition. An operation f from a metric space M_{1}, d_{1} to a metric space M_{2}, d_{2} is ε-continuous if for some $\varepsilon^{\prime}<\varepsilon$ then for every $x \in M_{1}$ there is a $\delta>0$ such that whenever $y \in M_{1}$ and $d_{1}(x, y)<\delta$, then $d_{2}(f(x), f(y))<\varepsilon^{\prime}$.

Note that if $\varepsilon^{\prime}<\varepsilon^{\prime \prime}<\varepsilon$ then f is also $\varepsilon^{\prime \prime}$-continuous. Furthermore if $x=y$ then $d_{2}(f(x), f(y))<\varepsilon^{\prime}$.

Proposition 3. If f is an $\varepsilon / 2$-continuous operation from $B[0,1]$ to a metric space M, d then the valuation induced by f, ε is branch bounded.

Proof. Let B be a branch of the binary fan F. Choose $\varepsilon^{\prime}<\varepsilon / 2$ and $\delta>0$ such that if $y \in B[0,1]$ and $|y-. B|<\delta$, then $d(f(y), f(. B))<\varepsilon^{\prime}$. Pick n so that $2^{-n}<\delta$ and $2 \varepsilon^{\prime}<\varepsilon\left(1-2^{-2 n}\right)$, and let $a \in B$ with $|a| \geq n$. Now.$B \in I(a)$ so $|\cdot a-. B|<\delta$ and $\left|\cdot a^{+}-. B\right|<\delta$. Hence

$$
\begin{aligned}
d\left(f\left(. a^{+}\right), f(. a)\right) & \leq d\left(f\left(. a^{+}\right), f(. B)\right)+d(f(. B), f(. a)) \\
& <2 \varepsilon^{\prime}<\varepsilon\left(1-2^{-2|a|}\right)
\end{aligned}
$$

and thus $V(a)=0$.
6. ε-uniformly continuous operations. In this section we prove that a monotone, ε-continuous operation on $[0,1]$ is 2ε-uniformly continuous.

Definition. An operation f is ε-uniformly continuous from a metric space M_{1}, d_{1} to a metric space M_{2}, d_{2} if there is $\varepsilon^{\prime}<\varepsilon$ and $\delta>0$ such that whenever $x, y \in M_{1}$ and $d_{1}(x, y)<\delta$, then $d_{2}(f(x), f(y))<\varepsilon^{\prime}$.

Theorem. If f is a monotone operation from $[0,1]$ into a metric space M, d and $\varepsilon / 2$-continuous on $B[0,1]$ then f is ε-uniformly continuous on $[0,1]$.

Proof. Choose $\varepsilon^{\prime}<\varepsilon$ so that f is also $\varepsilon^{\prime} / 2$-continuous on $B[0,1]$. Let the binary fan F have the valuation induced by f, ε^{\prime}. By Proposition 3 the valuation is branch bounded, and by Propositions 1 and 2, the valuation is bounded. Hence, there is an m so that if $a \in F$ and $|a| \geq m$, then $V(a)=0$.

Consider the finite set $S=\{1\} \cup\{. a \mid a \in F$ and $|a|=m\}$. By $\varepsilon^{\prime} / 2-$ continuity, choose δ in $\left(0,2^{-m}\right)$ such that if $x \in[0,1], z \in S$, and $|x-z|$ $<\delta$, then $d(f(x), f(z))<\varepsilon^{\prime} / 2$. Suppose that $x, y \in[0,1]$ and $|x-y|<$ $\delta / 3$. Either $|x-z|<\delta / 2$ for some $z \in S$, or $|x-z|>\delta / 3$ for each $z \in S$. In the former case $|y-z|<5 \delta / 6$, and

$$
d(f(x), f(y)) \leq d(f(x), f(z))+d(f(z), f(y))<\varepsilon^{\prime}<\varepsilon .
$$

In the latter case, pick $a \in F$ with $|a|=m$, such that x and y are strictly between.a and.a^{+}; then by Lemma 1 and $V(a)=0$:

$$
d(f(x), f(y)) \leq d\left(f(. a), f\left(. a^{+}\right)\right)<\varepsilon^{\prime}<\varepsilon .
$$

7. Delimiting examples. The theorem is valid with $[0,1]$ replaced by $B[0,1]$. The first example shows that the result stated in the theorem is
sharp with regard to ε. There is no obvious constructive example, so we give a classical one.

Example 1 (Classical). The classical function

$$
f(x)= \begin{cases}\varepsilon^{\prime} / 2, & \text { for } x>1 / 2 \\ 0, & \text { for } x=1 / 2 \\ -\varepsilon^{\prime} / 2, & \text { for } x<1 / 2\end{cases}
$$

is monotone and $\varepsilon / 2$-continuous for all $\varepsilon>\varepsilon^{\prime}>0$, but is not ε^{\prime}-uniformly continuous.

The next example shows that there are constructive ε-continuous operations which are neither continuous nor functions.

Example 2 (Constructive). Let $x=. x_{1} x_{2} x_{3} \cdots \in B[0,1]$. The operation

$$
g(x)=\varepsilon^{\prime}\left(x_{1}-1 / 2\right)
$$

is ε-continuous and ε-uniformly continuous on $B[0,1]$ for any $\varepsilon>\varepsilon^{\prime}>0$.

References

[ABR] O. Aberth, Computable Analysis, McGraw-Hill, NY, 1980.
[BSH] E. A. Bishop, Foundations of Constructive Analysis, McGraw-Hill, NY 1967.
[BLM] L. Blumenthal, Theory and Applications of Distance Geometry, Chelsea Publishing Company, Bronx, NY 1970.
[HTG] A. Heyting, Intuitionism, an Introduction, 3rd ed., North-Holland Publishing Co., Amsterdam 1966.
[MND1] M. Mandelkern, Continuity of monotone functions, Pacific J. Math., 99 (1982), 413-418.
[MND2] ___, Constructive continuity, Mem. Amer. Math. Soc., 42 (1983), 277.
Received April 28, 1983.
New Mexico State University
Las Cruces, NM 88003

PACIFIC JOURNAL OF MATHEMATICS EDITORS

Donald Babbitt (Managing Editor)
University of California
Los Angeles, CA 90024
J. Dugundir

University of Southern California
Los Angeles, CA 90089-1113
R. Finn

Stanford University
Stanford, CA 94305
Hermann Flaschka
University of Arizona
Tucson, AŻ 85721
C. C. Moore

University of California
Berkeley, CA 94720
Arthur Ogus
University of California
Berkeley, CA 94720
Hugo Rossi
University of Utah
Salt Lake City, UT 84112
H. Samelson

Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS

R. Arens	E. F. Beckenbach (1906-1982)	B. H. Neumann	F. Wolf	K. Yoshida
SUPPORTING INSTITUTIONS				
UNIVERS	F ARIZONA	UNIVERS	OREGON	
UNIVERS	F BRITISH COLUM	UNIVERS	SOUTHE	ALIFORNIA
CALIFOR	NSTITUTE OF TEC	OGY STANFOR	VEERSITY	
UNIVERS	F CALIFORNIA	UNIVERS	HAWAII	
MONTAN	TE UNIVERSITY	UNIVERS	TOKYO	
UNIVERS	F NEVADA, RENO	UNIVERS	UTAH	
NEW MEX	TATE UNIVERSIT	WASHIN	STATE UN	SITY
OREGON	E UNIVERSITY	UNIVERS	WASHIN	

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50 .

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $\$ 190.00$ a year (5 Vols., 10 issues). Special rate: $\$ 66.00$ a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924 (ISSN 0030-8730) publishes 5 volumes per year. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
 Copyright © 1984 by Pacific Journal of Mathematics

Pacific Journal of Mathematics
Vol. 115, No. 2 October, 1984
Ersan Akyildiz, Gysin homomorphism and Schubert calculus 257
Marilyn Breen, Clear visibility and unions of two starshaped sets in the plane 267
Robert F. Brown, Retraction methods in Nielsen fixed point theory 277
Herbert Busemann and Bhalchandra B. Phadke, A general version of Beltrami's theorem in the large 299
Gerald Arthur Edgar and Robert Francis Wheeler, Topological properties of Banach spaces 317
Yaakov Friedman and Bernard Russo, Conditional expectation without order 351
Robert Allen Goggins, Cobordism of manifolds with strong almost tangent structures 361
Mike Hoffman, Noncoincidence index of manifolds 373
William H. Julian, ε-continuity and monotone operations 385
Gerasimos E. Ladas, Y. G. Sficas and I. P. Stavroulakis, Nonoscillatory functional-differential equations 391
Arnold William Miller and Karel Libor Prikry, When the continuum has cofinality ω_{1} 399
Jean-Leah Mohrherr, Density of a final segment of the truth-table degrees 409
Carl Norman Mutchler, The flat Cauchy problem for radially hyperbolic operators from a characteristic manifold of high codimension 421
Kenji Nakagawa, On the orders of automorphisms of a closed Riemann surface 435
W. Ricker, Representation of vector-valued functions by Laplace transforms 445
Jorge Donato Samur, On semigroups of convolution operators in Hilbert space 463
Joseph Gail Stampfli, One-dimensional perturbations of operators 481
Andrew George Earnest and John Sollion Hsia, Correction to: "Spinor norms of local integral rotations. II" 493

