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Continuity bounds for entanglement
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This Brief Report quantifies the continuity properties of entanglement: how much does entanglement vary if
we change the entangled quantum state just a little? This question is studied for the pure state entanglement of
a bipartite system and for the entanglement of formation of a bipartite system in a mixed state.

PACS number~s!: 03.67.2a, 03.65.Bz
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Entanglement is aresourceat the heart of quantum me
chanics; iron in the classical world’s bronze age. Entang
ment plays a crucial role in diverse quantum effects such
Bell inequalities @1#, quantum algorithms@2,3#, quantum
teleportation@4#, and paradoxically is also responsible for t
emergence of a classical world out of the quantum@5#.

To flesh out the notion that entanglement is a resou
various measures of entanglementhave been proposed t
quantify the amount of entanglement shared between tw
more quantum systems. For a pure state of a two-party q
tum system, Popescu and Rohrlich@6# and Vidal@7# showed
that the measure of entanglement is uniquely specified
certain natural axioms:1 it is given by the von Neumann en
tropy of the reduced density matrix associated with one
the parties. That is, ifuc& is the state of a composite syste
with componentsA andB, then the pure state entangleme
of uc& is given by E(c)5S(rA)5S(rB), where rA
[trB(uc&^cu) and rB[trA(uc&^cu) are the reduced densit
matrices of systemA and systemB, respectively, andS(•) is
the von Neumann entropy.

The situation for mixed-state entanglement is more co
plex, and a plethora of measures have been developed~see
Refs. @8–11,7# and other references cited therein!. Perhaps
the best understood of these measures is theentanglement of
formationstudied in a series of papers by Wootters and
workers@8–10#. For pure states the entanglement of form
tion reduces to the von Neumann entropy of the redu
density matrix, as expected. However, for mixed states
entanglement of formation shows much more complex
havior, a behavior that is not yet fully understood.

This Brief Report develops inequalities expressing co
nuity properties of the pure-state entanglement and the
tanglement of formation. We begin with the simple arg
ments needed to prove such results for the pure-s
entanglement. This allows us to introduce some of the to
needed for the more complex argument for entanglemen
formation, and also gives more stringent bounds than in
mixed-state case. We will show that, up to constants,
bounds are optimal with respect to the dimension of the
derlying Hilbert space. Furthermore, we explicitly show th
the continuity bounds obtained for the entanglement of f

*Electronic address: mnielsen@theory.caltech.edu
1It is to be emphasized that these axioms are only natural if

considers manipulations of large blocks of identically entang
states@7#.
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mation and pure-state entanglement are stronger than t
obtainable for other entanglement monotones, continuin
line of thought initiated by Vidal@7#. The continuity bounds
we obtain can be applied to analyze approximate scheme
quantum communication protocols, quantum cloning, a
quantum communication complexity, work that will be pr
sented elsewhere. The continuity of pure state entanglem
has been previously noted by Horodeckiet al. @12#, although
explicit bounds on its variation were not given.

To understand how the entanglement between systemA
andB varies as we vary the density matrix for the combin
system, we need to introduce somedistance measureson
density matrices. We will make use of three closely rela
distance measures in our work: thetrace distance, the fidel-
ity, and theBures distance. To begin we need only the trac
distance. The trace distance between density matricesr and
s is defined to beT(r,s)[trur2su, where we defineuAu
[AA†A to be the positive square root ofA†A. It is easy to
see that the trace distance is a metric on the space of de
matrices. Furthermore, Ruskai@13# showed that the trace dis
tance is nonincreasing under quantum operations. That i
E is a trace-preserving quantum operation, then

T„E~r!,E~s!…<T~r,s! ~1!

for all density matrices,r and s. For our purposes, it is
especially important to note that this is true for the ca
whereE is a partial trace operation, as the partial trace i
trace-preserving quantum operation.

Fannes@14,15# proved a useful continuity relation relatin
trace distance and entropy. Fannes’ inequality states tha
any density matricesr ands such thatT(r,s)<1/e,

uS~r!2S~s!u<T~r,s!log2~d!1h„T~r,s!…, ~2!

whered is the dimension of the Hilbert space,r ands are
defined onh(x)[2x log2(x), and the base of logarithms
here and throughout, is taken to be 2. It is useful to note
h(x) is increasing for 0<x<1/e. The restriction on Eq.~2!
that T(r,s)<1/e may be lifted to give

uS~r!2S~s!u<T~r,s!log2~d!1
log2~e!

e
. ~3!

Ruskai’s result@Eq. ~1!# can be combined with Fannes
inequality @Eq. ~2!# to obtain the desired continuity relatio
for pure state entanglement. Supposeuc& and uf& are pure

e
d

©2000 The American Physical Society01-1



ts

-

t
ti
e
he

or

-
e
a

n

bu
e

an
se
tio

g
a

sity
r of

ffer-

trol

ost

re
v-
d
on

e

n
r
g

ther

on

t
ty

BRIEF REPORTS PHYSICAL REVIEW A 61 064301
states of a composite quantum system with componenA
andB, and that systemA has dimensiond. Let rA andsA be
the corresponding reduced density matrices for systemA.
Applying Fannes’s inequality@Eq. ~2!# gives

uE~c!2E~f!u5uS~rA!2S~sA!u ~4!

<T~rA ,sA!log2~d!1h„T~rA ,sA!….
~5!

Recalling thath(x) is monotonically increasing for 0<x
<1/e, and using Eq. ~1! to deduce that T(rA ,sA)
<T(c,f), we obtain

uE~c!2E~f!u<T~c,f!log2 d1h„T~c,f!…, ~6!

providedT(c,f)<1/e. This is the desired continuity rela
tionship for the pure-state entanglement. Using Eq.~3! we
may lift the restrictionT(c,f)<1/e to give the bound

uE~c!2E~f!u<T~c,f!log2 d1
log2~e!

e
. ~7!

We now generalize these pure-state results to apply to
entanglement of formation. Our strategy for proving a con
nuity bound for the entanglement of formation involves thr
ingredients in addition to those used in the proof of t
bound for the pure-state entanglement@Eq. ~6!#: Uhlmann’s
formula for thefidelity @16#, theBures distance@17#, and the
remote-controlview of entanglement@18#.

First, however, we must define the entanglement of f
mation. For a density matrixr of a composite systemAB the
entanglement of formation is defined by@10#

E~r![min(
m

pmS~rA,m!, ~8!

where the minimization is over all ensembles$pm ,uABm&%
generating the stater, that is, r5(mpmuABm&^ABmu, and
rA,m[trB(uABm&^ABmu). In practice, evaluating this expres
sion seems to be very difficult; all that is known is an ing
nious expression for the entanglement of formation of a p
of qubits found by Wootters@10#, building on earlier work
by Hill and Wootters@9#.

The first ingredient needed to prove the continuity bou
for the entanglement of formation is thefidelity, a measure of
distance between two density matrices distinct from
closely related to the trace distance. The fidelity betwe
density matricesr and s is defined to be F(r,s)
[trAr1/2sr1/2. For pure statesuc& and uf& the fidelity re-
duces to the overlap between the states,F(c,f)5u^cuf&u.
The fidelity is not a metric; however, it does possess m
useful properties as a measure of distance, and is clo
related to the trace distance and will be used in the defini
of the Bures distance@19–21#. Uhlmann @16,22# found a
useful expression for the fidelity relying on the followin
construction. Supposer and s are quantum states of
d-dimensional quantum system. We label the systemQ for
convenience. Introduce an additional ‘‘reference’’ systemR
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@23# of any fixed dimensionality that is at least as great asd.
Uhlmann’s expression for the fidelity is

F~r,s!5maxu^rus&u5maxF~ ur&,us&), ~9!

where the maximization is performed over all pure statesur&
andus& of the joint systemRQ such that trR(ur&^ru)5r and
trR(us&^su)5s; such states are known aspurificationsof r
ands.

As our second ingredient, we introduce theBures distance
@17# between density matricesr ands:

D~r,s![2A12F~r,s!. ~10!

D(•,•) is easily shown to be a metric on the space of den
matrices. We have chosen the overall normalization facto
2 out the front so the Bures distanceD(•,•) agrees with the
trace distance for pure states; other authors often use di
ent normalizations.

The third ingredient we need is the elegant remote-con
view of entanglement@18#. Supposer is some joint state of
a composite systemAB, whereA is d-dimensional andB is
d8-dimensional. Uhlmann@24# showed that it is possible to
achieve this minimum using an ensemble containing at m
d2d82 ensemble elements. Introduce ad2d82-dimensional
reference systemR which purifies those systems into a pu
stateur&. Let $pm ,uABm&% be the ensemble of states achie
ing the minimum in Eq.~8!. A result of Hughston, Jozsa, an
Wootters@25# implies that by performing a measurement
R with respect to an appropriate orthonormal basisum&, the
corresponding posterior states ofAB will be uABm&, with
probability pm . Elementary calculation shows that after th
measurement we haveS(R8)5H(pm) and S(AR8)
5H(pm)1E(r), where S(R8) denotes the von Neuman
entropy of R after the measurement, and similarly fo
S(AR8). H(•) is the Shannon entropy function. Combinin
these observations results in the very useful expression

E~r!5S~AR8!2S~R8!. ~11!

If instead a measurement had been performed in some o
orthonormal basisum8&, then we would have had

E~r!<S~AR8!2S~R8!. ~12!

Let us now proceed to the proof of the continuity relati
for the entanglement of formation. LetrAB andsAB be two
density matrices of the systemAB, whereA hasd dimen-
sions, and B has d8 dimensions. Introduce a
d2d82-dimensional reference systemR. By Uhlmann’s for-
mula @Eq. ~9!# there exist purificationsur& and us& of rAB
andsAB to the systemABR such that

F~rAB ,sAB!5F~ ur&,us&). ~13!

Suppose we measure systemR in a basis chosen such tha
E(sAB)5S(sAR8 )2S(sR8 ), where the primes denote densi
matrices after the measurement, and the initial state wasus&.
Performing the same measurement with initial stateur& we
see from Eq.~12! that E(rAB)<S(rAR8 )2S(rR8 ). Taking the
difference of these equations yields
1-2
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BRIEF REPORTS PHYSICAL REVIEW A 61 064301
E~rAB!2E~sAB!<S~rAR8 !2S~sAR8 !1S~sR8 !2S~rR8 !.
~14!

Applying Fannes’ inequality@Eq. ~2!# twice on the right-
hand side gives

E~rAB!2E~sAB!< log2~d3d82!T~rAR8 ,sAR8 !

1h„T~rAR8 ,sAR8 !…

1 log2~d2d82!T~rR8 ,sR8 !1h„T~rR8 ,sR8 !… .

~15!

By Eq. ~1!, we have

T~rR8 ,sR8 !<T~rAR8 ,sAR8 !<T~rABR8 ,sABR8 !<T~ ur&,us&).
~16!

Recall thatT(ur&,us&)5D(ur&,us&). Together with the pre-
vious equation this fact and Eq.~13! give

T~rR8 ,sR8 !<T~rAR8 ,sAR8 !<D~rAB ,sAB!. ~17!

Combining this equation with Eq.~15! gives

E~rAB!2E~sAB!<@5 log2~d!14 log2~d8!#D~rAB ,sAB!

12h„D~rAB ,sAB!…, ~18!

provided D(rAB ,sAB)<1/e. This is the desired continuity
equation for the entanglement of formation. Of course,
role of A and B may be interchanged in this expressio
clearly the strongest inequality is obtained by labeling
systems such thatd<d8. For many purposes it is sufficien
to replace the logarithmic terms in the right-hand side
9 log2†max(d,d8)‡.

The restrictionD(rAB ,sAB)<1/e on Eq. ~18! may be
lifted in a manner similar to that for the continuity bound f
pure-state entanglement. Doing so gives

E~rAB!2E~sAB!<@5 log2~d!14 log2~d8!#D~rAB ,sAB!

12 log2~e!/e. ~19!

For applications to communication in which large bloc
of entanglement are used andd becomes large, it is desirabl
to understand how close to optimal~with respect tod) the
bounds~18! and ~19! are. Understanding this is essentia
the problem of understanding how close to optimal Fann
inequality is. Lete.0 be given, and, for ad-dimensional
Hilbert space with orthonormal basisu1&, . . . ,ud& definer
[edu1&^1u1(1/d2e)I . For smalle this is a density matrix
close to the completely mixed stateI /d. We will analyze the
difference in entropies betweenr and I /d. From the genera
bound@26# S(( i pir i)<H(pi)1( i piS(r i) we obtain

S~r!<~12ed!log2~d!1H~ed,12ed!. ~20!

Thus

S~ I /d!2S~r!>ed log2~d!2H~ed,12ed! ~21!

>ed log2~d!21. ~22!
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A simple calculation shows thatT(I /d,r)52(d21)e. It fol-
lows easily that

S~ I /d!2S~r!>
T~ I /d,r!log2~d!

2
21. ~23!

This implies that the logarithmic behavior~with d) expressed
in Eq. ~2! and thus in Eqs.~6!, ~7!, ~18!, and~19! cannot be
improved beyond a constant factor.

Vidal @7# emphasized the importance of continuity to t
result of Popescu and Rohrlich@6# ~see also Ref.@12#!. Pope-
scu and Rohrlich argued that any measure of bipartite p
state entanglement satisfying certain natural axioms, nam
that it is ~a! additive, and~b! nonincreasing under local op
erations and classical communication, is necessarily pro
tional to the von Neumann entropy of the reduced den
matrix of the pure state. Vidal pointed out some hidden
sumptions in this argument by explicitly constructing e
amples of entanglement measures that satisfy~a! and~b!, yet
are not proportional to the von Neumann entropy. For
ample, a function with the required properties isẼ(c)[
2 log2†tr(r

2)‡, which is manifestly different from the von
Neumann entropy. Vidal pointed out that the key prope
lacking in such a measure is sufficiently strongcontinuity
properties. The framework of the present note provide
useful opportunity to elaborate. SupposeẼ(r) is any addi-
tive measure of entanglement that does not increase u
local operations and classical communication. We will sh
that Ẽ(r) cannot satisfy a continuity property as strong
Eq. ~18! unless for pure states it is proportional to the v
Neumann entropy. Indeed for any constantsC andD we will
show that a continuity property as strong as

uẼ~r!2Ẽ~s!u<C log2~d!D~r,s!1D ~24!

implies theẼ is proportional to the von Neumann entropy
the reduced density matrix, whered is the maximum of the
dimensions of systemsA andB. Thus the von Neumann en
tropy is in some sense the ‘‘most continuous’’ measure
entanglement, satisfying a stronger bound on its variat
than any other prospective measure of entanglement. S
pose Eq.~24! holds. Lete.0 be given. Then for sufficiently
largen entanglement dilution@27# allows us to convert from
n@S(r)1e# Bell states into a states that satisfies
D(uc& ^ n,s)<e, using local operations and classical com
munication. Then, if Eq.~24! holds,

nẼ~c!5Ẽ~c ^ n!<Ẽ~s!1C log2~dn!e1D, ~25!

sinceD(uc& ^ n,s)<e. The nonincrease ofẼ under local op-
erations and classical communication implies thatẼ(s)
<n@S(r)1e#k, wherek is the entanglement associated wi
a single Bell pair according to the measureẼ. Thus

nẼ~c!<n„S~r!1e…k1Cn log2~d!e1D. ~26!

Dividing by n and lettinge→0, n→` gives Ẽ(c)<kS(r).
Similarly, for any e.0 and sufficiently largen, entangle-
1-3
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ment concentration@27# allows us to convertn copies ofuc&
into a statet satisfyingD(ub& ^ n(S(r)2e),t),e, whereub& is
a Bell state. By Eq.~24! we have

n@S~r!2e#k<Ẽ~t!1Cn log2~d!e1D. ~27!

But Ẽ(t)<nẼ(c), sinceẼ is nonincreasing under local op
erations and classical communication. Thus

n@S~r!2e#k5Ẽ~b ^ n„S(r)2e…! ~28!

<nẼ~c!1Cn log2~d!e1D.
~29!

Dividing by n and lettinge→0,n→` giveskS(r)<Ẽ(c).
Combining the results of the last paragraph, we see

the properties of being additive, nonincreasing under lo
operations and classical communication, and satisfying
~24! for someC andD, imply thatẼ(c)5kS(r). Thus mea-
sures of pure state entanglement such asẼ(c)5
2 log2„tr(r

2)… which are not proportional toS(r) must sat-
isfy weaker continuity relations than Eq.~24!.

Finally, it should be mentioned that bounds~18! and~19!
apply only to the entanglement of formation as defined in
~8!. As discussed by Wootters@10#, the interpretation of the
entanglement of formation as defined in Eq.~8! may be
somewhat problematic. The basic problem is that one wo
like to interpret the entanglement of formation as a meas
of the resources—Bell pairs—that must be shared betwe
Alice and Bob in order tocreater. That is, if Alice and Bob
are provided withnE(r) Bell pairs, then by local operation
.

v
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and classical communication they can convert them w
high fidelity inton copies ofr, in the limit thatn is large. As
Wootters discussed, the only impediment to this interpre
tion is the question of whether or not the entanglement
formation is additive. That is, is it true thatE(r ^ n)
5nE(r)? If this is not true, then it suggests a revised de
nition for the entanglement of formation, the operational e
tanglement of formation, asEop(r)[ lim supn→` E(r^ n)/n.
Eop(r) quantifies the resources needed for Alice and Bob
creater, in the sense described above. Unfortunately,
reasoning used in the derivation of the continuity bounds
the entanglement of formation~18! and ~19! does not go
through forEop(r). It is an interesting open problem to de
termine such bounds for the operational entanglement of
mation, and may yield insight into the question of whether
not the entanglement of formation is additive.

We have obtained a continuity relation for bipartite pur
state entanglement and the entanglement of formation. T
relation bounds the variation of the entanglementE(r) be-
tween two systemsA andB as the state of the joint systemr
is varied. The bound obtained exhibits the best possible
havior with respect to the dimensiond of the underlying
Hilbert space, to within constant factors, and is stronger t
the continuity bounds that may be obtained for other pot
tial measures of entanglement. Further applications to qu
tum communication protocols, quantum cloning, and qu
tum communication complexity will be reported elsewher
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