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Continuity bounds for entanglement
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This Brief Report quantifies the continuity properties of entanglement: how much does entanglement vary if
we change the entangled quantum state just a little? This question is studied for the pure state entanglement of
a bipartite system and for the entanglement of formation of a bipartite system in a mixed state.

PACS numbds): 03.67—a, 03.65.Bz

Entanglement is aesourceat the heart of quantum me- mation and pure-state entanglement are stronger than those
chanics; iron in the classical world’s bronze age. Entangleobtainable for other entanglement monotones, continuing a
ment plays a crucial role in diverse quantum effects such abne of thought initiated by Vidal7]. The continuity bounds
Bell inequalities[1], quantum algorithmg2,3], quantum we obtain can be applied to analyze approximate schemes for
teleportatior{4], and paradoxically is also responsible for the quantum communication protocols, quantum cloning, and
emergence of a classical world out of the quan{&h guantum communication complexity, work that will be pre-

To flesh out the notion that entanglement is a resourcesented elsewhere. The continuity of pure state entanglement
various measures of entanglemehaive been proposed to has been previously noted by Horodeekial. [12], although
quantify the amount of entanglement shared between two agxplicit bounds on its variation were not given.
more quantum systems. For a pure state of a two-party quan- To understand how the entanglement between sysfems
tum system, Popescu and Rohrli@] and Vidal[7] showed andB varies as we vary the density matrix for the combined
that the measure of entanglement is uniquely specified bgystem, we need to introduce sordistance measuresn
certain natural axiomsit is given by the von Neumann en- density matrices. We will make use of three closely related
tropy of the reduced density matrix associated with one oflistance measures in our work: ttrace distancethe fidel-
the parties. That is, ifi) is the state of a composite system ity, and theBures distanceTo begin we need only the trace
with componentsA and B, then the pure state entanglementdistance. The trace distance between density matpicasd
of |¢) is given by E(4)=S(pa)=S(ps), where p, o is defined to beT(p,o)=tr|p— o], where we defingA|
=trg(|)(¥]) and pg=tra(|#)(y|) are the reduced density =\/ATA to be the positive square root &f A. It is easy to
matrices of systenA and systenB, respectively, an®(-) is  see that the trace distance is a metric on the space of density
the von Neumann entropy. matrices. Furthermore, RusKdi3] showed that the trace dis-

The situation for mixed-state entanglement is more comtance is nonincreasing under quantum operations. That is, if
plex, and a plethora of measures have been develGgmal £ is a trace-preserving quantum operation, then
Refs.[8-11,7 and other references cited theneiRerhaps
the best understood of these measures itfianglement of T(&(p),&(0))<T(p,0o) (1)
formationstudied in a series of papers by Wootters and co-
workers[8—10]. For pure states the entanglement of forma-for all density matricesp and o. For our purposes, it is
tion reduces to the von Neumann entropy of the reduce@specially important to note that this is true for the case
density matrix, as expected. However, for mixed states th#here¢ is a partial trace operation, as the partial trace is a
entanglement of formation shows much more complex betrace-preserving quantum operation.
havior, a behavior that is not yet fully understood. Fanned 14,15 proved a useful continuity relation relating

This Brief Report develops inequalities expressing contitrace distance and entropy. Fannes’ inequality states that for
nuity properties of the pure-state entanglement and the er@ny density matricep and o such thatT (p,o)<1/e,
tanglement of formation. We begin with the simple argu-
ments needed to prove such results for the pure-state |S(p)—S(0)|<T(p,0)logy(d) + (T(p,0)),  (2)
entanglement. This allows us to introduce some of the tools ] ) ) .
needed for the more complex argument for entanglement o¥hered is the dimension of the Hilbert space,and o are
formation, and also gives more stringent bounds than in théefined onz(x)=—xlog,(x), and the base of logarithms,
mixed-state case. We will show that, up to constants, th&ere and throughout, is taken to be 2. It is useful to note that
bounds are optimal with respect to the dimension of the un#(X) is increasing for 8<x=1/e. The restriction on Eq(2)
derlying Hilbert space. Furthermore, we explicitly show thatthatT(p,o) < 1/e may be lifted to give
the continuity bounds obtained for the entanglement of for-
log(e)

.

1S(p) = S(0)|<T(p,0)logy(d) + ()
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!t is to be emphasized that these axioms are only natural if one Ruskai's resulfEq. (1)] can be combined with Fannes’
considers manipulations of large blocks of identically entanglednequality[Eq. (2)] to obtain the desired continuity relation
stateq 7]. for pure state entanglement. Suppdge and|¢) are pure
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states of a composite quantum system with componAnts [23] of any fixed dimensionality that is at least as greatlas
andB, and that system has dimensioml. Let p, ando, be  Uhlmann’s expression for the fidelity is

the corresponding reduced density matrices for system

Applying Fannes'’s inequalitjEq. (2)] gives F(p,0)=max(p|o)|=maxF(|p),|o)), 9

_ _ _ where the maximization is performed over all pure st§tes
[E() = E(#)]=[S(pa) = S(n)| @ and| o) of the joint systenRQ such that t(|p)(p|) =p and
trr(|o)(o|) = o; such states are known psirificationsof p
(5) and g.
As our second ingredient, we introduce Bres distance

Recalling that7(x) is monotonically increasing for €x  [17] between density matricgsand o

<1/e, and using Eq.(1) to deduce thatT(pa,oa) _ —
<T(¢,¢), we obtain D(p,0)=2V1-F(p,0). (10

<T(pa,op)l0gx(d) + 7(T(pa,op)).

D(-,-) is easily shown to be a metric on the space of density

[E()—E(D)|<=T( ¢)logo d+ n(T(4,4)), 6) matrices. We have chosen the overall normalization factor of
2 out the front so the Bures distandé -, -) agrees with the
trace distance for pure states; other authors often use differ-
ent normalizations.

The third ingredient we need is the elegant remote-control
log,(e) view of entanglemenitl8]. Suppose is some joint state of

2= 7) a composite systerAB, whereA is d-dimensional and is

e d’-dimensional. Uhlmanih24] showed that it is possible to

, achieve this minimum using an ensemble containing at most
We now generalize these pure-state results to apply to th§24'2 onsemble elements. Introduce did’2-dimensional

entanglement of formation. Our strategy for proving a conti-raference systerR which purifies those systems into a pure
nuity bound for the entanglement of formation involves threestate|p>. Let {pm.|AB,)! be the ensembie of states achiev-
ingredients in addition to those used in the proof of theing the minimum in Eq(8). A result of Hughston, Jozsa, and
bound for the pure-state entangleméﬁq. (6)]: Uhimann’s Wootters[25] implies that by performing a measurement on
formula for thef|.del|ty [16], theBures distanc¢l7], and the g \ith respect to an appropriate orthonormal bagis, the
rerr'lpte—cr?ntrol\new of entan%lefmerﬁﬁS]. | ‘f corresponding posterior states AB will be |AB,), with
_|rst, OWEver, we mus_,t efine the e_ntang ement o Or'probability pm- Elementary calculation shows that after the
mation. For a density matrix of a composite systeB the measurement we haveS(R')=H(p,) and S(AR')
o ) m
entanglement of formation is defined 0] —H(p,)+E(p), where S(R’) denotes the von Neumann
entropy of R after the measurement, and similarly for
E(p)Eminz PmS(PAm)s (8) S(AR’). H() i_s the Shannpn entropy function. Compining
m these observations results in the very useful expression

provided T(#, ¢)<1le. This is the desired continuity rela-
tionship for the pure-state entanglement. Using &j.we
may lift the restrictionT (¢, ¢) <1/e to give the bound

|E()—E(¢)|<T(¢,¢)log, d+

where the minimization is over all ensemblgs,,,|AB)} E(p)=S(AR")—S(R’). (12

generating the statg, that is, p==,pm/ABmn){AB,|, and . _
pam=trs(|AB)(ABy|). In practice, evaluating this expres- If instead a measurement had been performed in some other

sion seems to be very difficult; all that is known is an inge-Orthonormal basism’), then we would have had

nious expression for the entanglement of formation of a pair N p
of qubits found by Wootter§10], building on earlier work E(p)<S(AR")=S(R"). (12)
by Hill and Wootters9)]. Let us now proceed to the proof of the continuity relation

The first ingredient needed to prove the continuity boundeg, the entanglement of formation. Lekg and o g be two
for the entanglement of formation is tfidelity, a measure of density matrices of the systemB, whereA hasd dimen-
distance between two density matrices distinct from bukjons™ and B has d’ dimensions. Introduce a
closely related to the trace distance. The fidelity betweery2y'2_qimensional reference systeR By Uhlmann's for-
density matricesp and o is defined to beF(p,0)  myla[Eq. (9)] there exist purificationgp) and |} of pag

=tr{pT2p™2 For pure state$y) and|4) the fidelity re-  gnq o g 10 the systemABR such that
duces to the overlap between the stategy, @) =|(¢| o).

The fidelity is not a metric; however, it does possess many F(pag,oas)=F(|p),|d)). (13
useful properties as a measure of distance, and is closely

related to the trace distance and will be used in the definitioPUPPOSe we measure systéin a basis chosen such that
of the Bures distanc€19—21. Uhimann[16,27 found a E(oag)=S(0ar) —S(oR), Where the primes denote density
useful expression for the fidelity relying on the following matrices after the measurement, and the initial state| was
construction. Supposg and o are quantum states of a Performing the same measurement with initial staewe
d-dimensional quantum system. We label the sys@rfor  see from Eq(12) thatE(pag) <S(par) — S(pgr). Taking the
convenience. Introduce an additional “reference” system difference of these equations yields
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E(pap) —E(0ap) <S(par) — S(0hr) + S(0k) — S(pR). A simple calculation shows thai(1/d,p)=2(d—1)e. It fol-
(14) lows easily that

Applying Fannes’ inequalitfEq. (2)] twice on the right- T(I/d,p)log,(d)
hand side gives S(1/d)—S(p)= fz— 1. (23)

E(pap) — E(oap)<10g,(d°d"®) T(ppr.oaR) This implies that the logarithmic behavitwith d) expressed
(T (phn.ohe) in Eq. (2) and thus in Egs(6), (7), (18), and(19) cannot be
RPAR TAR improved beyond a constant factor.

+1log,(d2d’2 "ol + " ol)). Vidal [7] emphasized the importance of continuity to the

%) T(pr o)+ 7(T(pr %) result of Popescu and Rohrli¢B] (see also Ref.12]). Pope-

(19 scu and Rohrlich argued that any measure of bipartite pure-
state entanglement satisfying certain natural axioms, namely,
that it is (a) additive, and(b) nonincreasing under local op-

T(pr.0R)<T(par:TAR) < T(Pagr:TaBR) <T(|p).[7)). erations and classical communication, is necessarily propor-
(16) tional to the von Neumann entropy of the reduced density
matrix of the pure state. Vidal pointed out some hidden as-

Recall thatT(|p),|o))=D(|p),|o)). Together with the pre- sumptions in this argument by explicitly constructing ex-

vious equation this fact and E¢L3) give amples of entanglement measures that sat@fand(b), yet

are not proportional to the von Neumann entropy. For ex-

By Eg. (1), we have

T(pr,oR)<T(par,0AR)<D(pag.T48)- 17 ample, a function with the required properties Egy)=
Combining this equation with Eq15) gives —logy[tr(p?)], which @s man_ifestly different from the von
Neumann entropy. Vidal pointed out that the key property
E(pap) —E(oap)=<[5l0g,(d)+4 log,(d")]D(pas,Tap) lacking in such a measure is sufficiently stroogntinuity
properties. The framework of the present note provides a
+27(D(pag,oap)), (18

useful opportunity to elaborate. Suppdsép) is any addi-
provided D(pag,oap)<1/e. This is the desired continuity tive measure of entanglement that does not increase under
equation for the entanglement of formation. Of course, théocaLoperatlons and classical communication. We will show
role of A and B may be interchanged in this expression;that E(p) cannot satisfy a continuity property as strong as
clearly the strongest inequality is obtained by labeling theEqg. (18) unless for pure states it is proportional to the von
systems such that<d’. For many purposes it is sufficient Neumann entropy. Indeed for any constedtandD we will

to replace the logarithmic terms in the right-hand side byshow that a continuity property as strong as

9 log[maxd,d")].

The restrictionD(pag,oag)<1/e on Eq. (18) may be |E(p)—E(0)|<Clog,(d)D(p,0) +D (24)
lifted in a manner similar to that for the continuity bound for _
pure-state entanglement. Doing so gives implies theE is proportional to the von Neumann entropy of

the reduced density matrix, whedeis the maximum of the
E(pas) —E(oap) <[5 l0g,(d) +4log,(d")]D(pas,0as) dimensions of system& andB. Thus the von Neumann en-
tropy is in some sense the “most continuous” measure of
2 logy(e)/e. (19 entanglement, satisfying a stronger bound on its variation
For applications to communication in which large blocksthan any other prospective measure of entanglement. Sup-
of entanglement are used addecomes large, it is desirable Pose Eq(24) holds. Lete>0 be given. Then for sufficiently
to understand how close to optimatith respect tod) the  largen entanglement dilutiof27] allows us to convert from
bounds(18) and (19) are. Understanding this is essentially N[S(p) +€] Bell states into a states that satisfies
the problem of understanding how close to optimal FannesP(|#)“",0)<e, using local operations and classical com-
inequality is. Lete>0 be given, and, for a-dimensional ~Munication. Then, if Eq(24) holds,
Hilbert space with orthonormal basis), . .. ,|d) definep - - -
=ed|1)(1|+ (1/d—€)l. For smalle this is a density matrix NE(y)=E(y°")<E(0)+Clogy(d"e+D, (29
close to the completely mixed stdtel. We will analyze the ~
difference in entropies betwegnand!/d. From the general SinceD(|#)“",o)<e. The nonincrease @& under local op-
bound[26] S(Z;pipi)<H(p;) +=ipiS(p;) we obtain erations and classical communication implies titg(to)
=n[S(p) + €]k, wherek is the entanglement associated with

S(p)=(1~ed)logy(d) +H(ed,1~ed). @0 4 single Bell pair according to the measitteThus

Thus -~
NnE(¢)<n(S(p)+ e)k+Cnlog,(d)e+D. (26)

S(1/d)—S(p)=edlog,(d) —H(ed,1— ed) (21 _
Dividing by n and lettinge— 0, n—oo givesE(#)<k(p).
=ed logy(d)—1. (22)  Similarly, for any e>0 and sufficiently largen, entangle-
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ment concentratiof27] allows us to conven copies of| i) and classical communication they can convert them with
into a stater satisfyingD (|8)*"(5(P)~9) 7)< ¢, where|8) is  high fidelity inton copies ofp, in the limit thatn is large. As

a Bell state. By Eq(24) we have Wootters discussed, the only impediment to this interpreta-
tion is the question of whether or not the entanglement of
n[S(p)— e]k<E(7)+Cnlog,(d)e+D. (27)  formation is additive That is, is it true thatE(p®")

=nE(p)? If this is not true, then it suggests a revised defi-
But E(T)gnE(¢), SinceE is nonincreasing under local op- nition for the entanglement of formation, the operational en-

erations and classical communication. Thus tanglement of formation, aB,y(p)=limsup, ... E(p°")/n.
Eop(p) quantifies the resources needed for Alice and Bob to
n[S(p) — e]k=E(B2NSP)~9) (28)  createp, in the sense described above. Unfortunately, the
reasoning used in the derivation of the continuity bounds on
$n~E(¢//)+CnIogz(d)e+D. the entanglement of formatio(l8) and (19) does not go

(29) through forE,y(p). It is an interesting open problem to de-
termine such bounds for the operational entanglement of for-
Dividing by n and lettinge— 0,n— giveskS(p) <E(¥). mation, and may yield insight infno the que_s_tion of whether or
Combining the results of the last paragraph, we see thdiot the entanglement of formation is additive.
the properties of being additive, nonincreasing under local We have obtained a continuity relation for bipartite pure-
operations and classical communication, and satisfying Ectate entanglement and the entanglement of formation. This
(24) for someC andD, imply thatE () =kS(p). Thus mea- relation bounds the variation of the entanglemggp) be-

¢ | h Béw)— tween two system#é andB as the state of the joint system
sures of pure state entanglement such B&/)= s yaried. The bound obtained exhibits the best possible be-
—log,(tr(p<)) which are not proportional t&(p) must sat-

. k U lati h havior with respect to the dimensiah of the underlying
isfy weaker continuity relations than E@4). Hilbert space, to within constant factors, and is stronger than
Finally, it should be mentioned that bounds) and(19)

) ) § the continuity bounds that may be obtained for other poten-
apply only to the entanglement of formation as defined in Edia| measures of entanglement. Further applications to quan-
(8). As discussed by Woottefd 0], the interpretation of the "0 mmunication protocols, quantum cloning, and quan-
entanglement of formation as defined in HE§) may be

. ) . um communication complexity will be reported elsewhere.
somewhat problematic. The basic problem is that one Woulé prextty P

like to interpret the entanglement of formation as a measure This research was supported by DARPA through the
of the resources—Bell pairs—that must be shared between Quantum Information and Computing Institut@UIC) ad-
Alice and Bob in order t@reatep. That is, if Alice and Bob  ministered through the ARO, and by the California Institute
are provided witmE(p) Bell pairs, then by local operations of Technology.
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