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CONTINUITY OF GAUSSIAN PROCESSES
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M. B. MARCUS AND L. A. SHEPP

Abstract. We give a proof of Fernique's theorem that if A" is a stationary Gaussian
process and o2(h) = E(X(h)—X(0))2 then X has continuous sample paths provided
that, for some £>0, a(A)á^(A), OáA^e, where <p is any increasing function satisfying

(*) f
Jo

dh < oo.
¿(log (1/A))1'2

We prove the partial converse that if o(h)^<l¡(h), OáAge and </¡ is any increasing
function not satisfying (*) then the paths are not continuous. In particular, if a is
monotonie we may take ^=o and (*) is then necessary and sufficient for sample path
continuity. Our proof is based on an important lemma of Slepian.

Finally we show that if a is monotonie and convex in [0, ¿\ then <r(A)(log l/h)112 -* 0
as h -* 0 iff the paths are incrementally continuous, meaning that for each monotonie
bounded sequence t = tut2,..., X(tn + 1) — X(tn) -»■ 0, w.p.l.

1. Introduction. Let X be a zero-mean separable stationary Gaussian process
with continuous covariance p(h) = EX(s)X(s+h). Xavier Fernique (1964) made
considerable progress toward a solution of the well-known problem [6], [3], [1]
of finding necessary and sufficient conditions on p in order that Xhave continuous
sample paths. Define a2(h) = E(X(h)-X(0))2 = 2(p(0)-p(h)). Fernique obtained
that if o(h)^i/i(h), O^hfíl, where </< is monotonie f (nondecreasing) and satisfies

<'•" r dh < oo
//(log l/h)112

then X has continuous paths. He also obtained (under some additional conditions)
that if i/i is monotonie f and (1.1) fails to hold then there exists a discontinuous
process X (which he gave as a random lacunary Fourier series) with o(h) ^ <p(h),
OáAáe. Modifying his method of random lacunary Fourier series, we obtain (§3)
using a basic inequality of D. Slepian (1962) that if for some e>0, o(h)^i/i(h),
0^/iáe, where i/i is monotonie t and (1.1) fails to hold then the paths of X are
discontinuous. As an immediate consequence we find that if a is monotonie t
then

oí),)(U) i dh < oo
A(log l/h)112

is the necessary and sufficient condition for X to have continuous paths. In parti-
cular if the convariance of X is of Polya's type, the question of whether the paths
are continuous is settled completely.
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378 M. B. MARCUS AND L. A. SHEPP [October

M. Nisio [9] has obtained conditions for continuity of X based on the spectral
distribution function F. As a corollary to the results of [9], it has been proved [10]
that if F(2n + 1) —F(2")=in is eventually decreasing then 2Cv)1,2<00 is a necessary
and sufficient condition for continuity of X. We point out by examples (§5) that
neither'(1-2) nor 2(ín)1/2<°° is a nasc for continuity among all covariances.

Finally, we observe that a discontinuous process X may or may not possess
the following property: call X incrementally continuous if for each monotonie
(either increasing or decreasing) bounded sequence t=tx, t2,...

(1.3) X(fax)-X(tn)^0   as «^co

except for a null set (which may depend on t) of paths X. We show (§4) that a
Gaussian process X with covariance of Polyá's type is incrementally continuous
if and only if

(1.4) a(«)(log(l/«))1/2^0   as«^0.

As an immediate consequence we find that there exists a process X which is
incrementally continuous yet not sequentially continuous. (A process X is se-
quentially continuous if rn -*■ t implies X(tn) -> limit a.s. ; for Gaussian processes
sequential continuity is equivalent to sample path continuity.)

We would like to acknowledge the help of R. M. Dudley who provided an
enlightening example bearing on §4, of H. O. Pollak who found the simple proof
of Boas' inequality, and of N. D. Ylvisaker who had suggested the use of Slepian's
inequality to one of the authors.

2. Fernique's sufficient condition for continuity of paths. The purpose of this
section is to prove the following theorem of Fernique [5]. Alternate proofs can be
found in [13]-[16].

Theorem. Let X be a separable stationary Gaussian process with zero mean and
let o2(h) = E(X(h) — X(0))2. Let <// be any nondecreasing majorant of a, so that

(2.1) a(«) g ./<«),       0 Ú « Ú I,

(2.2) 4>(h)\,       Oúhúl.

If (I.I) holds, then the paths of X are continuous. Note: it is clear that without loss
of generality we could take <jj to be the least nondecreasing majorant of a,

■/<«) = max [ct(h) : 0 s u á A],

Proof. By Belyaev's theorem [1] (see [4] for an alternate proof) discontinuous
Gaussian processes are unbounded on every set S dense^) in some interval with
probability one, so we need only prove that for some M and S

(2.3) P{\X(t)\ Ú M, teS} > 0

O See Appendix 3.
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1970] CONTINUITY OF GAUSSIAN PROCESSES 379

where S is dense in some interval. Oddly enough, the choice of the subset S is the
crucial part of the proof. We shall choose S={k¡2p : 0áA:/2p^ 1} where k and p
are nonnegative integers and 2P = 221', following Fernique [5] (see also [8]). S is
sparse enough so that (2.6) (below) holds and yet dense enough so that (2.8)
(below) also holds. If t e S, let k(p, t) be the largest integer k for which k\2v ̂  t,
so that k(p, t) = [2pt]. Writing r(p, t) = k(p, t)/2p we have

(2.4) OS r(p + l,t)-r(p,t)< 1/2,

and

(2.5) X(t) = X(t(0, t))+ 2 (X(r(p+1, t))-X(r(p, t))
p=i

where the series converges because only finitely many terms are nonzero. To prove
the right side of (2.5) bounded in t for A" in a set of positive measure we proceed
as follows. For/?=0, 1, 2,... ; A:=0, 1, 2,..., 2P —1; #=0, 1, 2,..., 2P —1, define

l(p,k,q) = X(k/2p+ql2p+x)-X(kl2p).
Let D2(Q = Et2 and set c(p) = b2pl2, p=0, 1,2,..., where b will be chosen later.
Let A be the event that for some (p,k,q) in the range above, %(p, k, q)\ >
c(p)D(l(p, k, q)). Thus we have

to      2,-1  2,-1

p(A) ̂222 p(\v\ > c(p)}>
p=0    fc=0    9=0

where r¡ = ¡,/D(C) is standard normal. Since P{|ij| >c}^exp( —c2/2) for c>l we
find choosing b large enough that

(2.6) P(A) S  2 (2P)2exp(-622"-1) < 1.
p = 0

Thus comp (A) has positive measure and if A' g comp (A) we have

(2-7) \X(T(p+1, t))-X(r(p, i))| á c(p)D(0,

where t=i(p, k,q) and k=k(p, t),q = (T(p+l, t)-r(p, t))2pJrX. We have

7J2(0 = D2(t(p, k,q)) = o2(ql2p+x) = a2(r(p+l, t)-r(p, t))

by (2.1), (2.2), and (2.4). Thus from (2.7) and (2.5)
00

(2.8) |*(/)| á \XiriO, 0)| + 2 c(/#0/2P).
p=i

Again by monotonicity of ifi we have

2"V(1/2P)^        ,#2-)-^-
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380 M. B. MARCUS AND L. A. SHEPP [October

and so by (1.1) the series in (2.8) converges:

(2.9) f c(/^(l/2p) ^ b f 0(2-") -^ < cx).

Finally, since t(0, /) has only three possible values, it follows directly from (2.8)
and (2.9) that (2.3) holds for some value of M.

3. A sufficient condition for the paths to be discontinuous.

Theorem. Let X be a stationary Gaussian process with zero mean and let o2(h)
= E(X(t + h) — X(t))2. Let <fi be any nondecreasing local minorant of a, that is for
some e > 0

(3.1) a(h) ^ >P(h) ̂ 0,       0 ^ « ^ e,

(3.2) .¿(«) f,       0 S « S e.

If (l.l) does not hold for <// then the paths of X are not continuous.

Proof. We will show that if the hypothesis holds for o there is a separable, zero
mean, stationary Gaussian process Y for which, in the range sel, tel, /= [0, s]

(3.3) E(Y(t)-Y(s))2í Ko2(\t-s\),

(3.4) P(sup [Y(t) : t e I] = oo) = l

where K is some constant. In other words we will obtain an unbounded process
Y whose incremental variance is bounded by a constant times the incremental
variance of X. Given such a Y the following inequality of Slepian shows that the
paths of X are also unbounded and hence discontinuous.

Lemma (Slepian). Let X and Z be separable zero mean Gaussian processes such
that EX2(t) = EZ2(t), EX(s)X(t) Ú EZ(s)Z(t)for s, t e I. Then

(3.5) P (sup [X(t) :tel]^ M)^P(sup [Z(t) :tel]^ M).

We include Slepian's proof for completeness, but defer it to the appendix.
To see that X is discontinuous if Y exists satisfying (3.3) and (3.4), take Z(t)

= (a-q+ Y(t))/b, where r¡ is a standard normal variable independent of Y, and a
and b are constants to be chosen. If b is large enough so that EY2(t)<b2EX(t)2
and KÚ b2 we may choose a so that EX2(t) = EZ2(t). We then have E(Z(t) -Z(s))2
= E(Y(t)— Y(s))2/b2^a2(\t-s\) and the hypothesis of Slepian's lemma is satisfied.
Since the right side of (3.5) is unity for every M, X is unbounded also.

To produce a process Y satisfying (3.3) and (3.4) we take Y to be a random
lacunary Fourier series, the stationary Gaussian process defined by

oo

(3.6) Y(t) =  ^ an(Vncos2nt + v'nsin2nt),
n = 0
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where {r¡n} and {r¡'n} are independent standard normal sequences and 2an<0°-
Note that

(3.7) EY(s) Y(t) =  f a» cos 2\t-s),
n = 0

oo

(3.8) E(Y(t)- Y(s))2 = 22 al(l -cos 2n(t-s)).
n = 0

We now use the following theorem of Szidon [12, §6.4] to show that Y(t)
satisfies (3.4) if

(3.9) 2 H = œ-
Lemma (Szidon). IfH(bl + c2)<oo, 2(|è„| + |cn|) = co, and Bn+x¡Bn>\>l then

the L2 function with Fourier series 2 (bn cos Bnt + cn sin Bnt) is unbounded.

To show that (3.4) holds if (3.9) holds let bn = anr¡n, cn = an-n'n and Bn = 2n so that
the series of the lemma is Y. Note that E 2 (b2 + c2) = 2 2 a2, and so 2 (¿>2 + c2) < oo
a.s. Similarly, £[exp (-2 (N + k„|)] = ]T (Eexp- |6n|)P(exp (- |cn|))=0 by (3.9)
and so 2 (\bn\ + \cn\) = <x> a.s. It follows from the lemma that 7(0 is a.s. unbounded
on [0, 27r] and hence [1] on every interval [0, e]. Thus the problem reduces to
finding an I2 sequence an satisfying (3.9) for which the function Y defined by (3.6)
satisfies (3.3).

We shall assume first that a2 is monotonically increasing and that a2(2"n)
^2a2(2"n_1), n—l, 2,..., (call this assumption A) because if A holds (which it
does if the covariance is of Polya-type, a2 then being monotonie and convex) the
construction of the an sequence is simpler. Later we give a construction which
works in general. Define f2 = o2i2~n) and observe that f2 eventually decreases.
Define g2 as the largest convex minorant off2, so that g2 =f2 for certain values of
n and between these values, g2 is linear and lies strictly below /n2. We claim first
that g2+xSgnâ2gl+x. The first inequality holds because g2 is convex and tends to
zero. To prove the second inequality observe thateither g2+1=/„2+1org2+1</„2+1.
In the first case, 2g2+1=2f2+x^f2^g2, while in the second case gl+x-gl+2=gl
—áfn+i by the definition of g2 and so 2g2+1—g2=g2+2^0. Thus we have that
glú2g2+x for all values of«.

The hypothesis of the theorem requires that (1.1) not hold for >/i. By A, i/i = o
and by monotonicity of a it is easy to see that (1.1) is the same as

(3.10) oo = J ^T1 = 2 4-ái    Vn       fa Vn
We claim next that 2gn/\/n = 0° a'so. To see this let r and s, defined as above,
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be any two consecutive points where/and g are equal. Then if r^n^(r+s)/2 we
have by linearity

g2n = g? + (g2-g2)(n-r)l(s-r) ^ g2-g2(n-r)l(s-r) = g2(s-n)l(s-r)

= f?(s-n)l(s-r) è /n2(*-n)l(s-r)^ f2\2

and since fj\/n decreases,

(3.11)     2 4" - 2     2     4 - 2v/2     2     "T" -2^2 2 -r-

Now we define a2=g2—g2+x- Since g2 is convex, an decreases monotonically.
We now use the following inequality of Boas, proved in the appendix.

Lemma. Let g2 = 2f=n of where a¡ decreases. Then

00 00

n = l V" n-1

It follows from the lemma that (3.9) holds and we need only verify (3.3). Fix
/ < 1 and let N be the largest integer for which 2NtS 1. By (3.8) we see that

(3.12) E(Y(s+t)-Y(s))2 á  2 a222n/2+4 2 al
N

l
n = l

The second term on the right in (3.12) is 4g2í+1g4/2+1 = 4a2(2-N-1)á4a2(/) since
a is monotonie by A. The first term on the right of (3.12) is less than

t2   2  S2?2" =  t2g2N   2   22' + /2   2   (g2n~g2n + l)   2   22Í

(3.13)
Ú ¥2gîl2Nî + \t2   2   g2n22nî

n = l

since gn—gl+i=g%ß as we proved above, and since 2?= i 22í ̂  22n(4/3). From (3.13)
we get upon subtracting the last term that

(3.14) i2 f gV-2n è 2t2g2N2™ Ú 2g2N.
n = l

As before, 2gl^4gl+x<4f2+1 = 4o2(2-N-x)^4o2(t) and so each term in (3.12)
^4(t2(í) and (3.3) holds with F=8. This proves the theorem in the case when a
is monotonie and cr2(2~n)g2<x2(2~',~1). We point out that the proof would work
as well even if a2(2~ n) g aa2(2-n_1) as long as a < 4. The case a = 4 is the general
case because for any a and « we have

(3.15) a2(2h) = 2 f (1 -cos 2«A) dF(\) = 2 f (2-2 cos2 «A) dF(\) ^ 4o2(h).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We now give another proof of the theorem, slightly more involved, but which
works in general. We start from scratch at the expense of some repetition. Since
the incremental variance a2(i) has a least positive zero there is an e>0 for which

(3.16) 0 < aie/2) = min [a(u) : e/2 S u Ú •],

that is, the minimum of a on [e/2, e] is taken at the left endpoint. To see that such
an £ exists, let 2z be the least positive zero of a, and let w(«) = min [o(x) : u^x^z].
We now choose e as the largest number á z for which <r(e/2) = m(z/2), which exists
because 0 < m(z/2) ^ <j(z/2) and o tends to zero at zero. Then 0 < o(e¡2) ¿ o(x) for
e/2<x^z/2 since e was largest and a(e/2)Sa(x) for zß^x^e because a(e/2)
= m(z\2) and e^z. Thus (3.16) holds for e.

Having chosen e, we next define

(3.17) >/.(/,) = min [a(u) : A á « S 4
ifi dominates any nondecreasing minorant i/>' of o on [0, e] and so if the hypothesis
of the theorem holds then (1.1) fails to hold for </i, since

i/i'ih) = min [i/i'iu) : h ^ u ^ e] ^ min [ct(«) : A ^ m ^ c] = ^»(/i)

for 0 ̂  A ̂  e. Fixing i/i as in (3.17) we have that if 2í á e,
02(2O = min [<j2(2h) : t S u S e/2]

= 4 min [ct2(«) : í ^ m ^ £] ¿ 4 min [ct2(m) : t S u <, e/2]

by (3.15) and so by (3.16) we have
(3.18) 4>2(2t) Ú 4x/,2it).

Let now /n2 = 02(2 " ne), n = 1, 2,..., so that /„2 j and let g2. be the largest convex
minorant of/n2 defined as before. By hypothesis, J°° <p(2~ue)u~112 du = oo and so
2/n/'V/n = 00 since ^i is monotonie. By (3.11) we see that 2cîn/V« = 00 as well.

We next define a convex subminorant h2 of g2 by extending certain edges of the
graph of g2, viewed as a convex polygon. Let s0 = 0, and define 0<rx<sx<r2
<s2< ■ • • as follows. Suppose that s¡_i has been defined. Let r¡ be the first n>st-x
for which g2>2g2+] if there are such n. (Let rt = co if g2ú2g2+x for all n>s^x.)
If r, < oo, let Sj be the first n > r¡ for which g2 á 2g2+j, noting that s, < oo since other-
wise gn decreases exponentially contradicting 2fn/'V/w = 00- Now define hn=gn
foríy_1á»á'"í+l and for ry+l <n<s¡defineh sofhath2 — hl+x = h2(Sj) — h2(sj+l)
=g2(si)—g2(sj+l) (where h(n) is written for hn to avoid double subscripts). If
r3 = oo, set hn=gn for all n>i;_1. Since h2 has been defined in rj + l<n<s¡ by
extending the edge between s¡ and j; + 1 of the graph of g2 backwards throughout
r¡ +1 < n < Sj, and since g2 is convex, we must have h2 S g2 for all n and we see that
h2 is also convex. We next show that ~2.hJ-\/n = oo. For r¡^n<Sj, gn+i<gnlV^
and so gn^g(r,)x/2't~n for rj^n<sj. Hence with r=rh s=s¡, we have

2 SnIVn Ú (g(r)IVr) 2 V*~" ̂  «Sto/V' = 4A(r)/y ̂ 4 2 *(»)/V».
n=r n=r n=r
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Since  hn=gn  for  sén<rj+x,   it  follows   that   ~£,gnlVn = 4J,nnlVn   and   so
2«n/"v/«=c°.

Set a2 = h\ — hn+1 in (3.6). Since an decreases (3.9) holds by Boas' lemma. By
Szidon's lemma the process Tof (3.6) satisfies (3.4). By Slepian's lemma the theorem
follows from (3.3) and (3.4) and the only thing left to show is that the right side of
(3.12) is bounded by F<r2(f) for t<e, where N is the largest integer for which
2Nt^e, e as above. The second sum in (3.12) is 4h2N+1 ̂4g21 + 1 ̂ 4ß+1 = 4>l>2(2-N-xe)
^4ifi2(t)^4<j2(t). The first sum in (3.12) will be bounded by Ko2(t) if we can show
that

(3.19) 2 (h2n-h2n+1)22nt2 =£ Kg2N,
n-X

because ^S/2 = 02(2-Ne)^402(2-N-1e)^402(/)^4a2(O,  where  we  have  used
(3.18). It is the construction of« that plays the crucial role in proving (3.19) and
(3.19) is not necessarily true with the right side replaced by Kh2,.

We begin with the observation that

(3.20) 4g2+x^g2   for all « = 1,2,....

To prove (3.20) observe that either g2+x=f2+x or g2+x<f2+x- In the first case,
^gl+x = ¥n+x^fn^gl while in the second case, gl+x-g2n+2=gl-gl+x by the
definition of g2 and so 4g2+1^2g2+1=g2+g2+2^g2.. Thus (3.20) holds.

Now suppose that N in (3.19) satisfies sk^N<sk+1. For j<k we have with
S — Sj-l, r = rj> l = sj,

(3.21) 2      ("2-«2-+l)22n =     2    (gl-gl+l)?211  =     2    Sn22".
n=s+l n=s+l n=s+l

But summing by parts we get

2 gi22n = g2 2 22k+ 2 (rf-Äü+i) 2 22fc
,_ __. n = s + l n = s + l n = s + l k = s + l
(3-22)

=  t£222r + f      2      (8l-g2n+X)22\
n = s + l

Since glú2gl+x for i<«^r-l, g2-g2.+ xag2ß for s+l^n^r-l  and sub-
stituting in (3.22) we get

(3.23) 2    S2n22nih?22r+i   2   SÎ22n.
n=s+l n=s+l

Subtracting the last term in (3.23) from both sides and using (3.21) gives

(3.24) 2    («2-«2+1)22n á 2gr222r.
n = s + l
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Since h is linear in the range r +1 < n ̂  t +1 we have

2    iK-hl+x)22n = (h2-hUx)    2    22n
(3.25) n = r + 2 n=r+2

Ú (gf-ghi)22t$ =i 2&222'.

Since (h2+ x -h?+ 2)22<r+» á 4/zr2+ j22r ̂  4/,r222r = 4gr222r we have from (3.24) and (3.25)
that

2     (hi - h2n+x)22* S 6g(r¡)222U + 2g2(s,)22*,
(3.26) n-.,_i + l

S Sg2(sj)22%

the last inequality being valid because by (3.20) glú4gl+x for all n and so g(n)222n
is monotonically increasing in n. Now again by (3.20), g2fk4g2+x for sj-x^n<sj
but there is at least one value of« in the range Sj.xSn<Sj for which g2ik2gl+x,
namely m = j3_1. Hence

(3.27) g(si.x)222sí-í S |^)222^.

Summing the inequalities (3.26) and using (3.27) we get

(3.28) 2 (h2n-h2n+x)22n Ú 8^|)22^(l + l-+1-+ ■ ■ • + 1).

The same proof as in (3.24) shows that if sk-¿NSrk that

(3.29) 2    (h2n-h2+x)22nS2g2N22N
n = sj; +1

and the same proof as in (3.25) shows that (3.29) is valid also for rk<N<sk+x.
Thus we have from (3.28) and (3.29)

(3.30) f (h2n-h2+x)22- S lSg222N
n=l

again using the monotonicity of g222n. Since t222N^e2 we see that (3.19) is valid
with K= 1 8e2. The theorem is proved.

4. Discontinuous processes which are incrementally continuous but not sequentially
continuous. A process X will be called incrementally continuous if for every
monotonie (either increasing or decreasing) bounded sequence t=tx, t2,...,

(4.1) X(tn+x)-X(tn)^0   as h^oo

except for a set A(t) of paths X with P(A(t)) = 0. Of course if X consists of a single
function then that function must be continuous, but the Poisson process is an
example of a discontinuous process which is incrementally continuous. On the
other hand, it seems to be difficult to find a process which is incrementally
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continuous without also being sequentially continuous, that is whenever r„ —> t,
X(tn) -+ limit, except for a null set A(t). Since it can be shown(2) that a sequentially
continuous Gaussian process always has continuous sample paths, examples of
processes with the desired properties can be constructed by using the theorem of §3
and the following theorem.

Theorem. If X has covariance p ofPolya's type then Xis incrementally continuous
if and only if (1.4) holds.

Proof. The property of Polya-type processes that we make use of is that if
sx < s2 < ti < t2, then

(4.2) E(X(s2) - X(Si))(X(t2) - X(tx)) á 0.

Indeed, if t2 — s2<tx — Si we write the left side of (4.2) as

(P(t2 - s2) - P(ti - s2)) - (P(t2 - Si) - P(ti - Si)) = (P'(d2) - p'(Bx))(t2 - tx)

= p"(e3)(62-0i)(t2-ti)úO

since 0<62<t2 — s2<ti — Si< 8X. On the other hand if tx—sx<t2—s2 we write the
left side  of (4.2) as (p(ti — sx) — p(tx—s2)) — (p(t2—sx) — p(t2—s2)) and proceed
analogously. Thus (4.2) holds.

Now we use two lemmas from [7], omitting their proofs.

Lemma 1. Let X and Y be Gaussian variables with zero mean and suppose EXY^ 0.
Thenifa^O, b^O,

(4.3) P(X ^a, fa b) Ú P(X ä; a)P(Y ^ b).

Lemma 2. Let Bx, B2,... be events with P(BjBk)^P(Bj)P(Bk) for all j^k. If
2 P(Bn) = oo then P(Bn infinitely often) = 1.

Let r be a monotone sequence and e > 0. Define

Bn = {X(tn+x)- X(tn)^e},       «=1,2,....

By (4.2), Lemmas 1 and 2, and the usual Borel-Cantelli lemma, we see that X is
incrementally continuous if and only if 2 F(Fn) < oo for every monotonie sequence
t. Supposing that tn\ t which involves no loss of generality, we see that Sn = /n+1
— tn ̂  0 must satisfy 2 <>n < oo. We have

(4.4) P(Bn) = P{v è el°fa)}
where r¡ is a standard normal variable. If (1.4) fails to hold then there exist un j 0
and 0>O for which a2(un)> 0/log (l/«n). If we let fa, 82,.. .) = fa,uu.. .,iti,
u2, u2,..., u2, u3,...) where the block of m/s is of length A^O, the block of u2s

(2) See Appendix 4.
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is of length A2^0, and so on, we can make 2 Sn<oo and ~2P(Bn) = <x) provided
that we can choose the A's so that

(4.5) 2 A"u» < °°
and

(4.6) 2^exP(-e2/CT2("»)) = a)

hold. The sum in (4.6) is at least 2 Anu^,B. If we choose e2 = 8/2, it is clear that there
can be found nonnegative integers Ax, A2,..., for which 2 Anun<oo and 2 Anu^2
= oo. Thus if (1.4) fails for Zof Polya type then A" is not incrementally continuous.

On the other hand, if (1.4) holds, then X is incrementally continuous even if X
is not of Polya's type because (£2/2CT2(Sn))_1 = o(l/log(l/Sn)) and it follows that
2 P(Pn) < oo since P(Bn) S 8n for sufficiently large n.

It is easy to find covariances which satisfy (1.4) but not (1.1) and thereby con-
struct incrementally continuous processes which are not sequentially continuous.

5. Examples. We give first a continuous process with lim sup (log l/h)cj2(h)^0
thereby showing that the condition that X be of Polya type cannot be dropped
entirely in proving that X is not incrementally continuous in §4. At the same time,
a of the example also fails to satisfy (1.2) and thereby shows that (1.2) cannot be
necessary for sample continuity in general. The example is

(5.1) X(t) = f i ivn cos 22"r+v'n sin 22"0
i "

where r¡ and r¡' are independent standard normal sequences. X is continuous be-
cause 2 (hn| + hiil)/"2 < oo, a.s. On the other hand, we have

(5.2) (log 22k)a2(l/22k) ^ (1 -cos l)(log 2)2fc/A:4 -► oo

and so lim sup (log 1/A)ct2(/i)#0. A short calculation shows that (1.2) fails to
hold. Of course, <r2 is not monotonie.

We remark that an extension of the above example shows that there is no simple
analogue of Slepian's lemma in terms of spectral distribution functions (s.d.f.).
In fact if F is the s.d.f. of any discontinuous process then there is a s.d.f. G of a
continuous process Y with G(x)SF(x) for all x^O, G(oo)=P(co). Indeed this is
trivially seen by taking Y(t) = 2 a„(ij„ cos Bnt + r¡'n sin Bnt) where r¡ and r¡' are
as in (3.6). If 2 |aB| <00> ï^ is continuous no matter what values the B's take and
if 8n -*■ co sufficiently fast, it is clear that G will have uniformly fatter tails than F.
Similarly, it is shown that if Pis any s.d.f. with P^O then Gx and G2 may be found
with Gx S FS G2 and G^oo) = G2(oo) where the corresponding processes are either
continuous or discontinuous.

The next example shows that the condition

(5.3) 2 s»2 < °°>       * - F(2"+') - W'
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where F is the spectral cumulative distribution function of X, fails to be sufficient
for continuity of X in general. Our example, which is of Polya type, is defined as
follows :

Let p. be the measure having a point mass

(5.4) Am = (l/2T2at/>m = l/22m,

m= 1, 2, — Define Ffa) by setting F'(x)=/(x) for all x, where

(5-5) f(x) = ^)-^-tdp(t).

\fpm<x-x<pm+x,

(5.6) f(x) ï C'" t dp(t)+ f   -| dp(t) g 2Am+ljpm+1 + 4x-2Am/>-i
Jo Jllx x I

and so, for0^/c<2m,

(5.7) F(22m+k+x)-F(22m+k) = S2*m+* ̂  2Ám+lPm+i22m+k+4\mP-x2-2m-k.

It follows easily that (5.3) holds. To prove that X is not continuous it suffices to
check that (1.2) fails to hold because Zis of Polya type, as is seen by noting that

f(x) =      p(t) cos xtdt = —      p'(t) sin xtdt

where we have set tdp'(t) = dp(t), p(l) = p'(l) = 0, p. as in (5.4). We have

P(0)-P(t) = f -P'(u)du = -p'(t)t+ f dpfa)
(5.9) J° J°r1 i rf r*= ' 1 u d^u) + J0 ̂ (m) - J0 £/m(m)-

Thus ifpm+i</<Pm» p(0)_/J(/) = ^m+i and it is a simple matter to check that (1.2)
fails to hold. Thus X is discontinuous in spite of (5.3). Of course, sn in this case is
not a monotonie sequence.

Appendix.
1. Proof of Slepian's lemma. The intuitive explanation of Slepian's inequality

is that although X and Z are instanteously of equal variance, X oscillates more
than Z because it is less correlated. It is enough to prove (3.5) for finite sets /=
{ti,..., tn}. The left side of (3.5) is then 1 - Q where Q= Q(r) is given by

(•M /»M
(A.l) Q(r)=\      dxx--- \      dxng(xx,...,xn;r)

J — QO J — 00
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and the Gaussian density g(x, r) is given in terms of its characteristic function by

(A.2)   gix,r)= f   *!■••■ f   dU2^)~n exp (¡2 ^,-(1/2)22 r'k^k)
J — 00 J — 00

and rjk = EXitj)Xitk), r={rjk}. From (A.2) we obtain immediately that dg/drjk
= d2g\dXjdxk for j^k and so differentiating (A.l) with respect to r12 say we get

d CM fM 82
— Qir) = j_Jxx-.. j_Jxn^ë7jixx,x2,...,xn,r).

Integrating we get

■k— 0(0 = dx3 ■ ■ ■ \      dxng(M, M,x3,..., xn, r).
orX2 J - oo J-«

Thus dQ(r)/drjk7>0 for all j^k. Now suppose that sJk = EZ(tj)Z(tk) and let

rjk(X) = Xrjk + (l-X)sjk.

Then r(X)={rjk(X)} is positive definite and so q(X) = 1 — Q(r(X)) is defined. We see
that

?'(A) = -22(s/0r«)öWA))-^(A)/i/A

= -22(a/orft)ôWA))-(rft-.ï,fc) = 0

since rfi=sit and for j=£k, dQldrjk^0 and sjk^rjk. Thus

g(i) = 1 - g(0 = P{max JT(f,) ̂  M} ^ ?(0) = 1 - ß(s) = P{max Z(fy) ^ A/},

proving (3.5).
2. Proof of Boas' inequality. The following proof was shown to us by H. O.

Pollak. We have since axàa21 • ■ •, for each m^n

(m \ 1/2       /m-1      \ 1/2 / /   m \ 1/2       /m-1       \l/2\-l

^ a2/(m+l-«y2am = am/(/n+l-n)1'2.

Adding on w, we get

oo      //   m \ 1/2        /m-1        \ l/2\ /    oo \ 1/2

2   2«2   - I*) )- 2^  =s«
(B-2)

^ 2 fl-/(»i+i-»)i,a.
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Dividing by \/n and adding, we get

2 gJVn á  2 VIV») 2 aj(m+l-n)x'2
n = l n=l m = n

oo m

(B.3) = 2 «« 2 m(m+l-n))x>2
m = l n = l

CO

Ú 2 2 am,
m=l

proving the lemma.
We remark finally that the reverse inequality, 2 an = 2 2 gJVn is valid even

without assuming that the a's are monotonie. Indeed, we may write
CO CO      oo       i 00 /    oo \ 1/2

(B.4) 2 «» = 2 2 ¿«« * 2 *» 2 ^
n=l n=lm=n n=l       \m=n /

and the remark follows.
3. Footnote 1, §2. Actually Belyaev's theorem shows only that a discontinuous

Gaussian process is a.s. unbounded on any interval I. To see that X is in fact a.s.
unbounded on any set 5 dense in /, we proceed as follows. If 5'<=/is a countable
set which acts as a set of separability for X, then, since X is unbounded on /,
supflAXOI : teSUS'] = oo, a.s. But sup[|Z(/)| : t e Sfasup[\X(t)\ : te SUS']
w.p.l. because every point t e S' is a limit of points tne S and so X(tn.) -> X(t)
a.s. along some subsequence {/„•} of {/„} since X(tn) -*■ X(t) in the mean. Since S'
is countable we see that sup[|Z(/)| : / e S] = sup [\X(t)\ : teSUS'] = oo w.p.l.
Thus the claim that (2.3) is sufficient for the theorem is proved.

4. Footnote 2, §4. To see that a discontinuous Gaussian process is not sequen-
tially continuous, note first that as a result of Appendix 3 above if X is discon-
tinuous and a < b,

(D.l)       P(\X(a+(b-a)j/ri)\ S M,j = 0, 1, ...,«)-* 0,       as « ̂  oo.

Define t2 = ti= ■ • • =0 and choose 0<aí<6í, j=l, 2,..., with b^O. Define
tx, t3,..., and «(0)=0<«(1)< • • • inductively as follows: Choose for_/'=l, 2,...,
i2no-i)+i, /2no-i)+3, •••, Í2nü)-i so each belong to fa, b}) and together satisfy
for eachy'=l,2,...

(D.2) P(\A(t2i+x)\ Ú j, n(j-1) £ i < «(;)) < 1 //
which can be done on account of (D.l). We see that tn ->■ 0 but X(tn) do not have a
limit because P(X(t2n+x)-X(t2n) -> 0)=P(X(t2n+x)-X(0) -> 0)gP(|X(t2n+X)\,
« = 1,2,... is bounded)=0 by (D.2). Thus Xis not sequentially continuous.
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