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CONTINUITY OF NONLINEAR MONOTONE

OPERATORS

S. P. FITZPATRICK1'2

Abstract. If a Banach space E has an equivalent norm such that weak*

sequential convergence and norm convergence coincide on the dual unit

sphere, then every monotone operator on E is single-valued and norm-norm

continuous on a dense Gs subset of E. In particular, this holds for reflexive

spaces.

Let £ be a real Banach space with dual E*. A multivalued mapping

T: E -» E* is called a monotone operator if (x* — y*,x — y > 0) whenever

x E Tx and y E Ty.lt is called maximal monotone if, in addition, its graph,

{(x,x*): x E E,x* E Tx], is not properly contained in the graph of any

monotone operator on E.

We say that a monotone operator T: E —» E* is locally bounded at x E E

if there is a neighborhood U of x such that T(U) = U{7>: y E U) is a

bounded subset of E*. This does not demand that x E D(T) = { y E E: Ty

# 0}. We say that T is continuous at a point x E D(T) if, whenever

xn -» x, x* E Txn and x* G Tx, we have ||x* — x* || -* 0. If T" is continuous

at x, then it is necessarily single-valued at x, that is, Tx has exactly one element.

We will assume from now on that T is a maximal monotone operator on E,

with D(T) = E. This latter hypothesis, while not strictly necessary, simplifies

both the statements and the proofs of our results. All the proofs can actually

be extended to the case where D(T) # E, provided int convö(r) ^ 0. The

reason for this stems from the first part of the following result of Rockafellar

[9], which will be of further use to us.

Proposition A. Let T: E -* E be a maximal monotone operator with

iniconw D(T) ¥= 0. Then int D(T) is convex, cl D(T) = cl int^r), T is

locally bounded at each point ofintD(T) and T is not locally bounded at any point

of the boundary of D(T).

The motivation for studying monotone operators comes from the study of
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integral and partial differential equations, and from the theory of convex

functions. The subdifferential 3/ of a lower semicontinuous convex function

/: £ —> R, where

3/0) = 0* EE*:(x*,x-y)> fix) - f(y), all v E £},

is a maximal monotone operator (Rockafellar [10]; later, Taylor [11] gave an

easier proof), and maximal monotone operators which are not the subdifferen-

tials of lower semicontinuous convex functions (that is, are not cyclically

monotone [10]) have some of the desirable properties of those which are. For

instance, if E is separable (Zarantonello [12]), or if E* has an equivalent

strictly convex dual norm (Kenderov [5]), then the set S(T) of points where T

is single-valued is a dense Gs subset of E, hence topologically "almost all" of

E. In the finite dimensional case, Zarantonello showed that SiT) is almost all

of E with respect to Lebesgue measure, too. Using Aronszajn's generalization

of the notion of sets of measure zero [1], this result remains valid for separable

spaces. These results generalize known results about lower semicontinuous

convex functions / on E, for / is Gâteaux (resp. Fréchet) differentiable at x if

and only if 3/ is single-valued (resp. continuous) at x.

As in Asplund [2] and Namioka and Phelps [6], we define £ to be a weak

differentiability space (resp. Asplund space) if every continuous convex function

/: E —> R is Gâteaux (resp. Fréchet) differentiable on a dense Gs subset of E.

We now ask

Question (A). If E is an Asplund space, is T necessarily continuous on a

dense Gs subset of £?

Question (B). If £ is a weak differentiability space, is T necessarily single-

valued on a dense Gs subset of £?

The results of Kenderov and Zarantonello answer Question (B) affirmative-

ly for most of the known weak differentiability spaces, but the general case for

both questions seems difficult.

Our main result is the following partial answer to Question (A).

Theorem 1. Let E be a Banach space which admits an equivalent norm whose

dual norm satisfies (H*):

Ifx* E £*, x* -* x* weak*and ||x*|| -» ||x¿||,

(H*)
then \\x* - x* \\ -> 0.

Then for any maximal monotone operator T: E -* E*, the set C(T) = {x

E E: T is continuous at x] is a dense Gs subset of E.

We know of no Asplund spaces whose duals are not locally uniformly

convex for some equivalent dual norm, and it is easy to see that if a dual norm

on £* is locally uniformly convex, then it satisfies (//*). We also note that

(H*) is apparently weaker then (**) of Corollary 8 of Namioka and Phelps [6],
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so we thus have a very different proof of that corollary.

If E is finite dimensional, then continuity follows from single-valuedness,

and Zarantonello [12] shows that the points of continuity are almost all of E

with respect to Lebesgue measure. Robert [7], [8], has proved Theorem 1 for

separable spaces with separable duals. Theorem 1 covers all reflexive spaces,

of course.

Now we turn to the proof of the theorem. We do not assume (H*) until

Lemma 7; before that E can be any Banach space.

The following proposition was announced by Kenderov; we prove it for the

sake of completeness.

Proposition B. // T is a maximal monotone operator and x E E, then given

a weak* neighborhood W of Tx, there is a neighborhood U of x such that

T(U) E W.

Proof. Suppose xn —> x and x* E Txn. Then by local boundedness (Prop-

osition A) we may assume that x* -* x* E E*, weak*. We show that

x* E Tx: to do this, let y G £ and y* G Ty. Then

0 < (x* - y*,xn - y> = (x* -y*,x-y) + (x* - y*,xn - x)

and in the limit we get <jc* — y*, x - y> > 0, so x* G Tx by maximality.

This is sufficient to prove the proposition.

The next result is due to Browder [3].

Proposition C. // T is maximal monotone and x E E, then Tx is a weak*

compact convex subset of E*.

(We are assuming that D(T) = E. Otherwise these would hold only for

x E int D(T).) The next result was announced by Kenderov [5].

Lemma 2. Let T be maximal monotone and define /: £ —» R by f(x)

= inf{||jt* ||: x* G Tx). Then f is lower semicontinuous.

Proof. Let xn -* x, and suppose liminf/(jcrt) < f(x). Then without loss of

generality, there are xn E Txn and a > 0 such that ||x* || < f(x) — a. Now

(x*) has a weak* convergent subsequence, by local boundedness (Proposition

A), so we can assume that x* -* x* weak*. By maximality x* E Tx. Since the

norm in E* is weak* lower semicontinuous, ||jc* || < liminf||x* || < f(x) - a,

which is a contradiction.

By a Baire category result (cf. e.g. [4, Corollary 7.6]) we immediately obtain

Corollary 3. The set A(T) where f is continuous is a dense Gs subset of E.

The following lemma contains the critical point in our reconstruction of the

argument in Kenderov [5].

Lemma A. If T is maximal monotone, x G A(T) and x* G Tx, then \\x*\\
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Proof. If ||x*|| >/(x), then choose z E E, \\z\\ = 1, such that <x*,z>

> fix). Now by continuity of / at x, for e > 0 small enough there exists

x* G r(x + ez) such that ||x* || < <x*,z>. But <x* - x*,(x + ez) - x> > 0

by monotonicity, so <x*,z> > <x*,z) > ||x*||, contradicting the fact that

Ml = i.

Lemma 5. If T is maximal monotone, x0 G AiT) and xn -> x0, then \\xn \\

-* \\x* ||, whenever x* E Txnandx* E Tx0.

Proof. Suppose limsup||x*|| > \\x*\\ + a, where a > 0, and choose a

subsequence, again called (x*), such that ||x*|| > ||x* || + a. Let zn G £,

||zj| = 1, be such that <x*,zn> > ||x*|| + a. By local boundedness, we may

assume that ||x*|| < N, for all n > 1. Pick y„ E 5(z„,(/iA/)_1) = 0= II*

- z„|| < inN)~ } such that x + n~xyn G AiT); this is possible since the

open set xn + n~lBizn,inN)~ ) intersects the dense set AiT). Then we

compute

> <x*,z„> - WxtWinN)-' > <x*,z„> - «-'.

Let.y* G TO,, + «_V„); from Lemma 4 it follows that

IU*ll=/(x„ + «-V„).

By monotonicity, we have (y* — x*,(x„ + n~lyn) — xn) > 0, so

<y:,yn}><x*,yn)>(x*,zn)-n-x.

Thus,

Ik*II 11*11 > <*?,*«> - «-1 > Ik*II - « - «"'.

while H^ll < 1 + inN)~~ , so lim sup||jj*|| > ||x*|| + a. Now xn + /i-1^,

-» x0 and x„ + b"1^ G AiT), so ||j>n*|| =/(x„ + n"V„) ->/O0) = IUÎH.
since x0 G ^(r). This contradiction shows that lim sup||x* || < ||x* ||.

Now we show that lim inf||x* || > ||x* ||. Suppose otherwise; then we may

assume that ||x* || < ||x* || - a, for some a > 0. There is a weak* convergent

subsequence, again called (x*), such that x* -» x* G 7/x0 weak*, using local

boundedness and Proposition B. Since the norm in £* is weak* lower

semicontinuous, we have lim inf ||x* || > ||x* || and ||x* || = ||x* || by Lemma

4. This is again a contradiction, and we conclude that ||x* || -» ||x* ||.

Next, we generalize Asplund's Lemma 6 of [2] to the present situation.

Lemma 6. Let The a maximal monotone operator. Then the set of points where

T is continuous, C(r), is a Gs subset of E.

Proof. For each n > 1, let Un = {x G £: there exists 8 > 0 such that for
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y, z G B(x,8), || v* - z* || < n ', for any y* E Ty and z* E Tz). It is imme-

diate that C(T) C n Un and it is obvious that Un is always open, so we only

have to prove that C\U„ Q C(T).

Suppose x G f)Un. Then there are <5„ > 0, which we may take decreasing

to 0, such that if y, z G B(x,8n),y* G Ty and z* G 7z, then ||y* - z* ||

< n~x. Thus /:„ = cl T(B(x,8n)) has diameter at most «"', and ä:„+1 Q K„.

By completeness, C\Kn = {x*} for a unique x* G £*. We claim that

x* E Txn; to this end, let y G £ and y* G Ty. Then letting xn G B(x,8n)

and ** G T!xn, we have

(x*-y*,x-y)

= (x* -x*„,x-y) + (x* -y*,x„-y) + <x* -y*,x- x„)

> -n-x\\x-y\\+0-8n\\x*-y*\\.

Since n is arbitrary, we get (x* - y*, x - y> > 0, and hence by maximality,

x* E Tx. Now if y G B(x,5„) and/ G Ty, then || y* - je*fl < n~x. That is,

x E C(T).

We now use property (H*) defined earlier.

Lemma 7. Let T be a maximal monotone operator on a Banach space whose

dual has an equivalent dual norm satisfying (H*). Suppose x0 G A(T) and

diam(TJc0) < e. Then there is a neighborhood V of x such that diam(Tx) < efor

allx E V.

Proof. Suppose that xn -* x0 and diaxn(Txn) > e. Take v*, w* E Txn

such that \\v* — w*\\ -* e as n -* oo. By local boundedness, we can take a

subsequence (v*) of (v*) such that v* -* v*, weak*. As in the proof of

Lemma 5, v* E Tx0. By Lemma 5 and (H*), \\v* — v*\\ -»0. Take a

subsequence (w* ) of (w*) such that w* -» w* weak*. Then w* E Tx0 and

Ik* - w* || -» 0'  Now '||i/" - v*\\ -* 0, ||w* - w* || -» 0   and   ||«* - w* \\ii   n\j u "my " ' "   mj < < 11 n\j ntj ' '

-+ e. Hence ||i/* - w*\\ m e and e > diam(7jc0), a contradiction.

We now give the proof of Theorem 1.

Proof. If y* G E*, then T — y* is a maximal monotone operator, where

(T - y*)(x) = [x* - / : x* E Tx},       x G E.

Let x0 E A(T). Then 7x0 is weak* compact, and \\x*\\ = \\y*\\ for all

x ,y E Tx0, so (H*) implies that Tx0 is compact. Thus there is a norm-

dense sequence (y*) C Tx0.

Let A = C\m(A(T) (1 ^4(7 - y*)); this is again a dense Gs. Pick xn -» x0,

xn E A, and v*, w* G Tjc,, such that \\v* - w*\\ > ^diam(7jc„). The se-

quence (v*) has a subsequence (f„"") converging weak* to v* E Tx0, and by

(H*) and Lemma 5, \\v* - v* \\ -*■ 0. By taking^ close to v*, and applying

Lemma 4 to 7 - y* we see that ||t/* - t/* || = ||w* - v* \\, since xn E A. Thus

II"*- — w* II ~* 0> which means that diam(Txn) -* 0.
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So for every x0 G AiT) and e > 0, there is z0 G AiT) with diam(7z0) < e

and ||x0 - z0|| < e. Further, by Lemma 7, there is an open neighborhood V^

of z0 such that if x G VQ then diam(rx) < e. By the density of AiT), we see

that 0 G E: diam(Tx) < n~ } contains an open dense set for each « > 1.

Thus SiT) = 0 E E: diam(7x) = 0} = 0{x E E: diam(Tx) < n-1} con-

tains a dense Gs. Consequently, AiT) n SiT) contains a dense Gs, and Tis

continuous at each point of the latter set, by Proposition B, Lemma 5 and the

property (H*). Lemma 6 then gives the theorem.
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