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1. Introduction

The sensitivity of the optimal value function of a mathematical
program to perturbations of the problem parameters has been addressed by
a number of authors. Using point-to-set maps, Berge {1} derived condi-
tions sufficient for the semicontinuity of the cptimal value function
for programs with constraint set perturbations, and provided a general
framework for some of the earliest work on the variation of the "pertur-
bation function," i.e., the optimal objective function value, with
changes in a parameter appearing in the right-hand side of the con-
straints. Evans and Gould [é] gave conditions guaranteeing the continu-~
ity of the perturbation function when the cons;traints are functional in-
equalities. Greenberg and Pierskalla [6] extended the work of Evans and
Gould to obtain results for general constraint perturbations and ob-
tained some initial results for programs with equality constraints, In
[8], Hogan established conditions sufficient for the continuity of the
perturbation function of a convex program, and in (7] gave conditions
implying the continuity of the optimal value function of a nonconvex
program when a parameter appears in the objective function. Gauvin and

Tolle {S5] showed that the perturbation function is ccntinuous when the
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problem functions are differentiable and the Margasarian-Fromovitz

Constraint Qualification is satisfied at a solution point.

We show that the optimal value function is continuous under weak-
er conditions than those previously invoked, for large classes of prob-
lems. The main purpose of this paper is to prove the continuity of the
optimal value function of a general parametric nonlinear programming

problem of the form

min_ £(x,£)  s.t. g(x,€) 20, h(x,€) =0, xeC(e)E E" , P(e)

°

when the Mangasarian-~Fromovitz Constraint Qualilication (MFCQ) is satis-
fied at a solution point. Here, xE€ E® is the vector of decision vari-

ables, € a parameter vector in Ek , and f | I and h, are real

3

valued functions on En><Ek , where g(x,€) = (gl(x,e),...,gm(x,c)) and
h(x,e) = (hl(x,e),...,hp(x,e)) . The set C , viewed as a function of

€ , is a point-to-set map from Ek to subsets of E" . Various conti-

nuity and differentiability assumptions will be invcked as needed.

The continuity of the optimal value function under the conditions
that are assunied here was obtained by Fiacco for the inequality con-
strained problem {without the presence of the additional condition that
x€C(e)] 1in [3]. Essentially simultaneously, Gauvin and Dubeau [4] in-
dependently obtained the continuity of the optimal value function under
MFCQ for the inequality-equality constrained problem [without the pres-
ence of C(g)]. Our results are slightly more general than those ob-

tained in [4]) and are obtained using a completely different approach.

2. Motivation and Preliminaries

The feasible region of problem P(e) will be denoted by R(e) and
the set of solutions by S(e) . The optimal value tunction is defined
as f*(e) = inf{f(x,e) | x € R(e)} . Thus, S(g) = {x € R(e) | f(x,e) =
f*(ce)} . Again, when viewed as functions of € , R(c) and S(g)

AR,
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define point-to-set maps from Ek to subsets of E° . Continuity re-
sults for these maps will be obtained in the process of determining con-

tinuity properties of f*(g) .

The topological interior of a given set T will be denoted by

If g, (i=1,...,m) and h, (j=1,...,p) are once continuously

3

differentiable functions of x , then the Mangasarian-Fromovitz Con-

straint Qualification is said to hold at a point x € R(g) N CO(E) if

(i) there exists a vector y¢ E" such that

ngi(x,s)§ >0 for i such that gi(x,e) =0, and

(MFCQ)
Vxhj(x,e)§ =0 for j=1,...,p ; and

(ii) the vectors Vxhj(x,e) , j=1,...,p , are linearly indepen-
dent.

Here, the gradient with respect to x of it once differentiable function

F: E"x Ek > E1 evaluated at (x,e) 1is defined as the row vector

VXF(x,e) = (BF(x,C)/Bxl,...,BF(x,e)/an) .
We also make use of the following ccntinuity properties of real-
valued functions and point-to-set maps. Related definitions and more

detailed properties are developed in Berge [1] and Hogan [9].

Definition 2.1: Let ¢ be a real-valued fun:tion defined on the

topological vector space X .

(1) ¢ 1is said to be lower semicontinuous (lsc) at a point

e X if lim ¢(x) > ¢(x

) .
x+x0 0

)' xo

(11) ¢ is said to be upper semicontinuous (usc) at a point

xo € X 1f Hm ¢(x) < ¢(xy) .

-3 -
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The notations 1lim and lim mean 1liminf and 1limsup , re-
spectively. It is apparent that ¢(x) 1is continuous at Xy if and
$(x) 1is both usc and 1lsc at Xy -

Definition 2.2: Let ¢ : T+ Y be a point-to-set mapping from
the topological vector space T to the topological vector space Y .
Let {tn} CT be such that t, >t in T as no>e,
(1) ¢ is said to be open at a point tO of T if, for each

Yo € ¢(t0) , there exists a value m and a sequence

{yn} CY with Y, € ¢)(tn) for n>m and Y, > Yo -

(i) ¢ 1is said to be closed at a point t of T |if

Yo € ¢(tn) and Yo * Yo together inply that Yo € ¢(t0)

If the mapping ¢(t) is both open and closed at tO , then ¢(t)

is said to be continuous at tO .
The following notion will also be used in the subsequent results.

Definition 2.3: A point-to-set mapping ¢ - T > Y is said to be

uniformly compact near a point tO of T if the closure of the set

M= L% $(t) 1s compact for t in some neighborhood N(to) of tj .

In obtaining continuity results for a solution of P(g), we shall
first obtain corresponding continuity results for a problem of the same

from as P(e) but without equality constraints,
min £(x,¢) s.t. g(x,€) >0, xE€ C(e) CE" . P(e)

There are several ways of reformulating problem P(¢) into a locally
equivalent problem that has the form ﬁ(e). Two ways are by: (i) re-
placing h(x,e) = 0 by h(x,e) >0 and -h(x,e) > 0 , mathematically

-4 ~
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globally equivalent, in general, and (ii) eliminating the equalities by

an appropriate elimination of variables, possitle locally under appro-~

priate assumptions, e.g., MFCQ. We make use of »oth devices in the se-
’ quel and obtain all the desired results for P(f) from the corresponding

' results for an equivalent problem of the form ﬁ(c).
Without loss of generality, assume for simplicity that the par-
ticular value of- £ of interest is €=0 . Surpose g and h are ounce
continuously differentiable, x*e& R(0) F\Co(a) for £ near 0, and MFCQ i

holds at x*¢€ R(0) F\CO(O) . Then h(x*,0) = 0 and, reordering vari-

ables if necessary, we may assume that Vx h(x*,0) 1is nonsingular,

D
where x = (x.,x.) , X, € EP , X_E g"P , and V. h 1is the Jacobian of
D*7I D I XD
h with respect to x_ . From the implicit function theorem, it is well

D

known that there exist open sets N¥* C;En_px Ek containing (x?,O) and

T* C E" x Ek containing (x*,0) such that h(x 0) = 0 can be

p*¥*1°
solved uniquely for xD in terms of (xI,C) in N#* |, and the function

{ . xD(xI,s) so defined is once continuously differentiable, in (xI,c) ,

(xD(xI,E), xI,e) € T* and xs = xD(xf,O) . Clearly, there exists an é
open set C* C N* and coutaining (xf,O) such that (xD(xI,e), x;) €

. * . g - - K *
Cc(e) if (xI,e)e C* . Since h(xI,E) = h[xD(xI.E), X1 €] =0 in Nx |
problem P(€) ~an be reduced to the locally equivalent problem

min.  f(x.,€)  s.t. g(x.,€) >0, (x.,e) € NxOCk , P(c) /
xI 1 1 == I :

where

fx,€) = flxy(xp,€), xp, €] and  g(xp,€) = gixy(x;,€), %, €] .
Corresponding to the notation for P(€), we denote the feasible region of
B(€) by R(E) , the solution set by S(€) , and the optimal value func-

tion by fx(e) . Other corresponding problem constituents will be simi-

larly denoted. The analogous notation will be used for ﬁ(e).

-5 _
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Defining C/f) = {xI | (x,€) € N¥ N\ C*} , it is readily apparent

that this defines a point-to-~set mapping from decision variable space to

parameter soace, and that problem ﬁ(e) has the same general structure as
problem ?(E). Thus, a precise connection between P(€) and ﬁ(e) can
again be established and exploited to obtain results for P(€), once re-
sults for B(g) [or §(€)] are known. The followirg result for 5(6) was
obtained by Fiacco and Hutzler [3) and will be needed. The labeling

X = (xD,xI) such that Vx h 1s nomsingular when MFCQ holds at (x*,0)
D
is aasumed.

Lemma 2.4 [3, Lemma 3.2]: If g and h are once continuously

differentiable in x at (x*,0) , then MFCQ holds at x* € R(Q0) M CO(O)

with y = (;D,§I) € E* the associated vector, where §D e EP and

¥ € E"P , 1f and only if MFCQ holds at xt € R(0) with vector §, .

Thus, the MFCQ property at a feasible point of P(e) is inherited by a
feasible pelnt of B(e).

The next result is independent of the variable-reduction deriva-~
tion of P(e). It follows from [3, Theorem 3.3] and [3, Theorem 3.6].

Lemma 2.5: 1If MFCQ is satisfied at some xE€ §(O) N 60(0) , then

for any fixed 8>0 and every unit vector z¢€ Ek there exists B(8) >0
and a vector y(z) such that g(x + B(y+69) , 8z) >0 for all
8 € (0,B] , where ¥ 1is the vector associated with MFCQ at §I .

Finally, we shall also make use of a problem derived from P(€) as
defined above. Let M be a closed subset of N* ™\ C* such that the

interior 0 of M contains (xf,O) . Denote by P(e) the problem

l;(e) with M veplacing N* N C* . We continue to use the convention

-6 -
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adopted earlier, i.»., constituents associated with P(g) will be denoted

as they were for P(€), adding a superbar. Thus, for our problem

min_ f(x,,€) s.t. B(x,,€) >0, (x.,6) e MCNxMNC*, P(e)
X7 I I = L

the feasible region is denoted by R(g) , the solution set by S(c) ,

the optimal value by Ff*(g) , etc.

3. Continuity Properties of f*(e) , ﬁ(&) and ézil

We first give an obvious generalization of rather well known re-

sults to obtain continuity results for a problem of the form

min_ f(x,e) s.t. g(x,€) >0, x¢ ce) C ", P(r)

where C 1is a point-to~-set map from Ek to subsets of E" . Results
implying these may be found in Berge [1] and Hogan '7], [8}. For com-

pleteness and for the uninitiated, we provide a proof.

Lenmg 3.1:

(1) 1f g, (i=l,...,m) is usc on Y x X | C(e) is a

closed set for each € near C and a closed point-to-set
mapping at € =0 , ﬁ(O) #¢ and R{c) # ¢ and uniformly
compact for € near 0, then R(e) 1s 2 closed map at
€=0.

(i1) 1If, additionally, f is 1sc on E" x Ek , then £x(c)

is 1lse¢ at € =0 .

Proof: Llet €, 0 and assume x € ﬁ(en) . Then é(xn,e ) >0

n

and xn € C(en) . By the uniform compactness of ﬁ(s) , there exists a

; n =
convergent subsequence {xn } and a point x € E such that X, X .
i 3
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k

Since g is usc’ on E" XEV, O < §(xn € ) < g(x,0) , and since

I
C(e) 1s a closed mapping at 0, x € C(0) . Hence, x € R(0) aud thus

R(e) is closed at 0.
For large n , ﬁ(en) # ¢ and compact and, since f is 1lsc s
§(€n) ¥ & for large n . Hence, there exists x € §(€n) for large

n . Uniform compactness of ﬁ(e) near 0 implies the existence of a

subsequence {xn } and a point x such that x > x , and the fact

h| 3
that R(e) 1is a closed map at O implies that x € R(0) . Thus, since
£ is 1lsc on E® x ES,
lim £%(c) = lim fx(c_) = Llim Fx_ ,e ) 2 £(x,0) > £%(0) ,
€0 Joe hj joe b

and hence ?*(e) is 1sc at € =0,

Before proceeding to give sufficient conditicns for tie conti-
nuity of f*(e) in terms of the constituents of the given problem func-
tions, we give a necessary and sufficient characterization of the continu-
ity of f*(e) in terms of the relevant point-to-set maps. The neces-
sity part, assuming f(x,e) does not depend on € and is continuous,
and without the presence of C(€) , was previously noted by Greenberg
and Pierskalla [6].

Lemma 3.2: Suppose that all the assumptions of Lemma 3.1 are
satisfied.

(1) 1f £*x(e) 1s continuous at 0, then §(€) is a closed
point-to-set map at € = 0 .

(11) 1f §(e) is closed at 0 and f(x,e) is continuous, then

?*(e) is continuous at 0,

Proof: We first prove necessity of the conseguences when f*(s)

is assumed continuous. The fact that R(rf) 1s a clcsed map at 0 was
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proved in Lemma 3.1. Consider €, 0 (n*>® and x, € §(cn) such
that x, x* . Since ﬁ(E) is closed at 0, x* ¢ §(0) . Since f*(g)
is continuous at 0, we have that

o lim f(x*,0) = £%{0)

n-—>oo
On the other hand,

. lim £%(e ) = lim f(x_,e_) > £(x*,C) > £%(0) .
e n == n*n’ = =

Hence, it follows that f(x*,O) = ?*(0) and x* € §(0) , 8O §(€) is

also a closed map at 0 and Part (i) is proved.

The fact that §(€) closed at 0 and f(x,e) continuous implies
continuity of f*(s) at 0 can be proved as follows. We must show that

A* = A* i a
limn*m f (en) f*(0) whenever En + 0 . The existence of X, € S(cn)

for n large was indicated in proving Lemma 3.1. There must exist a
convergent subsequence {xn } and a point x* sucli that x, 2 x*

3 3
since ﬁ(e) is uniformly compact near 0. Since §(c) is a closed map

at 0, it follows that x* ¢ §(0) . Hence,

lim f%(e_ ) = lim £(x_ ,e_ ) = £(x*,0) = £%(0)
I I e

Since the same argument can be applied to any convergent subsequence of

{xn} » it follows that lim f*(en) = £%(0) . ;

Recali that 60 denotes the topological Interior of C . i

Theorem 3.3: 1If f(x,e) is continuous, ﬁ(x,e) is once contin- N

uously differentiable in x and ﬁ(e) is uniformly compact for ¢
near 0, &(e) 1s a closed subset of E" for each ¢ near 0 and a
closed éoint-to-set mapping at € = 0 , dx*e §(0)fﬁ 60(6) for ¢

near 0, and if MFCQ holds at x* , then S(¢) # ¢ near € = 0 , R(g)

and §(e) are closed maps at 0 and f*(s) is continuous at 0,

-9 -
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Proof: Froun Lemma 2.5 it follows that ﬁ(sn) # ¢ for n suffi-
ciently large, given any sequence {en} such that € 0 as n» >,

Consequently, it follows that the assumptions of Lemma 3.1 are satis-
fied, and hence ﬁ(e) is a closed map at € = ( and ?*(E) is 1lsc
at € = 0 ., The fact that §(€) # 0 for € near 0 is immediate and

was noted in proving Lemma 3.1.

Now, let & >0, let y be given by MFCQ for x* . From Lemma
2.5, it follows that there exists a vector y such that x* +

Bk(§4-69) € ﬁ(Bkz) for all unit vectors =z € Ek provided that Bk >0

is sufficiently near 0. Letting ek + 0 , and without loss of generali-

ty, assumirg € # 0 for all n, setting B = el and z

ek/HekH , we see that

Ex(0) .

Tim Ba(c) = Tm Ex(e) < Tim E(xx + B (5+0%) , Bz) = E(x+,0)
e+0 ek+0 koo

Thus, f*(e) is also usc at € =0 and we may conclude that f*(e)

is continuous at € = 0 .,

The rfact that §(€) is a closed mapping at € = 0 was shown in

Lemma 3.2, Part (i), and the proof is complete.

4, Continuity Properties of f*(e) , R(¢) , and S(e)

We now use the results obtained for the inequality constrained
problem ?(e) to obtain the analogous results for the problem also con-~

taining equality constraints,

minx f(x,c) s.t. g(x,e) 20, h(x,e) =0, x¢eC(e)& E" , P(g)
when h(x,e) 1s continuous.

The results of Lemmas 3.1 and 3.2 are appli:cable immediately by
replacing h(x,e) = 0 and h(x,e) > 0 and -h(x,e) > 0 to obtain an
equivalent problem of the form P(e). If h 1s assumed continuous in

-10 -
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E" x Ek , then h uad -h are usc in (x,£) and the lemmas can be
applied to the equivalent reformulated problem, noting that f*(¢) ,
R(e) , and S(c) remain unaltered. This proves the following corol-
laries of Lemmas 3.1 and 3.2 which, for coaveni»nce and conciseness, we
collect and restate as a theorem, in terms of the constituents of Prob-
lem P(c).

Theorem 4.1:

(1) 1If 84 (i=1,...,m) 1is wusc and hj (j=1,...,p) 1is con-

tinuous on E" X Ek , C(e) 1is a closed set for each ¢

near 0 and a closed point-to-set mapping at ¢€=0 ,
R(0) # ¢ , and R(e) # ¢ and uniformly compact for ¢

near 0, then R(e) 1is a closed map at €=0 .

(11) 1If, additionally, f is lsc on E"XEX , then f£*(e)

is 1lsc at €=0 .

(11i) 1If the assumptions of Part (i) hold and f*(e) 1is con-

tinuous at 0, then S(€) 1is a closed map at €=0 .

(iv) If the assumptions of Part (i) hold and S(¢) 1is a closed
map at €=0 and f(x,€) 1is continuous, then f*(g) is

continuous at 0.

We are now in a position to prove our principal result, the pre-
cise analogy of Theorem 3.3, relative to the respective constituents of
Problem P(e). Although ostensibly an extension of Theorem 3.3, we shall

see that the result follows as a corollary.

Theorem 4.2: 1f f(x,e) 1is continuous, g(x,c) and h(x,c)

are once continuously differentiable in x , R(€) 1is uniformly compact
for € near 0, C(c) 1is a closed subset of E" for € near 0 and a
closed point-to-set mapping at ¢=0 , dx*e S(0) N CC (e) for each ¢

near 0, and 1€ MFCQ holds at x* , then S(€)#$¢ near €=0 , R(c) and

S(c) are closed maps at €=0 , and f*(e) 1is continuous at 0.

- 11 -
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4
Proof: We (liminate the equalities of P(t) at x* for (xl,a)

in a neighborhood N* of (x?,o) , where x* = (xa.xf) , using the pre-

viously defined (see Section 2) variable reduction transformation, con-
structing a problem P'(e) of the form ﬁ(e), witii fx_ ,€) restricted to
N* and the additional restriction that (xn(x ,s),xI) £ C(+) . We know

that xf € §(0) and that MFCQ holds at x? (lemma 2.4).

We now formulate a problem of the form P(v), with rhe additional

proviso that the closed subset M of N* | such chat (xf,n) ¢ M“ , be

selected so that (xD(xI,E),xI) € CO(E) for ¢ near U and for all

(x;s€) in M . This can be done, since x* = (x(x#,0),x¥) ¢ N
0

for € near 0 (by assumption), (x?,O)E M~ , and XD(XI,L) is continu-
ous (by construction). Define é(e) : {xll (xI,c) in M} . Clearly,
E(E) is a point-to~set map from Ek to subsets of E" P . Since M is

a closed subset of En-p>(Ek . C(e) 1is a closeé set and a closed point-

to-set mapping for each € 1in the domain of the mapping, including of

course €=0 . By construction, x{eeo(O) . Also, ;;r€°<t) for
each € near 0, since (x;,O)e Mo .

It follows that P(€) has the same structu:2 as P(¢t) and we now
show that the previous results are applicable. Clearly, the uniform
compactness of R(€) near €=0 1implies the uniform compactness of

R(e) near ¢€=0 . Also, ?(xl,e) z f(xD(xI,C) , €' 1s continuous in
M , since xD(xI,E) is continuous in M . It remairs only to show that

x$ € 8(0) , and the conditions of Theorem 3.3 will be satisfied by the

respective constituents of P(€). Clearly, f*(e) < f*(e) < fa(€) and
since £*(0) = £(x*,0) = £(x;(x4,0), x¥,0) = £(x§,0) = £4(0) , we con-

clude that f*(0) = f*(0) = f*(0) , which also implies that xp € §(0)

The assumptions of Theorem 3.3 are satisfied relative to the re-

E"P . we

spective constituents of P(c) and relative to the spa-e
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conclude that f*{ ) is continuous at (=0 . These relationships imply

that Tﬁiﬁo £* () < Tﬁ]tv,,o fx(r) = T*(0) = f%00) ; i.e., f*(v) is
usc at 0. Since R(:) # 0 for t near 0 (Lemma 2.5), it follows that
R(¢e) # 0 for . near 0. We conclude frcm Theorem 4.1, Part (ii), that

fx(c) is 1lsc at =0 . Therefore, f*(¢) 1is continuous at =0 .

The remaiuing conclusions follow from Parts (i) and (iii) of Theorem 4.1.

. . .n . . .
By taking ( = F | we obtain a realization of the theorem rela-

tive to the usual inequality-equality constrain-ca parametric problem,

minx f(x,v) s.t. ogx,e) -0, h(x,e) = 0, x ¢ o . Pl(z)

Cor.llary 4.3: 1f f(x,t) is continuous, g(x,t) and h(x,:)
are once ctontinuously differentiable in x and R(t) 1is uniformlv com-
pact for . near 0, and if MFCQ holds at some x*¢ S(0) , then S(¢)#
near €=0 , R(e) and S(€) are closed maps ar +=0 , and f*(x) is

continuous at ¢€=0 ,

5. Concluding Remarks, an Example, and Extensions

It skould also be noted that the assumptions of Theorem 4.2 do
not preclude the possibility that the set C by "truly binding'" in the

sense that the solution set may change if C is perturbed. Also, the

assumptions do not imply that there exists X" S(fn) such that

n
X » x* as C“ + 0, or for that matter, such that

e xeE S$(0) F\CO(O) . That is, it is possible tha* some or al’ the
limit points as En + 0 of a sequence {xn} of solutions of R(Ln)

[one of whicn must exist and all of which must be in the solution set
S(0) of F(0)! are not MFCQ points or may lie on the boundary of € .
Thus, although the assumptions qualifying the behezvior of the solution

set S(0) are made relative to CO(O) , this does not mean that C(€)

need play a passive role near or at ¢=0 . The fo'lowing example veri-

fies these assertions.
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Consider th. problem

P(e): min

N ro

2
s.t. x2 > € xl , (xlﬁ-l) +x, >0, x

C = {xc52[

"

x € C(e)

"

e, >0 .

with € 1

It is easy to see that the solution set of P(£) is §S(g) = {x(g)! =
(-1, -El) , and the solution set of P(0) is given by S§(0) =

{xec| xz-O} . Note that x*¢ {xEEZ| 1< x <1, x2n0} implies

1
x*e S(0) N Co(e) for every € and MFCQ holds at any such x* | rela-
tive to R(0). The remaining assumptions of Thecrem 4.2 obviousl: hold,
for this example, Clearly, x(t) + x(0) = (-1,0) as €+0 , But x(0)
is on the boundary of C . Also, MFCQ cannot be satisfied at x(0) be-
cause the gradient of the second inequality constraint is 0 at x(0)
Finally, it is apparent that S(0) changes i{f C 1{s perturbed, so the
various possibilities indicated have been demonstrated.

It should also be observed that the same device used to obtain
Theorem 4.1 [concerning Problem P(€)) from Lemms 3.1 and Lemma 3.2 [con-
cerning Problem f(e)], cannot be used to obtain Theorem 4.2 from Theorem
3.3. Recall that we simply replaced h(x,£) = 0 by h(x,€) >0 and
-h(x,€) > 0 and the analogous result for P(€) was obtained immediately
from that for E(e). However, if we make this substitution in P(€) to
obtain a problem of the form 3(6), we find that the resulting problem
cannot satisfy MFCQ (since there can be no vector y simultaneously
satisfying Vxh(x,e)y >0 and -Vxh(x,e)y >0, for any x or ¢ ).

Hence, the assumption regarding MFCQ in Theorem 3.3 cannot be satisfied
and the theorem is inapplicable to proving Theorea 4.2 via this con-
struct.

Finally, it is noted that the conditions regulating the behavior
of the set C(€) in Theorem 3.3 and C(E) 1in Theorem 4.2 can be

- 1% -
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weakened. For exumple, let Rl(e) : {xee" | é(x,ﬁ)e 0} . Then, the

condition that there exist x*¢ §(0)f\ éo(e) for ¢ near 0, may be re-
placed by: there exists x* ¢ §(0) N €(0) , X* solves: min f(x,L)

s.t, X€ ﬁl(O) , and for §>0 and any unit vector z , there exists

y(z) and R(8) such that x* + B(y+38y) (as in Lemma 2.5) is in

C(Bz) for B3¢ (0,@] . This would yield as a c.rollary that the optimal
value of min f(x,€) s.t. xe C(e) 1is continuous. We have held to the
given assumptions, both for simplicity and to provide fairly general
sufficient conditions on the constituents of the given problem. 1t is
mathematically desirable to require "no more'" of C(¢) than is required

of ﬁl(e) . This leads to the idea of defining a constraint qualifica-

tion (CQ) for a general set that is analogous tc and compatible with
MFCQ defined relative to constraints of the form g>0 and h=0 .
It might be fruitful to explore this possibility, along with the deter-

mination of other CQ's relative to general sets.
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