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1. Introduction

The sensitivity of the optimal value functioi of a mathematical

program to perturbations of the problem parameters nas been addressed by

a number of authors. Using point-to-set maps, Berge [1] derived condi-

tions sufficient for the semicontinuity of the cptimal value function

for programs with constraint set perturbations, and provided a general

framework for some of the earliest work on the variation of the "pertur-

bation function," i.e., the optimal objective function value, with

changes in a parameter appearing in the right-hand side of the con-

straints. Evans and Gould [2] gave conditions guaranteeing the continu-

ity of the perturbation function when the con.;traints are functional in-

equalities. Greenberg and Pierskalla [6] extended the work of Evans and

Gould to obtain results for general constraint perturbations and ob-

tained some initial results for programs with equality constraints. In

[8], Hogan established conditions sufficient for the continuity of the

perturbation function of a convex program, and in [7] gave conditions

implying the continuity of the optimal value function of a nonconvex

program when a parameter appears in the objective function. Gauvin and

Tolle (51 showed that the perturbation function is continuous when the
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problem functions are differentiable and the Margasarian-Fromovitz

Constraint Qualification is satisfied at a solution point.

We show that the optimal value function is continuous under weak-

er conditions than those previously invoked, for large classes of prob-

leas. The main purpose of this paper is to prove the continuity of the

optimal value function of a general parametric nonlinear programming

problem of the form

min f(x,E) s.t. g(x,E) > 0 , h(x,e) = 0 , x c C(E) = En , P(C)
x

when the Mangasarian-Fromovitz Constraint Qualification (MFCQ) is satis-

fied at a solution point. Here, xC En  is the vector of decision vari-

ables, E a parameter vector in Ek, and f , gi , and h are real
nbek

valued functions on En xEk , where g(x,E) = (g1(X,C),...,gm(x,£)) and

h(x,£) - (h1(x,c),...,hp (x,E)) . The set C , viewed as a function of

k n
e , is a point-to-set map from E to subsets of E . Various conti-

nuity and differentiability assumptions will be invoked as needed.

The continuity of the optimal value function under the conditions

that are assumed here was obtained by Fiacco for the inequality con-

strained problem [without the presence of the addtional condition that

xc C(c)] in [3]. Essentially simultaneously, Gauvin and Dubeau [4] in-

dependently obtained the continuity of the optimal value function under

MFCQ for the inequality-equality constrained problem [without the pres-

ence of C(E)]. Our results are slightly more general than those ob-

tained in [4] and are obtained using a completel> different approach.

2. Motivation and Preliminaries

The feasible region of problem P(C) will be denoted by R(E) and

the set of solutions by S(E) . The optimal value function is defined

as f*(c) : infff(x,€) I x £ R(£)} . Thus, S(E) HE {x R(c) If(x,c) -

f*(c)} . Again, when viewed as functions of c , R(c) and S(£)

-2-
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define point-to-!;et maps from Ek  to subsets of En . Continuity re-

sults for these maps will be obtained in the process of determining con-

tinuity properties of f*(E) .

The topological interior of a given set T will be denoted by

0
T

If g (i=l'''''m) and h (j=l,...,p) are once continuously

differentiable functions of x , then the Mangasarian-Fromovitz Con-

straint Qualification is said to hold at a poinL x E R(E) n C 0(E) if

(i) there exists a vector yE En such that

Vxgi(x,e)5 > 0 for i such that gi(x,0) = 0 , and

(MFCQ)
V hj(x,E)5 = 0 for j=,...,p ; and

(ii) the vectors V h (x,E) j=l,...,p are linearly indepen-

dent.

Here, the gradient with respect to x of t once differentiable function

F : En x Ek - E1 evaluated at (x,E) is defined as the row vector

V xF(xE) Z f3F(x,)/axl, ... , F(x,E)/3Xn)

We also make use of the following ccntinuity properties of real-

valued functions and point-to-set maps. Related definitions and more

detailed properties are developed in Berge [l] and Hogan [9].

Definition 2.1: Let be a real-valued function defined on the

topological vector space X

(1) 0 is said to be lower semicontinuous (lsc) at a point

x0 E X if lim O(x) > O(x).

(ii) 0 is said to be upper semicontinuous (usc) at a point

x c X if lim O(x) < (Xo

x-*x
0

-3-



T-432

The notations lim and lim mean liminf and limsup , re-

spectively. It is apparent that O(x) is continuous at x0  if and

O(x) is both usc and lsc at x0 .

Definition 2.2: Let T Y be a point-to-set mapping from

the topological vector space T to the topological vector space Y

Let {t } C T be such that t n to  in T as n -
n n

(i) ' is said to be open at a point t0  of T if, for each

YO C O(tO ) , there exists a value m and a sequence

{ynI C Y with y n '(tn) for n > m and yn -) Yo

(1i) ' is said to be closed at a point t0  of T if

Yn : O(tn) and yn - yo together imply that yo C £(to)

If the mapping *(t) is both open and closed at to , then O(t)

is said to be continuous at t 0

The following notion will also be used in the subsequent results.

Definition 2.3: A point-to-set mapping ¢ T - Y is said to be

uniformly compact near a point t of T if the closure of the set

M -U (t) is compact for t in some neighborhood N(to) of t
t00

In obtaining continuity results for a solution of P(c), we shall

first obtain corresponding continuity results for a problem of the same

from as P(e) but without equality constraints,

min X (x,£) s.t. g(x,E) 0 , x e C(E) C En P(£)

There are several ways of reformulating problem P(z.) into a locally

equivalent problem that has the form P(C). Two ways are by: (i) re-

placing h(x,e) - 0 by h(x,c) > 0 and -h(x,e) > 0 , mathematically

-4-
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globally equivaletL, in general, and (ii) eliminating the equalities by

an appropriate elimination of variables, possile locally under appro-

priate assumptions, e.g., MFCQ. We make use of both devices in the se-

quel and obtain all the desired results for P(r') from the corresponding

results for an equivalent problem of the form P(L).

Without loss of generality, assume for simplicity that the par-

ticular vAlue of- E of interest is £=0 . Suppose g and h arc once

continuously differentiable, x*F R(O) cO (c) for c near 0, and MFCQ

holds at x*E R(O) (-CO0(0) . Then h(x*,O) = 0 and, reordering vari-

ables if necessary, we may assume that V h(x*,C) is nonsingular,xD

where x = (xD,xI) ,x D Ep , xI E E
n- p  and V h is the Jacobian of

h with respect to xD . From the implicit function theorem, it is well

known that there exist open sets N* C En-p x Ek containing (x*,O) and

T* C En X Ek containing (x*,O) such that h(xD,XI,O) = 0 can be

solved uniquely for xD in terms of (xlc) in N* , and the function

xD(xl,) so defined is once continuously differentiable, in (xl,c)

(xD(XI,£) , xlt) E T* and x* = xD(x*,O) . Clearly, there exists an

open set C* C N* and containing (x*,0) such that (x (xl,) xI ) CID I' I

C(C) if (Xlc) E C* . Since h(xl,e) : h[xD(xl.E) , xI , E] - 0 in N*

problem P(c) can be reduced to the locaZly equivalent problem

min f(xlc) s.t. g(xl,) > 0 , (xl,) r N* A C* , P(c)

where

f(x1,C) E fxD(xI,E) , xI , E) and g(xlE) gixD(Xi,C) , , )

Corresponding to the notation for P(E), we denote the feasible region of

P(E) by R(C) , the solution set by S(E) , and the optimal value func-

tion by f*(E) . Other corresponding problem constituents will be simi-

larly denoted. The analogous notation will be used for P(c).

-5-
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a

Defining S &P) {xI I (x,E) E N* n C*} , it is readily apparent

that this defines a point-to-set mapping from decision variable space to

parameter space, and that problem P(C) has the same general structure as

problem P(e). Thus, a precise connection between P(C) and P(E) can

again be established and exploited to obtain results for P(E), once re-

sults for P(e) (or P(e)] are known. The followng result for P() was

obtained by Fiacco and Hutzler [3] and will be needed. The labeling

x - (xD,xl) such that V xDh is nonsingular when MFCQ holds at (x*,O)

is aasumed.

Lenra 2.4 [3, Lemma 3.2]: If g and h are once continuously

0
differentiable in x at (x*,0) , then MFCQ holds at x* c R(O) n C (0)

with y = D I En the associated vector, where YD c Ep  and

Y E E n  if and only if MFCQ holds at x* c R'0' with vector y

Thus, the MFCQ property at a feasible point of P(c) is inherited by a

feasible point of P(E).

The next result is independent of the variable-reduction deriva-

tion of P(C). It follows from [3, Theorem 3.3] and [3, Theorem 3.6j.

Lema 2.5: If MFCQ is satisfied at some Xc£ S(O) 0 C (0) , then

for any fixed 6> 0 and every unit vector z e Ek  there exists ;(6) >0

and a vector y(z) such that (x + 8(y+ 69) , 8z) > 0 for all

c £ (0,D] , where y is the vector associated with MFCQ at x I

Finally, we shall also make use of a problem derived from P(e) as

defined above. Let M be a closed subset of N*,n C* such that the

interior M0 of M contains (x*,O) . Denote by f(e) the problem

P(c) with M replacing N* 0C* . We continue to use the convention

-6
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adopted earlier, i.,2., constituents associated with P(c) will be denoted

as they were for P(C), adding a superbar. Thus, for our problem

min f(xiE) s.t. g(xtl) > 0 , (X,C) C M C N* n C*

the feasible region is denoted by R(c) , :he solution set by S(c)

the optimal value by f*(c) , etc.

3. Continuity Properties of f*(G) , R(c) and S,)

We first give an obvious generalization of rather well known re-

sults to obtain continuity results for a problem of the form

min f(xC) s.t. j(xe) > 0 , x C C) g E,

k n

where C is a point-to-set map from E to subsets of E . Results

implying these may be found in Berge [1] and Hogan '7], [8]. For com-

pleteness and for the uninitiated, we provide a proof.

Lemna 3.1:

(i) If g, (i=l...,m) is usc on En x Ek , C(k) is a

closed set for each 6 near C and a closed point-to-set

mapping at E - 0 , R(O) # and R(c) # and uniformly

compact for £ near 0, then R(E) is a closed map at

£=0.
Cn Ek

(ii) If, additionally, f is isc on E x E , then f*(U)

is Isc at E = 0

Proof: Let c - 0 and assume x c R(cn) . Then g(x ,E ) > 0
n n n' n

and xn s C() By the uniform compactness of R(c) , there exists a

convergent subsequence (x n and a point x c En such that x n. x

J 7
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n k
iiiSince gis usc' on En x Ek  0 < g(Xn ,Cnj < g(x,O) ,and since

C(c) is a closed mapping at 0, x E C(O) . Hence, x c R(O) aud thus

A(c) is closed at 0.

For large n , R(sn) n 4 and compact and, since f is lsc

9(C n) for large n Hence, there exists x 6 Sen ) for large

n . Uniform compactness of R(C) near 0 implies the existence of a

subsequence {x I and a point x such that x x , and the fact
nj nj

that R(E) is a closed map at 0 implies that x C i(O) . Thus, since

f is Isc on En x Ek

lim i*(E) = lim f*(Cn) = lim f(Xn , ) > f(xO) > f*(O) I
j-0 j1 nJ

and hence f*(e) is lsc at £ = 0

Before proceeding to give sufficient conditicns for tI.e conti-

nuity of f*(E) in terms of the constituents of the given problem func-

tions, we give a necessary and sufficient characterization of the continu-

ity of f*(£) in terms of the relevant pof*nt-to-set maps. The neces-

sity part, assuming f(x,e) does not depend on E and is continuous,

and without the presence of C(e) , was previously noted by Greenberg

and Pierskalla [6].

Lenna 3.2: Suppose that all the assumptions -f Lemma 3.1 are

satisfied.

(i) If f*(E) is continuous at 0, then S(E) is a closed

point-to-set map at C - 0

(ii) If S(E) is closed at 0 and ?(x,e) is continuous, then

*(c) is continuous at 0.

Proof: We first prove necessity of the consequences when f*(E)

is assumed continuous. The fact that R(r) is a closed map at 0 was

-8-
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proved in Lemma 3.1. Consider E n -* 0 (n n)[d x C o such

that x n- x* . Since R(E) is closed at 0, x* C R(O) . Since f*(E)

is continuous at 0, we have that

lim f(x*,0) = f*'O)
n-*oo

On the other hand,

lim f*(En) = lir f(xnn) > f(x*,C) > f*(O)
n-), nn

Hence, it follows that f(x*,O) = ?*(0) and x* C 9(0) , so S(e) is

also a closed map at 0 and Part (i) is proved.

The fact that S(e) closed at 0 and f(x,c) continuous implies

continuity of f*(E) at 0 can be proved as follows. We must show that

lim nN f*(E n f*(0) whenever Cn - 0 The existence of xn c S(.n)

for n large was indicated in proving Lemna 3.1. There must exist a

convergent subsequence {x n and a point x* such that x -x*

since R(c) is uniformly compact near 0. Since S() is a closed map

at 0, it follows that x* c S(O) . Hence,

lim f*(En) = lim f(X ,n ) = f(x*,O) = f*(O)

J-X i J4 i i

Since the same argument can be applied to any convergent subsequence of

{x} , it follows that limn_) f*(en) = f*(0)

Recall that C denotes the topological interior of C

Theorem 3.3: If f(x,e) is continuous, g(x,c) is once contin-

uously differentiable in x and R(e) is uniformly compact for c

n
near 0, C(E) is a closed subset of E for each c near 0 and a

closed point-to-set mapping at E - 0 , xE S(0) o 0 (c) for c

near 0, and Jf MFCQ holds at x* , then S(C) # # near c - 0 , R(c)

and 9(e) are closed maps at 0 and f*(e) is continuous at 0.

-9-
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Proof: From Lemma 2.5 it follows that R(En) n for n suffi-

ciently large, given any sequence {c } such tiat E n 0 as n - a) .
n n

Consequently, it follows that the assumptions of Lemma 3.1 are satis-

fied, and hence R(E) is a closed map at E f 0 and f*(:) is lac

at e - 0 . The fact that S(c) 0 0 for ; near 0 is immediate and

was noted in proving Lemma 3.1.

Now, let 6 > 0 , let j be given by MFCQ for x* . From Lemma

2.5, it follows that there exists a vector y such that x* +

k (y+ 69) R(k z) for all unit vectors z C Ek provided that ak > 0

is sufficiently near 0. Letting Sk - 0 , and without loss of generali-

ty, assuming e # 0 for all n , setting k ff 1 k11 and zk =

Sk/ll kll, we see that

l C(c) -1 f (Ck) < lim f (x + 0k( y+ 6y) = f(x*,0) = f*(0)
E-*O E k _O k- kk

Thus, f*(e) is also usc at E = 0 and we may conclude that f*(c)

is continuous at e = 0

The fact that S(C) is a closed mapping at E - 0 was shown in

Lemma 3.2, Part (i), and the proof is complete.

4. Continuity Properties of f*(c) , R(c) , and S(c)

We now use the results obtained for the inequality constrained

problem P(c) to obtain the analogous results for the problem also con-

taining equality constraints,

minx  f(x,c) s.t. g(x,e) > 0 , h(x,e) - 0 , x E C(E) Q En , P(C)

when h(x,e) is continuous.

The results of Lemmas 3.1 and 3.2 are appli:able immediately by

replacing h(x,e) - 0 and h(x,e) > 0 and -h(x,e) > 0 to obtain an

equivalent problem of the form P(e). If h is assumed continuous in

- 10 -
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En x Ek then h "ad -h are usc in (x,C) and the lemmas can be

applied to the equivalent reformulated problem, noting that f*(u) ,

R(E) , and S(c) remain unaltered. This proves the following corol-

laries of Lemmas 3.1 and 3.2 which, for coavenirnce and conciseness, we

collect and restate as a theorem, in terms of the constituents of Prob-

lem P(c).

Theorem 4.1:

(i) If g. (i=l,...,m) is usc and h. (j=l,...,p) is con-

En Ek

tinuous on E x E, C(E) is a closed set for each c

near 0 and a closed point-to-set mapping at c=O ,

R(O) # , and R(C) # and uniformly compact for L

near 0, then R(c) is a closed map at C=0

(ii) If, additionally, f is Isc on E x Ek , then f*(C)

is isc at E=0 .

(iii) If the assumptions of Part (i) hold and f*(C) is con-

tinuous at 0, then S(C) is a closed map at E=O .

(iv) If the assumptions of Part (1) hold and S(c) is a closed

map at 6=0 and f(x,E) is continuous, then f*(c) is

continuous at 0.

We are now in a position to prove our principal result, the pre-

cise analogy of Theorem 3.3, relative to the respective constituents of

Problem P(E). Although ostensibly an extension of Theorem 3.3, we shall

see that the result follows as a corollary.

Theorem 4.2: If f(x,C) is continuous, g(x,c) and h(x,E)

are once continuously differentiable in x , R(C) is uniformly compact

for c near 0, C(c) is a closed subset of En  for C near 0 and a

closed point-to-set mapping at e=0 , 3x*£ S(O) c C(E) for each E

near 0, and if MFCQ holds at x* , then S(E) O 0 near C-0 , R(c) and

S(c) are closed maps at c-0 , and f*(£) is continuous at 0.

- 11 -
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Proof: We liminate the equalities of P(O ) at x* for (x ,L)

in a neighborhood N* of (xC.0) , where x* x*,x*) , using the pre-
I' DXI)

viouely defined (see Section 2) variable reduction transformation, con-

structing a problem P'(E) of the form P(C), wiii, (x,,E) restricted to

N* and the additional restriction that (x )(x ,E),x ) E C(,) We know

that x! C S(O) and that MFCQ holds at x* (lemma 2.4).
I1

We now formulate a problem of the form P(E), with the additional

0 0proviso that the closed subset M of N* ,such tthat (-,c,O) * , be

selected so that (xD(xi,E),xi) E C (C) for L near U and for all

(xCi) in M . This can be done, since x* (x ( ,O),x*) C O(c)

for £ neat 0 (by assumption), (x*,O)C M0  and XD(XIL) is continu-

ous (by construction). Define C(c) I {x 1 (Xit) in Mi . Clearly,

k -
C(c) is a point-to-set map from E to subsets of Enp Since M is

a closed subset of EnpxEk, C(e) is a close6 set and a closed point-

to-set mapping for each e in the domain of the mapping, including of

course e-0 . By construction, x*EtC (0) . Also, %.*~c-0( for
II

0
each E near 0, since (x*,O) M

It follows that P(E) has the same structu:e as P(t) and we now

show that the previous results are applicable. Clearly, the uniform

compactness of R(E) near C-0 implies the uniform compactness of

1(c) near C-0 . Also, f(xi,C) E f(xD(xi,6), E'- is continuous in

M , since xD(XI.C) is continuous in M . It remairs only to show that

xa C 1(0) , and the conditions of Theorem 3.3 will be satisfied by the

respective constituents of F(C). Clearly, f*(C) < f*(E) I *(E) and
s ince 0*o ~*o (DX,) ) - f(x*,o) - f,(o) , we con-

elude that f*(O) - 1*(0) - f*(O) , which also implies that x* S(O)

The assumptions of Theorem 3.3 are satisfied relative to the re-

spective constituents of P(e) and relative to the spa:e En-p . We

- 12
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conclude that f*( ) is continuous at t-0 These relationships imply

that li O f*(t < ' m u f* , ) - f*(O) = f*10) ; i.e., f*(L) iS

usc at 0. Since R(t) 0 for i near 0 (Lemima 2.5), it follows that

R(t) 0 0 for t near 0. We conclude from Theorcm 4.1, Part (ii), that

f*(t) is lsc at t-O . Therefore, f*(f.) is continuous at F-O .

The remai, ing conclusions follow from Parts (i) and (iii) of Theorem 4.1.

By taking = , we obtain a realization of the theorem rela-

tive to the usual inequality-equality constrain-a parametric problem,

min f(xL) s.t. g(x,L) -O , h(xt ) , O x f E n

Cox, 'I,.ry 4.: If f(x,t) is continuous, g(x,t) and h(x,,)

are once continuously differentiable in x and R(L) is uniformly com-

pact for near 0, and if MFCQ holds at some x*t S(O) , then S(t)

near c-O , R(c) and S(C) are closed maps at -=0 , and f*(k) is

continuous at c-0

5. Concluding Remarks, an Example, and Extensions

It should also be noted that the assumptions of Theorem 4.2 do

not preclude the possibility that the set C by "truly binding" in the

sense that the solution set may change if C is perturbed. Also, the

assumptions do not imply that there exists xn . Sff- ) such that
n

x -* x* as E -* 0 , or for that matter, such thatn

n -0
A x C S(O)(-) C (0) . That is, it is possible thal some or at' the

limit points as E * 0 of a sequence {xn} of solutions of R(Ln)
nn

[one of which must exist and all of which must be in the solution set

S(O) of P(O)P are not MFCQ points or may lie on the boundary of C

Thus, although the assumptions qualifying the behevior of the solution

set S(O) are made relative to C (0) , this does not mean that C(E)

need play a passive role near or at L- 0 . The following example veri-

fies these assertions.

- 13-
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Consider th, problem

P(O): min x2

s.t. x 2 > F1X ,iJ (Xl+1) 2 + x > 0 , x2<l1

xC C(E) C ( UxE - 1 <<j

with c > 0

It is easy to see that the solution set of P(c) is S(c) = {x(:)t =

(-1, -C1) , and the solution set of P(O) is given by S(O) =

{xC CI x 2 
0 ) . Note that x*C {xEE 2 -1< x <1, x2" -1 implies

x*E S(O) 0 C O(E) for every £ and MFCQ holds at any such x* , rela-

tive to R(O). The remaining assumptions of Thecrem 4.2 obviouslyv hold,

for this example. Clearly, x(E) -t x(O) - (-1,0) as C -0 . But x(0)

is on the boundary of C . Also, MFCQ cannot be satisfied at x(O) be-

cause the gradient of the second inequality constraint is 0 at x(O)

Finally, it is apparent that S(O) changes if C is perturbed, so the

various possibilities indicated have been demon qtrated.

It should also be observed that the same device used to obtain

Theorem 4.1 [concerning Problem P(c)] from Lemme 3.1 and Lemma 3.2 [con-

cerning Problem P(E)J, cannot be used to obtain Theorem 4.2 from Theorem

3.3. Recall that we simply replaced h(x,e) - 0 oy h(x,E) > 0 and

-h(x,e) Z 0 and the analogous result for P(E) was obtained immediately

from that for P(E). However, if we make this substitution in P() to

obtain a problem of the form P(C), we find that the resulting problem

cannot satisfy MFCQ (since there can be no vector y simultaneously

satisfying Vx h(x,c)y > 0 and -Vxh(x,e)y > 0 , for any x or E ).

Hence, the assumption regarding MFCQ in Theorem 3.3 cannot be satisfied

and the theorem is inapplicable to proving Theorem 4.2 via this con-

struct,

Finally, it is noted that the conditions regulating the behavior
of the set CMC) in Theorem 3.3 and C(c) in Theorem 4.2 can be

- 14 -
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weakened. For ex.,mple, let RI(E) E {xCEn g(x,i:) O} Then, the

condition that there exist x*C S(0) ) C(e) for C near 0, may be re-

placed by: there exists x*L 9(0) ( C(O) , x* solves: min f(x,f.)

s.t. xc R1 (0) , and for 6> 0 and any unit vector z , there exists

y(z) and S(6) such that x* + 0(y+ 6y) (as in Lemma 2.5) is in

C(Oz) for 3e (0,R] . This would yield as a c,,rollary that the optimal
value of min f(x,c) s.t. xc C(E) is continuous. We have held to the

given assumptions, both for simplicity and to provide fairly general

sufficient conditions on the constituents of the given problem. It is

mathematically desirable to require "no more" of C() than is required

of R This leads to the idea of defining a constraint qualifica-

tion (CQ) for a general set that is analogous tc and compatible with

MFCQ defined relative to constraints of the form g> 0 and h = 0

It might be fruitful to explore this possibility, along with the deter-

minatlon of other CQ's relative to general sets.

- 15 -



T-432

REFERENCES

[I] BERGE, C. (1963). Topological 5paces (E. M. Patterson, translator).

MacMillan, New York.

[2] EVANS, J. P. and F. J. GOULD (1970). Stab:lity in nonlinear pro-

&ramming. Operations Res., 18(l) 107-178.

jJ] FIACCC, A. V. and W. P. HUTZLER (1979). Extensions of the Gauvin-

Tolle optimal value differential stability results to general

mathematical programs. Technical Paper Serial T-393, Insti-

tute for Management Science and Engincering, The George Wash-

ington University (April).

14] GAUVIN, J. and F. DUBEAU (1979). Differential properties of the

marginal function in mathematical programming. Ecole Poly-

technique de Montreal (June).

[5] GAUVIN, J. and J. W. TOLLE (1977). Differential stability in non-

linear programing. SIAM J. Conrrol and Optimization, 15(2)

294-311.

16) GREF4BERG, H. J. and W. P. PIERSKALLA (1972). Extensions of the

Evans-Gould stability theorems for mathematical programs.

Operations Res., 20 143-153.

(7] HOGAN, W. (1971). Optimization and convergence for extremal value

functions arising from structured nonlirear programs. Ph.D.

dissertation, Western Management Science: Institute, University

of California at Los Angeles (September).

8) HOGAN, W. (1973). The continuity of the perturbation function of a

convex program. Operations Res., 21(1) 351-352.

- 16 -



T-432

[9] HOGAN, W. (1973). Point-to-set maps in mathematical programming.

SIAM Review, 15(3) 591-603.

- 17 -



=0


