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Abstract

We investigate the Doi model for suspensions of rod–like molecules in the
dilute regime. For certain parameter values, the velocity gradient vs. stress
relation defined by the stationary and homogeneous flow is not rank–one
monotone. We then consider the evolution of possibly large perturbations of
stationary flows. We prove that, even in absence of a microscopic cut–off,
discontinuities in the velocity gradient cannot occur in finite time. The proof
relies on a novel type of estimate for the Smoluchowski equation.
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1 Introduction

1.1 Summary

We consider the Doi model for suspensions of rod–like molecules in the dilute
regime. This kinetic model couples a microscopic to a macroscopic equa-
tion. The macroscopic one is the Stokes equation for the fluid velocity, the
microscopic equation is a Fokker–Planck (Smoluchowski) equation for the
probability distribution of rod orientations in every point of physical space.
Velocity gradients distort the isotropic equilibrium concentration; these devi-
ations from isotropy in turn generate an additional macroscopic stress, which
is elastic in nature and entropic in origin.

The model is characterized by two non–dimensional parameters: The Deb-
orah number which relates the externally imposed time scale to the intrin-
sic relaxation time, and a non-dimensional measure of concentration which
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quantifies the relative importance of elastic vs. viscous stress. For suffi-
ciently large values of these parameters, the strain rate vs. stress relation
defined by the stationary and homogeneous flow is not rank–one monotone.
This non–monotonicity has been related to the occurrence of transition layers
in velocity gradients. We consider the evolution of flows that are (possibly
large) perturbations of stationary homogeneous flows. We prove that even
in the absence of a microscopic cut–off these discontinuities in the velocity
gradients cannot occur in finite time. This is a confirmation of Doi model.
The proof relies on a novel type of estimate for the Smoluchowski equation.

1.2 The Doi model

As a first approximation, we think of the identical liquid crystal molecules
as inflexible rods of a thickness b which is much smaller than their length
L, as illustrated in Figure 1. Let ν denote their constant number density.
Following [5], we distinguish three regimes for the solution:

• Dilute regime. The rods are well separated, as expressed by ν ≪ L−3.

• Concentrated regime. In this regime, the excluded volume effects re-
duce the entropy substantially. The theory by Onsager shows that this
happens for ν & b−1 L−2. For a critical value of the dimensionless
number ν bL2, this leads to the isotropic nematic–phase transition [3,
Section 2.2], [5, Section 10.2].

• Semi–dilute regime. On one hand, there is the kinetic effect that rods
hinder themselves in their rotational movement. On the other hand,
there is not yet an entropic effect: L−3 ≪ ν ≪ b−1 L−2.

We will focus on the dilute regime. We are interested in creeping flows, where
the inertia of solvent (and rods) can be neglected.

L
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Figure 1: Rod–like molecule
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Doi [4] introduced the model we will consider, see also [5, Chapter 8]. The
system is described by a local probability distribution f(x, t, n) dn. It gives the
time–dependent probability that a rod with center of mass at x has an axis
n in the area element dn. The evolution of f is given by the Smoluchowski
equation:

∂tf = − u · ∇xf − ∇n · (Pn⊥∇xu n f) (1)

+ D∆xf + Dr ∆nf. (2)

The two terms in (1) describe advection of the centers of mass by the ve-
locity u respectively the rotation of the axes due to velocity gradients ∇xu.
Here and in the sequel ∇n, ∇n· and ∆n denote the gradient, divergence and
Laplacian on S2. Finally, Pn⊥∇xu n = ∇xu n − (n · ∇xu n)n denotes the
projection of the vector ∇xu n on the tangent space in n.

The two terms in (2) describe the Brownian effects: translational diffusion
respectively rotational diffusion. The Kirkwood theory [5, Appendix 8.1] de-
rives asymptotic expressions for the diffusivities D andDr from a microscopic
theory. They scale as

D ∼
kB T

ηs L
and Dr ∼

kB T

ηs L3
(3)

(up to a logarithmic correction in L
b
), where ηs denotes the viscosity of the

solvent. The Kirkwood theory [5, Sec 8.3, App. 8.1] predicts that the longi-
tudinal and transversal translational diffusion differ by an O(1)–factor. This
difference is neglected here and the longitudinal and transversal diffusivities
are taken equal; it will then turn out that the effect of translational diffusion
is negligible. In the semi–dilute regime, the rotational diffusion would be
hindered by the neighboring rods. This effect can be modeled by a mean–
field ansatz on the level of the one–point statistics f(t, x, n) dn; it leads to a
substantially reduced diffusivity Dr(t, x, n). We also neglect this effect.

Diffusion can be seen as a gradient flow of the entropy functional

E[f ] := ν kB T

∫

system

∫

S2

f ln f dn dx. (4)

In the concentrated regime, the excluded volume effect would become im-
portant. Within a mean–field ansatz, this can be done on the level of the
one–point statistics f(t, x, n) dn; it leads to the Onsager Potential. As we
focus on the dilute regime, we neglect this term. As can be seen from (1),
a velocity gradient ∇xu distorts an isotropic distribution f which leads to
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an increase in entropy. Thermodynamic consistency [5, Section 8.6] requires
that this is balanced by a stress tensor σ(t, x) given by

σ(t, x) := ν kB T

∫

S2

(3n⊗ n− id) f(t, x, n) dn.

Notice that E plays the role of a stored energy functional and σ that of an
elastic stress. The presence of the rod–like molecules gives also rise to a
viscous stress which modifies the solvent viscosity. In the dilute and semi-
dilute regimes, this additional viscous stress can be neglected. Hence the
averaged continuity and momentum equations are given by

∇x · u = 0 and ∇x ·
(
ηs (∇x + ∇t

x) u− p id + σ
)

= 0. (5)

Notice the coupling of the Smoluchowski equation (1) & (2) and the macro-
scopic equation (5) via the drift terms and the stress tensor σ. Together,
they define an evolution for f .

We want to mimic a simple flow situation. The Doi model admits a special
class of solutions that correspond to stationary flows driven by an externally
imposed velocity gradient ∇uext, and we consider perturbations of such flows.
For such flows there is a characteristic externally imposed time scale 1

|∇xuext|
,

and a macroscopic length scale Lext related to the size of the perturbation.
This evolution is a gradient flow of the entropy (4) and this will play a role
in the analysis.

1.3 Non–dimensionalization

The problem has three characteristic time scales:

• The time scale related to rotational diffusion: 1
Dr

.

• A visco–elastic time scale ηs

kB T ν
.

• An externally imposed time scale: 1
|∇xuext|

.

We non–dimensionalize based on the visco–elastic time scale

t =
ηs

kB T ν
t̂.

Since the translational diffusion has units of
length2

time , this gives rise to three
length scales. In addition, there is the external length scale, which we use
for non–dimensionalization:

x = Lext x̂.
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This imposes the following non–dimensionalization of velocity, strain and
stresses:

u = Lext
kB T ν

ηs

û, ∇xu =
kB T ν

ηs

∇x̂û,

σ = kB T ν σ̂, p = kB T ν p̂.

We are left with three non–dimensional parameters:

D̂r = Dr
ηs

kB T ν

(3)
∼ (L3 ν)−1,

D̂ = D
ηs

kB T ν
L−2

ext

(3)
∼ (LL2

ext ν)
−1,

∇̂xuext =
ηs

kB T ν
∇xuext.

Sometimes, it is more convenient to think in terms of the Deborah number

∇̂xuext/D̂r = ∇xuext/Dr, which relates the externally imposed time scale to
the rotational relaxation time.

We collect the nondimensionalized equations (dropping the hats):

∂tf + ∇xf · u+ ∇n · (Pn⊥∇xu n f) −Dr△nf −D△xf = 0, (6)∫

S2

(3n⊗ n− id)f dn = σ, (7)

∇x ·
(
(∇xu+ ∇t

xu) − p id + σ
)

= 0, (8)

∇x · u = 0 . (9)

These form a system consisting of the transport equation (6) coupled with
the Stokes system (8)-(9). The coupling is effected via (7) that determines
the viscoelastic stresses as moments of the probability distribution f . The
function f(t, x, n) is a probability density on S2,

f ≥ 0 ,

∫

S2

f(t, x, n) dn = 1 . (10)

This requirement is consistent with the evolution (6). Our system is supple-
mented with initial conditions

f(0, x, n) = f0(x, n) (11)

and one checks that property (10) is propagated from the initial data to
solutions of (6).
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The model (6)-(9) admits a special class of stationary steady states: Let
∇xuext be a given traceless tensor, tr∇xuext = 0, then

uext(x) = (∇xuext) x (12)

gives rise to an incompressible vector field. Define feq(n) to be the unique
solution of the stationary Fokker-Planck equation

∇n · (Pn⊥∇xuextnf −Dr∇nf) = 0 (13)

satisfying feq(n) ≥ 0 and
∫

S2 feq(n)dn = 1. Notice that (feq(n), uext(x)) is a
stationary, steady solution of (6)-(9) associated to a constant pressure and
with

σeq =

∫

S2

(3n⊗ n− id)feqdn .

This class plays an important role in our analysis. It will be used as a building
block for constructing non-monotone spatially varying steady states, and we
will study the evolution of (large) perturbations of (feq(n), uext(x)).

1.4 Non-monotonicity of steady states

Let (feq(n), uext(x)) be as defined in (12) & (13) and σeq be the associated
moment in (7). By varying parametrically the imposed velocity gradient
κ = ∇xuext we define a mapping

End(R3) ∋ κ 7→ σκ ∈ Sym(R3), (14)

taking strain-rates to elastic stresses and defined by (7). A necessary condi-
tion for structural stability of the homogeneous flow κx is that the mapping
from deformation–rates to total stresses

End(R3) ∋ κ 7→ (κ+ κt) + σκ ∈ Sym(R3) (15)

be rank–one monotone at the κ under consideration. After appropriate
rescaling with Dr, (14) is universal (see Definition 1). We will argue in
Section 3.2 that it fails to be monotone along the shear direction (Lemmas 4
and 5). This implies that (15) fails to be monotone along the shear direction
for sufficiently small Dr.

One effect of this non–monotonicity in the shear direction is that there exist
spatially discontinuous solutions (f(x, n), u(x)) for vanishing translational
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diffusivity (D = 0), i. e. solutions of

∇x · (f u) + ∇n · (Pn⊥∇xu n f) −Dr△nf = 0, (16)∫

S2

(3n⊗ n− id)f dn = σ, (17)

∇x ·
(
(∇xu+ ∇t

xu) − p id + σ
)

= 0, (18)

∇x · u = 0. (19)

More precisely, we will show:

Theorem 1. There exist Dr > 0 such that (16)–(19) admits a solution (in
the distributional sense) with discontinuous ∇xu.

This failure of ellipticity for (16)–(19) has been frequently seen as a defi-
ciency of the Doi model. On the contrary, other schools have advocated the
failure of ellipticity of steady states as the cause of the onset of instabilities in
viscoelastic flows, and in particular as an explanation of the phenomenon of
spurt. Spurt refers to a sudden increase of the volumetric flow rate at a criti-
cal stress which has been observed experimentally, see for instance [18]. Spurt
has been connected in [11] to the non–monotonicity of the map (15), which
allows for jumps in the steady strain rate when the driving pressure gradient
exceeds a critical value. Such jumps can account for the sudden increase in
the flow rate observed in experiments. This explanation of spurt motivated
analytical results regarding existence of discontinuous steady states and their
stability properties, accomplished for macroscopic models in the absence of
translational diffusion D and for a 1–d geometry. The macroscopic model
(Oldroyd B or Johnson–Segalman) can be seen as an exact closure of a ki-
netic model with Hookean springs instead of rigid rods. It has been shown
that discontinuities in the strain rate ∇xu form in infinite time, see [13, 12].

1.5 Continuity of velocity gradients

The main goal of this paper is to investigate on which time scale these near–
discontinuities occur. We want to study a forced problem, and to this end
we consider a solution that is a perturbation of the stationary steady state
(feq(n), uext(x)) in (12)-(13). Our analysis is valid even for large perturba-
tions and we find that the time scale can be bounded by below independently
of the translational diffusion D, just in terms of the non–dimensional param-
eter Dr, and ∇xuext, see Theorem 2.

We now outline our strategy. Qualitatively speaking, we want to

control the modulus of continuity of ∇xu.
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By Sobolev’s embedding, this is a consequence of

control of

∫

R3

|∇2
xu|

pdx

for some fixed 3 < p < ∞. In view of (8)&(9) and standard Lp–regularity
theory for the Stokes system, this is a consequence of

control of

∫

R3

|∇xσ|
pdx,

see Lemma 2. In view of (7), which yields

∂xi
σ =

∫

S2

(3n⊗ n− id) ∂xi
f dn, (20)

this requires control of ∇xf . This control has to be the Lp–norm with respect
to x but can be a weak norm with respect to n, for instance an H−1(S2)–
norm. Recall that the H−1(S2)–norm of ∇xf can be defined as

‖∇xf‖H−1(S2) :=

(∫

S2

|∇nφ|
2dn

)1/2

,

where the potential φ = (φ1, φ2, φ3) is the solution of the Poisson problem
for the Laplace operator

∂xi
f −△nφi = 0.

For reasons intrinsic to the Fokker–Planck–like equation (16) (see the proof
of Proposition 1), our choice is an f–dependent version of an H−1(S2)–norm
of ∇xf :

‖∇xf‖H−1

f
(S2) :=

(∫

S2

|∇nφ|
2f dn

)1/2

,

where the potential φ = (φ1, φ2, φ3) is the solution of the following elliptic
problem on S2:

∂xi
f −∇n · (f∇nφi) = 0. (21)

(Note that, for any tensor g, |g|2 denotes the sum of the squares of the
entries with respect to orthonormal bases.) This norm comes from a natu-
ral Riemannian structure of the space of probability densities f which was
introduced in [14], see also [15, Section 3].
Accordingly, we define the quantities

w(t, x) =

∫

S2

|∇nφ|
2 f dn (22)
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and

W (t) :=

∫

R3

wp/2 dx =

∫

R3

(∫

S2

|∇nφ|
2f dn

)p/2

dx , (23)

and seek to establish control of W (t).

A second ingredient is an identity for the relative entropy density

e(t, x) :=

∫

S2

(ln
f

feq
) f dn, (24)

see Lemma 1 and [10], that yields differential control for the relative entropy

E(t) :=

∫

R3

e(t, x) dx =

∫

R3

∫

S2

(ln
f

feq
) f dndx . (25)

We prove:

Theorem 2. Let (f, u, p) be a solution of (6)–(9) (with D = 0 allowed), let
(feq, uext) be as in (12)-(13) and assume that the data f0 satisfy

E(0) =

∫

R3

∫

S2

(ln
f0

feq
) f0 dn dx < +∞ .

There exists a constant C only depending on p ∈ (3,∞) and a constant K
only depending on |∇xuext|/Dr such that

dE

dt
≤ K E, (26)

1

p

dW

dt
≤ −DrW + C (1 + |∇xuext| + lnE(t) + lnW ) W. (27)

Remark 1. Integrating the differential inequalities we obtain the bounds

E(t) ≤ E(0)eK t (28)

W (t) ≤ exp
{
(lnW (0) +K) eK t

}
(29)

Moreover, the following estimate
∫

R3

|∇x(u− uext)|
2 dx ≤

∫

R3

|σ − σeq|
2 dx

≤ C

∫

R3

(∫

S2

|f − feq|dn

)2

dx < E(0) eKt (30)

is derived in Proposition 3 as a byproduct of the proof.
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Let us comment only on the most pertinent mathematical literature: In [8],
a purely macroscopic viscoelastic model is considered (Oldroyd–B). It can be
interpreted as an exact closure of a kinetic model for Hookean springs instead
of rigid rods. The existence of weak solutions is established by “propagation
of compactness”. This approach can be extended to our kinetic model [9].
Theorem 2 might be seen as a quantification of the more qualitative approach
in [8].

In [6], a kinetic model for nonlinear springs is investigated (FENE). Among
other things, sufficient conditions on the asymptotic stability of the homo-
geneous flow ∇xu ≡ ∇xuext are given. A more careful analysis, to appear in
[10], reveals that

dE

dt
≤

(
C

( |∇xuext|

Dr

)2
− C−1Dr exp

(
− C

|∇xuext|

Dr

))
E.

Hence also Theorem 2, in this extended version, yields a stability result in
the regime of sufficiently small concentration Dr ≫ 1 and sufficiently small
Deborah number |∇xuext| ≪ Dr (provided the initial perturbation W (0) is
sufficiently small). Finally, we refer to [2] for a recent global existence result,
which is also valid in the concentrated regime, for flows that are asymptoti-
cally at rest at infinity driven by a body force. For comparison purposes, the
present flow lies in the dilute regime but approaches any constant gradient
flow at infinity.

2 Proof of Theorem 2

Theorem 2 is based on the following ingredients: an identity for the transport
of the relative entropy density e(t, x) defined in (24), a transport inequality
for the norm w(t, x) defined in (22), an L∞ estimation for the Stokes system,
and the derivation of differential inequalities for the quantities E(t) andW (t)
in (25) and (23) respectively.

2.1 A relative entropy identity

Let (uext, feq(n)) be a stationary steady state as in (12)-(13) and let (f, u, p)
be a solution of (6)-(9) which approaches at infinity (uext, feq(n)). The rela-
tive entropy density

e(t, x) :=

∫

S2

(ln
f

feq
) f dn, (31)
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serves as a measure of the distance between feq and f and satisfies the fol-
lowing identity.

Lemma 1. Let (f, u, p) satisfy (6)-(9), then

(
∂t + u · ∇x −D△x

)
e

+ D

∫

S2

|∇x(ln
f

feq
)|2 f dn+Dr

∫

S2

|∇n(ln
f

feq
)|2 f dn

= ∇x(u− uext) :

(
(σ − σeq) −

∫

S2

(
∇n ln feq ⊗ n

)
(f − feq)

)
dn .

Proof of Lemma 1. Using the property that feq is independent of x and
t, we derive from the Smoluchowski equation (6) the formula

(
∂t + u · ∇x −D△x

)(
f ln

f

feq

)
+Df

∣∣∇x ln
f

feq

∣∣2

=
(
1 + ln

f

feq

)(
−∇n · (Pn⊥∇xu n f) +Dr△nf

)

= −
(
1 + ln

f

feq

)
∇n ·

(
Pn⊥∇xu n f −Dr ∇nf

)
,

which after an integration over S2 gives by integration by parts

(
∂t + u · ∇x −D△x

)
e+D

∫

S2

∣∣∇x ln
f

feq

∣∣2 f dn

=

∫

S2

∇n ln
f

feq

· Pn⊥

(
∇xu−∇xuext

)
n f dn

∫

S2

∇n ln
f

feq

·
(
Pn⊥∇xuext n f −Dr∇nf

)
dn

=: J1 + J2. (32)

We first treat J2, by a classical formula for drift–diffusion equations. We
write

Pn⊥∇xuext n f −Dr∇nf

= −Dr feq ∇n
f

feq
+

f

feq

(
Pn⊥∇xuext n feq −Dr∇nfeq

)

= −Dr f ∇n ln
f

feq
+

f

feq

(
Pn⊥∇xuext n feq −Dr∇nfeq

)
,
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so that

J2 =

∫

S2

∇n(ln
f

feq

) ·
(
Pn⊥∇xuext n f −Dr∇nf

)
dn

= −Dr

∫

S2

|∇n(ln
f

feq

)|2 f dn

+

∫

S2

f

feq

∇n(ln
f

feq

) ·
(
Pn⊥∇xuext n feq −Dr∇nfeq

)
dn. (33)

The last term in (33) vanishes by definition (13) of feq:
∫

S2

f

feq

∇n(ln
f

feq

) ·
(
Pn⊥∇xuext n feq −Dr∇nfeq

)
dn

=

∫

S2

∇n(
f

feq

) ·
(
Pn⊥∇xuext n feq −Dr∇nfeq

)
dn

= −

∫

S2

f

feq

∇n ·
(
Pn⊥∇xuext n feq −Dr∇nfeq

)
dn = 0.

Hence we have

J2 = −Dr

∫

S2

|∇n(ln
f

feq
)|2 f dn (34)

We now turn to J1:

J1 =

∫

S2

∇n ln
f

feq

· ∇x(u− uext)n f dn

= ∇x(u− uext) :

∫

S2

∇n ln
f

feq

⊗ n f dn

= ∇x(u− uext) :
( ∫

S2

∇nf ⊗ n dn−

∫

S2

∇nfeq ⊗ n dn

−

∫

S2

(∇n ln feq ⊗ n) (f − feq) dn
)
. (35)

According to formula (95) in Appendix II and the definition (7) of σ we have
∫

S2

∇nf ⊗ n dn−

∫

S2

∇nfeq ⊗ n dn

=

∫

S2

(3n⊗ n− id)f dn−

∫

S2

(3n⊗ n− id)feq dn

= σ − σeq.

Hence J1 can be rewritten as

J1 = ∇x(u− uext) :

(
(σ − σeq) −

∫

S2

(∇n ln feq ⊗ n)(f − feq) dn

)
. (36)
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Lemma 1 follows from a combining of (32) with (34) and (36).

2.2 Transport inequality for the H−1
f -norm

We introduce theH−1
f -norm as defined by (22) and (21) and proceed to derive

a differential inequality for w.

Proposition 1. For any solution of (6) we have the partial differential in-
equality:

∂t(
1
2
w) + ∇x(

1
2
w) · u−D△x(

1
2
w)

≤ −Dr w + |∇xu+ ∇t
xu|w + |∇2

xu|w
1/2. (37)

Proof of Proposition 1. We start by differentiating the defining equation
(21) with respect to t:

∂xi
∂tf −∇n · (f∇n∂tφi) −∇n · (∂tf∇nφi) = 0. (38)

Thus we have

d

dt

∫

S2

1
2
|∇nφi|

2 f dn

=

∫

S2

(
∂tf

1
2
|∇nφi|

2 + f ∇nφi · ∇n∂tφi

)
dn

=

∫

S2

(
∂tf

1
2
|∇nφi|

2 −∇n · (f ∇n∂tφi)φi

)
dn

(38)
=

∫

S2

(
∂tf

1
2
|∇nφi|

2 + ∇n · (∂tf ∇nφi)φi − ∂xi
∂tf φi

)
dn

=

∫

S2

(
−∂tf

1
2
|∇nφi|

2 − ∂xi
∂tf φi

)
dn. (39)

The contributions of the terms ∂tf and ∂xi
∂tf in (39) are calculated by

invoking (6). We start with the contribution of the rotational diffusion term.
It is given by

∫

S2

(
−△nf

1
2
|∇nφi|

2 − ∂xi
△nf φi

)
dn

=

∫

S2

(
−△nf

1
2
|∇nφi|

2 − ∂xi
f △nφi

)
dn

(21)
=

∫

S2

(
−△nf

1
2
|∇nφi|

2 −∇n · (f∇nφi)△nφi

)
dn

=

∫

S2

(
−△n(1

2
|∇nφi|

2) + ∇nφi · ∇n△nφi

)
f dn.

13



We now appeal to Bochner’s formula

△n(1
2
|∇nφi|

2) = ∇nφi · ∇n△nφi + tr(Hessnφi Hesst
nφi) + ∇nφi · Ric∇nφi,

where Hessnφi denotes the Hessian (a covariant notion) and Ric the Ricci
curvature tensor. We refer for instance to [16, Proposition 3.3, p. 175]. On
S2, Ric is just the metric tensor. Hence we obtain

−△n(1
2
|∇nφi|

2) + ∇nφi · ∇n△nφi ≤ −|∇nφi|
2 ,

and the contribution of rotational diffusion is

∑

i

∫

S2

(
−△nf

1
2
|∇nφi|

2 −△n∂xi
f φi

)
dn ≤ −

∫

S2

|∇nφ|
2f dn.

We now treat the term coming from the translational diffusion. In view of
(39), it is given by

∫

S2

(
−△xf

1
2
|∇nφi|

2 − ∂xi
△xf φi

)
dn

(21)
=

∫

S2

(
−△xf

1
2
|∇nφi|

2 −△x∇n · (f∇nφi)φi

)
dn

=

∫

S2

(
−△xf

1
2
|∇nφi|

2 + △x(f∇nφi) · ∇nφi

)
dn.

The identities

−△xf
1
2
|∇nφi|

2 + △x(f∇nφi) · ∇nφi

= △xf
1
2
|∇nφi|

2 + 2
∑

j

∂xj
f∂xj

∇nφi · ∇nφi + f△x(∇nφi) · ∇nφi

= △xf
1
2
|∇nφi|

2 + 2
∑

j

∂xj
f∂xj

1
2
|∇nφi|

2

+
∑

j

(
f∂xj

(
∂xj

(∇nφi) · ∇nφi

)
− f∂xj

∇nφi · ∂xj
∇nφi

)

= △x

(
f 1

2
|∇nφi|

2
)
− f

∑

j

∂xj
∇nφi · ∂xj

∇nφi

= △x

(
f 1

2
|∇nφi|

2
)
− f |∇2

x,nφi|
2

show that the contribution is given by

△x

(∫

S2

1
2
|∇nφ|

2 f dn

)
−

∫

S2

|∇2
x,nφ|

2 f dn.
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For the inequality (37), we drop the non positive second term.

We now treat the contribution from the advection term in x. It splits into
two parts

∫

S2

(
∇xf · u 1

2
|∇nφi|

2 + ∂xi
(∇xf · u)φi

)
dn

=

∫

S2

(
∇xf · u 1

2
|∇nφi|

2 + (∇x∂xi
f · u+ ∇xf · ∂xi

u)φi

)
dn

=
∑

j

∫

S2

(
∂xj

f 1
2
|∇nφi|

2 + ∂xj
∂xi
f φi

)
dn uj

+
∑

j

∂xi
uj

∫

S2

∂xj
f φi dn .

For the first term we observe
∫

S2

(
∂xj

f 1
2
|∇nφi|

2 + ∂xj
∂xi
f φi

)
dn

(21)
=

∫

S2

(
∂xj

f 1
2
|∇nφi|

2 + ∂xj
∇n · (f∇nφi)φi

)
dn

=

∫

S2

(
∂xj

f 1
2
|∇nφi|

2 − ∂xj
(f∇nφi) · ∇nφi

)
dn

= −

∫

S2

∂xj
(f 1

2
|∇nφi|

2) dn

= −∂xj

(∫

S2

1
2
|∇nφi|

2f dn

)
.

For the second term we notice

∑

j

∂xi
uj

∫

S2

∂xj
f φi dn

(21)
=

∑

j

∂xi
uj

∫

S2

∇n · (f∇nφj)φi dn

= −
∑

j

∂xi
uj

∫

S2

∇nφj · ∇nφi f dn.
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Hence the contribution from advection in x is

∑

i

∫

S2

(
∇xf · u 1

2
|∇nφi|

2 + ∂xi
(∇xf · u)φi

)
dn

= −
∑

i,j

∂xj

(∫

S2

1
2
|∇nφi|

2f dn

)
uj −

∑

i,j

∫

S2

∇nφj · ∇nφi f dn ∂xi
uj

= −∇x

(∫

S2

1
2
|∇nφ|

2f dn

)
· u

− 1
2

∑

i,j

∫

S2

∇nφj · ∇nφi f dn (∂xi
uj + ∂xj

ui)

≤ −∇x

(∫

S2

1
2
|∇nφ|

2f dn

)
· u + 1

2

∫

S2

|∇nφ|
2 f dn |∇xu+ ∇t

xu|.

We finally come to the contribution from the drift term in n. We introduce
the notation b = Pn⊥∇xu n for the drift term:

∫

S2

(
∇n · (b f) 1

2
|∇φi|

2 + ∂xi
∇n · (b f)φi

)
dn

=

∫

S2

(
∇n · (b f) 1

2
|∇φi|

2 + ∇n · (b ∂xi
f + ∂xi

b f)φi

)
dn

(21)
=

∫

S2

(
∇n · (b f) 1

2
|∇φi|

2 + ∇n · (b∇n · (f∇nφi) + ∂xi
b f) φi

)
dn

=

∫

S2

(
−b · ∇n(1

2
|∇nφi|

2) + ∇n(b · ∇nφi) · ∇nφi − ∂xi
b · ∇nφi

)
f dn.(40)

We now use the formula

−b · ∇n(1
2
|∇nφi|

2) + ∇nφi · ∇n(b · ∇nφi)

= −∇nφi · Hessnφi b+ (b · Hessnφi ∇nφi + ∇nφi · Dnb∇nφi)

= ∇nφi · Dnb∇nφi, (41)

where Dnb denotes the covariant derivative of b on S2. Since

b = Pn⊥∇xu n = ∇xu n− (n · ∇xu n)n ,

we obtain for the component-wise derivative in a tangential direction τ ∈ n⊥

∇nb τ = ∇xu τ − (τ · ∇xu n)n− (n · ∇xu τ)n− (n · ∇xu n) τ

and thus for the covariant derivative

Dnb τ = Pn⊥∇nb τ = (Pn⊥ ∇xu− (n · ∇xu n) id) τ. (42)
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Furthermore we have
∂xi
b = Pn⊥ ∂xi

∇xu n. (43)

Inserting (43), (42) into (41) and (40), and since ∇nφi is on the tangent space
of the sphere, we obtain

∫

S2

(
∇n · (b f) 1

2
|∇φi|

2 + ∂xi
∇n · (b f)φi

)
dn

=

∫

S2

∇nφi · (∇xu− (n · ∇xu n) id) ∇nφi f dn

−

∫

S2

∇nφi · ∂xi
∇xu n f dn.

Thus the contribution from the drift term in n is
∑

i

∫

S2

(
∇n · (b f) 1

2
|∇φi|

2 + ∂xi
∇n · (b f)φi

)
dn

= 1
2

∑

i

∫

S2

∇nφi ·
(
(∇xu+ ∇t

xu) − (n · (∇xu+ ∇t
xu)n) id

)
∇nφi f dn

−

∫

S2

∇nφi · ∂xi
∇xu n f dn

≤ 1
2

∫

S2

|∇nφ|
2 f dn |∇xu+ ∇t

xu| +

(∫

S2

|∇nφ|
2 f dn

)1/2

|∇2
xu|.

2.3 Bounds on the Stokes system

Consider the Stokes system (8)&(9),

∇x ·
(
(∇xu+ ∇t

xu) − p id + σ
)

= 0, (44)

∇x · u = 0, (45)

in R3. We need a standard and a not so standard regularity result.

Lemma 2. There exists a constant C depending only on p ∈ (1,∞) with
∫

R3

|∇2
xu|

pdx ≤ C

∫

R3

|∇xσ|
p dx.

Proposition 2. There exists a constant C only depending on p ∈ (3,∞)
such that

sup
x

|∇xu| ≤ C
[
1 + ln

(
1 +

(∫
R3 |σ|

2dx
) 1

3
(1− 3

p
) (∫

R3 |∇xσ|
pdx

)1/p

(
supx |σ|

) 2

3
(1− 3

p
)+1

) ]
sup

x
|σ|.
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Lemma 2 follows from standard regularity theory for the Stokes system; see
[17, ChI, Prop 2.2]. Results of the type of Proposition 2 go back to Weigant
& Kazhikov [19], see also [7, Appendix F]. We present a proof in Appendix I
which is not based on a fundamental solution but on a dyadic decomposition
in Fourier space.

2.4 Bound of the relative entropy

Given a stationary steady state (uext, feq(n)) and a solution (f, u, p) of (6)-(9)
which is a (possibly large) perturbation of (uext, feq(n)), the relative entropy
is defined by

E(t) :=

∫

R3

∫

S2

(ln
f

feq
) f dndx . (46)

Proposition 3. Let (uext, feq) be as in (12)-(13) and (f, u, p) be a solution
of (6)-(9) with data satisfying

E0 =

∫

R3

∫

S2

(ln
f0

feq
) f0 dn dx < +∞ . (47)

There exists a constant K = K(|∇xuext|/Dr) such that for t ∈ (0,∞)

dE

dt
≤ KE(t) (48)

and ∫

R3

|∇x(u− uext)|
2 dx ≤

∫

R3

|σ − σeq|
2 dx ≤ C E0 e

K t , (49)

where C denotes a universal constant.

A far more detailed estimation along the lines of Proposition 3 is derived in
[10] and is used to study the stability of equilibria.

Proof.
The functions u− uext and σ − σeq satisfy

△x(u− uext) −∇xp+ ∇x · (σ − σeq) = 0,

∇x · (u− uext) = 0 .

Therefore, we multiply by (u− uext) and integrate by parts to obtain

−

∫

R3

∇x(u− uext) : (σ − σeq) dx =

∫

R3

|∇x(u− uext)|
2dx. (50)
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Combine next Lemma 1 with (25), (9) and (50) to obtain

d

dt

∫

R3

e dx+

∫

R3

|∇x(u− uext)|
2dx

= −

∫

R3

∇x(u− uext) :

∫

S2

(∇n ln feq ⊗ n)(f − feq) dn dx

≤ K1

∫

R3

|∇x(u− uext)|

∫

S2

|f − feq| dn dx, (51)

where K1 = supn |∇n ln feq ⊗ n| is a constant that depends only on the
quotient |∇xuext|/Dr.

Next, we use the Kullback–Csiszar inequality, i. e.

(∫

S2

|f − feq| dn

)2

≤ 8

∫

S2

(ln
f

feq

) f dn (52)

together with Young’s inequality to obtain

dE

dt
≤ K E

and thus

E(t) =

∫

R3

e(x, t) dx ≤ E0 e
K t .

Observe next that (7) and (52) imply

∫

R3

|σ − σeq|
2 dx =

∫

R3

∣∣∣
∫

S2

(3n⊗ n− id)(f − feq)dn
∣∣∣
2

dx

≤ C

∫

R3

∣∣∣
∫

S2

|f − feq| dn
∣∣∣
2

dx

≤ C

∫

R3

e(t, x) dx ,

hence, (49) follows from (50) and (48).

2.5 Derivation of the differential inequality

Let w be defined in (22)-(21) and W be as in (23). We derive a differential
inequality for W .
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Proposition 4. Let W be defined as in (23). There exists a constant C only
depending on p ∈ (3,∞) such that

∫

R3

|∇2
xu|

p dx ≤ CW, (53)

sup
x

|∇xu−∇xuext| ≤ C
(
1 + lnE(t) + lnW

)
, (54)

and W satisfies the differential inequality:

1

p

dW

dt
≤ −DrW + C

(
1 + sup

x
|∇xuext| + lnE(t) + lnW

)
W . (55)

Proof. We evoke Proposition 1. With (37) as a starting point, we obtain
for p ≥ 2 the differential inequality

∂t(w
p/2) + ∇x · (uw

p/2) −D△x(w
p/2)

≤ −pDrw
p/2 + p|∇xu+ ∇t

xu|w
p/2 + p|∇2

xu|w
p−1

2 . (56)

Let us address the three terms on the right side of (56). The first term gives
rise to

−Dr

∫

R3

wp/2 dx = −Dr W.

For the second term we notice
∫

R3

wp/2 |∇xu+ ∇t
xu| dx ≤ sup

R3

|∇xu+ ∇t
xu|W.

Finally, the last term is estimated with help of Hölder’s inequality

∫

R3

w
p−1

2 |∇2
xu| dx ≤

(∫

R3

|∇2
xu|

p dx

)1/p

W 1−1/p.

Combining these together gives

1

p

dW

dt
≤

(
−Dr + sup

x
|∇xu+ ∇t

xu|
)
W +

(∫

R3

|∇2
xu|

p dx

)1/p

W 1−1/p.

We next observe that there exists a universal constant C such that

∫

R3

|∇xσ|
p dx ≤ C

∫

R3

(∫

S2

|∇nφ|
2f dn

)p/2

dx = CW. (57)
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Indeed, the starting point for deriving (57) is (20), written component-wise:

∂xi
σkl =

∫

S2

(3nk nl − δkl) ∂xi
f dn.

According to definition (21), we obtain

∂xi
σkl = −3

∫

S2

∇n(nk nl) · ∇nφi f dn

and thus

|∂xi
σkl|

2 ≤ 9 sup
n

|∇n(nk nl)|
2

∫

S2

|∇nφi|
2 f dn.

It remains to sum over all i, k, l, raise to power p/2 and integrate over R3.
This establishes (57). Estimate (53) now follows from Lemma 2 and, in turn,
provides the differential inequality

1

p

dW

dt
≤ −DrW + 2 sup

x
|∇xu|W + CW . (58)

Next, we observe that σ is uniformly bounded:

|σ|2 ≤ 9

∫

S2

|n⊗ n−
1

3
id|2 f dn ≤ 6

∫

S2

f dn = 6. (59)

We also recall that (u− uext, σ− σeq) satisfies the Stokes system (44) &(45),
and evoke Proposition 2. This implies

sup
x

|∇xu−∇xuext| ≤ C

(
1 + ln

∫

R3

|∇xσ|
p dx+ ln

∫

R3

|σ − σeq|
2 dx

)

(57),(49)

≤ C

(
1 + lnW + ln

∫

R3

e(t, x) dx

)

≤ C
(
1 + lnW + lnE(t)

)

which with (58) gives (55) and completes the proof.

3 General properties of the Doi model

We list here certain properties of the Doi model: the invariance under rota-
tions of the equations (6)-(9), and the non-monotonicity of steady states for
steady shear flows (16)-(19).
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3.1 Invariances of the Doi model

We consider the model (6)-(9) and will show that the system is invariant
under rotations.

Proposition 5. Let (f, u, p), with f = f(t, x, n), u = u(t, x) and p = p(t, x),
satisfy (6)-(9). Then (f̂ , û, p̂), defined by

f̂(t, x, n) = f(t, Qx,Qn)

û(t, x) = Qtu(t, Qx)

p̂(t, x) = p(t, Qx)

, Q ∈ O(3) , (60)

satisfies (6)-(9). Moreover,

σ̂(t, x) = Qtσ(t, Qx)Q

The proof is based on invariance properties of the transport equation

∂tf + ∇xf · u+ ∇n · (Pn⊥∇xu n f) −Dr△nf −D△xf = 0 (61)

in conjunction with well known invariances of the Stokes system. We use the
notation

fu,∇xu = fu(t,x),∇xu(t,x)(t, x, n)

for the solution of (61) generated by the fields u = u(t, x) and ∇xu =
∇xu(t.x).

Lemma 3. Let fu,∇xu satisfy the transport equation (61). Then,

f̃u,Qt∇xuQ(t, x, n) := fu,∇xu(t, x, Qn) , Q ∈ O(3) (62)

f̄Rtu(Rx),(∇xu)(Rx)(t, x, n) := fu,∇xu(t, Rx, n) , R ∈ O(3) (63)

f̂Rtu(Rx),Qt∇xu(Rx)Q(t, x, n) := fu,∇xu(t, Rx,Qn) , Q,R ∈ O(3) (64)

satisfy transport equations (61) with velocity and velocity-gradient fields as
stated in (62), (63), (64).

Proof of Lemma 3. This is a symmetry consideration. Let f = fu,∇xu

satisfy (61) with fields u and ∇xu, Q ∈ O(3), and define f̃(n) := f(Qn). We
then have ∇f̃ = Qt∇f(Qn) and

∇nf̃(n) = Pn⊥∇f̃ = ∇f̃ − (n · ∇f̃)n

= Qt
(
∇f(Qn) −

(
Qn · ∇f(Qn)

)
Qn

)

= Qt∇nf(Qn)
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and

Pn⊥ (Qt ∇xuQ)n = (Qt ∇xuQ)n−
(
n · (Qt ∇xuQ)n

)
n

= Qt
(
∇xu (Qn) − (Qn) · ∇xu (Qn) (Qn)

)

= Qt
(
Pn⊥ ∇xu n

)
(Qn),

so that
(
−∇nf̃ + Pn⊥ (Qt ∇xuQ)n f̃

)
(n) = Qt

(
−∇nf + Pn⊥ ∇xu nf

)
(Qn).

We infer
(
−△nf̃ + ∇n ·

(
Pn⊥ (Qt ∇xuQ)n f̃

))
(n)

= ∇n ·
(
−∇nf̃ + Pn⊥ (Qt ∇xuQ)n f̃

)
(n)

= ∇n ·
(
−∇nf + Pn⊥ ∇xu nf

)
(Qn)

=
(
−△nf + ∇n ·

(
Pn⊥ ∇xu nf

))
(Qn),

and thus

∂tf̃ + u · ∇xf̃ + ∇n ·
(
Pn⊥ (Qt ∇xuQ)n f̃

)
−Dr△nf̃ −D△xf̃

=
(
∂tf + u · ∇xf + ∇n ·

(
Pn⊥ ∇xu nf

)
−Dr△nf −D△xf

)
(t, x, Qn)

= 0 .

Next, again with f = fu,∇xu and R ∈ O(3), set f̄ = f(Rx). Observe that
∇xf̄ = Rt(∇xf)(Rx) and that △xf̄ = (△xf)(Rx). We infer

∂tf̄ +Rtu(Rx) · ∇xf̄ + ∇n ·
(
Pn⊥ (∇xu)(Rx)n f̄

)
−Dr△nf̄ −D△xf̄

=
(
∂tf + u · ∇xf + ∇n ·

(
Pn⊥ ∇xu nf

)
−Dr△nf −D△xf

)
(t, Rx, n)

= 0 .

The last statement follows by combining the first two.

Proof of Proposition 5 Consider the function (f̂ , û, p̂) defined by (60),
and let Q ∈ O(3). We then have û = Qtu(t, Qx),

∇xû = Qt (∇xu)(t, Qx)Q ,

and, according to Lemma 3,

∂tf̂ + û · ∇xf̂ + ∇n ·
(
Pn⊥ ∇xû n f̂

)
−Dr△nf̂ −D△xf̂

=
(
∂tf + u · ∇xf + ∇n ·

(
Pn⊥ ∇xu nf

)
−Dr△nf −D△xf

)
(t, Qx,Qn)

= 0 .
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The transformation of viscoelastic stresses can be seen from (7). We have

σ̂(t, x) =

∫

S2

(3n⊗ n− id)f̂ dn

=

∫

S2

(3n⊗ n− id)f(t, Qx,Qn) dn

=

∫

S2

(3Qtn⊗Qtn− id)f(t, Qx, n) dn

= Qtσ(t, Qx)Q .

Moreover,
∇x · û = (∇x · u)(t, Qx) = 0

and
∇x·

(
(∇xû+ ∇t

xû) − p̂ id + σ̂
)

= Qt
[
∇x ·

(
(∇xu+ ∇t

xu) − p id + σ
) ]

(t, Qx) = 0

that is (f̂ , û, p̂) satisfy (6)-(9).

3.2 Non–monotonicity and discontinuous solutions

In this section we prove Theorem 1. The proof is based on the properties of
the normalized strain–rate to elastic stress mapping Σ which we now define.

Definition 1. The map

Σ: End(R3) ∋ κ 7→ σ ∈ Sym(R3)

is defined via

σ =

∫

S2

(3n⊗ n− id) fκ dn,

where fκ is the unique solution of

∇n · (Pn⊥κn f) −△nf = 0 (65)

with f ≥ 0 and
∫

S2 f dn = 1.

We denote by κs the gradient of a normalized shear flow, i. e.

κs =




0 1 0
0 0 0
0 0 0


 .

Hence x1 is the flow direction, x2 the shear direction and x3 the vorticity
direction. We will need the following three properties for Σ(γ̇κs):
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Lemma 4.
d

dγ̇ |γ̇=0

Σ12(γ̇ κs) > 0.

Lemma 5.
lim

γ̇→∞
Σ12(γ̇ κs) = 0.

Lemma 6.
Σ23(γ̇ κs) = 0.

Proof of Lemma 4. We start with remarking that the components of
3n⊗ n− id, i. e.

3ni nj − δij ,

are surface spherical harmonics of order 2. This means that they are har-
monic polynomials on R3 of order 2, restricted to S2. It is well known that
surface spherical harmonics are eigenfunctions of the Laplacian on S2. Their
eigenvalue is −ℓ(ℓ+ 1), where ℓ is the order [1, Appendix E]. Hence

△n(3ni nj − δij) = −6 (3ni nj − δij). (66)

This observation yields an alternative representation of the map Σ:

Σ(κ) =

∫

S2

(3n⊗ n− id) fκ dn

(66)
= −

1

6

∫

S2

△n

(
3
n

|n|
⊗

n

|n|
− id

)
fκ dn

= −
1

2

∫

S2

n⊗ n△nfκ dn

(65)
= −

1

2

∫

S2

n⊗ n∇n · (Pn⊥κn fκ) dn. (67)

According to (67), we have in particular

Σ12(γ̇ κs) = −
γ̇

2

∫

S2

n1 n2 ∇n · (Pn⊥κsnfγ̇κ) dn.
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Hence we obtain

d

dγ̇ |γ̇=0

Σ12(γ̇ κs) = −
1

2

∫

S2

n1 n2 ∇n · (Pn⊥κsnf0) dn

= −
1

8π

∫

S2

n1 n2 ∇n · (Pn⊥κsn) dn

=
1

8π

∫

S2

∇n(n1 n2) · Pn⊥κsn dn

=
1

8π

∫

S2

Pn⊥




n2

n1

0


 · Pn⊥




n2

0
0


 dn

=
1

8π

∫

S2

Pn⊥




n2

n1

0


 ·




n2

0
0


 dn

=
1

8π

∫

S2

(1 − 2n2
1)n

2
2 dn.

By symmetry we have
∫

S2

(1 − 2n2
1)n

2
2 dn =

∫

S2

(1 − n2
1 − n2

3)n
2
2 dn =

∫

S2

n4
2 dn,

so that the above turns into

d

dγ̇ |γ̇=0

Σ12(γ̇ κs) =
1

8π

∫

S2

n4
2 dn > 0.

Proof of Lemma 5. According to the definition of Σ, we have to show

lim
γ̇↑∞

∫

S2

n1 n2 fγ̇κs
dn = 0.

Because of Jensen
∣∣∣∣
∫

S2

n1 n2 fγ̇κs
dn

∣∣∣∣
3

≤

∫

S2

|n1 n2|
3 fγ̇κs

dn

and the inequality

|n1 n2|
3 ≤ |n2|

3 ≤ (n2
2 + n2

3) |n2| = (1 − n2
1) |n2|,

it suffices to show

lim
γ̇↑∞

∫

S2

(1 − n2
1) |n2| fγ̇κs

dn = 0. (68)
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We now argue in favor of (68). According to (65), we have for any test
function ζ ∫

S2

(
∇nζ · Pn⊥κs n+ γ̇−1△nζ

)
fγ̇κs

dn = 0. (69)

We now make a special ansatz for ζ . We fix a smooth function ϕ(n̂2) with

ϕ(n̂2) = 1 for n̂2 ≥ 1 and ϕ(n̂2) = −1 for n̂2 ≤ −1.

For given λ > 0 to be optimized later, we consider

ζλ(n) = n1 ϕ(
n2

λ
),

which we think of as an approximation of n1 sign(n2) for λ ≪ 1. On one
hand we have

|△nζλ| ≤ C
1

λ2
(70)

with a universal generic constant C <∞. On the other hand, we have

∇nζλ · Pn⊥κs n = Pn⊥




ϕ(n2

λ
)

n1

λ
ϕ′(n2

λ
)

0


 · Pn⊥




n2

0
0




=




ϕ(n2

λ
)

n1

λ
ϕ′(n2

λ
)

0


 ·




n2 − n2
1 n2

−n1 n
2
2

−n1 n2 n3




= (1 − n2
1)n2 ϕ

(n2

λ

)
− n2

1

n2
2

λ
ϕ′

(n2

λ

)
. (71)

Since
∣∣(1 − n2

1)n2 ϕ
(

n2

λ

)
− (1 − n2

1) |n2|
∣∣ ≤ λ |n2

λ
| |ϕ

(
n2

λ

)
− sign

(
n2

λ

)
| ≤ C λ,

∣∣∣n2
1

n2
2

λ
ϕ′

(
n2

λ

)∣∣∣ ≤ λ
∣∣∣
(

n2

λ

)2
ϕ′

(
n2

λ

)∣∣∣ ≤ C λ,

(71) yields ∣∣∇nζλ · Pn⊥κsn− (1 − n2
1) |n2|

∣∣ ≤ C λ. (72)

From (70) and (72) we obtain

∣∣∇nζλ · Pn⊥κsn+ γ̇−1△nζλ − (1 − n2
1) |n2|

∣∣ ≤ C

(
λ+

1

γ̇ λ2

)
.

With the choice of λ = γ̇−1/3 this turns into

∣∣∇nζλ · Pn⊥κsn+ γ̇−1△nζλ − (1 − n2
1) |n2|

∣∣ ≤ C γ̇−1/3.
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In view of (69) this yields

∣∣∣∣
∫

S2

(1 − n2
1) |n2| fγ̇κs

dn

∣∣∣∣ ≤ C γ̇−1/3,

which is a quantitative version of (68).

Proof of Lemma 6. This is an outcome of symmetry considerations. We
notice that for any Q ∈ O(3),

fQtκ Q(n) = fκ(Qn). (73)

Indeed, consider the transformation f̃(n) := f(Qn). Proceeding as in the
proof of Lemma 3 we obtain

(
−△nf̃ + ∇n ·

(
Pn⊥ (Qt κQ)n f̃

))
(n)

=
(
−△nf + ∇n ·

(
Pn⊥ κnf

))
(Qn).

This identity implies (73) by uniqueness of (65).

We now notice that

Q :=




1 0 0
0 1 0
0 0 −1


 ∈ O(3) and Qt (γ̇ks)Q = γ̇ks.

Hence by (73) we have

fγ̇κs
(n1, n2,−n3) = fγ̇κs

(n1, n2, n3),

which in turn yields

Σ23(γ̇ κs) =

∫

S2

n2 n3 fγ̇κs
(n1, n2, n3) dn

=

∫

S2

n2 n3 fγ̇κs
(n1, n2,−n3) dn

= −

∫

S2

n2 n3 fγ̇κs
(n1, n2, n3) dn

= −Σ23(γ̇ κs).

Proof of Theorem 1. According to Lemmas 4 and 5,

R ∋ γ̇ 7→ Σ12(γ̇κs) is not monotone.
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Hence for sufficiently small Dr, also

R ∋ γ̇ 7→ γ̇ + Σ12

( γ̇κs

Dr

)
is not monotone.

We fix such a Dr and select γ̇± with

γ̇+ 6= γ̇− and γ̇+ + Σ12

( γ̇+κs

Dr

)
= γ̇− + Σ12

( γ̇−κs

Dr

)
. (74)

We introduce

f(x, n) :=

{
fγ̇+κs

(n) for x2 > 0
fγ̇−κs

(n) for x2 < 0

}
,

u(x) :=

{
γ̇+(x2, 0, 0) for x2 > 0
γ̇−(x2, 0, 0) for x2 < 0

}
,

p(x) :=

{
Σ22

(
γ̇+κs

Dr

)
for x2 > 0

Σ22

(
γ̇−κs

Dr

)
for x2 < 0

}
, (75)

We notice that u is continuous with weak gradient

∇xu(x) =

{
γ̇+ κs for x2 > 0
γ̇− κs for x2 < 0

}
, (76)

that ∇xu is discontinuous and (19) is satisfied (in the weak sense).

We now argue that (18), which in view of (19) can be rewritten as

∇x · (∇xu− p id + σ) = 0 (77)

holds in the weak sense. Indeed, because of (76), (75) and Definition 1 we
have

∇xu− p id + σ =

{
γ̇+ κs − Σ22

(
γ̇+κs

Dr

)
id + Σ

(
γ̇+κs

Dr

)
for x2 > 0

γ̇− κs − Σ22

(
γ̇−κs

Dr

)
id + Σ

(
γ̇−κs

Dr

)
for x2 < 0

}
.

Since this tensor is piecewise constant, it remains to show that

ui,2 − p δi2 + σi2 is continuous across {x2 = 0} for i = 1, 2, 3 (78)

in order to conclude (77). For the flow direction i = 1 we have

u1,2 − p δ12 + σ12 =

{
γ̇+ + Σ12

(
γ̇+κs

Dr

)
for x2 > 0

γ̇− + Σ12

(
γ̇−κs

Dr

)
for x2 < 0

}
,
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so that (78) follows from (74). For the shear direction i = 2 we notice that

u2,2 − p δ22 + σ22 = 0

due to the definition (75) of the pressure. For the vorticity direction i = 3
we remark

u3,2 − p δ32 + σ32 =

{
Σ23

(
γ̇+κs

Dr

)
for x2 > 0

Σ23

(
γ̇−κs

Dr

)
for x2 < 0

}
,

which vanishes according to Lemma 6. Hence (78) is established.

The Smoluchowski equation (16) itself ist satisfied by definition (65) of fγ̇± κs

and because of
∇x · (fu) = 0 distributionally,

since u has only a u1–component and f u depends on x only through x2.

4 Appendix I.

Proof of Proposition 2. We select a ϕ in S(R3), the Schwartz space,
such that its Fourier transform satisfies

ϕ̂(k) =
1

(2π)3/2
for |k| ≤ 1. (79)

The constant is chosen such that
∫

R3

ϕdx = 1. (80)

We recall that u is periodic and that the Fourier symbol which relates σ to
∇xu via the Stokes system (44) & (45) is given by

ûi,j(k) =
kj

|k|

(
ki

|k|

kℓ

|k|
− δiℓ

)
km

|k|
σ̂ℓm(k), (81)

where we sum over repeated indices. Thanks to (79),

ψ̂ijℓm(k) =

(
ϕ̂(
k

2
) − ϕ̂(k)

)
kj

|k|

(
ki

|k|

kℓ

|k|
− δiℓ

)
km

|k|

defines a ψijℓm ∈ S(R3). We introduce the dyadically rescaled version of
these Schwartz functions:

ϕ(ν)(x) = (2ν)3 ϕ(2νx) , ψ
(ν)
ijℓm(x) = (2ν)3 ψijℓm(2νx)
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for ν ∈ {0, 1, · · · }, and recall that ϕ̂(ν)(k) = ϕ̂( k
2ν ).

We now fix an N ∈ N which we will choose at the end. The decomposition
of the right hand side σ into

σℓm = σℓm − ϕ(N) ∗ σℓm

+ (ϕ(N) − ϕ(N−1)) ∗ σℓm + · · · + (ϕ(1) − ϕ(0)) ∗ σℓm

+ ϕ(0) ∗ σℓm

translates by definition of ψijℓm into

ui,j = ui,j − ϕ(N) ∗ ui,j (82)

+ ψ
(N−1)
ijℓm ∗ σℓm + · · ·+ ψ

(0)
ijℓm ∗ σℓm (83)

+ ϕ(0) ∗ ui,j. (84)

Each of the terms in line (83) is easily estimated as follows

sup
x∈R3

|ψ
(ν)
ijℓm ∗ σℓm| ≤

∫

R3

|ψ
(ν)
ijℓm| dz sup

x∈R3

|σℓm|

=

∫

R3

|ψijℓm| dẑ sup
x∈R3

|σℓm|

≤ C sup
x

|σ|, (85)

where C denotes a generic constant only depending on p.
For the term in line (84) we obtain

|ϕ(0) ∗ ui,j(x)|
2 ≤

(∫

R3

|ϕ(0)(x− y)|2dy

) (∫

R3

|ui,j|
2 dy

)

≤ C

(∫

R3

|σ|2 dy

)
. (86)

We now address the term in line (82). We recall the Sobolev embedding
theorem for functions in W 1,p(R3),

|ui,j(x) − ui,j(y)| ≤ C |x− y|1−3/p

(∫

R3

|∇ui,j|
p dx

)1/p

, (87)

and Lemma 2 with the Lp(R3)–estimate for the Stokes operator:

(∫

R3

|∇2u|p dx

)1/p

≤ C

(∫

R3

|∇σ|p dx

)1/p

. (88)
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This allows to tackle the term in line (82):

|(ui,j − ϕ(N) ∗ ui,j)(x)|

(80)
=

∣∣∣∣
∫

R3

ϕ(N)(x− y) (ui,j(x) − ui,j(y)) dy

∣∣∣∣
(87,88)

≤ C

∫

R3

|ϕ(N)(z)| |z|1−3/p dz

(∫

R3

|∇ui,j|
p dx

)1/p

= C (2−N)1−3/p

∫

R3

|ϕ(ẑ)| |ẑ|1−3/p dẑ

(∫

R3

|∇σ|p dx

)1/p

= C 2−N(1−3/p)

(∫

R3

|∇σ|p dx

)1/p

. (89)

Combining (85), (86) & (89), we gather

sup
x∈R3

|∇u| ≤ C
(
2−N(1−3/p)

(∫

R3

|∇σ|p dx

)1/p

+N sup
x∈R3

|σ| +
(∫

R3

|σ|2dx
)1/2)

.

(90)

The Stokes system (44)-(45) in R3 is invariant under the rescaling

uℓ(x) =
1

ℓ2
u(ℓx) , σℓ(x) =

1

ℓ
σ(ℓx) , pℓ(x) =

1

ℓ
p(ℓx)

We apply (90) to the rescaled functions uℓ, σℓ and use the identities

‖σℓ‖L2(R3) = ℓ−
5

2‖σ‖L2(R3) , ‖∇xσℓ‖Lp(R3) = ℓ−
3

p‖∇xσ‖Lp(R3) ,

to obtain

sup
x∈R3

|∇u| ≤ C
(
2−N(1−3/p)ℓ1−

3

p‖∇xσ‖Lp(R3)

+N sup
x∈R3

|σ| + ℓ−
3

2‖σ‖L2(R3)

)
.

(91)

The interpolation estimate (91) depends on two parameters N and ℓ. We
proceed to optimize their selection.

First choose N ∈ N such that

2(N−1)(1−3/p) ≤ 1 +
ℓ1−3/p ‖∇xσ‖Lp(R3)

supx |σ|
≤ 2N(1−3/p),
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so that

N ≤ C

[
1 + ln

(
1 +

ℓ1−3/p ‖∇xσ‖Lp(R3)

supx |σ|

)]
.

Then (91) turns into

sup
x∈R3

|∇u| ≤

C

[[
1 + ln

(
1 +

ℓ1−3/p ‖∇xσ‖Lp(R3)

supx |σ|

)]
sup

x
|σ| + ℓ−3/2‖σ‖L2(R3)

]
.

(92)

Next we select

ℓ =

(
‖σ‖L2(R3)

supx |σ|

)2/3

in (92) and complete the proof of Proposition 2.

5 Appendix II.

The operator ∇n satisfies certain elementary properties that are extensively
used in this article: Let F be a vector-valued function and f , g be scalar-
valued functions, then

∫

S2

(∇n · F )fdn = −

∫

S2

F · (∇nf − 2nf)dn (93)
∫

S2

(∇n · ∇nf)gdn =

∫

S2

(∇n · ∇ng)fdn (94)
∫

S2

n⊗∇nfdn =

∫

S2

∇nf ⊗ n dn =

∫

S2

(3n⊗ n− id)fdn (95)

A convenient way to prove such formulas is by expressing them to spherical
coordinates, see [1, Appendix A.6 and E.6]. The change of variables for a
point P with Cartesian coordinates (nx, ny, nz) to spherical coordinates is

nx = r sin θ cosϕ , ny = r sin θ sinϕ , nz = r cos θ

where 0 < θ < π, 0 ≤ ϕ < 2π. Let er, eθ, eϕ be the orthonormal coordinate
system associated to spherical coordinates and attached at P . It satisfies the
derivative formulas

∂er

∂r
= 0 , ∂er

∂θ
= eθ ,

∂er

∂ϕ
= eϕ sin θ ,

∂eθ

∂r
= 0 , ∂eθ

∂θ
= −er ,

∂eθ

∂ϕ
= eϕ cos θ ,

∂eϕ

∂r
= 0 , ∂eϕ

∂θ
= 0 , ∂eϕ

∂ϕ
= −er sin θ − eθ cos θ .

(96)
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We visualize the sphere S2 as embedded in the Euclidean space. The operator
∇n is related to the gradient operator ∇ through

∇n = r(id − n⊗ n) · ∇ = eθ
∂

∂θ
+ eϕ

1

sin θ

∂

∂ϕ

For a scalar-valued function f

∇nf = eθ
∂f

∂θ
+ eϕ

1

sin θ

∂f

∂ϕ

△nf = ∇n · ∇nf =
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2

For a vector-valued function F , expressed in spherical coordinates in the form
F = Frer + Fθeθ + Fϕeϕ, we compute

∇n · F =

(
eθ
∂

∂θ
+ eϕ

1

sin θ

∂

∂ϕ

)
·
(
Frer + Fθeθ + Fϕeϕ

)

(96)
=

1

sin θ

∂

∂θ
(sin θFθ) +

1

sin θ

∂Fϕ

∂ϕ
+ 2Fr

Observe next that
∫

S2

(∇n · F )fdn =

∫∫ (
1

sin θ

∂

∂θ
(sin θFθ) +

1

sin θ

∂Fϕ

∂ϕ
+ 2Fr

)
f sin θ dθdϕ

= −

∫∫ (
−2Frf + Fθ

∂f

∂θ
+

1

sin θ
Fϕ
∂f

∂ϕ

)
sin θ dθdϕ

= −

∫

S2

F · (∇nf − 2nf)dn

gives (93). Formula (94) follows by applying (93) twice:

∫

S2

(∇n · ∇nf)gdn = −

∫

S2

∇nf · (∇ng − 2ng) dn

= −

∫

S2

∇nf · ∇ng dn

=

∫

S2

f(∇n · ∇ng)dn .
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Finally, using integration by parts, we have the chain of identities

∫

S2

n⊗∇nfdn

=

∫∫
er ⊗

(
eθ
∂f

∂θ
+ eϕ

1

sin θ

∂f

∂ϕ

)
sin θdθdϕ

= −

∫∫ [ ∂
∂θ

(er ⊗ eθ) +
cos θ

sin θ
er ⊗ eθ +

1

sin θ

∂

∂ϕ
(er ⊗ eϕ)

]
f sin θdθdϕ

(96)
= −

∫∫ [
eθ ⊗ eθ + eϕ ⊗ eϕ − 2er ⊗ er

]
f sin θdθdϕ

=

∫

S2

(3n⊗ n− id)fdn (97)

Since (a ⊗ b)t = b ⊗ a and the final equation in (97) is a symmetric tensor,
we deduce (95).
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