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1. Introduction

In this paper we will work on Rd with Lebesgue measure dx. We denote S(Rd) as the space of complex-valued

continuous functions on Rd rapidly decreasing at infinity. Let f be a complex valued measurable function

on Rd. The operators Txf (t) = f (t− x) and Mwf (t) = e2πiwtf (t) are called translation and modulation

operators for x,w ∈ Rd , respectively. The compositions

TxMwf (t) = e2πiw(t−x)f (t− x) or MwTxf (t) = e2πiwtf (t− x)

are called time-frequency shifts (see [9]) . We write
(
Lp
(
Rd
)
, ∥.∥p

)
as the Lebesgue spaces for 1 ≤ p ≤ ∞ .

For f ∈ L1
(
Rd
)
the Fourier transform

∧
f (or Ff ) is defined as

∧
f (t) =

∫
Rd

f (x) e−2πixtdx,

where xt =
d∑
i=1

xiti is the usual scalar product on Rd.

Fix a function g ̸= 0 (called the window function). The short-time Fourier transform (STFT) of a

function f with respect to g is given by

Vgf (x,w) =

∫
Rd

f (t) g (t− x)e−2πitwdt,
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for x,w ∈ Rd. It is known that if f, g ∈ L2
(
Rd
)
then Vgf ∈ L2

(
Rd × Rd

)
and Vgf is uniformly continuous

(see [9]) .

Let define V τg f as the function

V τg f (x,w) = Vgf

(
1

1− τ
x,

1

τ
w

)
for τ ∈ (0, 1) and (x,w) ∈ R2d. The generalized spectrogram depending on 2 windows ϕ, ψ is also defined as

Spϕψ (f, g) (x,w) = Vϕf (x,w)Vψg (x,w).

The cross-Wigner distribution of f, g ∈ L2
(
Rd
)
is defined to be

W (f, g) (x,w) =

∫
Rd

f

(
x+

t

2

)
g

(
x− t

2

)
e−2πitwdt.

If f = g , then W (f, f) =Wf is called the Wigner distribution of f ∈ L2
(
Rd
)
.

For τ ∈ [0, 1] and f, g ∈ S
(
Rd
)
, the τ -Wigner transform is defined as

Wτ (f, g) (x,w) =

∫
Rd

f (x+ τt) g (x− (1− τ) t)e−2πitwdt.

If τ = 1
2 , then the τ -Wigner transform is the cross-Wigner distribution. Moreover, for τ = 0, W0 is the

Rihaczek transform,

W0 (f, g) (x,w) = R (f, g) (x,w) = e−2πixwf (x)
∧
g (w),

and for τ = 1, W1 is the conjugate Rihaczek transform,

W1 (f, g) (x,w) = R (g, f) (x,w) = e2πixwg (x)
∧
f (w) .

For τ ∈ (0, 1) , the τ -Wigner transform can be rewritten as

Wτ (f, g) (x,w) =
1

|τ |d
e2πi

1
τ xwVAτgf

(
1

1− τ
x,

1

τ
w

)
, (1.1)

where the operator Aτ is defined by

Aτ : h (t) → h̃

(
1− τ

τ
t

)
with h̃ (t) = h (−t) (see [4, 5]) .

Let a ∈ S
(
R2d

)
, and then for τ ∈ [0, 1] , the τ -Weyl pseudo-differential operators with τ -symbol a

W a
τ : f →W a

τ f (x) =

∫
R2d

e2πi(x−y)wa ((1− τ)x+ τy, w) f (y) dydw

are defined as a continuous map from S
(
Rd
)
to itself (see [5]) .
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Fix a nonzero window g ∈ S
(
Rd
)
and 1 ≤ p, q ≤ ∞ . Then the modulation space Mp,q

(
Rd
)
consists of

all tempered distributions f ∈ S ′ (Rd) such that the short-time Fourier transform Vgf is in the mixed-norm

space Lp,q
(
R2d

)
. The norm on Mp,q

(
Rd
)
is ∥f∥Mp,q = ∥Vgf∥Lp,q . If p = q, then we write Mp

(
Rd
)
instead

of Mp,p
(
Rd
)
. Modulation spaces are Banach spaces whose definitions are independent of the choice of the

window g (see [7, 9]) .

L (p, q) spaces are function spaces that are closely related to Lp spaces. We consider complex valued

measurable functions f defined on a measure space (X,µ). The measure µ is assumed to be nonnegative.

We assume that the functions f are finite valued a.e. and some y > 0, µ (Ey) < ∞, where Ey = Ey [f ] =

{x ∈ X | |f (x)| > y} . Then, for y > 0,

λf (y) = µ (Ey) = µ ({x ∈ X | |f (x)| > y})

is the distribution function of f . The rearrangement of f is given by

f∗ (t) = inf {y > 0 | λf (y) ≤ t} = sup {y > 0 | λf (y) > t}

for t > 0. The average function of f is also defined by

f∗∗ (x) =
1

x

∫ x

0

f∗ (t) dt.

Note that λf , f
∗ , and f∗∗ are nonincreasing and right continuous functions on (0,∞) . If λf (y) is continuous

and strictly decreasing then f∗ (t) is the inverse function of λf (y) . The most important property of f∗ is that

it has the same distribution function as f. It follows that

(∫
X

|f (x)|p dµ (x)
) 1

p

=

(∫ ∞

0

[f∗ (t)]
p
dt

) 1
p

. (1.2)

The Lorentz space denoted by L (p, q) (X,µ) (shortly L (p, q)) is defined to be vector space of all

(equivalence classes) of measurable functions f such that ∥f∥∗pq <∞, where

∥f∥∗pq =


(
q
p

∫∞
0
t
q
p−1 [f∗ (t)]

q
dt
) 1

q

, 0 < p, q <∞
sup
t>0

t
1
p f∗ (t) , 0 < p ≤ q = ∞.

By (1.2), it follows that ∥f∥∗pp = ∥f∥p and so L(p, p) = Lp. Also, L(p, q)(X,µ) is a normed space with the

norm

∥f∥pq =


(
q
p

∫∞
0
t
q
p−1 [f∗∗ (t)]

q
dt
) 1

q

, 0 < p, q <∞
sup
t>0

t
1
p f∗∗ (t) , 0 < p ≤ q = ∞.

For any one of the cases p = q = 1; p = q = ∞ or 1 < p <∞ and 1 ≤ q ≤ ∞, the Lorentz space L(p, q)(X,µ)

is a Banach space with respect to the norm ∥.∥pq . It is also known that if 1 < p <∞ , 1 ≤ q ≤ ∞ we have
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∥.∥∗pq ≤ ∥.∥pq ≤
p

p− 1
∥.∥∗pq,

(see [11, 12]) .

It is known from [11] that L (∞, q) = {0} if q ̸= ∞ and L (∞, q) = L∞ if q = ∞. However, in [1, 2],

L (∞, q) are defined as the class of all measurable functions f for which f∗ (t) <∞ for all t > 0 and for which

f∗∗ (t)− f∗ (t) is a bounded function of t such that

∥f∥∞q =

(∫ ∞

0

[f∗∗ (t)− f∗ (t)]
q dt

t

) 1
q

<∞, 0 < q <∞.

Moreover, if q = 1, L (∞, 1) = L∞ and the norms coincide.

Let X and Y be 2 measure spaces with σ -finite measures µ and ν, respectively, and let f be a complex-

valued measurable function on (X × Y, µ× ν) , 1 < P = (p1, p2) <∞ and 1 ≤ Q = (q1, q2) ≤ ∞ . The Lorentz

mixed norm space L (P,Q) = L (P,Q) (X × Y ) is defined by

L (P,Q) = L (p2, q2) [L (p1, q1)] =

{
f : ∥f∥PQ = ∥f∥L(p2,q2)(L(p1,q1)) =

∥∥∥∥f∥p1q1∥∥∥p2q2 <∞
}
.

Thus, L (P,Q) occurs by taking an L (p1, q1)-norm with respect to the first variable and an L (p2, q2)-norm

with respect to the second variable. The L (P,Q) space is a Banach space under the norm ∥.∥PQ (see [3, 8]) .

Fix a window function g ∈ S
(
Rd
)
\ {0} , 1 ≤ P = (p1, p2) < ∞ and 1 ≤ Q = (q1, q2) ≤ ∞. We

let M (P,Q)
(
Rd
)
denote the subspace of tempered distributions S ′ (Rd) consisting of f ∈ S ′ (Rd) such that

the Gabor transform Vgf of f is in the Lorentz mixed norm space L (P,Q)
(
R2d

)
. We endow it with the

norm ∥f∥M(P,Q) = ∥Vgf∥PQ , where ∥.∥PQ is the norm of the Lorentz mixed norm space. It is known that

M (P,Q)
(
Rd
)
is a Banach space and different windows yield equivalent norms. If p1 = q1 = p and p2 = q2 = q,

then the space M (P,Q)
(
Rd
)
is the standard modulation space Mp,q

(
Rd
)
, and if P = p and Q = q, in this

case M (P,Q)
(
Rd
)
=M (p, q)

(
Rd
)
(see [14]) , where the space M (p, q)

(
Rd
)
is Lorentz type modulation space

(see [10]) . Furthermore, the space M (p, q)
(
Rd
)
was generalized to M (p, q, w)

(
Rd
)
by taking weighted Lorentz

space rather than Lorentz space (see [15, 16]) .

In this paper, we will denote the Lorentz space by L (p, q) , the Lorentz mixed norm space by L (P,Q) ,

the standard modulation space by Mp,q, the Lorentz type modulation space by M (p, q) , and the Lorentz

mixed normed modulation space by M (P,Q) .

In Section 2, we consider continuity for generalized spectrogram, τ -Wigner transform, and τ -Weyl

pseudo-differential operators acting on Lorentz spaces. We extend the results in [4, 5] to the Lorentz spaces.

In Section 3, we also study continuity properties of τ -Wigner transform on Lorentz mixed normed modulation

spaces. This result extends Proposition 2.5 in [6] and Proposition 15 in [14] since the τ -Wigner transform is the

cross-Wigner transform for τ = 1
2 and the similar sufficient conditions provide boundedness on both classical

and Lorentz mixed normed modulation spaces.
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2. Continuity of some operators on Lorentz spaces

In this section, we present L (p, q)-boundedness of generalized spectrogram, τ -Wigner transform, and τ -Weyl

pseudo-differential operators with τ -symbol a.

We begin with the following 2 Lemmas, will be used later on.

Lemma 1 If τ ∈ (0, 1) , 1 < p <∞ , 1 ≤ q ≤ ∞ and f ∈ L (p, q)
(
Rd, µ

)
, then we have

∥Aτf∥pq =
(

|τ |
|1− τ |

) d
p

∥f∥pq .

Proof Let τ ∈ (0, 1) and f ∈ L (p, q)
(
Rd, µ

)
. Then we have

λAτf (y) = µ
{
x ∈ Rd | |Aτf (x)| > y

}
= µ

{
x ∈ Rd |

∣∣∣∣f̃ (1− τ

τ
x

)∣∣∣∣ > y

}
= µ

{
x ∈ Rd |

∣∣∣∣f (τ − 1

τ
x

)∣∣∣∣ > y

}
= µ

{
τ

τ − 1
u ∈ Rd | |f (u)| > y

}

=

∣∣∣∣ τ

τ − 1

∣∣∣∣d µ{u ∈ Rd | |f (u)| > y
}
=

∣∣∣∣ τ

1− τ

∣∣∣∣d λf (y)
for y > 0. Thus, the rearrangement of Aτf is

(Aτf)
∗
(t) = inf {y > 0 | λAτf (y) ≤ t} = inf

{
y > 0 |

∣∣∣∣ τ

τ − 1

∣∣∣∣d λf (y) ≤ t

}

= inf

{
y > 0 | λf (y) ≤

∣∣∣∣1− τ

τ

∣∣∣∣d t
}

= f∗

(∣∣∣∣1− τ

τ

∣∣∣∣d t
)

for t > 0. Additionally, the average function of Aτf is

(Aτf)
∗∗

(x) =
1

x

x∫
0

(Aτf)
∗
(t) dt =

1

x

x∫
0

f∗

(∣∣∣∣1− τ

τ

∣∣∣∣d t
)
dt

=
1∣∣1−τ

τ

∣∣d x
| 1−τ

τ |dx∫
0

f∗ (u) du = f∗∗

(∣∣∣∣1− τ

τ

∣∣∣∣d x
)
.
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Hence, we obtain

∥Aτf∥pq =

q
p

∞∫
0

x
q
p−1

[
(Aτf)

∗∗
(x)
]q
dx

 1
q

=

q
p

∞∫
0

x
q
p−1

[
f∗∗

(∣∣∣∣1− τ

τ

∣∣∣∣d x
)]q

dx

 1
q

=

q
p

∞∫
0

∣∣∣∣ τ

1− τ

∣∣∣∣d(
q
p−1)

t
q
p−1 [f∗∗ (t)]

q

∣∣∣∣ τ

1− τ

∣∣∣∣d dt
 1

q

=

∣∣∣∣ τ

1− τ

∣∣∣∣ dp
q
p

∞∫
0

t
q
p−1 [f∗∗ (t)]

q
dt

 1
q

=

∣∣∣∣ τ

1− τ

∣∣∣∣ dp ∥f∥pq .

2

Lemma 2 For τ ∈ (0, 1) and 1 < p <∞, 1 ≤ q ≤ ∞, and then∥∥V τg f∥∥pq = (|1− τ | · |τ |)
d
p ∥Vgf∥pq ,

when Vgf ∈ L (p, q)
(
R2d

)
.

Proof Let υ is a measure on Rd. Then µ = υ × υ is a measure on R2d. Thus, the distribution function of

V τg f is

λV τ
g f (y) = µ

{
(x,w) ∈ R2d |

∣∣V τg f (x,w)∣∣ > y
}

= µ

{
(x,w) ∈ R2d |

∣∣∣∣Vgf ( 1

1− τ
x,

1

τ
w

)∣∣∣∣ > y

}
= µ

[{
x ∈ Rd |

∣∣∣∣Vgf ( 1

1− τ
x, .

)∣∣∣∣ > y

}
×
{
w ∈ Rd |

∣∣∣∣Vgf (., 1τ w
)∣∣∣∣ > y

}]
= υ

{
x ∈ Rd |

∣∣∣∣Vgf ( 1

1− τ
x, .

)∣∣∣∣ > y

}
υ

{
w ∈ Rd |

∣∣∣∣Vgf (., 1τ w
)∣∣∣∣ > y

}
= (|1− τ | · |τ |)dυ

{
u ∈ Rd | |Vgf (u, .)| > y

}
υ
{
v ∈ Rd | |Vgf (., v)| > y

}
= (|1− τ | · |τ |)dµ

{
(u, v) ∈ R2d | |Vgf (u, v)| > y

}
= (|1− τ | · |τ |)dλVgf (y)

for y > 0. Then the rearrangement function of V τg f is

(
V τg f

)∗
(t) = inf

{
y > 0 | λV τ

g f (y) ≤ t
}

= inf
{
y > 0 | (|1− τ | · |τ |)dλVgf (y) ≤ t

}
= inf

{
y > 0 | λVgf (y) ≤

t

(|1− τ | · |τ |)d

}
= (Vgf)

∗
(

t

(|1− τ | · |τ |)d

)
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for t > 0. Also, the average function of V τg f is

(
V τg f

)∗∗
(x) =

1

x

x∫
0

(
V τg f

)∗
(t) dt =

1

x

x∫
0

(Vgf)
∗
(

t

(|1− τ | · |τ |)d

)
dt

=
(|1− τ | · |τ |)d

x

x

(|1−τ|·|τ|)d∫
0

(Vgf)
∗
(u) du = (Vgf)

∗∗
(

x

(|1− τ | · |τ |)d

)
.

Thus, we have

∥∥V τg f∥∥pq =

q
p

∞∫
0

x
q
p−1

[(
V τg f

)∗∗
(x)
]q
dx

 1
q

=

q
p

∞∫
0

x
q
p−1

[
(Vgf)

∗∗
(

x

(|1− τ | · |τ |)d

)]q
dx

 1
q

= (|1− τ | · |τ |)
d
p

q
p

∞∫
0

t
q
p−1

[
(Vgf)

∗∗
(t)
]q
dt

 1
q

= (|1− τ | · |τ |)
d
p ∥Vgf∥pq .

2

We shall need the following continuity property of the short-time Fourier transform on Lorentz spaces in

order to prove the continuity properties concerning the generalized spectrogram and τ -Wigner transform.

Proposition 3 Let 1 < p < 2, 1
p + 1

p′ = 1, 1
p1

+ 1
p2
< 1, 1

p1
+ 1

p2
= 1

p′ , and q ≥ 1 be any number such that

1
q1

+ 1
q2

≥ 1
q . Then the Gabor transform

V : (f, g) ∈ L (p1, q1)
(
Rd
)
× L (p2, q2)

(
Rd
)
→ Vgf ∈ L (p, q)

(
R2d

)
is bounded. In particular,

∥Vgf∥pq ≤ C ∥f∥p1q1 ∥g∥p2q2 .

Proof Let f ∈ L (p1, q1)
(
Rd
)

and g ∈ L (p2, q2)
(
Rd
)
. Using the equality Vgf (x,w) = (f · Txg)∧ (w) ,

Theorem 4.3. in [11], and a generalization of Hölder’s inequality for Lorentz spaces (see [12]), we obtain

∥Vgf∥pq =
∥∥(f · Txg)∧

∥∥
pq

≤ ∥f · Txg∥p′q

≤ C ∥f∥p1q1 ∥Txg∥p2q2 = C ∥f∥p1q1 ∥g∥p2q2 .

This is the desired result.
2

Now we will state the continuity of Spϕψ on the Lorentz spaces.
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Theorem 4 Let 1 < p, p3, p4 < 2, 1
p +

1
p′ = 1, 1

p3
+ 1
p′3

= 1, 1
p4

+ 1
p′4

= 1 , 1
pi
+ 1
p′i

= 1 (i = 1, 2) , 1
p1

+ 1
p′1

= 1
p′3
,

1
p2

+ 1
p′2

= 1
p′4
, and q, q3, q4 ≥ 1 be numbers such that 1

q3
+ 1

q4
≥ 1

q ,
1
q1

+ 1
q′1

≥ 1
q3
, and 1

q2
+ 1

q′2
≥ 1

q4
. Then

(f, ϕ, g, ψ) → Spϕψ (f, g) = VϕfVψg is continuous from L (p1, q1)
(
Rd
)
× L (p′1, q

′
1)
(
Rd
)
× L (p2, q2)

(
Rd
)
×

L (p′2, q
′
2)
(
Rd
)
into L (p, q)

(
R2d

)
. In particular,

∥Spϕψ (f, g)∥pq =
∥∥VϕfVψg∥∥pq ≤ C ∥f∥p1q1 ∥ϕ∥p′1q′1 ∥g∥p2q2 ∥ψ∥p′2q′2 .

Proof By using Proposition 3, we write that

Vϕf : L (p1, q1)
(
Rd
)
× L (p′1, q

′
1)
(
Rd
)
→ L (p3, q3)

(
R2d

)
,

with
∥Vϕf∥p3q3 ≤ C ∥f∥p1q1 ∥ϕ∥p′1q′1

and

Vψg : L (p2, q2)
(
Rd
)
× L (p′2, q

′
2)
(
Rd
)
→ L (p4, q4)

(
R2d

)
with ∥∥Vψg∥∥p4q4 ≤ C ∥g∥p2q2 ∥ψ∥p′2q′2

being continuous. Hence, we get that Spϕψ (f, g) = VϕfVψg is continuous from L (p1, q1)
(
Rd
)
×L (p′1, q

′
1)
(
Rd
)
×

L (p2, q2)
(
Rd
)
× L (p′2, q

′
2)
(
Rd
)
into L (p3, q3)

(
R2d

)
· L (p4, q4)

(
R2d

)
with

∥Vϕf∥p3q3
∥∥Vψg∥∥p4q4 ≤ C ∥f∥p1q1 ∥ϕ∥p′1q′1 ∥g∥p2q2 ∥ψ∥p′2q′2 . (2.3)

We thus obtain that ∥∥VϕfVψg∥∥pq ≤ ∥Vϕf∥p3q3
∥∥Vψg∥∥p4q4 (2.4)

by the generalized Hölder inequality for Lorentz spaces. Moreover, (2.4) means that L (p3, q3)
(
R2d

)
·L (p4, q4)

(
R2d

)
is continuously embedded into L (p, q)

(
R2d

)
. Then by (2.3) and (2.4), we have the desired result. 2

Theorem 5 i. Assume that 1 < p < 2, 1
p +

1
p′ = 1, 1

p1
+ 1

p2
< 1, 1

p1
+ 1

p2
= 1

p′ , and q ≥ 1 is any number such

that 1
q1

+ 1
q2

≥ 1
q . Then for τ ∈ (0, 1) ,

Wτ : L (p1, q1)
(
Rd
)
× L (p2, q2)

(
Rd
)
→ L (p, q)

(
R2d

)
is continuous.

ii. Let 1 < p′ < 2, 1
p +

1
p′ = 1, 1 < r ≤ ∞, 0 < q, s ≤ ∞ and let the following 2 inequalities be satisfied:

1) max (q, r) ≤ s

2)
1

p
+

1

s
≤ 1

q
+

1

r
.

Then for τ = 0,

W0 : L (p, q)
(
Rd
)
× L (p′, r)

(
Rd
)
→ L (p, s)

(
R2d

)
735
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is continuous and holds
∥W0 (f, g)∥ps ≤ C ∥f∥pq ∥g∥p′r .

iii. Let 1 < p′ < 2, 1
p +

1
p′ = 1, 1 < q ≤ ∞, 0 < r, s ≤ ∞ and let the following 2 inequalities be satisfied:

1) max (q, r) ≤ s

2)
1

p
+

1

s
≤ 1

q
+

1

r
.

Then for τ = 1,

W1 : L (p′, q)
(
Rd
)
× L (p, r)

(
Rd
)
→ L (p, s)

(
R2d

)
is continuous. In particular,

∥W1 (f, g)∥ps ≤ C ∥f∥p′q ∥g∥pr .

Proof i. Using Lemma 1, Lemma 2, and Proposition 3, we have

∥Wτ (f, g)∥qpq =

∥∥∥∥∥ 1

|τ |d
e2πi

1
τ xwV τAτgf

∥∥∥∥∥
q

pq

=
1

|τ |dq
∥∥V τAτgf

∥∥q
pq

=
1

|τ |dq
(|1− τ | · |τ |)

dq
p ∥VAτgf∥

q
pq

≤ 1

|τ |dq
(|1− τ | · |τ |)

dq
p C ∥f∥qp1q1 ∥Aτg∥

q
p2q2

=
1

|τ |dq
(|1− τ | · |τ |)

dq
p C ∥f∥qp1q1

∣∣∣∣ τ

1− τ

∣∣∣∣
dq
p2

∥g∥qp2q2

= |τ |dq
(

1
p+

1
p2

−1
)
|1− τ |dq

(
1
p−

1
p2

)
C ∥f∥qp1q1 ∥g∥

q
p2q2

.

This completes the proof.

ii. Let f ∈ L (p, q)
(
Rd
)
and g ∈ L (p′, r)

(
Rd
)
. Then

∧
g ∈ L (p, r)

(
Rd
)
and∥∥∥∧g∥∥∥

pr
≤ B ∥g∥p′r (2.5)

by Theorem 4.3 in [11]. By using the equality W0 (f, g) (x,w) = e−2πixwf (x)
∧
g (w) = R (f, g) (x,w) , inequality

(2.5) , and Theorem 7.7 in [13], we get

∥W0 (f, g)∥ps = ∥R (f, g)∥ps ≤ K ∥f∥pq
∥∥∥∧g∥∥∥

pr

≤ C ∥f∥pq ∥g∥p′r .

This is the desired result.

iii. Let f ∈ L (p′, q)
(
Rd
)
and g ∈ L (p, r)

(
Rd
)
. Then

∧
f ∈ L (p, q)

(
Rd
)
and∥∥∥∥∧f∥∥∥∥

pq

≤ B ∥f∥p′q (2.6)
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by Theorem 4.3 in [11]. By using the equality W1 (f, g) (x,w) = e2πixwg (x)
∧
f (w) = R (g, f) (x,w) , inequality

(2.6) , and Theorem 7.7 in [13], we have

∥W1 (f, g)∥ps =
∥∥∥R (g, f)

∥∥∥
ps

≤ K

∥∥∥∥∧f∥∥∥∥
pq

∥g∥pr

≤ C ∥f∥p′q ∥g∥pr .

2

If (0,∞) is taken instead of Rd in Theorem 5 (ii) and (iii), then the boundedness of W0 (f, g) and

W1 (f, g) is equivalent to conditions (1) and (2) by Theorem 7.7 in [13].

In the next theorem the Lorentz mixed normed space L (P,Q)
(
R2d

)
is taken, where P = (p1, p2) and

Q = (q1, q2) , instead of the Lorentz space L (p, s)
(
R2d

)
as the range of W0 and W1.

Proposition 6 Let 1 < p1 <∞, 1 < p′2 < 2, 1
p2

+ 1
p′2

= 1, P = (p1, p2) , 1 ≤ Q = (q1, q2) ≤ ∞. For τ = 0, 1,

W0 : L (p1, q1)
(
Rd
)
× L (p′2, q2)

(
Rd
)
→ L (P,Q)

(
R2d

)
and

W1 : L (p′2, q2)
(
Rd
)
× L (p1, q1)

(
Rd
)
→ L (P,Q)

(
R2d

)
are continuous. In particular,

∥W0 (f, g)∥PQ ≤ B ∥f∥p1q1 ∥g∥p′2q2

and
∥W1 (f, g)∥PQ ≤ B ∥g∥p1q1 ∥f∥p′2q2 .

Proof If g ∈ L (p′2, q2)
(
Rd
)
, then

∧
g ∈ L (p2, q2)

(
Rd
)

and
∥∥∥∧g∥∥∥

p2q2
≤ ∥g∥p′2q2 . By using the equality

W0 (f, g) (x,w) = e−2πixwf (x)
∧
g (w) = R (f, g) (x,w) , we have

∥W0 (f, g)∥PQ = ∥R (f, g)∥PQ =
∥∥∥∥f∥p1q1(Rd

x)

∧
g
∥∥∥
p2q2(Rd

w)

= ∥f∥p1q1
∥∥∥∧g∥∥∥

p2q2

≤ B ∥f∥p1q1 ∥g∥p′2q2 ,

which proves the continuity of W0. The continuity of W1 is proved in a similar way to the continuity of W0. 2

The following Theorem is proven from Proposition 5.1 in [5] and Theorem 5.

Theorem 7 i. Let τ ∈ (0, 1) . A necessary and sufficient condition that

a ∈ L (p′, q′)
(
R2d

)
→W a

τ ∈ B
(
L (p2, q2)

(
Rd
)
, L (p′1, q

′
1)
(
Rd
))

is continuous is that 1 < p < 2, 1
p1

+ 1
p2
< 1, 1

p1
+ 1

p2
= 1

p′ , and q ≥ 1 be any number such that 1
q1

+ 1
q2

≥ 1
q ,

where p′, q′, p′1, and q′1 are the conjugates of p, q, p1, and q1.
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SANDIKÇI/Turk J Math

ii. Let τ = 0. A necessary and sufficient condition that

a ∈ L (p′, s′)
(
R2d

)
→W a

0 ∈ B
(
L (p′, r)

(
Rd
)
, L (p′, q′)

(
Rd
))

is continuous is that 1 < p′ < 2, 1
p +

1
p′ = 1, 1

q +
1
q′ = 1, 1

s +
1
s′ = 1, 1 < r ≤ ∞, 0 < q, s ≤ ∞ , and also that

the following 2 inequalities be satisfied:

1) max (q, r) ≤ s

2)
1

p
+

1

s
≤ 1

q
+

1

r
.

iii. Let τ = 1. A necessary and sufficient condition that

a ∈ L (p′, s′)
(
R2d

)
→W a

0 ∈ B
(
L (p, r)

(
Rd
)
, L (p, q′)

(
Rd
))

is continuous is that 1 < p′ < 2, 1
p + 1

p′ = 1, 1
q +

1
q′ = 1, 1

s +
1
s′ = 1, 1 < q ≤ ∞, 0 < r, s ≤ ∞ and also that

the following 2 inequalities be satisfied:

1) max (q, r) ≤ s

2)
1

p
+

1

s
≤ 1

q
+

1

r
.

3. Boundedness of τ -Wigner transform on Lorentz mixed normed modulation spaces

The aim of this section is to study continuity properties of the τ -Wigner transform when acting on the Lorentz

mixed normed modulation spaces.

In Proposition 8-10 below we have listed some properties for τ−Wigner transform. From these results

we then prove the continuity of the τ -Wigner transform.

Proposition 8 For f, g ∈ S
(
Rd
)
, τ ∈ [0, 1] and u, v, η, γ ∈ Rd, we have

Wτ (TuMηf, TvMγg) (x,w) = e2πix(η−γ)e2πiw(v−u)e2πi(γ−η)(τv+(1−τ)u)

Wτ (f, g) (x− (τv + (1− τ)u) , w − (τη + (1− τ) γ)) .

In particular,

Wτ (TuMηf) (x,w) =Wτf (x− u,w − η) . (3.7)

Proof For τ ∈ (0, 1) and u, v, η, γ ∈ Rd, we have

Wτ (TuMηf, TvMγg) (x,w)

=

∫
Rd

TuMηf (x+ τt)TvMγg (x− (1− τ) t)e−2πitwdt

=

∫
Rd

f ((x− u) + τt) g ((x− v)− (1− τ) t)e2πiη((x−u)+τt)e−2πiγ((x−v)−(1−τ)t)e−2πitwdt.
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We make the substitution z = x− u+ τt and obtain

Wτ (TuMηf, TvMγg) (x,w)

=
1

|τ |d

∫
Rd

f (z) g

(
−
(
1− τ

τ
z −

(
x

τ
− v − 1− τ

τ
u

)))
e2πiηze−2πiγ(− 1−τ

τ z+ x
τ −v− 1−τ

τ u)

e−2πiwτ (z−x+u)dz

=
1

|τ |d
e−2πiγ( x

τ −v− 1−τ
τ u)+2πiwτ (x−u)

∫
Rd

f (z) g∼
(
1− τ

τ

(
z −

(
x

1− τ
− τ

1− τ
v − u

)))

e−2πiz( 1
τ w−η− 1−τ

τ γ)dz

=
1

|τ |d
e−2πiγ( x

τ −v− 1−τ
τ u)+2πiwτ (x−u)

∫
Rd

f (z)Aτg

(
z −

(
x

1− τ
− τ

1− τ
v − u

))

e−2πiz( 1
τ w−η− 1−τ

τ γ)dz

=
1

|τ |d
e−2πiγ( x

τ −v− 1−τ
τ u)+2πiwτ (x−u)VAτgf

(
1

1− τ
(x− τv − (1− τ)u) ,

1

τ
(w − τη − (1− τ) γ)

)
.

Now, equality (1.1) is applied, we have the desired equality for τ ∈ (0, 1) .

Let τ = 0. For u, v, η, γ ∈ Rd, by using the equality (TvMγg)
∧
=M−vTγ

∧
g, we get

W0 (TuMηf, TvMγg) (x,w) = R (TuMηf, TvMγg) (x,w) = e−2πixw (TuMηf) (x) (TvMγg)
∧
(w)

= e−2πixwe2πiη(x−u)f (x− u)
(
M−vTγ

∧
g
)
(w)

= e2πix(η−γ)e2πiw(v−u)e2πiu(γ−η)e−2πi(x−u)(w−γ)f (x− u)
∧
g (w − γ)

= e2πix(η−γ)e2πiw(v−u)e2πiu(γ−η)W0 (f, g) (x− u,w − γ) .

Similarly, if τ = 1, for u, v, η, γ ∈ Rd, we obtain

W1 (TuMηf, TvMγg) (x,w) = R∗ (TuMηf, TvMγg) (x,w) = e2πixw(TvMγg) (x) (TuMηf)
∧
(w)

= e2πixwe2πiγ(x−v)g (x− v)

(
M−uTη

∧
f

)
(w)

= e2πix(η−γ)e2πiw(v−u)e2πiv(γ−η)e2πi(x−v)(w−η)g (x− v)
∧
f (w − η)

= e2πix(η−γ)e2πiw(v−u)e2πiv(γ−η)W1 (f, g) (x− v, w − η) .

2

Proposition 9 Let f, g ∈ S
(
Rd
)
and τ ∈ [0, 1] . Then we have

VTτξ2
M−(1−τ)ξ1

AτgTτξ2M−(1−τ)ξ1f (x,w) = e−2πi(x(1−τ)ξ1+wτξ2)VAτgf (x,w) , (3.8)

for x,w, ξ1, ξ2 ∈ Rd.
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Proof Assume that f, g ∈ S
(
Rd
)
and τ ∈ [0, 1] . Then we write

VTτξ2
M−(1−τ)ξ1

AτgTτξ2M−(1−τ)ξ1f (x,w) =
⟨
Tτξ2M−(1−τ)ξ1f,MwTxTτξ2M−(1−τ)ξ1Aτg

⟩
=

⟨
f,M(1−τ)ξ1T−τξ2MwTxTτξ2M−(1−τ)ξ1Aτg

⟩
.

Since

M(1−τ)ξ1T−τξ2MwTxTτξ2M−(1−τ)ξ1Aτg (t) = e2πit(1−τ)ξ1MwTxTτξ2M−(1−τ)ξ1Aτg (t+ τξ2)

= e2πit(1−τ)ξ1e2πiw(t+τξ2)M−(1−τ)ξ1Aτg (t− x)

= e2πit(1−τ)ξ1e2πiw(t+τξ2)e−2πi(1−τ)ξ1(t−x)Aτg (t− x)

= e2πi(x(1−τ)ξ1+wτξ2)e2πiwtAτg (t− x)

= e2πi(x(1−τ)ξ1+wτξ2)MwTxAτg (t) ,

we have

VTτξ2
M−(1−τ)ξ1

AτgTτξ2M−(1−τ)ξ1f (x,w) =
⟨
f, e2πi(x(1−τ)ξ1+wτξ2)MwTxAτg

⟩
= e−2πi(x(1−τ)ξ1+wτξ2) ⟨f,MwTxAτg⟩

= e−2πi(x(1−τ)ξ1+wτξ2)VAτgf (x,w) .

2Proposition 10 i) If f, g ∈ S
(
Rd
)
and τ ∈ [0, 1] , then Wτ (f, g) ∈ S

(
R2d

)
.

ii) Let φ ∈ S
(
Rd
)
and set Φ =Wτ (φ,φ) =Wτ (φ) ∈ S

(
R2d

)
. For τ ∈ (0, 1) , we have

VΦ (Wτ (f, g)) (z, ξ) = e−4πiz2τξ2Vφf (z1 − τξ2, z2 + (1− τ) ξ1)Vφg (z1 + τξ2, z2 − (1− τ) ξ1),

where z = (z1, z2) and ξ = (ξ1, ξ2) .

iii) For τ = 0, Φ =W0 (φ,φ) =W0 (φ) = R (φ) ∈ S
(
R2d

)
, and W0 (f, g) = R (f, g) , we have

VΦ (W0 (f, g)) (z, ξ) = VW0(φ) (W0 (f, g)) (z, ξ) = VR(φ) (R (f, g)) (z, ξ)

= e−2πiz2ξ2Vφf (z1, z2 + ξ1)Vφg (z1 + ξ2, z2).

iv) For τ = 1, Φ =W1 (φ,φ) =W1 (φ) = R (φ) ∈ S
(
R2d

)
, and W1 (f, g) = R (f, g) , we have

VΦ (W1 (f, g)) (z, ξ) = VW1(φ) (W1 (f, g)) (z, ξ) = V
R(φ)

(
R (f, g)

)
(z, ξ)

= e−2πiz2ξ2Vφf (z1 − ξ2, z2)Vφg (z1, z2 − ξ1).

Proof i) Since

Wτ (f, g) (x,w) =
1

|τ |d
e2πi

1
τ xwVAτgf

(
1

1− τ
x,

1

τ
w

)
,

for τ ∈ (0, 1) , we obtain Wτ (f, g) ∈ S
(
R2d

)
by using Theorem 11.2.5 in [9].
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If τ = 0, let f ⊗ g be the tensor product (f ⊗ g) (x, t) = f (x) g (t) , and set TaF (x, t) = F (x, x− t) .

Then we write

W0 (f, g) (x,w) = R (f, g) (x,w) =

∫
Rd

f (x) g (x− t)e−2πitwdt

=

∫
Rd

(f ⊗ g) (x, x− t) e−2πitwdt

=

∫
Rd

Ta (f ⊗ g) (x, t) e−2πitwdt

= F2Ta (f ⊗ g) (x,w) ,

where F2 is the Fourier transform with respect to the second variable. So, since f, g ∈ S
(
Rd
)
, then

f ⊗ g ∈ S
(
R2d

)
. Also, since S

(
R2d

)
is invariant under the transformation and the Fourier transform, then

W0 (f, g) ∈ S
(
R2d

)
.

For τ = 1, if we set TbF (x, t) = F (x+ t, x) , we get

W1 (f, g) (x,w) = R∗ (f, g) (x,w) = F2Tb (f ⊗ g) (x,w) .

Then, similarly to the case τ = 0, we have W1 (f, g) ∈ S
(
R2d

)
.

ii) If we use the equalities (1.1) and (3.7) , then we write

VΦ (Wτ (f, g)) (z, ξ)

=

∫∫
R2d

Wτ (f, g) (x,w)Wτ (φ) (x− z1, w − z2)e
−2πi(xξ1+wξ2)dxdw

=
1

|τ |d

∫∫
R2d

e2πi
1
τ xwVAτgf

(
1

1− τ
x,

1

τ
w

)
Wτ (Tz1Mz2φ) (x,w)e

−2πi(xξ1+wξ2)dxdw

=
1

|τ |2d

∫∫
R2d

VAτgf

(
1

1− τ
x,

1

τ
w

)
e2πi(−xξ1−wξ2)VAτ(Tz1Mz2φ)

(Tz1Mz2φ)

(
1

1− τ
x,

1

τ
w

)
dxdw

=
|1− τ |d

|τ |d

∫∫
R2d

VAτgf (x,w) e
2πi(−x(1−τ)ξ1−wτξ2)VAτ(Tz1Mz2φ)

(Tz1Mz2φ) (x,w)dxdw.

Additionally, if equality (3.8) and orthogonality relations (see Theorem 3.2.1 in [9]) are applied, then we get

VΦ (Wτ (f, g)) (z, ξ)

=
|1− τ |d

|τ |d

∫∫
R2d

VTτξ2
M−(1−τ)ξ1

AτgTτξ2M−(1−τ)ξ1f (x,w)VAτ(Tz1Mz2φ)
(Tz1Mz2φ) (x,w)dxdw

=
|1− τ |d

|τ |d
⟨
Tτξ2M−(1−τ)ξ1f, Tz1Mz2φ

⟩ ⟨
Tτξ2M−(1−τ)ξ1Aτg,Aτ (Tz1Mz2φ)

⟩
.
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The first factor on the right side of the equality is

⟨
Tτξ2M−(1−τ)ξ1f, Tz1Mz2φ

⟩
=

⟨
f,M(1−τ)ξ1Tz1−τξ2Mz2φ

⟩
=

∫
Rd

f (x) e−2πi(1−τ)ξ1xe−2πiz2(x−z1+τξ2)φ (x− z1 + τξ2)dx

= e2πiz2(z1−τξ2)
∫
Rd

f (x)φ (x− (z1 − τξ2))e
−2πix((1−τ)ξ1+z2)dx

= e2πiz2(z1−τξ2)Vφf (z1 − τξ2, z2 + (1− τ) ξ1) .

Also, since

Aτ (TuMηg) (x) = (TuMηg)
∼
(
1− τ

τ
x

)
= (TuMηg)

(
−1− τ

τ
x

)
= e−2πiη( 1−τ

τ x+u)g∼
(
1− τ

τ
x+ u

)
= T−uM−ηg

∼
(
1− τ

τ
x

)
= T−uM−ηAτg (x) ,

the second factor is

⟨
Tτξ2M−(1−τ)ξ1Aτg,Aτ (Tz1Mz2φ)

⟩
=

⟨
Aτ
(
T−τξ2M(1−τ)ξ1g

)
, Aτ (Tz1Mz2φ)

⟩
=

∫
Rd

(
T−τξ2M(1−τ)ξ1g

)∼(1− τ

τ
x

)
(Tz1Mz2φ)

∼
(
1− τ

τ
x

)
dx

=
|τ |d

|1− τ |d

∫
Rd

M(1−τ)ξ1g (−u+ τξ2)Mz2φ (−u− z1)du

=
|τ |d

|1− τ |d

∫
Rd

e2πi(1−τ)ξ1(−u+τξ2)g (−u+ τξ2)φ (−u− z1)e
−2πiz2(−u−z1)du

=
|τ |d

|1− τ |d
e2πiz2(z1+τξ2)

∫
Rd

g (x)φ (x− (z1 + τξ2))e
−2πix(z2−(1−τ)ξ1)dx

=
|τ |d

|1− τ |d
e2πiz2(z1+τξ2)Vφg (z1 + τξ2, z2 − (1− τ) ξ1) .
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Hence, we have

VΦ (Wτ (f, g)) (z, ξ)

=
|1− τ |d

|τ |d
e2πiz2(z1−τξ2)Vφf (z1 − τξ2, z2 + (1− τ) ξ1) ·

|τ |d

|1− τ |d
e2πiz2(z1+τξ2)Vφg (z1 + τξ2, z2 − (1− τ) ξ1)

= e−4πiz2τξ2Vφf (z1 − τξ2, z2 + (1− τ) ξ1)Vφg (z1 + τξ2, z2 − (1− τ) ξ1).

iii) For τ = 0, by using the equality Vgf (x,w) = e−2πixwV∧
g

∧
f (w,−x) , we get

VW0φ (W0 (f, g)) (z, ξ)

= ⟨W0 (f, g) ,MξTzW0φ⟩

=

∫∫
R2d

W0 (f, g) (x,w)MξTzW0φ (x,w)dxdw

=

∫∫
R2d

f (x)
∧
g (w)e−2πixwW0φ (x− z1, w − z2)e

−2πi(xξ1+wξ2)dxdw

=

∫∫
R2d

f (x)
∧
g (w)φ (x− z1)

∧
φ (w − z2)e

−2πi(xw+xξ1+wξ2−(x−z1)(w−z2))dxdw

= e2πiz1z2
∫
Rd

∫
Rd

f (x)φ (x− z1)e
−2πix(ξ1+z2)dx

 ∧
g (w)

∧
φ (w − z2) e

−2πiw(ξ2+z1)dw

= e2πiz1z2Vφf (z1,ξ1 + z2)

∫
Rd

∧
g (w)

∧
φ (w − z2)e2πiw(ξ2+z1)dw

= e2πiz1z2Vφf (z1,ξ1 + z2)V∧
φ

∧
g (z2,−z1 − ξ2)

= e−2πiz2ξ2Vφf (z1,ξ1 + z2)Vφg (z1 + ξ2, z2).

iv) It is proven by using the same proof technique as in iii. 2

We can now prove the continuity of the τ -Wigner transform for Lorentz mixed normed modulation
spaces.

Proposition 11 Let P = (1, p2) , Q = (q1, q2) , 1 ≤ Q < ∞ and 1 < p2 < ∞. If φ1 ∈ M1
(
Rd
)
, and

φ2 ∈M (p2, q2)
(
Rd
)
; then Wτ (φ2, φ1) ∈M (P,Q)

(
R2d

)
and satisfies

∥Wτ (φ2, φ1)∥M(P,Q) ≤ ∥φ1∥M1 ∥φ2∥M(p2,q2)

for τ ∈ [0, 1] .
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Proof Let φ1, φ2, g ∈ S
(
Rd
)
, τ ∈ [0, 1] , and Φ = Wτg ∈ S

(
R2d

)
. Then Wτ (φ2, φ1) ∈ S

(
R2d

)
and so

VΦ (Wτ (φ2, φ1)) ∈ S
(
R4d

)
by Proposition 10 (i) and Theorem 11.2.5 in [9], respectively. On the other hand,

if φ1 ∈ S
(
Rd
)
, then it is known that φ1 is in the standard modulation space M1

(
Rd
)
, and if φ2 ∈ S

(
Rd
)
,

then φ2 ∈M (p2, q2)
(
Rd
)
by Proposition 2.1 in [10].

For τ ∈ (0, 1) , Proposition 10 (ii) says that

|VΦWτ (φ2, φ1) (z, ξ)| = |Vgφ1 (z1 + τξ2, z2 − (1− τ) ξ1)| |Vgφ2 (z1 − τξ2, z2 + (1− τ) ξ1)| .

Write ξ̃ = (τξ2,− (1− τ) ξ1) and

|VΦWτ (φ2, φ1) (z, ξ)| =
∣∣∣Vgφ1

(
z + ξ̃

)∣∣∣ ∣∣∣Vgφ2

(
z − ξ̃

)∣∣∣ .
Thus, by using the inequality ∥.∥1q1 ≤ ∥.∥11 = ∥.∥1 when 1 ≤ q1 and changing variables z → z − ξ̃ , we have

∥VΦWτ (φ2, φ1)∥1q1 (ξ) ≤ ∥VΦWτ (φ2, φ1)∥1 (ξ)

=

∫
R2d

|Vgφ1 (z)|
∣∣∣Vgφ2

(
z − 2ξ̃

)∣∣∣ dz
= (|Vgφ1| ∗ |Vgφ∼

2 |)
(
2ξ̃
)
.

Again using the fact that the Lorentz space L (p2, q2)
(
R2d

)
is an essential Banach convolution module over

L1
(
R2d

)
, we obtain

∥Wτ (φ2, φ1)∥M(P,Q) =
∥∥∥∥VΦWτ (φ2, φ1)∥1q1

∥∥∥
p2q2

≤ ∥|Vgφ1| ∗ |Vgφ2|∥p2q2 ≤ ∥Vgφ1∥1 ∥Vgφ2∥p2q2
= ∥φ1∥M1 ∥φ2∥p2q2

for τ ∈ (0, 1) .

If τ = 0, then we write

|VΦW0 (φ2, φ1) (z, ξ)| = |VΦR (φ2, φ1) (z, ξ)| = |Vgφ1 (z1 + ξ2, z2)| |Vgφ2 (z1, z2 + ξ1)|

from Proposition 10 (iii), where Φ = W0g = R (g) ∈ S
(
R2d

)
. Changing variable z1 → z1 − ξ2 and writing

ξ̃ = (ξ2,−ξ1) , we get

∥VΦW0 (φ2, φ1)∥1q1 (ξ) ≤ ∥VΦW0 (φ2, φ1)∥1 (ξ)

=

∫
R2d

|Vgφ1 (z1 + ξ2, z2)| |Vgφ2 (z1, z2 + ξ1)| dz1dz2

=

∫
R2d

|Vgφ1 (z)|
∣∣∣Vgφ2

(
z − ξ̃

)∣∣∣ dz
= (|Vgφ1| ∗ |Vgφ∼

2 |)
(
ξ̃
)
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and
∥W0 (φ2, φ1)∥M(P,Q) = ∥R (φ2, φ1)∥M(P,Q) ≤ ∥φ1∥M1 ∥φ2∥M(p2,q2)

.

If we apply the same proof technique above for τ = 1, by using Proposition 10 (iv), we have

∥W1 (φ2, φ1)∥M(P,Q) = ∥R∗ (φ2, φ1)∥M(P,Q) ≤ ∥φ1∥M1 ∥φ2∥M(p2,q2)
.

2
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