Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2014) 38: $728-745$
(c) TÜBİTAK
doi:10.3906/mat-1311-43

Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces

Ayşe SANDIKÇI*

Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mays University, Kurupelit, Samsun, Turkey
Received: 19.11.2013 • Accepted: 02.01.2014 • Published Online: 25.04.2014 • Printed: 23.05 .2014

Abstract: We study various continuity properties for τ-Wigner transform on Lorentz spaces and τ-Weyl operators W_{τ}^{a} with symbols belonging to appropriate Lorentz spaces. We also study the action of τ-Wigner transform on Lorentz mixed normed modulation spaces.

Key words: τ-Wigner transform, τ-Weyl operators, Lorentz spaces, Lorentz mixed normed spaces, Lorentz mixed normed modulation spaces

1. Introduction

In this paper we will work on \mathbb{R}^{d} with Lebesgue measure $d x$. We denote $\mathcal{S}\left(\mathbb{R}^{d}\right)$ as the space of complex-valued continuous functions on \mathbb{R}^{d} rapidly decreasing at infinity. Let f be a complex valued measurable function on \mathbb{R}^{d}. The operators $T_{x} f(t)=f(t-x)$ and $M_{w} f(t)=e^{2 \pi i w t} f(t)$ are called translation and modulation operators for $x, w \in \mathbb{R}^{d}$, respectively. The compositions

$$
T_{x} M_{w} f(t)=e^{2 \pi i w(t-x)} f(t-x) \quad \text { or } \quad M_{w} T_{x} f(t)=e^{2 \pi i w t} f(t-x)
$$

are called time-frequency shifts (see [9]). We write $\left(L^{p}\left(\mathbb{R}^{d}\right),\|\cdot\|_{p}\right)$ as the Lebesgue spaces for $1 \leq p \leq \infty$.
For $f \in L^{1}\left(\mathbb{R}^{d}\right)$ the Fourier transform \hat{f} (or $\mathcal{F} f$) is defined as

$$
\hat{f}(t)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i x t} d x
$$

where $x t=\sum_{i=1}^{d} x_{i} t_{i}$ is the usual scalar product on \mathbb{R}^{d}.
Fix a function $g \neq 0$ (called the window function). The short-time Fourier transform (STFT) of a function f with respect to g is given by

$$
V_{g} f(x, w)=\int_{\mathbb{R}^{d}} f(t) \overline{g(t-x)} e^{-2 \pi i t w} d t,
$$

[^0]for $x, w \in \mathbb{R}^{d}$. It is known that if $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$ then $V_{g} f \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ and $V_{g} f$ is uniformly continuous (see [9]) .

Let define $V_{g}^{\tau} f$ as the function

$$
V_{g}^{\tau} f(x, w)=V_{g} f\left(\frac{1}{1-\tau} x, \frac{1}{\tau} w\right)
$$

for $\tau \in(0,1)$ and $(x, w) \in \mathbb{R}^{2 d}$. The generalized spectrogram depending on 2 windows ϕ, ψ is also defined as

$$
S p_{\phi \psi}(f, g)(x, w)=V_{\phi} f(x, w) \overline{V_{\psi} g(x, w)}
$$

The cross-Wigner distribution of $f, g \in L^{2}\left(\mathbb{R}^{d}\right)$ is defined to be

$$
W(f, g)(x, w)=\int_{\mathbb{R}^{d}} f\left(x+\frac{t}{2}\right) \overline{\left(x-\frac{t}{2}\right)} e^{-2 \pi i t w} d t
$$

If $f=g$, then $W(f, f)=W f$ is called the Wigner distribution of $f \in L^{2}\left(\mathbb{R}^{d}\right)$.
For $\tau \in[0,1]$ and $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, the τ-Wigner transform is defined as

$$
W_{\tau}(f, g)(x, w)=\int_{\mathbb{R}^{d}} f(x+\tau t) \overline{g(x-(1-\tau) t)} e^{-2 \pi i t w} d t
$$

If $\tau=\frac{1}{2}$, then the τ-Wigner transform is the cross-Wigner distribution. Moreover, for $\tau=0, W_{0}$ is the Rihaczek transform,

$$
W_{0}(f, g)(x, w)=R(f, g)(x, w)=e^{-2 \pi i x w} f(x) \overline{\hat{g}(w)}
$$

and for $\tau=1, W_{1}$ is the conjugate Rihaczek transform,

$$
W_{1}(f, g)(x, w)=\overline{R(g, f)}(x, w)=e^{2 \pi i x w} \overline{g(x)} \hat{f}(w)
$$

For $\tau \in(0,1)$, the τ-Wigner transform can be rewritten as

$$
\begin{equation*}
W_{\tau}(f, g)(x, w)=\frac{1}{|\tau|^{d}} e^{2 \pi i \frac{1}{\tau} x w} V_{A_{\tau} g} f\left(\frac{1}{1-\tau} x, \frac{1}{\tau} w\right) \tag{1.1}
\end{equation*}
$$

where the operator A_{τ} is defined by

$$
A_{\tau}: h(t) \rightarrow \widetilde{h}\left(\frac{1-\tau}{\tau} t\right)
$$

with $\widetilde{h}(t)=h(-t) \quad($ see $[4,5])$.
Let $a \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$, and then for $\tau \in[0,1]$, the τ-Weyl pseudo-differential operators with τ-symbol a

$$
W_{\tau}^{a}: f \rightarrow W_{\tau}^{a} f(x)=\int_{\mathbb{R}^{2 d}} e^{2 \pi i(x-y) w} a((1-\tau) x+\tau y, w) f(y) d y d w
$$

are defined as a continuous map from $\mathcal{S}\left(\mathbb{R}^{d}\right)$ to itself (see [5]).

Fix a nonzero window $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and $1 \leq p, q \leq \infty$. Then the modulation space $M^{p, q}\left(\mathbb{R}^{d}\right)$ consists of all tempered distributions $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that the short-time Fourier transform $V_{g} f$ is in the mixed-norm space $L^{p, q}\left(\mathbb{R}^{2 d}\right)$. The norm on $M^{p, q}\left(\mathbb{R}^{d}\right)$ is $\|f\|_{M^{p, q}}=\left\|V_{g} f\right\|_{L^{p, q}}$. If $p=q$, then we write $M^{p}\left(\mathbb{R}^{d}\right)$ instead of $M^{p, p}\left(\mathbb{R}^{d}\right)$. Modulation spaces are Banach spaces whose definitions are independent of the choice of the window $g($ see $[7,9])$.
$L(p, q)$ spaces are function spaces that are closely related to L^{p} spaces. We consider complex valued measurable functions f defined on a measure space (X, μ). The measure μ is assumed to be nonnegative. We assume that the functions f are finite valued a.e. and some $y>0, \mu\left(E_{y}\right)<\infty$, where $E_{y}=E_{y}[f]=$ $\{x \in X||f(x)|>y\}$. Then, for $y>0$,

$$
\lambda_{f}(y)=\mu\left(E_{y}\right)=\mu(\{x \in X| | f(x) \mid>y\})
$$

is the distribution function of f. The rearrangement of f is given by

$$
f^{*}(t)=\inf \left\{y>0 \mid \lambda_{f}(y) \leq t\right\}=\sup \left\{y>0 \mid \lambda_{f}(y)>t\right\}
$$

for $t>0$. The average function of f is also defined by

$$
f^{* *}(x)=\frac{1}{x} \int_{0}^{x} f^{*}(t) d t
$$

Note that λ_{f}, f^{*}, and $f^{* *}$ are nonincreasing and right continuous functions on $(0, \infty)$. If $\lambda_{f}(y)$ is continuous and strictly decreasing then $f^{*}(t)$ is the inverse function of $\lambda_{f}(y)$. The most important property of f^{*} is that it has the same distribution function as f. It follows that

$$
\begin{equation*}
\left(\int_{X}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}=\left(\int_{0}^{\infty}\left[f^{*}(t)\right]^{p} d t\right)^{\frac{1}{p}} \tag{1.2}
\end{equation*}
$$

The Lorentz space denoted by $L(p, q)(X, \mu)$ (shortly $L(p, q)$) is defined to be vector space of all (equivalence classes) of measurable functions f such that $\|f\|_{p q}^{*}<\infty$, where

$$
\|f\|_{p q}^{*}= \begin{cases}\left(\frac{q}{p} \int_{0}^{\infty} t^{\frac{q}{p}-1}\left[f^{*}(t)\right]^{q} d t\right)^{\frac{1}{q}}, & 0<p, q<\infty \\ \sup _{t>0} t^{\frac{1}{p}} f^{*}(t), & 0<p \leq q=\infty\end{cases}
$$

By (1.2), it follows that $\|f\|_{p p}^{*}=\|f\|_{p}$ and so $L(p, p)=L^{p}$. Also, $L(p, q)(X, \mu)$ is a normed space with the norm

$$
\|f\|_{p q}= \begin{cases}\left(\frac{q}{p} \int_{0}^{\infty} t^{\frac{q}{p}-1}\left[f^{* *}(t)\right]^{q} d t\right)^{\frac{1}{q}}, & 0<p, q<\infty \\ \sup _{t>0} t^{\frac{1}{p}} f^{* *}(t), & 0<p \leq q=\infty\end{cases}
$$

For any one of the cases $p=q=1 ; p=q=\infty$ or $1<p<\infty$ and $1 \leq q \leq \infty$, the Lorentz space $L(p, q)(X, \mu)$ is a Banach space with respect to the norm $\|\cdot\|_{p q}$. It is also known that if $1<p<\infty, 1 \leq q \leq \infty$ we have

$$
\|\cdot\|_{p q}^{*} \leq\|\cdot\|_{p q} \leq \frac{p}{p-1}\|\cdot\|_{p q}^{*},
$$

(see [11, 12]).
It is known from [11] that $L(\infty, q)=\{0\}$ if $q \neq \infty$ and $L(\infty, q)=L^{\infty}$ if $q=\infty$. However, in [1, 2], $L(\infty, q)$ are defined as the class of all measurable functions f for which $f^{*}(t)<\infty$ for all $t>0$ and for which $f^{* *}(t)-f^{*}(t)$ is a bounded function of t such that

$$
\|f\|_{\infty q}=\left(\int_{0}^{\infty}\left[f^{* *}(t)-f^{*}(t)\right]^{q} \frac{d t}{t}\right)^{\frac{1}{q}}<\infty, \quad 0<q<\infty
$$

Moreover, if $q=1, L(\infty, 1)=L^{\infty}$ and the norms coincide.
Let X and Y be 2 measure spaces with σ-finite measures μ and ν, respectively, and let f be a complexvalued measurable function on $(X \times Y, \mu \times \nu), 1<P=\left(p_{1}, p_{2}\right)<\infty$ and $1 \leq Q=\left(q_{1}, q_{2}\right) \leq \infty$. The Lorentz mixed norm space $L(P, Q)=L(P, Q)(X \times Y)$ is defined by

$$
L(P, Q)=L\left(p_{2}, q_{2}\right)\left[L\left(p_{1}, q_{1}\right)\right]=\left\{f:\|f\|_{P Q}=\|f\|_{L\left(p_{2}, q_{2}\right)\left(L\left(p_{1}, q_{1}\right)\right)}=\| \| f\left\|_{p_{1} q_{1}}\right\|_{p_{2} q_{2}}<\infty\right\}
$$

Thus, $L(P, Q)$ occurs by taking an $L\left(p_{1}, q_{1}\right)$-norm with respect to the first variable and an $L\left(p_{2}, q_{2}\right)$-norm with respect to the second variable. The $L(P, Q)$ space is a Banach space under the norm $\|\cdot\|_{P Q}($ see $[3,8])$.

Fix a window function $g \in \mathcal{S}\left(\mathbb{R}^{d}\right) \backslash\{0\}, 1 \leq P=\left(p_{1}, p_{2}\right)<\infty$ and $1 \leq Q=\left(q_{1}, q_{2}\right) \leq \infty$. We let $M(P, Q)\left(\mathbb{R}^{d}\right)$ denote the subspace of tempered distributions $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ consisting of $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ such that the Gabor transform $V_{g} f$ of f is in the Lorentz mixed norm space $L(P, Q)\left(\mathbb{R}^{2 d}\right)$. We endow it with the norm $\|f\|_{M(P, Q)}=\left\|V_{g} f\right\|_{P Q}$, where $\|\cdot\|_{P Q}$ is the norm of the Lorentz mixed norm space. It is known that $M(P, Q)\left(\mathbb{R}^{d}\right)$ is a Banach space and different windows yield equivalent norms. If $p_{1}=q_{1}=p$ and $p_{2}=q_{2}=q$, then the space $M(P, Q)\left(\mathbb{R}^{d}\right)$ is the standard modulation space $M^{p, q}\left(\mathbb{R}^{d}\right)$, and if $P=p$ and $Q=q$, in this case $M(P, Q)\left(\mathbb{R}^{d}\right)=M(p, q)\left(\mathbb{R}^{d}\right)$ (see [14]), where the space $M(p, q)\left(\mathbb{R}^{d}\right)$ is Lorentz type modulation space (see [10]). Furthermore, the space $M(p, q)\left(\mathbb{R}^{d}\right)$ was generalized to $M(p, q, w)\left(\mathbb{R}^{d}\right)$ by taking weighted Lorentz space rather than Lorentz space (see $[15,16]$).

In this paper, we will denote the Lorentz space by $L(p, q)$, the Lorentz mixed norm space by $L(P, Q)$, the standard modulation space by $M^{p, q}$, the Lorentz type modulation space by $M(p, q)$, and the Lorentz mixed normed modulation space by $M(P, Q)$.

In Section 2, we consider continuity for generalized spectrogram, τ-Wigner transform, and τ-Weyl pseudo-differential operators acting on Lorentz spaces. We extend the results in [4, 5] to the Lorentz spaces. In Section 3, we also study continuity properties of τ-Wigner transform on Lorentz mixed normed modulation spaces. This result extends Proposition 2.5 in [6] and Proposition 15 in [14] since the τ-Wigner transform is the cross-Wigner transform for $\tau=\frac{1}{2}$ and the similar sufficient conditions provide boundedness on both classical and Lorentz mixed normed modulation spaces.

SANDIKÇI/Turk J Math

2. Continuity of some operators on Lorentz spaces

In this section, we present $L(p, q)$-boundedness of generalized spectrogram, τ-Wigner transform, and τ-Weyl pseudo-differential operators with τ-symbol a.

We begin with the following 2 Lemmas, will be used later on.

Lemma 1 If $\tau \in(0,1), 1<p<\infty, 1 \leq q \leq \infty$ and $f \in L(p, q)\left(\mathbb{R}^{d}, \mu\right)$, then we have

$$
\left\|A_{\tau} f\right\|_{p q}=\left(\frac{|\tau|}{|1-\tau|}\right)^{\frac{d}{p}}\|f\|_{p q}
$$

Proof Let $\tau \in(0,1)$ and $f \in L(p, q)\left(\mathbb{R}^{d}, \mu\right)$. Then we have

$$
\begin{aligned}
\lambda_{A_{\tau} f}(y) & =\mu\left\{x \in \mathbb{R}^{d}| | A_{\tau} f(x) \mid>y\right\}=\mu\left\{\left.x \in \mathbb{R}^{d}| | \tilde{f}\left(\frac{1-\tau}{\tau} x\right) \right\rvert\,>y\right\} \\
& =\mu\left\{\left.x \in \mathbb{R}^{d}| | f\left(\frac{\tau-1}{\tau} x\right) \right\rvert\,>y\right\} \\
& =\mu\left\{\left.\frac{\tau}{\tau-1} u \in \mathbb{R}^{d}| | f(u) \right\rvert\,>y\right\} \\
& =\left|\frac{\tau}{\tau-1}\right|^{d} \mu\left\{u \in \mathbb{R}^{d}| | f(u) \mid>y\right\}=\left|\frac{\tau}{1-\tau}\right|^{d} \lambda_{f}(y)
\end{aligned}
$$

for $y>0$. Thus, the rearrangement of $A_{\tau} f$ is

$$
\begin{aligned}
\left(A_{\tau} f\right)^{*}(t) & =\inf \left\{y>0 \mid \lambda_{A_{\tau} f}(y) \leq t\right\}=\inf \left\{y>\left.0| | \frac{\tau}{\tau-1}\right|^{d} \lambda_{f}(y) \leq t\right\} \\
& =\inf \left\{y>0\left|\lambda_{f}(y) \leq\left|\frac{1-\tau}{\tau}\right|^{d} t\right\}=f^{*}\left(\left|\frac{1-\tau}{\tau}\right|^{d} t\right)\right.
\end{aligned}
$$

for $t>0$. Additionally, the average function of $A_{\tau} f$ is

$$
\begin{aligned}
\left(A_{\tau} f\right)^{* *}(x) & =\frac{1}{x} \int_{0}^{x}\left(A_{\tau} f\right)^{*}(t) d t=\frac{1}{x} \int_{0}^{x} f^{*}\left(\left|\frac{1-\tau}{\tau}\right|^{d} t\right) d t \\
& =\frac{1}{\left|\frac{1-\tau}{\tau}\right|^{d} x} \int_{0}^{\left|\frac{1-\tau}{\tau}\right|^{d} x} f^{*}(u) d u=f^{* *}\left(\left|\frac{1-\tau}{\tau}\right|^{d} x\right) .
\end{aligned}
$$

SANDIKÇI/Turk J Math

Hence, we obtain

$$
\begin{aligned}
\left\|A_{\tau} f\right\|_{p q} & =\left(\frac{q}{p} \int_{0}^{\infty} x^{\frac{q}{p}-1}\left[\left(A_{\tau} f\right)^{* *}(x)\right]^{q} d x\right)^{\frac{1}{q}}=\left(\frac{q}{p} \int_{0}^{\infty} x^{\frac{q}{p}-1}\left[f^{* *}\left(\left|\frac{1-\tau}{\tau}\right|^{d} x\right)\right]^{q} d x\right)^{\frac{1}{q}} \\
& =\left(\frac{q}{p} \int_{0}^{\infty}\left|\frac{\tau}{1-\tau}\right|^{d\left(\frac{q}{p}-1\right)} t^{\frac{q}{p}-1}\left[f^{* *}(t)\right]^{q}\left|\frac{\tau}{1-\tau}\right|^{d} d t\right)^{\frac{1}{q}} \\
& =\left|\frac{\tau}{1-\tau}\right|^{\frac{d}{p}}\left(\frac{q}{p} \int_{0}^{\infty} t^{\frac{q}{p}-1}\left[f^{* *}(t)\right]^{q} d t\right)^{\frac{1}{q}} \\
& =\left|\frac{\tau}{1-\tau}\right|^{\frac{d}{p}}\|f\|_{p q} .
\end{aligned}
$$

Lemma 2 For $\tau \in(0,1)$ and $1<p<\infty, 1 \leq q \leq \infty$, and then

$$
\left\|V_{g}^{\tau} f\right\|_{p q}=(|1-\tau| \cdot|\tau|)^{\frac{d}{p}}\left\|V_{g} f\right\|_{p q}
$$

when $V_{g} f \in L(p, q)\left(\mathbb{R}^{2 d}\right)$.
Proof Let v is a measure on \mathbb{R}^{d}. Then $\mu=v \times v$ is a measure on $\mathbb{R}^{2 d}$. Thus, the distribution function of $V_{g}^{\tau} f$ is

$$
\begin{aligned}
\lambda_{V_{g}^{\tau} f}(y) & =\mu\left\{(x, w) \in \mathbb{R}^{2 d}| | V_{g}^{\tau} f(x, w) \mid>y\right\} \\
& =\mu\left\{\left.(x, w) \in \mathbb{R}^{2 d}| | V_{g} f\left(\frac{1}{1-\tau} x, \frac{1}{\tau} w\right) \right\rvert\,>y\right\} \\
& =\mu\left[\left\{\left.x \in \mathbb{R}^{d}| | V_{g} f\left(\frac{1}{1-\tau} x, .\right) \right\rvert\,>y\right\} \times\left\{\left.w \in \mathbb{R}^{d}| | V_{g} f\left(., \frac{1}{\tau} w\right) \right\rvert\,>y\right\}\right] \\
& =v\left\{\left.x \in \mathbb{R}^{d}| | V_{g} f\left(\frac{1}{1-\tau} x, .\right) \right\rvert\,>y\right\} v\left\{\left.w \in \mathbb{R}^{d}| | V_{g} f\left(., \frac{1}{\tau} w\right) \right\rvert\,>y\right\} \\
& =(|1-\tau| \cdot|\tau|)^{d} v\left\{u \in \mathbb{R}^{d}| | V_{g} f(u, .) \mid>y\right\} v\left\{v \in \mathbb{R}^{d}| | V_{g} f(., v) \mid>y\right\} \\
& =(|1-\tau| \cdot|\tau|)^{d} \mu\left\{(u, v) \in \mathbb{R}^{2 d}| | V_{g} f(u, v) \mid>y\right\} \\
& =(|1-\tau| \cdot|\tau|)^{d} \lambda_{V_{g} f}(y)
\end{aligned}
$$

for $y>0$. Then the rearrangement function of $V_{g}^{\tau} f$ is

$$
\begin{aligned}
\left(V_{g}^{\tau} f\right)^{*}(t) & =\inf \left\{y>0 \mid \lambda_{V_{g}^{\tau} f}(y) \leq t\right\} \\
& =\inf \left\{y>0 \mid(|1-\tau| \cdot|\tau|)^{d} \lambda_{V_{g} f}(y) \leq t\right\} \\
& =\inf \left\{y>0 \left\lvert\, \lambda_{V_{g} f}(y) \leq \frac{t}{(|1-\tau| \cdot|\tau|)^{d}}\right.\right\}=\left(V_{g} f\right)^{*}\left(\frac{t}{(|1-\tau| \cdot|\tau|)^{d}}\right)
\end{aligned}
$$

for $t>0$. Also, the average function of $V_{g}^{\tau} f$ is

$$
\begin{aligned}
\left(V_{g}^{\tau} f\right)^{* *}(x) & =\frac{1}{x} \int_{0}^{x}\left(V_{g}^{\tau} f\right)^{*}(t) d t=\frac{1}{x} \int_{0}^{x}\left(V_{g} f\right)^{*}\left(\frac{t}{(|1-\tau| \cdot|\tau|)^{d}}\right) d t \\
& =\frac{(|1-\tau| \cdot|\tau|)^{d}}{x} \int_{0}^{\frac{x}{(|1-\tau| \cdot|\tau|)^{d}}}\left(V_{g} f\right)^{*}(u) d u=\left(V_{g} f\right)^{* *}\left(\frac{x}{(|1-\tau| \cdot|\tau|)^{d}}\right)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\left\|V_{g}^{\tau} f\right\|_{p q} & =\left(\frac{q}{p} \int_{0}^{\infty} x^{\frac{q}{p}-1}\left[\left(V_{g}^{\tau} f\right)^{* *}(x)\right]^{q} d x\right)^{\frac{1}{q}} \\
& =\left(\frac{q}{p} \int_{0}^{\infty} x^{\frac{q}{p}-1}\left[\left(V_{g} f\right)^{* *}\left(\frac{x}{(|1-\tau| \cdot|\tau|)^{d}}\right)\right]^{q} d x\right)^{\frac{1}{q}} \\
& =(|1-\tau| \cdot|\tau|)^{\frac{d}{p}}\left(\frac{q}{p} \int_{0}^{\infty} t^{\frac{q}{p}-1}\left[\left(V_{g} f\right)^{* *}(t)\right]^{q} d t\right)^{\frac{1}{q}} \\
& =(|1-\tau| \cdot|\tau|)^{\frac{d}{p}}\left\|V_{g} f\right\|_{p q}
\end{aligned}
$$

We shall need the following continuity property of the short-time Fourier transform on Lorentz spaces in order to prove the continuity properties concerning the generalized spectrogram and τ-Wigner transform.

Proposition 3 Let $1<p<2, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{p_{1}}+\frac{1}{p_{2}}<1, \frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p^{\prime}}$, and $q \geq 1$ be any number such that $\frac{1}{q_{1}}+\frac{1}{q_{2}} \geq \frac{1}{q}$. Then the Gabor transform

$$
V:(f, g) \in L\left(p_{1}, q_{1}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right) \rightarrow V_{g} f \in L(p, q)\left(\mathbb{R}^{2 d}\right)
$$

is bounded. In particular,

$$
\left\|V_{g} f\right\|_{p q} \leq C\|f\|_{p_{1} q_{1}}\|g\|_{p_{2} q_{2}}
$$

Proof Let $f \in L\left(p_{1}, q_{1}\right)\left(\mathbb{R}^{d}\right)$ and $g \in L\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right)$. Using the equality $V_{g} f(x, w)=\left(f \cdot T_{x} g\right)^{\wedge}(w)$, Theorem 4.3. in [11], and a generalization of Hölder's inequality for Lorentz spaces (see [12]), we obtain

$$
\begin{aligned}
\left\|V_{g} f\right\|_{p q} & =\left\|\left(f \cdot T_{x} g\right)^{\wedge}\right\|_{p q} \leq\left\|f \cdot T_{x} g\right\|_{p^{\prime} q} \\
& \leq C\|f\|_{p_{1} q_{1}}\left\|T_{x} g\right\|_{p_{2} q_{2}}=C\|f\|_{p_{1} q_{1}}\|g\|_{p_{2} q_{2}}
\end{aligned}
$$

This is the desired result.

Now we will state the continuity of $S p_{\phi \psi}$ on the Lorentz spaces.

Theorem 4 Let $1<p, p_{3}, p_{4}<2, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{p_{3}}+\frac{1}{p_{3}^{\prime}}=1, \frac{1}{p_{4}}+\frac{1}{p_{4}^{\prime}}=1, \frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=1(i=1,2), \frac{1}{p_{1}}+\frac{1}{p_{1}^{\prime}}=\frac{1}{p_{3}^{\prime}}$, $\frac{1}{p_{2}}+\frac{1}{p_{2}^{\prime}}=\frac{1}{p_{4}^{\prime}}$, and $q, q_{3}, q_{4} \geq 1$ be numbers such that $\frac{1}{q_{3}}+\frac{1}{q_{4}} \geq \frac{1}{q}, \frac{1}{q_{1}}+\frac{1}{q_{1}^{\prime}} \geq \frac{1}{q_{3}}$, and $\frac{1}{q_{2}}+\frac{1}{q_{2}^{\prime}} \geq \frac{1}{q_{4}}$. Then $(f, \phi, g, \psi) \rightarrow S p_{\phi \psi}(f, g)=V_{\phi} f \overline{V_{\psi} g}$ is continuous from $L\left(p_{1}, q_{1}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{1}^{\prime}, q_{1}^{\prime}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right) \times$ $L\left(p_{2}^{\prime}, q_{2}^{\prime}\right)\left(\mathbb{R}^{d}\right)$ into $L(p, q)\left(\mathbb{R}^{2 d}\right)$. In particular,

$$
\left\|S p_{\phi \psi}(f, g)\right\|_{p q}=\left\|V_{\phi} f \overline{V_{\psi} g}\right\|_{p q} \leq C\|f\|_{p_{1} q_{1}}\|\phi\|_{p_{1}^{\prime} q_{1}^{\prime}}\|g\|_{p_{2} q_{2}}\|\psi\|_{p_{2}^{\prime} q_{2}^{\prime}} .
$$

Proof By using Proposition 3, we write that

$$
V_{\phi} f: L\left(p_{1}, q_{1}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{1}^{\prime}, q_{1}^{\prime}\right)\left(\mathbb{R}^{d}\right) \rightarrow L\left(p_{3}, q_{3}\right)\left(\mathbb{R}^{2 d}\right),
$$

with

$$
\left\|V_{\phi} f\right\|_{p_{3} q_{3}} \leq C\|f\|_{p_{1} q_{1}}\|\phi\|_{p_{1}^{\prime} q_{1}^{\prime}}
$$

and

$$
V_{\psi} g: L\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{2}^{\prime}, q_{2}^{\prime}\right)\left(\mathbb{R}^{d}\right) \rightarrow L\left(p_{4}, q_{4}\right)\left(\mathbb{R}^{2 d}\right)
$$

with

$$
\left\|\overline{V_{\psi} g}\right\|_{p_{4} q_{4}} \leq C\|g\|_{p_{2} q_{2}}\|\psi\|_{p_{2}^{\prime} q_{2}^{\prime}}
$$

being continuous. Hence, we get that $S p_{\phi \psi}(f, g)=V_{\phi} f \overline{V_{\psi} g}$ is continuous from $L\left(p_{1}, q_{1}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{1}^{\prime}, q_{1}^{\prime}\right)\left(\mathbb{R}^{d}\right) \times$ $L\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{2}^{\prime}, q_{2}^{\prime}\right)\left(\mathbb{R}^{d}\right)$ into $L\left(p_{3}, q_{3}\right)\left(\mathbb{R}^{2 d}\right) \cdot L\left(p_{4}, q_{4}\right)\left(\mathbb{R}^{2 d}\right)$ with

$$
\begin{equation*}
\left\|V_{\phi} f\right\|_{p_{3} q_{3}}\left\|\overline{V_{\psi} g}\right\|_{p_{4} q_{4}} \leq C\|f\|_{p_{1} q_{1}}\|\phi\|_{p_{1}^{\prime} q_{1}^{\prime}}\|g\|_{p_{2} q_{2}}\|\psi\|_{p_{2}^{\prime} q_{2}^{\prime}} \tag{2.3}
\end{equation*}
$$

We thus obtain that

$$
\begin{equation*}
\left\|V_{\phi} f \overline{V_{\psi} g}\right\|_{p_{q}} \leq\left\|V_{\phi} f\right\|_{p_{3} q_{3}}\left\|\overline{V_{\psi} g}\right\|_{p_{4} q_{4}} \tag{2.4}
\end{equation*}
$$

by the generalized Hölder inequality for Lorentz spaces. Moreover, (2.4) means that $L\left(p_{3}, q_{3}\right)\left(\mathbb{R}^{2 d}\right) \cdot L\left(p_{4}, q_{4}\right)\left(\mathbb{R}^{2 d}\right)$ is continuously embedded into $L(p, q)\left(\mathbb{R}^{2 d}\right)$. Then by (2.3) and (2.4), we have the desired result.

Theorem 5 i. Assume that $1<p<2, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{p_{1}}+\frac{1}{p_{2}}<1, \frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p^{\prime}}$, and $q \geq 1$ is any number such that $\frac{1}{q_{1}}+\frac{1}{q_{2}} \geq \frac{1}{q}$. Then for $\tau \in(0,1)$,

$$
W_{\tau}: L\left(p_{1}, q_{1}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right) \rightarrow L(p, q)\left(\mathbb{R}^{2 d}\right)
$$

is continuous.
ii. Let $1<p^{\prime}<2, \frac{1}{p}+\frac{1}{p^{\prime}}=1,1<r \leq \infty, 0<q, s \leq \infty$ and let the following 2 inequalities be satisfied:

1) $\max (q, r) \leq s$
2) $\frac{1}{p}+\frac{1}{s} \leq \frac{1}{q}+\frac{1}{r}$.

Then for $\tau=0$,

$$
W_{0}: L(p, q)\left(\mathbb{R}^{d}\right) \times L\left(p^{\prime}, r\right)\left(\mathbb{R}^{d}\right) \rightarrow L(p, s)\left(\mathbb{R}^{2 d}\right)
$$

SANDIKÇI/Turk J Math

is continuous and holds

$$
\left\|W_{0}(f, g)\right\|_{p s} \leq C\|f\|_{p q}\|g\|_{p^{\prime} r}
$$

iii. Let $1<p^{\prime}<2, \frac{1}{p}+\frac{1}{p^{\prime}}=1,1<q \leq \infty, 0<r, s \leq \infty$ and let the following 2 inequalities be satisfied:

1) $\max (q, r) \leq s$
2) $\frac{1}{p}+\frac{1}{s} \leq \frac{1}{q}+\frac{1}{r}$.

Then for $\tau=1$,

$$
W_{1}: L\left(p^{\prime}, q\right)\left(\mathbb{R}^{d}\right) \times L(p, r)\left(\mathbb{R}^{d}\right) \rightarrow L(p, s)\left(\mathbb{R}^{2 d}\right)
$$

is continuous. In particular,

$$
\left\|W_{1}(f, g)\right\|_{p s} \leq C\|f\|_{p^{\prime} q}\|g\|_{p r}
$$

Proof i. Using Lemma 1, Lemma 2, and Proposition 3, we have

$$
\begin{aligned}
\left\|W_{\tau}(f, g)\right\|_{p q}^{q} & =\left\|\frac{1}{|\tau|^{d}} e^{2 \pi i \frac{1}{\tau} x w} V_{A_{\tau} g}^{\tau} f\right\|_{p q}^{q}=\frac{1}{|\tau|^{d q}}\left\|V_{A_{\tau} g}^{\tau} f\right\|_{p q}^{q} \\
& =\frac{1}{|\tau|^{d q}}(|1-\tau| \cdot|\tau|)^{\frac{d q}{p}}\left\|V_{A_{\tau} g} f\right\|_{p q}^{q} \\
& \leq \frac{1}{|\tau|^{d q}}(|1-\tau| \cdot|\tau|)^{\frac{d q}{p}} C\|f\|_{p_{1} q_{1}}^{q}\left\|A_{\tau} g\right\|_{p_{2} q_{2}}^{q} \\
& =\frac{1}{|\tau|^{d q}}(|1-\tau| \cdot|\tau|)^{\frac{d q}{p}} C\|f\|_{p_{1} q_{1}}^{q}\left|\frac{\tau}{1-\tau}\right|^{\frac{d q}{p_{2}}}\|g\|_{p_{2} q_{2}}^{q} \\
& =|\tau|^{d q\left(\frac{1}{p}+\frac{1}{p_{2}}-1\right.}|1-\tau|^{d q\left(\frac{1}{p}-\frac{1}{p_{2}}\right)} C\|f\|_{p_{1} q_{1}}^{q}\|g\|_{p_{2} q_{2}}^{q}
\end{aligned}
$$

This completes the proof.
ii. Let $f \in L(p, q)\left(\mathbb{R}^{d}\right)$ and $g \in L\left(p^{\prime}, r\right)\left(\mathbb{R}^{d}\right)$. Then $\hat{g} \in L(p, r)\left(\mathbb{R}^{d}\right)$ and

$$
\begin{equation*}
\|\hat{g}\|_{p r} \leq B\|g\|_{p^{\prime} r} \tag{2.5}
\end{equation*}
$$

by Theorem 4.3 in [11]. By using the equality $W_{0}(f, g)(x, w)=e^{-2 \pi i x w} f(x) \overline{\hat{~}}(w)=R(f, g)(x, w)$, inequality (2.5), and Theorem 7.7 in [13], we get

$$
\begin{aligned}
\left\|W_{0}(f, g)\right\|_{p s} & =\|R(f, g)\|_{p s} \leq K\|f\|_{p q}\|\hat{g}\|_{p r} \\
& \leq C\|f\|_{p q}\|g\|_{p^{\prime} r} .
\end{aligned}
$$

This is the desired result.
iii. Let $f \in L\left(p^{\prime}, q\right)\left(\mathbb{R}^{d}\right)$ and $g \in L(p, r)\left(\mathbb{R}^{d}\right)$. Then $\hat{f} \in L(p, q)\left(\mathbb{R}^{d}\right)$ and

$$
\begin{equation*}
\|\hat{f}\|_{p q} \leq B\|f\|_{p^{\prime} q} \tag{2.6}
\end{equation*}
$$

by Theorem 4.3 in [11]. By using the equality $W_{1}(f, g)(x, w)=e^{2 \pi i x w} \overline{g(x)} \hat{f}(w)=\overline{R(g, f)}(x, w)$, inequality (2.6), and Theorem 7.7 in [13], we have

$$
\begin{aligned}
\left\|W_{1}(f, g)\right\|_{p s} & =\|\overline{R(g, f)}\|_{p s} \leq K\|\hat{f}\|_{p q}\|g\|_{p r} \\
& \leq C\|f\|_{p^{\prime} q}\|g\|_{p r}
\end{aligned}
$$

If $(0, \infty)$ is taken instead of \mathbb{R}^{d} in Theorem 5 (ii) and (iii), then the boundedness of $W_{0}(f, g)$ and $W_{1}(f, g)$ is equivalent to conditions (1) and (2) by Theorem 7.7 in [13].
In the next theorem the Lorentz mixed normed space $L(P, Q)\left(\mathbb{R}^{2 d}\right)$ is taken, where $P=\left(p_{1}, p_{2}\right)$ and $Q=\left(q_{1}, q_{2}\right)$, instead of the Lorentz space $L(p, s)\left(\mathbb{R}^{2 d}\right)$ as the range of W_{0} and W_{1}.

Proposition 6 Let $1<p_{1}<\infty, 1<p_{2}^{\prime}<2, \frac{1}{p_{2}}+\frac{1}{p_{2}^{\prime}}=1, P=\left(p_{1}, p_{2}\right), 1 \leq Q=\left(q_{1}, q_{2}\right) \leq \infty$. For $\tau=0,1$,

$$
W_{0}: L\left(p_{1}, q_{1}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{2}^{\prime}, q_{2}\right)\left(\mathbb{R}^{d}\right) \rightarrow L(P, Q)\left(\mathbb{R}^{2 d}\right)
$$

and

$$
W_{1}: L\left(p_{2}^{\prime}, q_{2}\right)\left(\mathbb{R}^{d}\right) \times L\left(p_{1}, q_{1}\right)\left(\mathbb{R}^{d}\right) \rightarrow L(P, Q)\left(\mathbb{R}^{2 d}\right)
$$

are continuous. In particular,

$$
\left\|W_{0}(f, g)\right\|_{P Q} \leq B\|f\|_{p_{1} q_{1}}\|g\|_{p_{2}^{\prime} q_{2}}
$$

and

$$
\left\|W_{1}(f, g)\right\|_{P Q} \leq B\|g\|_{p_{1} q_{1}}\|f\|_{p_{2}^{\prime} q_{2}}
$$

Proof If $g \in L\left(p_{2}^{\prime}, q_{2}\right)\left(\mathbb{R}^{d}\right)$, then $\hat{g} \in L\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right)$ and $\|\hat{g}\|_{p_{2} q_{2}} \leq\|g\|_{p_{2}^{\prime} q_{2}}$. By using the equality $W_{0}(f, g)(x, w)=e^{-2 \pi i x w} f(x) \stackrel{\overline{\hat{g}}}{g}(w)=R(f, g)(x, w)$, we have

$$
\begin{aligned}
\left\|W_{0}(f, g)\right\|_{P Q} & =\|R(f, g)\|_{P Q}=\| \| f\left\|_{p_{1} q_{1}\left(\mathbb{R}_{x}^{d}\right)} \stackrel{\hat{g}}{ }\right\|_{p_{2} q_{2}\left(\mathbb{R}_{w}^{d}\right)} \\
& =\|f\|_{p_{1} q_{1}}\|\hat{g}\|_{p_{2} q_{2}} \\
& \leq B\|f\|_{p_{1} q_{1}}\|g\|_{p_{2}^{\prime} q_{2}}
\end{aligned}
$$

which proves the continuity of W_{0}. The continuity of W_{1} is proved in a similar way to the continuity of W_{0}.
The following Theorem is proven from Proposition 5.1 in [5] and Theorem 5.

Theorem 7 i. Let $\tau \in(0,1)$. A necessary and sufficient condition that

$$
a \in L\left(p^{\prime}, q^{\prime}\right)\left(\mathbb{R}^{2 d}\right) \rightarrow W_{\tau}^{a} \in B\left(L\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right), L\left(p_{1}^{\prime}, q_{1}^{\prime}\right)\left(\mathbb{R}^{d}\right)\right)
$$

is continuous is that $1<p<2, \frac{1}{p_{1}}+\frac{1}{p_{2}}<1, \frac{1}{p_{1}}+\frac{1}{p_{2}}=\frac{1}{p^{\prime}}$, and $q \geq 1$ be any number such that $\frac{1}{q_{1}}+\frac{1}{q_{2}} \geq \frac{1}{q}$, where $p^{\prime}, q^{\prime}, p_{1}^{\prime}$, and q_{1}^{\prime} are the conjugates of p, q, p_{1}, and q_{1}.
ii. Let $\tau=0$. A necessary and sufficient condition that

$$
a \in L\left(p^{\prime}, s^{\prime}\right)\left(\mathbb{R}^{2 d}\right) \rightarrow W_{0}^{a} \in B\left(L\left(p^{\prime}, r\right)\left(\mathbb{R}^{d}\right), L\left(p^{\prime}, q^{\prime}\right)\left(\mathbb{R}^{d}\right)\right)
$$

is continuous is that $1<p^{\prime}<2, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{q}+\frac{1}{q^{\prime}}=1, \frac{1}{s}+\frac{1}{s^{\prime}}=1,1<r \leq \infty, 0<q, s \leq \infty$, and also that the following 2 inequalities be satisfied:

1) $\max (q, r) \leq s$
2) $\frac{1}{p}+\frac{1}{s} \leq \frac{1}{q}+\frac{1}{r}$.
iii. Let $\tau=1$. A necessary and sufficient condition that

$$
a \in L\left(p^{\prime}, s^{\prime}\right)\left(\mathbb{R}^{2 d}\right) \rightarrow W_{0}^{a} \in B\left(L(p, r)\left(\mathbb{R}^{d}\right), L\left(p, q^{\prime}\right)\left(\mathbb{R}^{d}\right)\right)
$$

is continuous is that $1<p^{\prime}<2, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{q}+\frac{1}{q^{\prime}}=1, \frac{1}{s}+\frac{1}{s^{\prime}}=1,1<q \leq \infty, 0<r, s \leq \infty$ and also that the following 2 inequalities be satisfied:

1) $\max (q, r) \leq s$
2) $\frac{1}{p}+\frac{1}{s} \leq \frac{1}{q}+\frac{1}{r}$.

3. Boundedness of τ-Wigner transform on Lorentz mixed normed modulation spaces

The aim of this section is to study continuity properties of the τ-Wigner transform when acting on the Lorentz mixed normed modulation spaces.

In Proposition 8-10 below we have listed some properties for τ-Wigner transform. From these results we then prove the continuity of the τ-Wigner transform.

Proposition 8 For $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, $\tau \in[0,1]$ and $u, v, \eta, \gamma \in \mathbb{R}^{d}$, we have

$$
\begin{aligned}
W_{\tau}\left(T_{u} M_{\eta} f, T_{v} M_{\gamma} g\right)(x, w)= & e^{2 \pi i x(\eta-\gamma)} e^{2 \pi i w(v-u)} e^{2 \pi i(\gamma-\eta)(\tau v+(1-\tau) u)} \\
& W_{\tau}(f, g)(x-(\tau v+(1-\tau) u), w-(\tau \eta+(1-\tau) \gamma))
\end{aligned}
$$

In particular,

$$
\begin{equation*}
W_{\tau}\left(T_{u} M_{\eta} f\right)(x, w)=W_{\tau} f(x-u, w-\eta) \tag{3.7}
\end{equation*}
$$

Proof For $\tau \in(0,1)$ and $u, v, \eta, \gamma \in \mathbb{R}^{d}$, we have

$$
\begin{aligned}
& W_{\tau}\left(T_{u} M_{\eta} f, T_{v} M_{\gamma} g\right)(x, w) \\
= & \int_{\mathbb{R}^{d}} T_{u} M_{\eta} f(x+\tau t) \overline{T_{v} M_{\gamma} g(x-(1-\tau) t)} e^{-2 \pi i t w} d t \\
= & \int_{\mathbb{R}^{d}} f((x-u)+\tau t) \overline{g((x-v)-(1-\tau) t)} e^{2 \pi i \eta((x-u)+\tau t)} e^{-2 \pi i \gamma((x-v)-(1-\tau) t)} e^{-2 \pi i t w} d t .
\end{aligned}
$$

SANDIKÇI/Turk J Math

We make the substitution $z=x-u+\tau t$ and obtain

$$
\begin{aligned}
& W_{\tau}\left(T_{u} M_{\eta} f, T_{v} M_{\gamma} g\right)(x, w) \\
= & \frac{1}{|\tau|^{d}} \int_{\mathbb{R}^{d}} f(z) g\left(-\left(\frac{1-\tau}{\tau} z-\left(\frac{x}{\tau}-v-\frac{1-\tau}{\tau} u\right)\right)\right) \\
& e^{-2 \pi i \frac{w}{\tau}(z-x+u)} d z \\
= & \frac{1}{|\tau|^{d}} e^{-2 \pi i \eta z} e^{-2 \pi i \gamma\left(-\frac{1-\tau}{\tau} z+\frac{x}{\tau}-v-\frac{1-\tau}{\tau} u\right)} \\
= & \frac{1}{|\tau|^{d}} e^{-2 \pi i z\left(\frac{1}{\tau} w-\eta-\frac{1-\tau}{\tau} u\right)+2 \pi i \frac{w}{\tau}(x-u)} d z \int_{\mathbb{R}^{d}} f(z) \overline{g^{\sim}} \overline{\left(\frac{1-\tau}{\tau}\left(\frac{x}{\tau}-v-\frac{1-\tau}{\tau} u\right)+2 \pi i \frac{w}{\tau}(x-u)\right.} \int_{\mathbb{R}^{d}} f(z) \overline{\left.A_{\tau} g\left(z-\left(\frac{x}{1-\tau}-\frac{\tau}{1-\tau} v-u\right)\right)\right)} \\
= & \frac{1}{|\tau|^{d}} e^{-2 \pi i \gamma\left(\frac{x}{\tau}-v-\frac{1-\tau}{\tau} u\right)+2 \pi i \frac{w}{\tau}(x-u)} V_{A_{\tau} g} f\left(\frac{1}{1-\tau-u))}(x-\tau v-(1-\tau) u), \frac{1}{\tau}(w-\tau \eta-(1-\tau) \gamma)\right) .
\end{aligned}
$$

Now, equality (1.1) is applied, we have the desired equality for $\tau \in(0,1)$.
Let $\tau=0$. For $u, v, \eta, \gamma \in \mathbb{R}^{d}$, by using the equality $\left(T_{v} M_{\gamma} g\right)^{\wedge}=M_{-v} T_{\gamma} \hat{g}$, we get

$$
\begin{aligned}
W_{0}\left(T_{u} M_{\eta} f, T_{v} M_{\gamma} g\right)(x, w) & =R\left(T_{u} M_{\eta} f, T_{v} M_{\gamma} g\right)(x, w)=e^{-2 \pi i x w}\left(T_{u} M_{\eta} f\right)(x) \overline{\left(T_{v} M_{\gamma} g\right)^{\wedge}(w)} \\
& =e^{-2 \pi i x w} e^{2 \pi i \eta(x-u)} f(x-u) \overline{\left(M_{-v} T_{\gamma} \hat{g}\right)(w)} \\
& =e^{2 \pi i x(\eta-\gamma)} e^{2 \pi i w(v-u)} e^{2 \pi i u(\gamma-\eta)} e^{-2 \pi i(x-u)(w-\gamma)} f(x-u) \overline{\hat{g}(w-\gamma)} \\
& =e^{2 \pi i x(\eta-\gamma)} e^{2 \pi i w(v-u)} e^{2 \pi i u(\gamma-\eta)} W_{0}(f, g)(x-u, w-\gamma) .
\end{aligned}
$$

Similarly, if $\tau=1$, for $u, v, \eta, \gamma \in \mathbb{R}^{d}$, we obtain

$$
\begin{aligned}
W_{1}\left(T_{u} M_{\eta} f, T_{v} M_{\gamma} g\right)(x, w) & =R^{*}\left(T_{u} M_{\eta} f, T_{v} M_{\gamma} g\right)(x, w)=e^{2 \pi i x w} \overline{\left(T_{v} M_{\gamma} g\right)(x)}\left(T_{u} M_{\eta} f\right)^{\wedge}(w) \\
& =e^{2 \pi i x w} e^{2 \pi i \gamma(x-v)} \overline{g(x-v)}\left(M_{-u} T_{\eta} \hat{f}\right)(w) \\
& =e^{2 \pi i x(\eta-\gamma)} e^{2 \pi i w(v-u)} e^{2 \pi i v(\gamma-\eta)} e^{2 \pi i(x-v)(w-\eta)} \overline{g(x-v)} \hat{f}(w-\eta) \\
& =e^{2 \pi i x(\eta-\gamma)} e^{2 \pi i w(v-u)} e^{2 \pi i v(\gamma-\eta)} W_{1}(f, g)(x-v, w-\eta)
\end{aligned}
$$

Proposition 9 Let $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and $\tau \in[0,1]$. Then we have

$$
\begin{equation*}
V_{T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g} T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} f(x, w)=e^{-2 \pi i\left(x(1-\tau) \xi_{1}+w \tau \xi_{2}\right)} V_{A_{\tau} g} f(x, w) \tag{3.8}
\end{equation*}
$$

for $x, w, \xi_{1}, \xi_{2} \in \mathbb{R}^{d}$.

SANDIKÇI/Turk J Math

Proof Assume that $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and $\tau \in[0,1]$. Then we write

$$
\begin{aligned}
V_{T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g} T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} f(x, w) & =\left\langle T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} f, M_{w} T_{x} T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g\right\rangle \\
& =\left\langle f, M_{(1-\tau) \xi_{1}} T_{-\tau \xi_{2}} M_{w} T_{x} T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g\right\rangle
\end{aligned}
$$

Since

$$
\begin{aligned}
M_{(1-\tau) \xi_{1}} T_{-\tau \xi_{2}} M_{w} T_{x} T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g(t) & =e^{2 \pi i t(1-\tau) \xi_{1}} M_{w} T_{x} T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g\left(t+\tau \xi_{2}\right) \\
& =e^{2 \pi i t(1-\tau) \xi_{1}} e^{2 \pi i w\left(t+\tau \xi_{2}\right)} M_{-(1-\tau) \xi_{1}} A_{\tau} g(t-x) \\
& =e^{2 \pi i t(1-\tau) \xi_{1}} e^{2 \pi i w\left(t+\tau \xi_{2}\right)} e^{-2 \pi i(1-\tau) \xi_{1}(t-x)} A_{\tau} g(t-x) \\
& =e^{2 \pi i\left(x(1-\tau) \xi_{1}+w \tau \xi_{2}\right)} e^{2 \pi i w t} A_{\tau} g(t-x) \\
& =e^{2 \pi i\left(x(1-\tau) \xi_{1}+w \tau \xi_{2}\right)} M_{w} T_{x} A_{\tau} g(t)
\end{aligned}
$$

we have

$$
\begin{aligned}
V_{T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g} T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} f(x, w) & =\left\langle f, e^{2 \pi i\left(x(1-\tau) \xi_{1}+w \tau \xi_{2}\right)} M_{w} T_{x} A_{\tau} g\right\rangle \\
& =e^{-2 \pi i\left(x(1-\tau) \xi_{1}+w \tau \xi_{2}\right)}\left\langle f, M_{w} T_{x} A_{\tau} g\right\rangle \\
& =e^{-2 \pi i\left(x(1-\tau) \xi_{1}+w \tau \xi_{2}\right)} V_{A_{\tau} g} f(x, w)
\end{aligned}
$$

Proposition 10 i) If $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and $\tau \in[0,1]$, then $W_{\tau}(f, g) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$.
ii) Let $\varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and set $\Phi=W_{\tau}(\varphi, \varphi)=W_{\tau}(\varphi) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$. For $\tau \in(0,1)$, we have

$$
V_{\Phi}\left(W_{\tau}(f, g)\right)(z, \xi)=e^{-4 \pi i z_{2} \tau \xi_{2}} V_{\varphi} f\left(z_{1}-\tau \xi_{2}, z_{2}+(1-\tau) \xi_{1}\right) \overline{V_{\varphi} g\left(z_{1}+\tau \xi_{2}, z_{2}-(1-\tau) \xi_{1}\right)}
$$

where $z=\left(z_{1}, z_{2}\right)$ and $\xi=\left(\xi_{1}, \xi_{2}\right)$.
iii) For $\tau=0, \Phi=W_{0}(\varphi, \varphi)=W_{0}(\varphi)=R(\varphi) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$, and $W_{0}(f, g)=R(f, g)$, we have

$$
\begin{aligned}
V_{\Phi}\left(W_{0}(f, g)\right)(z, \xi) & =V_{W_{0}(\varphi)}\left(W_{0}(f, g)\right)(z, \xi)=V_{R(\varphi)}(R(f, g))(z, \xi) \\
& =e^{-2 \pi i z_{2} \xi_{2}} V_{\varphi} f\left(z_{1}, z_{2}+\xi_{1}\right) \overline{V_{\varphi} g\left(z_{1}+\xi_{2}, z_{2}\right)}
\end{aligned}
$$

iv) For $\tau=1, \Phi=W_{1}(\varphi, \varphi)=W_{1}(\varphi)=\overline{R(\varphi)} \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$, and $W_{1}(f, g)=\overline{R(f, g)}$, we have

$$
\begin{aligned}
V_{\Phi}\left(W_{1}(f, g)\right)(z, \xi) & =V_{W_{1}(\varphi)}\left(W_{1}(f, g)\right)(z, \xi)=V_{\overline{R(\varphi)}}(\overline{R(f, g)})(z, \xi) \\
& =e^{-2 \pi i z_{2} \xi_{2}} V_{\varphi} f\left(z_{1}-\xi_{2}, z_{2}\right) \overline{V_{\varphi} g\left(z_{1}, z_{2}-\xi_{1}\right)}
\end{aligned}
$$

Proof i) Since

$$
W_{\tau}(f, g)(x, w)=\frac{1}{|\tau|^{d}} e^{2 \pi i \frac{1}{\tau} x w} V_{A_{\tau} g} f\left(\frac{1}{1-\tau} x, \frac{1}{\tau} w\right)
$$

for $\tau \in(0,1)$, we obtain $W_{\tau}(f, g) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$ by using Theorem 11.2.5 in [9].

If $\tau=0$, let $f \otimes g$ be the tensor product $(f \otimes g)(x, t)=f(x) g(t)$, and set $\mathcal{T}_{a} F(x, t)=F(x, x-t)$. Then we write

$$
\begin{aligned}
W_{0}(f, g)(x, w) & =R(f, g)(x, w)=\int_{\mathbb{R}^{d}} f(x) \overline{g(x-t)} e^{-2 \pi i t w} d t \\
& =\int_{\mathbb{R}^{d}}(f \otimes \bar{g})(x, x-t) e^{-2 \pi i t w} d t \\
& =\int_{\mathbb{R}^{d}} \mathcal{T}_{a}(f \otimes \bar{g})(x, t) e^{-2 \pi i t w} d t \\
& =\mathcal{F}_{2} \mathcal{T}_{a}(f \otimes \bar{g})(x, w),
\end{aligned}
$$

where \mathcal{F}_{2} is the Fourier transform with respect to the second variable. So, since $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, then $f \otimes \bar{g} \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$. Also, since $\mathcal{S}\left(\mathbb{R}^{2 d}\right)$ is invariant under the transformation and the Fourier transform, then $W_{0}(f, g) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$.
For $\tau=1$, if we set $\mathcal{T}_{b} F(x, t)=F(x+t, x)$, we get

$$
W_{1}(f, g)(x, w)=R^{*}(f, g)(x, w)=\mathcal{F}_{2} \mathcal{T}_{b}(f \otimes \bar{g})(x, w) .
$$

Then, similarly to the case $\tau=0$, we have $W_{1}(f, g) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$.
ii) If we use the equalities (1.1) and (3.7), then we write

$$
\begin{aligned}
& V_{\Phi}\left(W_{\tau}(f, g)\right)(z, \xi) \\
= & \iint_{\mathbb{R}^{2 d}} W_{\tau}(f, g)(x, w) \overline{W_{\tau}(\varphi)\left(x-z_{1}, w-z_{2}\right)} e^{-2 \pi i\left(x \xi_{1}+w \xi_{2}\right)} d x d w \\
= & \frac{1}{|\tau|^{d}} \iint_{\mathbb{R}^{2 d}} e^{2 \pi i \frac{1}{\tau} x w} V_{A_{\tau} g} f\left(\frac{1}{1-\tau} x, \frac{1}{\tau} w\right) \overline{W_{\tau}\left(T_{z_{1}} M_{z_{2}} \varphi\right)(x, w)} e^{-2 \pi i\left(x \xi_{1}+w \xi_{2}\right)} d x d w \\
= & \frac{1}{|\tau|^{2 d}} \iint_{\mathbb{R}^{2 d}} V_{A_{\tau} g} f\left(\frac{1}{1-\tau} x, \frac{1}{\tau} w\right) e^{2 \pi i\left(-x \xi_{1}-w \xi_{2}\right)} \overline{V_{A_{\tau}\left(T_{z_{1}} M_{z_{2}} \varphi\right)}\left(T_{z_{1}} M_{z_{2}} \varphi\right)\left(\frac{1}{1-\tau} x, \frac{1}{\tau} w\right)} d x d w \\
= & \frac{|1-\tau|^{d}}{|\tau|^{d}} \iint_{\mathbb{R}^{2 d}} V_{A_{\tau} g} f(x, w) e^{2 \pi i\left(-x(1-\tau) \xi_{1}-w \tau \xi_{2}\right)} \overline{V_{A_{\tau}\left(T_{z_{1}} M_{z_{2}} \varphi\right)}\left(T_{z_{1}} M_{z_{2}} \varphi\right)(x, w)} d x d w .
\end{aligned}
$$

Additionally, if equality (3.8) and orthogonality relations (see Theorem 3.2.1 in [9]) are applied, then we get

$$
\left.\begin{array}{rl}
& V_{\Phi}\left(W_{\tau}(f, g)\right)(z, \xi) \\
= & \frac{|1-\tau|^{d}}{|\tau|^{d}} \iint_{\mathbb{R}^{2 d}} V_{T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g} T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} f(x, w) \overline{\left.V_{A_{\tau}\left(T_{z_{1}} M_{z_{2}} \varphi\right.}\right)}\left(T_{z_{1}} M_{z_{2}} \varphi\right)(x, w)
\end{array} x d w\right] \text {. } \quad \begin{aligned}
& |\tau|^{d} \\
& = \\
& \left|T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} f, T_{z_{1}} M_{z_{2}} \varphi\right\rangle \overline{\left\langle T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g, A_{\tau}\left(T_{z_{1}} M_{z_{2}} \varphi\right)\right\rangle .}
\end{aligned}
$$

SANDIKÇI/Turk J Math

The first factor on the right side of the equality is

$$
\begin{aligned}
& \left\langle T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} f, T_{z_{1}} M_{z_{2}} \varphi\right\rangle \\
= & \left\langle f, M_{(1-\tau) \xi_{1}} T_{z_{1}-\tau \xi_{2}} M_{z_{2}} \varphi\right\rangle \\
= & \int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i(1-\tau) \xi_{1} x} e^{-2 \pi i z_{2}\left(x-z_{1}+\tau \xi_{2}\right)} \overline{\varphi\left(x-z_{1}+\tau \xi_{2}\right)} d x \\
= & e^{2 \pi i z_{2}\left(z_{1}-\tau \xi_{2}\right)} \int_{\mathbb{R}^{d}} f(x) \overline{\varphi\left(x-\left(z_{1}-\tau \xi_{2}\right)\right)} e^{-2 \pi i x\left((1-\tau) \xi_{1}+z_{2}\right)} d x \\
= & e^{2 \pi i z_{2}\left(z_{1}-\tau \xi_{2}\right)} V_{\varphi} f\left(z_{1}-\tau \xi_{2}, z_{2}+(1-\tau) \xi_{1}\right) .
\end{aligned}
$$

Also, since

$$
\begin{aligned}
A_{\tau}\left(T_{u} M_{\eta} g\right)(x) & =\left(T_{u} M_{\eta} g\right)^{\sim}\left(\frac{1-\tau}{\tau} x\right)=\left(T_{u} M_{\eta} g\right)\left(-\frac{1-\tau}{\tau} x\right) \\
& =e^{-2 \pi i \eta\left(\frac{1-\tau}{\tau} x+u\right)} g^{\sim}\left(\frac{1-\tau}{\tau} x+u\right) \\
& =T_{-u} M_{-\eta} g^{\sim}\left(\frac{1-\tau}{\tau} x\right)=T_{-u} M_{-\eta} A_{\tau} g(x)
\end{aligned}
$$

the second factor is

$$
\begin{aligned}
& \left\langle T_{\tau \xi_{2}} M_{-(1-\tau) \xi_{1}} A_{\tau} g, A_{\tau}\left(T_{z_{1}} M_{z_{2}} \varphi\right)\right\rangle \\
= & \left\langle A_{\tau}\left(T_{-\tau \xi_{2}} M_{(1-\tau) \xi_{1}} g\right), A_{\tau}\left(T_{z_{1}} M_{z_{2}} \varphi\right)\right\rangle \\
= & \int_{\mathbb{R}^{d}}\left(T_{-\tau \xi_{2}} M_{(1-\tau) \xi_{1}} g\right)^{\sim}\left(\frac{1-\tau}{\tau} x\right) \overline{\left(T_{z_{1}} M_{z_{2}} \varphi\right)^{\sim}\left(\frac{1-\tau}{\tau} x\right)} d x \\
= & \frac{|\tau|^{d}}{|1-\tau|^{d}} \int_{\mathbb{R}^{d}} M_{(1-\tau) \xi_{1}} g\left(-u+\tau \xi_{2}\right) \overline{M_{z_{2}} \varphi\left(-u-z_{1}\right)} d u \\
= & \frac{|\tau|^{d}}{|1-\tau|^{d}} \int_{\mathbb{R}^{d}} e^{2 \pi i(1-\tau) \xi_{1}\left(-u+\tau \xi_{2}\right)} g\left(-u+\tau \xi_{2}\right) \overline{\varphi\left(-u-z_{1}\right)} e^{-2 \pi i z_{2}\left(-u-z_{1}\right)} d u \\
= & \frac{|\tau|^{d}}{|1-\tau|^{d}} e^{2 \pi i z_{2}\left(z_{1}+\tau \xi_{2}\right)} \int_{\mathbb{R}^{d}} g(x) \overline{\varphi\left(x-\left(z_{1}+\tau \xi_{2}\right)\right)} e^{-2 \pi i x\left(z_{2}-(1-\tau) \xi_{1}\right)} d x \\
= & \frac{|\tau|^{d}}{|1-\tau|^{d}} e^{2 \pi i z_{2}\left(z_{1}+\tau \xi_{2}\right)} V_{\varphi} g\left(z_{1}+\tau \xi_{2}, z_{2}-(1-\tau) \xi_{1}\right) .
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
& V_{\Phi}\left(W_{\tau}(f, g)\right)(z, \xi) \\
= & \frac{|1-\tau|^{d}}{|\tau|^{d}} e^{2 \pi i z_{2}\left(z_{1}-\tau \xi_{2}\right)} V_{\varphi} f\left(z_{1}-\tau \xi_{2}, z_{2}+(1-\tau) \xi_{1}\right) \\
& \frac{|\tau|^{d}}{|1-\tau|^{d}} e^{2 \pi i z_{2}\left(z_{1}+\tau \xi_{2}\right)} V_{\varphi} g\left(z_{1}+\tau \xi_{2}, z_{2}-(1-\tau) \xi_{1}\right) \\
= & e^{-4 \pi i z_{2} \tau \xi_{2}} V_{\varphi} f\left(z_{1}-\tau \xi_{2}, z_{2}+(1-\tau) \xi_{1}\right) \overline{V_{\varphi} g\left(z_{1}+\tau \xi_{2}, z_{2}-(1-\tau) \xi_{1}\right)}
\end{aligned}
$$

iii) For $\tau=0$, by using the equality $V_{g} f(x, w)=e^{-2 \pi i x w} V_{\hat{g}} \hat{f}(w,-x)$, we get

$$
\begin{aligned}
& V_{W_{0} \varphi}\left(W_{0}(f, g)\right)(z, \xi) \\
= & \left\langle W_{0}(f, g), M_{\xi} T_{z} W_{0} \varphi\right\rangle \\
= & \iint_{\mathbb{R}^{2 d}} W_{0}(f, g)(x, w) \overline{M_{\xi} T_{z} W_{0} \varphi(x, w)} d x d w \\
= & \iint_{\mathbb{R}^{2 d}} f(x) \overline{\hat{g}(w)} e^{-2 \pi i x w} \overline{W_{0} \varphi\left(x-z_{1}, w-z_{2}\right)} e^{-2 \pi i\left(x \xi_{1}+w \xi_{2}\right)} d x d w \\
= & \int_{\mathbb{R}^{2 d}} f(x) \overline{\hat{g}(w)} \varphi\left(x-z_{1}\right) \overline{\hat{\varphi}\left(w-z_{2}\right)} e^{-2 \pi i\left(x w+x \xi_{1}+w \xi_{2}-\left(x-z_{1}\right)\left(w-z_{2}\right)\right)} d x d w \\
= & e^{2 \pi i z_{1} z_{2}} \iint_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} f(x) \overline{\varphi\left(x-z_{1}\right)} e^{-2 \pi i x\left(\xi_{1}+z_{2}\right)} d x\right) \overline{\hat{g}(w)} \hat{\varphi}\left(w-z_{2}\right) e^{-2 \pi i w\left(\xi_{2}+z_{1}\right)} d w \\
= & e^{2 \pi i z_{1} z_{2}} V_{\varphi} f\left(z_{1}, \xi_{1}+z_{2}\right) \overline{\int_{\mathbb{R}^{d}} \hat{g}(w) \overline{\hat{\varphi}\left(w-z_{2}\right)} e^{2 \pi i w\left(\xi_{2}+z_{1}\right)} d w} \\
= & e^{2 \pi i z_{1} z_{2}} V_{\varphi} f\left(z_{1}, \xi_{1}+z_{2}\right) \overline{V_{\hat{\varphi}} \hat{g}\left(z_{2},-z_{1}-\xi_{2}\right)} \\
= & e^{-2 \pi i z_{2} \xi_{2}} V_{\varphi} f\left(z_{1,} \xi_{1}+z_{2}\right) \overline{V_{\varphi} g\left(z_{1}+\xi_{2}, z_{2}\right)}
\end{aligned}
$$

iv) It is proven by using the same proof technique as in iii.

We can now prove the continuity of the τ-Wigner transform for Lorentz mixed normed modulation spaces.

Proposition 11 Let $P=\left(1, p_{2}\right), Q=\left(q_{1}, q_{2}\right), 1 \leq Q<\infty$ and $1<p_{2}<\infty$. If $\varphi_{1} \in M^{1}\left(\mathbb{R}^{d}\right)$, and $\varphi_{2} \in M\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right)$; then $W_{\tau}\left(\varphi_{2}, \varphi_{1}\right) \in M(P, Q)\left(\mathbb{R}^{2 d}\right)$ and satisfies

$$
\left\|W_{\tau}\left(\varphi_{2}, \varphi_{1}\right)\right\|_{M(P, Q)} \leq\left\|\varphi_{1}\right\|_{M^{1}}\left\|\varphi_{2}\right\|_{M\left(p_{2}, q_{2}\right)}
$$

for $\tau \in[0,1]$.

Proof Let $\varphi_{1}, \varphi_{2}, g \in \mathcal{S}\left(\mathbb{R}^{d}\right), \tau \in[0,1]$, and $\Phi=W_{\tau} g \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$. Then $W_{\tau}\left(\varphi_{2}, \varphi_{1}\right) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$ and so $V_{\Phi}\left(W_{\tau}\left(\varphi_{2}, \varphi_{1}\right)\right) \in \mathcal{S}\left(\mathbb{R}^{4 d}\right)$ by Proposition 10 (i) and Theorem 11.2.5 in [9], respectively. On the other hand, if $\varphi_{1} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, then it is known that φ_{1} is in the standard modulation space $M^{1}\left(\mathbb{R}^{d}\right)$, and if $\varphi_{2} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, then $\varphi_{2} \in M\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{d}\right)$ by Proposition 2.1 in [10].

For $\tau \in(0,1)$, Proposition 10 (ii) says that

$$
\left|V_{\Phi} W_{\tau}\left(\varphi_{2}, \varphi_{1}\right)(z, \xi)\right|=\left|V_{g} \varphi_{1}\left(z_{1}+\tau \xi_{2}, z_{2}-(1-\tau) \xi_{1}\right)\right|\left|V_{g} \varphi_{2}\left(z_{1}-\tau \xi_{2}, z_{2}+(1-\tau) \xi_{1}\right)\right|
$$

Write $\widetilde{\xi}=\left(\tau \xi_{2},-(1-\tau) \xi_{1}\right)$ and

$$
\left|V_{\Phi} W_{\tau}\left(\varphi_{2}, \varphi_{1}\right)(z, \xi)\right|=\left|V_{g} \varphi_{1}(z+\widetilde{\xi})\right|\left|V_{g} \varphi_{2}(z-\widetilde{\xi})\right|
$$

Thus, by using the inequality $\|\cdot\|_{1 q_{1}} \leq\|\cdot\|_{11}=\|\cdot\|_{1}$ when $1 \leq q_{1}$ and changing variables $z \rightarrow z-\tilde{\xi}$, we have

$$
\begin{aligned}
\left\|V_{\Phi} W_{\tau}\left(\varphi_{2}, \varphi_{1}\right)\right\|_{1 q_{1}}(\xi) & \leq\left\|V_{\Phi} W_{\tau}\left(\varphi_{2}, \varphi_{1}\right)\right\|_{1}(\xi) \\
& =\int_{\mathbb{R}^{2 d}}\left|V_{g} \varphi_{1}(z)\right|\left|V_{g} \varphi_{2}(z-2 \widetilde{\xi})\right| d z \\
& =\left(\left|V_{g} \varphi_{1}\right| *\left|V_{g} \varphi_{2}^{\sim}\right|\right)(2 \widetilde{\xi})
\end{aligned}
$$

Again using the fact that the Lorentz space $L\left(p_{2}, q_{2}\right)\left(\mathbb{R}^{2 d}\right)$ is an essential Banach convolution module over $L^{1}\left(\mathbb{R}^{2 d}\right)$, we obtain

$$
\begin{aligned}
\left\|W_{\tau}\left(\varphi_{2}, \varphi_{1}\right)\right\|_{M(P, Q)} & =\| \| V_{\Phi} W_{\tau}\left(\varphi_{2}, \varphi_{1}\right)\left\|_{1 q_{1}}\right\|_{p_{2} q_{2}} \\
& \leq\left\|\left|V_{g} \varphi_{1}\right| *\left|V_{g} \varphi_{2}\right|\right\|_{p_{2} q_{2}} \leq\left\|V_{g} \varphi_{1}\right\|_{1}\left\|V_{g} \varphi_{2}\right\|_{p_{2} q_{2}} \\
& =\left\|\varphi_{1}\right\|_{M^{1}}\left\|\varphi_{2}\right\|_{p_{2} q_{2}}
\end{aligned}
$$

for $\tau \in(0,1)$.
If $\tau=0$, then we write

$$
\left|V_{\Phi} W_{0}\left(\varphi_{2}, \varphi_{1}\right)(z, \xi)\right|=\left|V_{\Phi} R\left(\varphi_{2}, \varphi_{1}\right)(z, \xi)\right|=\left|V_{g} \varphi_{1}\left(z_{1}+\xi_{2}, z_{2}\right)\right|\left|V_{g} \varphi_{2}\left(z_{1}, z_{2}+\xi_{1}\right)\right|
$$

from Proposition 10 (iii), where $\Phi=W_{0} g=R(g) \in \mathcal{S}\left(\mathbb{R}^{2 d}\right)$. Changing variable $z_{1} \rightarrow z_{1}-\xi_{2}$ and writing $\widetilde{\xi}=\left(\xi_{2},-\xi_{1}\right)$, we get

$$
\begin{aligned}
\left\|V_{\Phi} W_{0}\left(\varphi_{2}, \varphi_{1}\right)\right\|_{1 q_{1}}(\xi) & \leq\left\|V_{\Phi} W_{0}\left(\varphi_{2}, \varphi_{1}\right)\right\|_{1}(\xi) \\
& =\int_{\mathbb{R}^{2 d}}\left|V_{g} \varphi_{1}\left(z_{1}+\xi_{2}, z_{2}\right)\right|\left|V_{g} \varphi_{2}\left(z_{1}, z_{2}+\xi_{1}\right)\right| d z_{1} d z_{2} \\
& =\int_{\mathbb{R}^{2 d}}\left|V_{g} \varphi_{1}(z)\right|\left|V_{g} \varphi_{2}(z-\widetilde{\xi})\right| d z \\
& =\left(\left|V_{g} \varphi_{1}\right| *\left|V_{g} \varphi_{2}^{\sim}\right|\right)(\widetilde{\xi})
\end{aligned}
$$

and

$$
\left\|W_{0}\left(\varphi_{2}, \varphi_{1}\right)\right\|_{M(P, Q)}=\left\|R\left(\varphi_{2}, \varphi_{1}\right)\right\|_{M(P, Q)} \leq\left\|\varphi_{1}\right\|_{M^{1}}\left\|\varphi_{2}\right\|_{M\left(p_{2}, q_{2}\right)}
$$

If we apply the same proof technique above for $\tau=1$, by using Proposition 10 (iv), we have

$$
\left\|W_{1}\left(\varphi_{2}, \varphi_{1}\right)\right\|_{M(P, Q)}=\left\|R^{*}\left(\varphi_{2}, \varphi_{1}\right)\right\|_{M(P, Q)} \leq\left\|\varphi_{1}\right\|_{M^{1}}\left\|\varphi_{2}\right\|_{M\left(p_{2}, q_{2}\right)}
$$

References

[1] Bastero J, Milman M, Ruiz F. A note on $L(\infty, q)$ spaces and Sobolev embeddings. Indiana Univ Math J 2003; 52: 1215-1230.
[2] Bennet C, DeVore RA, Sharpley R. Weak- L^{∞} and BMO. Annals Math 1981; 3: 601-611.
[3] Blozinski AP. Multivariate rearrangements and Banach function spaces with mixed norms. Trans Amer Math Soc 1981; 1: 149-167.
[4] Boggiatto P, De Donno G, Oliaro A. A class of quadratic time-frequency representations based on the short-time Fourier transform. Oper Theor 2007; 172: 235-249.
[5] Boggiatto P, De Donno G, Oliaro A. Time-frequency representations of Wigner type and pseudo-differential operators. Trans Amer Math Soc 2010; 362: 4955-4981.
[6] Cordero E, Gröchenig K. Time-frequency analysis of localization operators. J Funct Anal 2003; 205: 107-131.
[7] Feichtinger HG. Modulation spaces on locally compact Abelian groups. Technical Report, University of Vienna, 1983.
[8] Fernandez DL. Lorentz spaces, with mixed norms. J Funct Anal 1977; 25: 128-146.
[9] Gröchenig K. Foundation of Time-Frequency Analysis. Boston: Birchäuser, 2001.
[10] Gürkanlı AT. Time-frequency analysis and multipliers of the spaces $M(p, q)\left(R^{d}\right)$ and $S(p, q)\left(R^{d}\right)$. J Math Kyoto Univ 2006; 46-3: 595-616.
[11] Hunt RA. On $L(p, q)$ spaces. Extrait de L'Enseignement Mathematique 1966; 12: 249-276.
[12] O'Neil R. Convolution operators and $L(p, q)$ spaces. Duke Math J 1963; 30: 129-142.
[13] O'Neil R. Integral transforms and tensor products on Orlicz spaces and $L(p, q)$ spaces. J d'Analyse Math 1968; 21: 1-276.
[14] Sandıkçı A. On Lorentz mixed normed modulation spaces. J Pseudo-Differ Oper Appl 2012; 3: 263-281.
[15] Sandıkçı A, Gürkanlı AT. Gabor analysis of the spaces $M(p, q, w)\left(\mathbb{R}^{d}\right)$ and $S(p, q, r, w, \omega)\left(\mathbb{R}^{d}\right)$. Acta Math Sci 2011; 31B: 141-158.
[16] Sandıkçı A, Gürkanlı AT. Generalized Sobolev-Shubin spaces, boundedness and Schatten class properties of Toeplitz operators. Turk J Math 2013; 37: 676-692.

[^0]: *Correspondence: ayses@omu.edu.tr
 2010 AMS Mathematics Subject Classification: 42B10; 47B38.

