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CONTINUITY PROPERTIES OF OPTIMAL STOPPING VALUE

JOHN ELTON

(Communicated by William D. Sudderth)

Abstract. The optimal stopping value of a sequence (finite or infinite) of in-

tegrable random variables is lower semicontinuous for the topology of conver-

gence in distribution, when restricted to a collection with uniformly integrable

negative parts. It is continuous for finite sequences which are adapted by a

continuous invertible "triangular" function to independent sequences, such as

partial averages; this is our main result. The proof depends on conditional weak

convergence, uniform on compact sets, for such processes. A topological result

on the inverses of triangular functions on iteratively connected domains may

be of independent interest (§3).

1. Lower semicontinuity of value

The optimal stopping value of a sequence (finite or infinite) Xx, X2, ... of

integrable random variables is defined by

V(Xx,X2,...) = supE(Xr),
T

where the supremum is taken over nonanticipating a.s. finite stop rules x. For

finite sequences, the supremum is attained; see [CRS].

Collections of random sequences will be given the usual topology of conver-

gence in distribution, i.e., weak convergence of the corresponding probability

distributions; see [B]. This is a metrizable topology, where random sequences

with the same distribution are identified. Finite sequences of random variables

will be referred to as random vectors. Convergence in distribution for random

TV-vectors can be characterized as follows:

X"^Z     ifTE/(X")-»E/(X)

for all / G C(R  ), the bounded continuous functions on R   .
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CONTINUITY PROPERTIES OF OPTIMAL STOPPING VALUE 737

A real function F on a metric space is lower semicontinuous if xn —► x =>

F(x) < ]imF(xn). A useful property is that if the space is compact, such an F

attains its minimum.

Theorem 1.1. Let W be a collection of integrable random N-vectors whose com-

ponents have negative parts which are uniformly integrable (u.i.). Then V is

lower semicontinuous on W.

Passing to limits, one obtains

Corollary 1.2. If W is a collection of sequences of integrable random variables

such that for each N, the initial segments of length N have u.i. negative parts,

then V is lower semicontinuous on W.

Proof of Theorem 1.1. We need to show that if X" G 9 and X" £ X g «", then
V(X)<limV(Xn).

For some stop rule x

N      .

V(X) = E(Xr) = Y^        XkdP

For a vector x = (x, , ... ,xN) eR , we shall denote the projection of x

onto the first k coordinates by

xk = (xx , ... ,xk).

We hope this distinction between xk and xk causes no confusion.

Since {x - k} e cr(Xk), the cr-field generated by Xx , ... , Xk , we have

{T = k} = {X, G Ak}

for some Ak e 3§k , the Borel sets in R  , k = I , ... ,N. Furthermore, since

the events {x = k} are a partition, we may assume WLOG that Ak C f]j~x Aj x

Rk~J for 1 < k < N, and AN = fl^LV Aj x RN~J ( ~ denotes complement).

Let e > 0, and choose ô > 0 such that fs \Xk\ dP< e whenever P(S) < S ,

k = l,...,N.Bya standard approximation argument, for each k there exists

Bk e Sk such that P(Xk e AkABk) < Ô/N and P(XkedBk) = 0.
t-ln     ~  Dk-J)

Define C, = Bx, and Ck = Bk n (f]j=x Bj x RK J) fork = 2 N

1, and  CN = P|y=i Bj x R" '.   One can easily show P(Xk e AkACk) <
k-\

wiic  van  cuan)

-j,   _;  -   ,   —

k-l •'XfcGC,

Next, choose X so large that

|Xk | dP < e    for all n , k (by the u.i. hypothesis)

p(xk e AkABk)+e;:; p(x7. g aj&b¡) <ô,so

N

V(X)<J2 XkdP + Ne.

X so larg<

Lx;<-x
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738 JOHN ELTON

and also fx >AXkdP< e, k = I, ... ,N.

The set of discontinuities of the function 1%, is precisely dCk , so by Theorem

5.2 (iii), p. 31 of [B], since P(Xk e dCk) = 0*,

I       f(X"k)dP^f       f(Xk)dP,
J*nk€Ck JXk€Ck

where / is the bounded and continuous function defined by /(f) = / if \t\ <X,

f(t) = Xsgn(t) if \t\>X. Thus

lim /        XkdP> Xk dP-2e.
JX"k€Ck JXk€Ck

Finally, from the definition of the Ck 's, for each n the events

{X¡eCk},        Â:=l.N

are a partition, so the stop rules

xn = koX"keCk

show that for each « ,

N

V(X")>J2f       KdP-
MJ*"keck

Thus lim V(X") > V(X) - 3Ne .     a

Example 1.3. This example shows that  V is not in general continuous, even

when restricted to uniformly bounded exchangeable pairs.

Let (X" , X" ) have range

{(0,i),(i,0),(i + i,l),(l,i + i)},

each point taken with probability ^ . The obvious stop rule gives

V(Xnx,Xn2) = \(\ + 2- + l + l) = \.

But (X" , Xl) Z (Xx , X2) which has range {(0, {) ,(£ ,0), (|, 1). (1, £)}', each

point having probability |. But

V(X{ ,X2) = \x \ + {x \ + \x I = I,

so V(X" ,X2)* V(XX,X2).

Example 1.4. This example shows that even in the case of i.i.d. pairs of random

variables, the conclusion in Theorem 1.1 can fail without the u.i. hypothesis.

Let
0       with probability 1 - l/s/ñ,

with probability l/s/ñ,

k = 1,2, and X", X2 independent. Obviously (Xx ,X2) 3 (0,0), which

has value 0. But E(X2 | X") = -02, so V(X" ,X2) = 0(1 - 1/^/ñ) +

(l/^/ñ)(-\fñ) - -1. So V is not lower semicontinuous on the collection

{X"}.
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CONTINUITY PROPERTIES OF OPTIMAL STOPPING VALUE 739

Application to prophet inequalities. Let Xx , ... , XN be integrable random vari-

ables. Inequalities which compare Emax(X) = E(max{AT, , ... ,XN}) to V(X)

for a class of random TV-vectors (or infinite sequences) have been called prophet

inequalities because the first is the expected return of a prophet (using com-

plete foresight) and the second is the return of a gambler using nonanticipating

stop rules; see e.g., [KSX , KS2, HKX, HK2, HK3, Ker, K, CK]. One

type of inequality is an upper bound on the difference between the prophet's

expected return and the gambler's optimal expected return for random vec-

tors in the class, as e.g., in [HKX , HK2]. More generally, one may consider,

for each y, the greatest lower bound v on V(X) for those X in the class

W satisfying Emax(X) = y. If the "prophet region" 3H&) = {(V(X)),

Emax(X)): X G W} c R is convex, the graph of v as a function of y is

the upper boundary curve of &(&). See for example [HK^, Ker, EK] .

We shall show that in many cases these bounds are attained.

Corollary 1.5. If W is a tight, closed collection of integrable random N-vectors

whose negative parts are u.i., then

sup{Emax(X)-F(X):XG^}

is attained on W, and so is

inf{F(X):XGg\Emax(X) = y},

for each y in E max(^).

Proof. W is compact by Prohorov's Theorem [B]. Also {X G W : E max(X) = y}

is closed, hence compact, since E max is clearly continuous. Now E max - V

is upper semicontinuous and V is lower semicontinuous by Theorem 1.1, so

the results follow.   D

Example 1.6. Let W = {X: X is a random TV-vector with exchangeable compo-

nents with values in [0,1]}. It was shown in [EK] that âl(W) is a convex set.

W is obviously tight, and a limit in distribution of a sequence of exchangeable

TV-vectors is exchangeable, so Corollary 1.5 applies. Thus âl(<ê?) is a closed

set as well. The form of the X attaining the upper boundary has not yet been

found except for TV = 2.

2. Continuity of value

We present now a common situation in which V is actually continuous.

A simple example is partial averages of finite sequences of independent, u.i.

random variables; more generally we consider sequences continuously adapted

to independent sequences.

Call a function a: R   —► R    triangular if for x = (x,.xN) G R   ,

a(x) = (a,(x,).ak(xk).ajx)),

where xk denotes (x, , ... , xk ) as in the proof of Theorem 1.1. That is, the A:th

output depends only on the first k inputs. Thus a finite sequence (Yx.YN)
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740 JOHN ELTON

of random variables is adapted to (Xx, ... ,XN) (in the sense that Yk is mea-

surable a(Xx , ... ,Xk) for all k) iff Y = a(X) for some Borel-measurable

triangular function a.

Call a function a linearly bounded if there exists c such that |a(x)| <

c(|x| V 1) for all x in the domain of a (we use the norm |x| = max,</<Ar |x(.|

on R ). Note that if a is one-to-one, then a-1 is linearly bounded iff there

exists d > 0 such that |a(x)| v 1 > d\x\ for all x in domain of a.

The following result requires a one-to-one, continuous triangular function

whose inverse is also triangular. In the appendix we show that this is often

redundant, which is perhaps of independent interest.

Theorem 2.1. Let W be a u.i. collection of random TV-vectors with independent

components. Let a be a one-to-one function on range (W) c R such that

both a and its inverse are continuous, linearly bounded, and triangular. Let

s/ = {a(X) :XeC}. Then V is continuous on s/ .

Remarks. ( 1 ) Examples of processes continuously adapted to independent se-

quences abound. The canonical examples are independent sequences themselves

and partial sums and averages of independent random variables. Other exam-

ples are the "burglar problem" [CRS, p. 44], and extreme order statistics with

cost of sampling [P].

(2) The continuity assumption on a ¿s needed. It is easy to give an example,

with uniformly bounded random variables and TV = 2, for which all the hy-

potheses of Theorem 2.1 except the continuity are satisfied, and the conclusion

fails.

(3) It is not obvious to the author what might be reasonable necessary con-

ditions for continuity of V. The proof of Theorem 2.1 uses conditional weak

convergence (Lemma 2.5), which relies on independence, but only in a special

way, so perhaps nothing as strong as Lemma 2.5 is really needed.

Proof. Choose c > 1 to work for both a and its inverse b, in the definition

of linearly bounded.

Let X" = (*",... ,X¿) G handlet A" = (A" , ... ,AnN) = a(X"). Suppose

A"^AëJ. We need to show that V(A") -► V(A). Since a has a continuous

inverse, A" 3 A iff X" % X, where A = a(X).

The proof will involve weak convergence of conditional distributions, for

which the independence is crucial.

Let ß"k(yk_x;B) = P(AnkeB\Ank_x=yk_x), y,_, G R^1 , for k = 2,...,

TV ; and ß"(B) = P(A" e B). Here and in the rest of the proof, we under-

stand such statements involving n to include n = oo; i.e., ßk(yk_x;B) =

P(Ak e B\Ak_x = yk_x) also. It will be important to choose these conditional

distributions in a canonical way which is possible because of the invertible re-

lationship between A" and X" . Specifically, we will always take

Sk(yk^;B) = P(AnkeB\Ank_x=yk_x)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONTINUITY PROPERTIES OF OPTIMAL STOPPING VALUE 741

to be

P(ak(Xnk) e B | X£_, = b,_,(y,_,)) = P(ak(\_x(yk_x),X"k) e B),

by independence of Xk from X"k_x.

Define functions i//k and <j>nk on R   using backward induction, by

vl-xinii) = j 4>nk{yk)ßk{yk-x ;dyk),

k = I, ... ,N (y/^.  is just a number), where

To start the induction, define y/^(yN) = yN = <t>"N(y) ■

By the backward induction principle of optimal stopping [CRS, Chap. 3 and

4], these are just the conditional values:

v*(y*) = FK+i .-•■-< I Aü=y*).

We shall show yt? —► y/Q by showing for any k = I, ... ,N that y/k —► y/k

uniformly on compact sets =>• y/k_x —► Vk_x uniformly on compact sets. Since

y/^ s ytN, this will prove the result by backward induction.

We break the proof up into several easy lemmas.

Lemma 2.2. If K is a compact subset ofR~,

lim   sup   /      \yk\fik(yk_l;dyk) = 0.
*-*<*> n,n-,eKJ\yk[>*

Proof.  K c [-M, M] ~   for some M > 1. The integral above is

For yk_x eK,

< c(cM A\X"k\).

\<\ = KVnk)\ = K(K-M-i)>K)\

Assume X > c M ; then since \Ak\ < \Ak\,

\A¡\>X^\X"k\>X/c.

So for all yk_xeK,

E(|A:|7m;|>, I A¡_x = y,_,) < E(c\Xnk\Ilx^/c \X"k_x= b,_,(y,_,))

= cE(\X"k\I    \>X/c),

by independence and canonical choice of conditional distribution of Ank stated

above. This converges to 0 as X —> oo uniformly in n, by the u.i. assump-

tion.   D

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



742 JOHN ELTON

Lemma 2.3. 77zere ex/5/5 a < oo such that

\<p"k(yk)\ < ot\yk\ + a    for allk,n,ykeRk .

Proof.

Wnk(yk)\ = V(Ank+x,...,A"N\Ank=yk)

<E(|^+,|V-..V|<||A:=y,)

<E(|A"||Aj' = yfc)

= E(|a(b,(A^),^"+,,...,^)||A: = y,)

= E(|a(b/t(y/t), Xk+X , ... , X„)\) by independence

<E(c(e(|yfe|Vl)V|^"+,|V---V|X;|))
-,

<c (\yk\ VI) + cNß,

where ß > E\X"\ for all j, n (possible by the u.i. assumption). This obviously

implies the result.   D

Lemma 2.4.   y/k  is continuous, for all k and n .

Proof. By backward induction,   y/^ is obviously continuous. Assume ytk   is

continuous, so that <j>nk is also. Now

^"_1(yfc_1) = E(^(A^_,,^(byt_,(A^_I),<))|A^_,=y^,)

= H<t>l(yk_x,ak(\_x(yk_x),Xnk)))

by independence. But the integrand is

<a(\yk_x\ + c2(\yk_x\vl) + c\Xnk\) + a,

by Lemma 2.3. Now the result clearly follows by Lebesgue's dominated conver-

gence theorem and the continuity of </>k , a, and b.   □

The following lemma gives conditional weak convergence, uniform on com-

pact sets.

k_[ k
Lemma 2.5. Let K be a compact subset of R      , and f e C(R ). Then

E(/(AJ) | A;.., = lk_x) -, E(f(Ak) | A,_, = y,_.)

uniformly over yk_x e K.

Proof.  K c [-M , M]k~l for some M > 1 . Now

E(/(A,")|A,n_1=y,_1) = E(/(A:_,,û,(b,_1(A;_,),<))|A:_,=y,_1)

= E(f(yk-i ,ak(bk_x(yk_x) ,Xk)))    by independence.

Let e > 0. Choose X so large that P(\Xk\ > X) < s\\f\\ for all n (by

u.i.). Let L = c(cMvX). Since h(yk_x,x) := f(yk_l.ak(bk_x(yk_l),x))
is uniformly continuous on íx [-L, L], there is ô > 0 such that for each

x G [-L , L], the oscillation of h(- ,x) over any set of radius < â contained
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CONTINUITY PROPERTIES OF OPTIMAL STOPPING VALUE 743

in K is less than e . Choose a finite ¿-net JF for K. Since Xk —► Xk , we can

choose n0 so that n > n0 =►

■    |E/(y¡_,,^(b,_,(y¡_,),^"))-E/(y¡_,,íz,(b,_,(y;_,),^))|<e

for all y*k_x G JV. Now for yk_x e K, choose y*k_x G JV such that \yk_x -

y*k-\\ < à ■ It follows by the triangle inequality that for n > n0,

\Ef(yk^,ak(bk_x(yk_x),Xnk))-Ef(yk_x,ak(bk_x(yk_x),Xk))\ < le.   u

Proof of Theorem 2.1. Fix k > 1. Assume y/k —► y/k uniformly on compacts,

so <f>"k —► 0^ uniformly on compacts also. We shall show that the same is true

of n~y ■
Let AT be a compact set in R    ' . Then

W-.(y*-i) - «"*-i(y*-i) = j[<t>"k(yk)'<pk(yk)]nnk{yk^ ;dyk)■ v

+ J tâk)\JÎ[Yk-t ;dyk) - ßk(yk_x ;dyk)].

Let e > 0. Choose X > 1 so large that

\yk\ß"k(yk-i;dyk) <e      forall«,y¿._, eK,IJ\v.

by Lemma 2.2. Choose n0 so that n > nQ =>' \<f>l - <f>k\ < e on K x [-X,X].

By Lemma 2.3, \</>"k(yk)\ < 2a\yk\ for \yk\ > X, so the first integral in (*) has

magnitude < e + 4ae for yfc_, G A", n> n0 .

Let t: R —► R be truncation at aX + a, i.e.,

x       if |x| < aX + a ;

aA + a       if x > aX + a ;

— aA — a       if x < —aA — a.

T(X)

Then

Urn y **4>ki7i)Ut"kbk^ ;dyk)-ßk(yk_x ;dyk)] = 0,

with the convergence uniform over yfc_, e K, by Lemma 2.5. But ^¿.(y^)! <

a|yj + a, so

\<t>k(yk)\>aX + a=>\yk\ > X.

It follows that the second integral in (*) has magnitude < 4ae for sufficiently

large n , uniformly over yk_x e K. Thus y/k_x -* y/k_x uniformly on K, and

the proof is complete.   D

Corollary 2.6. V is a continuous function on any u.i. collection of random N-

vectors with independent components, and also on the collection consisting of the

N-vectors of partial averages or partial sums of those vectors.

Remark. The analogy of this for infinite sequences of independent random vari-

ables fails. As a trivial example, consider X" = (0,0, ... , 0, 1 ,1 , ... , 1 , ... ),
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744 JOHN ELTON

with zeros in the first n components and 1 thereafter. This even has constant

components. Now X" -> X = (0,0, ... ). But V(X) = 0 and V(Xn) = 1 for

all n.

3. Appendix on inverses of triangular functions

We shall show that a one-to-one continuous triangular function (see §2 for

definition) on an open set in R with a certain connectivity property will au-

tomatically have a triangular inverse. We use invariance of domain.

For all /, all k > I, let P¡ be the projection of R onto the first / coordi-

nates: P¡(xx, ... ,xk) = (x,, ... ,x¡).

Definition 3.1. ^cR^ is iteratively connected if P, (2¡) is connected and for

all 1 < k < TV, for all (x, , ... ,xk_x) e Pk_x2¡ ,

{V.(xx,...,xk_x,t)ePk2¡}

is connected.

Remark. For TV = 2, the only requirement is that Px2¡ is connected.

Examples 3.2. (1) Any convex set is iteratively connected. (2) A cylinder in

R with elements parallel to the x3-axis and a horseshoe-shaped cross-section

aligned along the x,-axis is not iteratively connected, even though it is simply

connected. (3) (0,1) x [(0,1) U (2,3)] c R is iteratively connected but not

connected. This is only because no condition is made on the highest dimension.

Except for that, iterative connectivity is much stronger than connectivity.

Proposition 3.3. If 2¡ is an open, iteratively connected subset of R , and a: D

-» R^ is one-to-one, continuous and triangular, then a-1 is triangular also.

Proof. Write    a(x,.x^)    =    (ax (x, ) ,a2(xx,x2), ... ,aN(xx, ... ,xN)).

Clearly, it is enough to show that for 1 < k < TV, for all (x, , ... ,xk_x) e

Pk_x3> , ak(xx , ... ,xk_x , •) is one-to-one on G(x, , ... ,xk_x) := {t: (x,, ... ,

xk_i, t) G Pk3J} ; for then xk can be determined from ak(xx , ... ,xk), once

x, , ... , xk_x are known. When k = TV, the fact that a is one-to-one obviously

implies aN(xx , ... ,xN_, ,•) is one-to-one, so we only need consider k < TV .

When k = 1, we mean by the above to simply show that ax is one-to-one on

Px2.
Suppose for some 1 < k < TV and xk_x e Pk_fë , ak(xk_x , •) is not one-

to-one on G = G(xx , ... ,xk_x). G is connected by hypothesis, and is clearly

open since 21 is. It is easy to see by the intermediate value theorem that there

exist t   e G and sequences t", u" in G with t" / u" and ak(xk_x ,tn) =

ak(xk_x , u") for all n , and r" —► t   and «"-»(.

Define a new function f : 3 -» R    by

er   \       i ( \ i   \\
f(x) = (xk,ak+x(xk+x).aN(x)).

This is one-to-one on 2 , since

(ak+x(xk,-),ak+2(xk-,-).aN(xk,...))
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must be one-to-one for each xk e Pk2 or else a would not be one-to-one.

By Brouwer's invariance of domain theorem [AB, p. 156], i(3) is open

in R^. Since t e G, there exists x° G 2 such that x"_, = xk_x and

xk = t .So there exist open sets A cR ~ , B cR ~ , and a < ß such that

f(x°) G A x (a ,ß) x B c 1(2!). Since fk(x) = t°, we must have t° e(a,ß),

so for some n, t" e (a, ß) and u" G (a, ß) also. Let t = t" and u = u" .

Let z = (/fc+,(x°),...,/;v(x0)) = K+,(x°+1).aN(x0)) e B.   Also,

fjt_j(x ) = x¿_, G A . Thus

(xfc_, ,/,2)€^x(tt,^)xfi cf(Z>)

and (xk_x ,u,z) e f(3) also. So there exist v, w in 3 such that f(v) =

(xk_x, t, z) and f(w) = (x^_,, u, z). From the definition of f, we get vk = t,

wk = «. yk-i = wk-\ = xk-\>and K+i(Vi).aAy)) = K+1(wfc+1),
... ,aN(w)) = z. Since ak(xk_x ,t) = ak(xk_x ,u), this implies a(v) = a(w).

But v ^ w, so a is not one-to-one, a contradiction.   D

Examples 3.4. ( 1 ) Let sgn x=l if x > 0, - 1 ifx<0. The discontinuous

triangular function (|x, | ,eXl sgnx,) is one-to-one on R2 but does not have a

triangular inverse.

(2) The same function as in (1) is continuous when restricted to the dis-

connected open set [(-oo, - 1) U (1 , oo)] x R, but does not have a triangular

inverse.

(3) The continuous triangular function (x, ,x2) is one-to-one on the non-

open, iteratively connected set {x, = x2} , but does not have a triangular inverse.

(4) For a more interesting example, we describe a triangular function which

is one-to-one and continuous on an open, simply connected (but not iteratively

connected) bounded domain in R , but does not have a triangular inverse.

Let 3 = W x(0,l) where

W = [(-l,3) x (1,2)]u[(-l ,3) x (-2, - 1)]U[(2,3) x [-1 ,1]]

which is a "horseshoe" in R . Note 2 is open and simply connected.

Let ax (x, ) = x, . Let

( x2,        1 < x, < 3 or x2 > 0;

a2v*i.*2)= | X2 + 3(i_|Xi|)(       |Xi|< i andx2<0.

Let

Í(l+x3)3,        2<x, <3;
(1+x3)(3 + 2(2 - x,)sgnx2),        l<x, <2;

(1 +x3)(3-l-sgnx2),        |x,| < 1.

Let a = (a, , a2, a3) have domain 2 . It is easily checked that a is continuous.

Now (ax(xx) ,a2(xx ,x2)) is «or one-to-one on W, since a2(0, |) = a2(0, -|) =

5 . Thus a cannot have a triangular inverse. But a is one-to-one on 2 : the
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only case which needs to be checked is when |x,| < 1, but then sgnx2 can

be determined from whether a3 lies in (2,4) or (4,8) and then x2 can be

determined from a2 and x,.
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