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1. Introduction. We shall be concerned with the continuity properties of
sample functions of Markov processes.

We let ü= \o)\ be a space in which a completely additive probability
measure, P(A), is defined over a Borel field Ja= {A} of subsets of Í2. A
random variable is any function measurable with respect to Jw. A stochastic
process is any family of random variables {x((co), tÇ.T°\, where T" is a linear
set. A sample function is the function x((w), considered as a function of t, for
fixed a. We shall sometimes say "almost all sample functions," "almost all
to," "with probability one," or "almost everywhere" (written a.e.), meaning
for all a except an co-set of measure zero.

A regularity condition known as separability (applied to processes) will
often be used. A separable process [xt(u), tÇ^T0} is a process for which there
is a sequence ti of parameter values, dense in T°, and a set A, P(A) =0, such
that, for co(¡.A,

inf    xt(a¡) =    inf    xti(u), sup   x¡(a>) =    sup   x(i(co)
tc.IT" l,g/r° t£IT° UQIT"

for every interval I. We shall also use a somewhat stronger condition which we
shall denote as property S*. A stochastic process {x<(o>), t(E:T0} will be said
to have property S* if there is a sequence R =/,• of parameter values dense in T°
and a set A, P(A) =0, such that for <oQ.A,for B any closed set, I any open t-inter-
val, ifxt(co)£B, t£IR, then xt(co)£B, t^IT0.

We shall suppose given a function P(X), a completely additive probability
measure defined for XÇE.J, the field of linear Borel sets, and a function
P(t, x; T, X), defined for O^KT^T', for all real x, XÇzJ, such that:

(a) P(t, x; T, X) for fixed t, T, X is a Baire function of x,
(b) P(t, x; T, X) for fixed t, x, T is a completely additive probability meas-

ure defined over J.
(c) For 0^t<s<T^T', all x, XE.J,

p oc

(1) P(t, x; T,X) =  j     P(t, x; s, dy)P(s, y; T, X).
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It will be convenient to define P(t, x; t, X) to be 1 for xÇ_X, 0 for xQX.
With this convention (a), (b), and (c) with t^s^T are still satisfied. The
equation (1) is known as the Chapman-Kolmogoroff equation.

A function P(t, x; T, X) satisfying (a), (b), and (c) will be called a transi-
tion probability function.

It has been shown [Doob, 3] that under these conditions there is a Markov
process {xt(co), O^t^T'} for which

H*M e x) = p(x),
P(xT(<o) G X | xt((o) = x) = P(t, x; T, X), a.e.

A Markov process is a stochastic process {xt(co), (GPJ such that, for
h<t2< • • ■ <tm-i<tm,ti(E.T°,Xa Borel set,

P(xt„((o)Gx\ xli(io) = xi,i=l, ■ ■ ■ ,m—l)=P(xtm(<o)Ç£X\xt„_1(co) = xm^1), a.e.

The probabilities P(xT(co)Ç_X\xt(co) —x) are known as the transition prob-
abilities.

This approach is somewhat less general than to suppose a Markov process
to be given and to attempt to determine a transition probability function from
it which satisfies the Chapman-Kolmogoroff equation. However, the assump-
tion of property S* will be no restriction on the transition probability func-
tions, since, by a theorem of Doob [l, Chapter II, Theorem 2.4], to any
stochastic process {yt(to), t(E.T0} there corresponds a stochastic process
{yt(u>), tGT0}, separable, or with property S*, such that P(yt(co) =yt(co)) = 1,
for every value of /.

A martingale process {y¡(«), /£7"0} is a stochastic process with E{ \yt(co)\ }
< », tÇ.T°, such that:

(i) for each MELT0, there exists a Borel field, Jt, JtCJa',
(ii) y¡(ío) is equal, for almost all to, to a function measurable with respect to Jt;
(iii) for h<t2, JuCJh, and

E{yh(<o)\ Jh} = yh(io), a.e.

One of the properties of P(t, x; T, X) which we shall use is that the
Markov property implies that the process {P(t, xt(to); T, X), t<T, tÇ.T°\,
considering P(t, xt(co); T, X) for fixed X, T, t as a random variable, / as the
parameter of the family, is a martingale process. In fact, for s<i,

P(t, *,(«); T, X) = E{P(s, x,(a); T,X)\jt}, a.e.,

where Jt is the Borel field of co-sets generated by conditions of the form xUi(co)
^af, Ui<t, i=\, 2, • • • , «.

As an example of a process of this sort, we consider the transition prob-
ability functions of a Brownian motion process. A Brownian motion process is
a separable process such that:

(i) for each t, s, xt+s(io) —xs(co) has a Gaussian distribution with mean zero,
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variance a | /1,
(ii) forii<22< • • • </„,

xh(<o) - xtl((o), ■ ■ ■ , x,n(u) - xin_,(co)

are independent random variables. Wiener showed in 1923 that almost all
sample functions of this process are continuous. If x0(co) is independent of
the increments xt+s(co)—xs(co), for all positive 5 and t, then the process, con-
sidered for positive t, is a Markov process. A function satisfying our assump-
tions (a), (b), and (c), a = l, is

/e-(¡/-*)2/2<r-í)-dy.
x   (2*(r - f))1"

There is also a corresponding density function,

e-(í/-i)2/2(T-¡)
p(t, x; T, y) m

(2t(T - t))1'2

If xt(co) is the random variable of the Brownian motion process, then

/.    e-(¡/-*i(u0)2/2(r-¡)-dy
x    (2w(T-t)y2

is the random variable of the martingale process {P(t, x¡(w) ; T, X),0^t^T}.
The random variable

e-(¡/-zi("))2/2(!T-<)
p(t, xt(<o) ;T,y)=-

' (2tt(T - t))1'2

is also the random variable of a martingale process.
In §2 we use the fact that {P(t, xt(co); T, X), t<T, t^T0} is for each

T, X, a martingale process by applying a theorem of Doob [l, Chapter VII,
Theorem 11.5]:

Theorem. Except possibly for a set of sample functions of probability zero,
the sample functions of a separable martingale process {yt(u>), t(E.T0} have the
following properties :

(i) they are bounded on every t-set of the form {t<s}r^T°, s(E_T0,
(ii) they have finite left-(right-)hand limits at every tÇ.T" which is a limit

point of T° from the left (right).

This application shows that Markov processes with property S* whose
transition probability functions satisfy certain regularity conditions have
sample functions which are almost all continuous except for strict jumps.
A function f(t) is continuous except for jumps if limtf t0 f(t) ~/(¿<T) and
lim«i <0/(0 =f(tt) exist and are finite and either/^) £f(t0) g/(¿0+) or/(/0") à/(<o)
=f(lo) for all t0. A function is continuous except for strict jumps if always
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/(<o+)=/(¿o) or M)=f(to).
In §3 we show that if the transition probabilities of the Markov process

satisfy an additional condition of the form:

P(\ Xt+h((o) — xt(to) | > e | xt(co) = x) = o(A)Ä—>0, a.e.,

the sample functions of the Markov process are almost all continuous.
In §4 we give examples illustrating the results.
Interest in Markov process has centered around two main types: the

first has been defined by assumptions on the functions

E{xt+h(io) — Xi(co) | XtO») = x}

and

E{(xt+h(to) - xt(ic))2\ Xt(co) = x}

of the sort :

E{xt+h(co) — xt(co) | xt(co) = x} = hm(t, x) + o(h),

E{(xt+n(co) — Xi(£o))2| xt(u) = x} = ha2(t, x) + o(h),

where restrictions are made on the regularity of m(t, x), <r(t, x) and the
rapidity with which o(h)—»0 as Ä—>0. The second type has been defined by
the condition linu_0 P(xt+n(io)=xt(io)) = l. The second type of process is
sometimes called purely discontinuous.

Kolmogoroff [l] showed that the transition probability functions of
processes of both types satisfied certain differential equations. For the first
type these differential equations were two second order partial differential
equations of parabolic type, known as the Fokker-Planck equation and its
adjoint, closely associated with diffusion equations. In the case of the second
type, under certain restrictions on the state space, he showed that they
satisfy two systems of linear differential equations. He also showed that for
more complicated types of processes, they satisfied a certain integro-differ-
ential equation. Feller [1,2] investigated the converse problem for a class of
processes of the first type, the second type, and a mixture of the two. Under
certain assumptions he found that there do exist Markov processes whose
transition probability functions satisfy these differential equations.

Fortet [l], in an investigation of processes of the first type, showed that
the sample functions of a certain class of processes whose transition probabil-
ity functions satisfy the Fokker-Planck equation are almost all continuous.
Doeblin [l] investigated the second type of Markov process. He found suffi-
cient conditions that the sample functions be continuous except at a finite
number of values of t, in finite closed intervals, and constant on the intervals
between successive pairs of these values. He also showed the transition prob-
ability functions to satisfy certain integral equations. For the first type of
process he announced conditions that x¡(co)/(l + |x4(w)| ) be continuous [3].
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Ito [l] has succeeded in establishing a relation between a large class of
processes of the first type and the Brownian motion by means of a stochastic
integral. He exhibited a large class of processes of mixed type as solutions of
a certain stochastic integral equation. Processes of the second type were
further investigated by Doeblin [2], Feller [3], and Doob [4, 5]. Bernstein
[l] considered a class of processes of the first type, by investigating processes
given by considering the transition probabilities on a net in the parameter
interval. He showed the limit of the approximating transition probability
functions to satisfy the Fokker-Planck equations. He also constructed ex-
amples to show the type of discontinuity which could occur in the sample
functions of the process if the conditions were violated. Doob [5] investi-
gated processes of the second type in a space with a countable number of
points. He showed that if certain systems of differential equations, the gen-
eralizations of the systems derived by Kolmogoroff, do not have a unique set
of solutions, the sample functions may have discontinuities more complicated
than jumps.

2. Conditions under which the sample functions have right- and left-hand
limits. We suppose throughout the discussion {x¡(«), O^tfíT'} to be a
Markov process with property S* with an initial distribution p(X) and
transition probability functions P(t, x; T, X) defined for all x, /, T, Q^t^T
^T', XÇzJ, J the field of the Borel sets, satisfying the conditions described
in the introduction. We have seen that the Markov property implies that
{P(t, xt(io); T, X), O^t^T} is a martingale process. It is known that almost
all sample functions of separable martingale processes have finite right- and
left-hand limits at every t, O^t^T. We wish to investigate properties of the
xt(to) process which can be deduced from this property and certain conditions
imposed on P(t, x; T, I) where I is an open interval. These conditions are as
follows:

C: We let I(x, a) = (x — a, x-\-a). Then the condition C is that

P(t, x; t + h, I(x, a)) = 1 + f(h), f(h) -> 0    as    h -^ 0.
We write C( , , , ) where the first argument will denote restriction on t, the
second argument will denote restrictions on x, the third argument will denote re-
strictions on a, and the fourth will specify the manner in which f(h)—>0 as
Ä—>0. The restrictions on C governed by the behavior of t will be: "/," that
C hold for all fixed t; or "u," that C hold uniformly in t. The restrictions on
C governed by the behavior of x will be: "/," that C hold for all fixed x; "b," that
C hold, uniformly for all x in any bounded interval; "u," that C hold, uniformly
in x. The restrictions on C governed by the behavior of a will be: "w," that C hold
for some a(x) such that x — a(x)—»°°, as x—► «>, x-\-a(x)~>— =» as x—>— =° ;
"a," that C hold for some fixed a; "e," that C hold for every a>0. The restrictions
on C governed by the behavior off(h) will be: "o(l),n thatf(h)-*0 as h—>0; "o(h),n
thatf(h)/h^>0 as A->0.
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Thus, for example, the condition C(u, u, a, o(l)) signifies that

P(l, x;l+h, I(x, a)) —► 1    as    h —> 0

uniformly in t, uniformly in x, for some fixed a. The condition C(w, b, e, o(h))
signifies that

[P(t, x, I + h, I(x, a)) - 1]/â->0    as    A-> 0

uniformly, in t, uniformly in x in any bounded interval, for any o>0. "C"
is used to denote a continuity condition.

D : The condition D is that

P(t, x\ T, I) -> 5(x, I)    as    T - t[ 0

for x not an end point of I, where S(x, JT) = 1 for x interior to I, 5(x, /) =0/or x
interior to the complement of I. We shall write D( , , , ) where the first argu-
ment will denote restrictions on t, the second, restrictions on x, the third, re-
strictions on T, the fourth, restrictions on I. The restrictions on D governed by
the behavior of t are: "/," D is to hold for all fixed t; "u," D is to hold uniformly
in t. Restrictions governed by the behavior of T will be similarly indicated. It will
be noted that the restrictions governed by t and those governed by T are not inde-
pendent. That is, if D holds uniformly in T, then D holds uniformly in t, and
vice versa. The restrictions on D governed by the behavior of x are: "b,n that D
hold uniformly in x for x in any bounded set A, bounded away from the end
points of I; "u," that D hold uniformly in every set A, bounded or not, bounded
away from the end points of I; finally, if D is to hold for every bounded interval
I, we denote the restriction by "b" ; if D is to hold for every interval I, bounded or
not, we denote the restriction by "u."

Thus, for example, D(f, b, , b) means that

P(t, x; T, I) -*■ S(x, I)    as    7/- /1 0

for all fixed /, uniformly for x in any bounded set A at a positive distance from
the end points of /, for every bounded interval /. D(m, u, , u) means that

P(t, x;T, I)-^ô(x, I)    as    T-t[0

uniformly in t, uniformly for x in any set bounded away from the end points
of /, for any interval /, bounded or not. The "D" is to denote a boundary
condition of ô-function type.

R(co) (R(- oo)): The condition R(«>) (R(- °°)) is that

P(l, x; T, I) —>0    as    x —> » (x->-=o)

for all bounded intervals I, for T — t sufficiently small, independently of I. "R"
is a condition on the "return."

We introduce the following tables, where the conditions given in the
arguments of C and D may be conveniently found :
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C: P(t, x; t+h, I(x, a)) = l+/(A), to hold, subject to restrictions

on /, on x, on a,
C(

on f(h),
)

f: for each fixed /   /: for each fixed    w: for I(x, a) o(l): /(A)—K)   as
x =(x — a(x), A—»0

x+a(x))

u: uniformly in /    b: uniformly for    where o(h):f(h)/h—*0
X&4, any | (x±a(x))| —► «> as A—>0
bounded set as x—>«>

w: uniformly in    a : for some fixed
x a

e: for all a>0

D: P(t, x; T, I)—*5(x, I), as T — t J, 0, to hold subject to restrictions

on /, on x, on T,
D(

on /,
)

—conditions on T   /: for each x not —conditions on    —for each /
specified                      an   end point        t specified

of/

/: for each fixed t    b: uniformly for /: for each fixed   b: for all bounded

u: uniformly in t

x in any
bounded set
bounded away
from the end
points of I

u: uniformly for
x  in  any  set
bounded away
from the end
points of /

intervals I

uniformly in
T

for all inter-
vals / bound-
ed or not

Conditions C and D are not independent. C(«, b, e, o(l)) is equivalent to
D(m, b, , b). We first show that C(u, b, €, o(l)) implies D(w, b, , b). We
choose A to be any bounded set bounded away from the end points of /, for
instance AQ( — M, M), the distance from A to the end points of / to be
greater than e. Then, since C(w, b, e, o(l)) implies that P(t, x; t+h, I(x, e))
= o(l)(j,-.o) uniformly for x in ( — M, M), and since I(x, e)C.I, if xÇLACM,
we have, for xGAC\I, 1 ̂ P(t, s; t+h, I) ^P(t, x; t+h, I(x, e)) = 1 -o(l)a~o),
for xGAC\cI, since cl(x, e)D7, 0gP(/, x; t+h, I)^\-P(t, x; t+h, I(x, «))
= o(l)ih-o). Since the o(l) by assumption C(w, b, e, o(i))  is uniform for
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x(El( — M, M), the approach of P(t, x; t+h, I) to S(x, 7) is uniform in x, for
xG-4- We next show that D(u, b, , b) implies C(w, b, e, o(i)). We suppose
this to be false. Then there exists a bounded sequence x,- and a sequence
r¿—^o such that, for some e>0, P(rit x¡; To, I(x, e))>5. Since the x< are
bounded, we may choose a subsequence x{j approaching a limit, £. We pick
/=(£ — 2e, £+2e). Then for j sufficiently large, (x(j — t, x1;-f-é)C(£ —2e,
£ + 2e) so

Pí/í,, x{j; ro, I) > P(rip x,v; rQ, J(%, e)) > ô.

This contradicts D(w, ¿,    , b). Hence the assertion is tyue.
C(u, u, e, o(t)) implies D(k, u, , u). This can be shown by the same

argument as that used above.
C(u, b, e, o(l)) and C(u, u, w, o(l)) imply D(u, u, , b). To prove this

statement we show that for any fixed I, any e>0, \P(t, x; T, I) — è(x, I)\ <e
for x in a set bounded away from the end points of /, T — t sufficiently small.
We take M so large that for x>M, |x±a(x)| >max¡,e/(|y| +1). We delete
e-neighborhoods of the end points of I from ( — M, M) to obtain A.
Then if x(EzIf^A or if xGAC\cI, the proof that C(u, b, e, o(i)) implies
D(u, b, , b) shows that, for T—t small enough, \P(t, x; T, I) — 5(x, I)\ <e.
For x&A, x^M, C(u, u, w, o(i)) implies that, for T — t small enough,
P(t, x; T, I) <e. This establishes the implication.

It can be shown that D(f,f,    , b) is equivalent to C(f,f, e, o(l)).

Theorem I. (i) D(/,/,    , b) implies that p limíj¡0x¡(w) =x¡0(w) for all t0.
(ii) D(    , /, /, b) implies that p lim¡| to x(co) =x(o(co) for all t0.

Proof of (i) : D(/, /,   , b) implies

lim P( | xi+k(co) — Xi(co) | > e)  = lim P( | xt+h(co) — x¡(co) | > e | xt((o))dP = 0
»Jo hlO

since the integrand is bounded by 1 and approaches 0. The same argument is
valid for the proof of (ii).

We shall have frequent occasion to take limits of xt(co), for fixed co,
through the countable dense set in O^t^T' used to define the property S*.
We shall call this set R. Henceforth r, r°, r', rit and t\ will be values from
this set. Since for all w not in the exceptional set A of the property S*,

lim sup xr(<o) — lim sup x,(co), lim inf xr(<o) = lim inf x„(co),

for all t, when right- and left-hand limits of xr(co) exist, so do those of x¡(w),
and the two coincide, with probability one. Since for co not contained in A,
the exceptional set of property S*,

lim   G.L.B.   xr(co) ^ xt(co) í¡ lim   L.U.B. xr(<o),
n->»   I j— i| >!/» n->»   I r- «I >l/n
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for all t(£R, the only sample function discontinuities which can occur for
values of t not in R, when right- and left-hand limits exist, are jumps, with
probability one. If xr(co) has right- and left-hand limits xto(io) and x^(co) at
to, property S* implies that x¡0(fa>)  lies in B, where

B =  { x | x¡-(co) - e ^ x ^ Xtf(co) + t}

VJ { x | *(„+(«) - e g x á xío+(co) + e}

for every e. This implies that xtc(co)=x^ (co) or x,„(co) =x¡¿ (w), for ¿o££P,
with probability one.

By a theorem of Doob [l, Chapter II, Theorem 2.4] to any stochastic
process, {yt(co), tGT"}, there corresponds a separable stochastic process
{yt(co), íEP0}, such that at each /, yt(co) = 5>t(co), with probability one. The
exceptional set may vary with /. For each ¿ = r£i?, we eliminate the excep-
tional set for each of the following martingale processes: [P(t, xt(co); t0, I),
O^t^to} where I has rational end points, t is the parameter of the process,
and ranges over (0, /0), Q^to^Tó. There are a countable number of such
processes. The remaining set we call i2/0. Since we have eliminated only a
countable number of sets of zero measure, P(ß/0) = 1. Each of the equivalent
separable processes is a martingale process since each coincides with a
martingale process for each /, except for a set of measure zero. We call the
equivalent separable martingale processes {P(t, xt(co); t0, I), O^t^to}.
Using the theorem of Doob cited in the introduction, each has sample func-
tions having finite right- and left-hand limits for each t, O^t^to, with prob-
ability one. We eliminate the exceptional set for each of the countable num-
ber of equivalent separable martingale processes from £2,'0 obtaining ß<0.
Since only a countable number of sets of measure zero are eliminated,
P(flfo) = l. We shall later use 0*-fW<r<2..Qr. Since for each r, P(ñr) = l, it
follows that P(Q*) = 1.

Theorem II. (i) D(    , b, f, b) implies that at any to, for almost all co,

Xt(co) - xh(to)
hm-= 0.
<T<„       1 + X*,(<»)

(ii) D(    , u, f, b) implies that at any to, for almost all co,

lim  x,(lc) = x/0(w).
«Î  «0

(The exceptional set depends on to, in each case.)

Proof of (i). We suppose an w£ßi0 such that there are rit rt Î to, r[, r[ \ to,
for which xn(u>)—>a, a¿¿ ± «>, xrj(co)—>b, bj¿ + *>, as¿b. We choose I to be an
open interval with rational end points, at a positive distance from b, with a
in its interior. The A of condition D we choose to be a closed interval in-
terior to I containing a in its interior, plus a bounded closed interval with b
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in its interior at a positive distance from I. The assumption D( , b, f, b)
implies P(rit xri.(w); t0, I)—*l as i—>°°, P(r<, xr>.<(co); to, I)—*0 as t—>». This
implies that P(¿, Xí(co) ; ¿0, I) has an oscillatory discontinuity at to, contrary
to the construction of Q¡0. Hence xr(co) has at most one finite limiting value
from the left at t0. Since {xt(co), O^t^T'} has property S*, xt(co) has at
most one finite limiting value from the left at t0. By Theorem I(ii), xto(co)
is a limiting value from the left at to, with probability one. This establishes (i).

Proof of (ii). By (i), with probability one, for wGßi„ there exist r(, such that
xr¡(co)—>x¡0(o>). From the above, the only other possible limiting values are
», — a>. We assume that there exist r{, r[ \ t0 such that | xU'(co) | —» oo. We
choose I as any open interval with rational end points containing xto(w). A
we choose to be the real line, deleted by neighborhoods of the end points of
7 at a positive distance from xto(w). Then D(    , u, f, b) implies that

P(?i, xri(co) ; to, I) —* 1 as i —» » ;       P(ru xri>(co) ; to, I) —> 0 as i —» <x>.

This implies that P(t, xt(co) ; t0, I) has an oscillatory discontinuity at to, con-
trary to the construction of fito. Hence the supposition | xu(co) | —+ =o is false.
This establishes (ii).

Theorem III. (i) D(w, b,    , b) implies that at any t0, for almost all co,

xt(u) - xi0(co)
hm - = 0.
tit,       1 + x2(co)

(ii) D(u, u,    , u) implies that at any to, for almost all co,

lim  Xt(co) = xh(co).
tl t„

Proof of (i). As in the proof of Theorem II (i), (i) will be true if
xr(co) can have at most one finite limiting value as r | to for all co££2*. We
assume that there is anwGfi* for which there exist sequences r< J, t0, r[ J, t0,
such that xu(co)—*a, a?± ± oo, xr'(w)—>b, b^ ± », aj¿b. We choose 7, A, as
in the proof of Theorem II (i). We choose r'>to, so near to that, for /£(/oi r'),

P(t, x; r', I) > 0.9, if xGAiM,        P(t, x; /, 7) < 0.1, if x G A C\ ci.

This choice of r' is possible under the assumption T>(u, b, , b) because of
the uniformity which is assumed in /. Choosing i so large that for j>i,
r><r', r'i <*', xrj(co)G.I(~^A, xr;.(w)Gc7P\j4, we have

P(rh xry(co) ; r', 7) > 0.9,        P(r-, xr/(co) ; r', I) < 0.1,

for j>i. This implies an oscillatory discontinuity of P(t, xt(co); r' , I) con-
trary to the construction of ß*. Hence xr(co) can have but one finite limit
from the right. The same argument as in the proof of Theorem II (i) shows
that this implies that xt(co) can have but one finite limiting value from the
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right, and that, with probability one, this limiting value is x<0(w).
The same modification of the proof of Theorem II (i) as was used to ob-

tain Theorem II (ii) may be used to extend Theorem III (i) to Theorem III
(ii).

Lemma I. For {yt(co) ,0¿t¿T'} a non-negative separable martingale process,
yt¡(co) =0 for almost all co such that m(o¿tst¡ yt(co) =0.

Proof. It was shown by Ville [l] (see also Doob [l, Chapter VII]) that
for a discrete parameter martingale process y,(X), i= 1, 2, • • • ,

XP(      inf       yj(«) g X) ̂    f yn(<o)dP.
t-12,--;n J linfi_i,2,...,nïi(M)aXÎ

Then for a separable martingale process {yt(co), O^t^T'}

\P(  inf    yt(cc) ̂  X) ^   f yh(co)dP,

since the sets {infos¡s¡0 yt(co)^\} can be approximated by sets defined
by conditions on yt(co) for a finite number of values of / in the separable case.
Taking X = 0, we have

0ê f yh(co)dP.

Since the integral of a positive function can be zero only in case the function
is almost everywhere zero, the lemma is proved.

Theorem IV. (i) C(u, u, w, o(l)) and R( =o ) (R( — oo )) imply that almost all
sample functions are bounded from above (below).

(ii) D(u, u, , b) and R(°°) (R(— °°)) imply that almost all sample func-
tions are bounded from above (below).

Proof. We let Im=( — m, m), m an integer, and consider the martingale
processes {P(t, x,(w) ; r', Im),0^t^r'} for all r'£P. We delete the exceptional
set of Lemma 1 for each of our martingale processes for each ¿i£i? from Q*.
The remaining set has probability one since we have deleted only a countable
number of sets of measure zero. We delete also the sets where | xr(co) | = oo,
for each r. The remaining set we call fi**, and since we have deleted only a
countable number of sets of measure zero, P(S2**) = 1. We assume
C(u, u, w, o(l)). We suppose an toGß** such that for some to there is a se-
quence r,-, r,—Ho as i—»oo, for which xri(co)—»oo as î—»co. Given any e>0, by
C(w, u, w, o(l)) we can choose r'>to, so near to that, for tG(2to — r', r'),
P(t, x; r', I(x, a(x))) >1— e for some a(x) such that |x±a(x)| ->«j as x—>oo.
We assume R(«°), i.e., for some r">r', P(r', x; r", 7)—»0 as x—>oo for all
bounded intervals 7. Then for * so large that r¿G(2¿0 — r', r'),
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/CO

Pin, Xri(co);r',dy)P(r',y;r",I)
-00

^ sup P(r', y;r", Im) + e.
V&(xr.,a{xri))

But by R(oo),

lim sup P(r', y, r", Im)  g lim sup P(r', y, r", Im) = 0.

Hence, since e was arbitrary,

limP(>-,-, xu(<o);r", Im) = 0.

Applying Lemma I, we have P(r", xr"(co); r", 7TO)=0. Since we have elim-
inated the exceptional sets of Lemma I, we must have |xr"(w)| >m. This
holds however for all m, so |xr"(«)| = œ. This contradicts the construction
of Í2**. A similar argument holds using R(— oo). Hence (i) follows.

The same proof establishes (ii).

Theorem V. C(u, u, a, o(l)) implies that the sample functions are bounded
and have no discontinuities with oscillation exceeding 4a other than jumps, with
probability one.

Proof. Since we have assumed the xt(co) process to have property S*,
it will be sufficient to establish that the theorem holds when we assume the
approach to t from above and below through points of R.

SinceP(t, x; s, I(x, a))—>l as/ — s J. 0, uniformly in ¿, we can pick 5 so small
that s— t<ô implies that P(r, x; s, I(x, a))> 1 —e, r£(/, s). We pick (s, t) so
that  s — t<8,s,   t,  taken   from R.   This   interval we divide   into a   net,

Tn — (t = ta; h, t2, • • • , tn = s), ti G R.

We consider the following sets:

Ha  =    {tO I |   Xt(co)   —   Xa(co) \   <  a} ,
t=;-l

Ay =   D   {"| | xti(co) — xt(co) | ^ 2a} C\ {co j | xtj(co) — xt(co) \ > 2a), j <»,
t=i

A/ =  {to j | xtj(co) — x,(cc) | > a).

We note that for íVj, A/\A.y = 0. Since we must have \xti(co)—x,(co)\
>a if wGMa^Ay,

j—n—l f j=n—1

MoC    U    (Aj H Ay) UcU   Ay.
3-1 i—l

(We use cA to denote the complement of A.) Since the Ay are disjunct, we
have
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POO  ^    £ P(A/AAÍ) + P(V Ü   Ay)y-i \    y=i      /
j'=n—1 /J—ii—1      \

-    E  P(AynA,') + 1 -Pi    U   Ay).
y=i \ y=i     /

Since the Ay are defined by conditions on xt„(co), xtl(a), ■ ■ ■ , xtj(co), we may
use the Markov property and C(u, u, a, o(l)) to obtain

r(AiAAÎ)  =   f   P(Ay| xtl(cc) = Xy, • • • , xio(co) = x0)dP
J Ay

=    f    P(Ay I  *,,(«)   =   Xy)dP

g supP(Ay| ¡»^(«) = x)P(A.)
X

Ú  iP(Ay).
Hence

POO   ̂  «T    P(Ay) +  1 -  P (' Û       Ay)
y=i \ y=i        /

(3=n-l \ /;=n-l v

U       Ay)  + 1   -   PÍ     U       AyJ.

Since P(jua)>l—e,

'("£'A<)s </(i - •)■

We note that this inequality is independent of w, or of the particular choice
of Tn. We let Tn approachP by adding to the net more and more points fromi?.

nA1 = Uyl?-1 Ay is a measurable set. Since Tn+i includes all the points of
Tn, n+iAOrA1. Hence lim „A1 exists and is a measurable set. We call it A1. „A1
for every « includes all w for which | xti(co) — xtj(co)\ >4a, i,j<n—l, t,, tjG.Tn.
Going to the limit in the above inequality, we have

P(A') i£ ,/(l - ê).
When we say that xt(w) has experienced k displacements of more than

4a on T„, we mean that there exist k pairs of values (ti¡, tij+Uj) taken from
Tn, with tij+l>tij+llj, such that \xtij(co)— x(<j.+/Ij.(w)| >4a, j = i, 2, ■ ■ ■ , k. We
define: ¿i*a = [co\xt(co) has experienced k or more displacements of more than
4a on the net Tn up to tn-\} ■

A* i o= {co|xt(w) has experienced k displacements of more than 4a on the
net Tn up to i,_i, but not before}.
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A/ a— \co\xt(co) experiences at least one displacement of more than 4a on
Tn between i<_i and ¿„_i}.

We note that A* i ar\Ak y o = 0, i^j, ££? At < « = M* a and
¿=«

Mfc+1 a   =    U   (A* i a H /i¿ a).
¿=1

Since the A* ,■ „ are disjunct,
(¿= n i= n

U   At i a r\ fii a)   =    E P(At i.HA,' a).
i=l >'=1

Since At ,• a is defined by conditions on x(o(w), x(l(w), • • • , x^.^co), we may
use the Markov property to obtain

P(At i a H AÍ „) = P(A,' „ | Xf^Jm) = Xt-u • • • . *«„(«) = xo)dP
J Atia

P(A,'a|   »(^(w)   =   *¡_i)<7P-L
At i a

g supx P(AÍ „ |  *«,_,(«)   =  x)P(Ak i a).

Hence, applying the first part of the proof to A< „. we have

P(At i a H A,' .)   è   íP(At i .)/(!   -   ê),

so

P(Mt+l a)   ¿   € Z P(A* i a)/(l   -   i)   =   iP(M* a)/(l   "   •).
¿=1

Therefore, by induction, for ail k,

p(Mt0) ̂  ryu-t))*.
We let A* = limn,00 ^t 0. Again taking limits on the inequality, we have

P(A*) g (í/(1 - e))4.

Since

EP(A*) ^ E (*/(l -.))*<- «/(i - 21),
t=l t=l

we may apply the Borel-Cantelli lemma to establish that, with probability
one, co is in but a finite number of the A*. That is, on the interval (t, s), the
number of displacements of more than 4a is finite, with probability one. We
cover (0, T') by a finite number of intervals of length Ô or less, end points
taken from R. If we eliminate the exceptional set for each, we eliminate only
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a set of measure zero. The remaining set we call p. PQu) = 1. For «£m> if the
number of displacements exceeding 4a is infinite on (0, T'), it must be so on
at least one member of the covering. Hence the number of displacements of
more than 4a on (0, T') is finite, with probability one. This establishes the
theorem.

We have as a corollary:

Corollary. C(u, u, e, o(l)) implies that almost all sample functions are con-
tinuous except for strict jumps.

Theorem VI. (i) D(w, b,    , b) implies that for almost all co, for all t,
O^t^T',

• tfc(»li) 1 + x2(cc)

(c depends on co, t, and the direction of approach.)
(ii) D(m, u, , b) implies that for almost all co, if lim infs| í(s j t) | xt(w) | < °o ,

then lim sup,T <(, j t) \ xs(co) | < oo.
From (i) and (ii) D(m, u, , b) implies that for almost all co, arctan xt(co),

mod 7T, is continuous except for strict jumps.
(iii) D(m, u, , u) implies that almost all sample functions have right- and

left-hand limits (possibly infinite) at every t. Since we deal with processes with
property S*, this implies that arctan xt(co) is continuous except for strict jumps.

(iv) D(u, b, , b), R(°o), R(— °°) and C(u, u, w, o(l)) imply that almost
all sample functions are continuous except for strict jumps.

(v) C(u, b, e, o(l)) (or D(u, b, , b)) and C(u, u, a, o(i)) imply that almost
all sample functions are continuous except for strict jumps.

Proof of (i). We suppose that there is an uj£ß* for which there exists a
to such that there is a sequence r<, r¡ | to, and a sequence r¡, ri î to(r{ [ to,
ri i to), for which xr,.(w)—>a, xri(co)—>b, aj¿b, a, b finite. We choose 7, A as in
the proof of Theorem II (i). Under the assumption D(w, b, , b) we can choose
r', r'>to, so near t0 that for t£(2t0-r', r'), P(t, x; r', 7)>0.9, xGACM,
P(t, x;r',I)<0.1,xEAr\d. Then for j so large that ior j>\,rjÇ_(2h-r', r'),
r'j G(2/0 — r', r'), xrj(co)SAr\I, xrj.(co)G^4^c7, we have, for j>i,

P(r¡, xrj(co) ; r', I) > 0.9,        P(r], xr» ; r', I) < 0.1.

This implies that P(t, xt(co); r', I) has an oscillatory discontinuity at /0,
contrary to the construction of £2*. Hence we have proved that for co£Œ*,
xT(co) can have at most one finite limiting value from the right (left) at each
value of t. Since the process has property S*, the same must be true of xt(co).
This limiting value is the "c" of (i).

Proof of (ii). We suppose an co£fi* for which a t0 exists such that there
is a sequence r<, r< î ta as t—>cc, and a sequence r< , r[ \ t0 as i—>°o  (r,- J. to,
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f'i i to), for which xri(co)—>a, a¿¿ + <*>, \ xu(co) | —» oo. We choose 7, A as in the
proof of Theorem II (ii), r' as above. An argument identical with that above,
with D(u, u, , b) insuring that P(r'¡ , xr'.)co) ; r', 7) <0.1 for j sufficiently large,
shows P(t, xt(co) ; r', I) to have an oscillatory discontinuity, contrary to the
construction of fi*. An argument like that above shows that this implies the
result for limits taken through R, and since the process has property S*, the
result follows for limits taken through all values of /.

Proof of (iii). From (i) and (ii) we see that under the hypothesis
D(u, u, ,u), the only possibility that limrj 4(rj t) xr(co) not exist for all co £ Œ*,
all/, is that, for some/o, lim infrî ¡o(rJ ío) xr(co) = — oo, lim supr u<,(r it 0)Xr(co) = oo .
We choose r( and r¡ to be sequences along which these limiting values are
taken. 7 we choose to be (0, oo), A to be the real line, less the interval
( —1, 1). Then D(w, u, , u) assures that we can choose r' as before. With
this choice of sequences and martingale process, the argument of (i) holds
exactly as before.

(iv) and (v) follow immediately from (i) and Theorem IV.
The results of Theorem VI (ii) were obtained by Doob [4, Theorem 12]

for the case where xt(co) can take on integral values. His hypotheses are very
close to D(m, u,    , b).

Doeblin, making no restriction on the number of elements in his space or
on its topological structure, under the assumption that

P(l, x;t + h, {x})-+l    as    A-> 0

uniformly in t and x, proved that almost all sample functions of his process
were continuous in finite closed intervals except at a finite number of values
of t and constant between successive pairs of these values. His assumption is
very similar to C(u, u, e, o(l)). In the corollary to Theorem V we have the
analogous result. Processes whose sample functions are continuous except for
jumps, but have an infinite number of jumps, in finite closed intervals, do
exist, as Levy [2] has shown in his discussion of the infinitely divisible proc-
esses. Hence we cannot expect as strong a result as that of Doeblin in this case.

3. Continuity of sample functions. Thus far the hypotheses used do not
prevent jumps in the sample functions. This should be the case, since the
Poisson process satisfies all the hypotheses used so far. It does not, however,
satisfy C(w, , e, o(h)). We first use C(w, u, e, o(h)). Without loss of generality
we may take T' = \. We examine the behavior of xt(co) on a net, Tn
= (0, tl, ■ ■ -,&-*, 1), whereJÇ-t/2». We let|f¿ni= [/?_„ £}, An<=|x,?(co)
-Xí?_i(w)|.

We observe
¡=2n

P(    max      Ani > e) ^   E P(A»< > f).
i=l,2,-",2" j_!

Using the Markov property, we have
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P(An< > «) - E{P(àni > t\ x(,-_i)/2»(ío) = *)}

g supP(An< > e| X(i_i)/2''(to) = x).
x

Hence, using C(u, u, e, o(h)), we have

(3) P(     max      A„, > t) - 2»o(l/2») = o(l)(m , „,.
1 = 1,2,•••,2»

For every /, there is a sequence of meshes, ¿„.-^ of the successive nets such
that tÇL\dnit and áni|C¿n-i .,, for all «. We select a sequence «y such that the
left-hand side of (3) is for each i a member of a convergent series. Applying
the Borel-Cantelli lemma to this series, we may deduce that, with probability
one, for j sufficiently large,

(4) max      Ani < e.

The left-hand end point of dnj i, we call sy, the right-hand end point t¡. It
follows from (4) that:

Lemma II. C(u, u, e, o(h)) implies that for almost all sample functions there
exist sequences ti \ t, s{ Î t, for each t, such that

lim  | xti(co) — xei(co) | = 0.

Similar properties of bounded sample functions can be obtained under
weaker hypotheses, namely C(u, b, e, o(h)), by a similar calculation. Using
the same net, we have

P(     max      Ani > e,     sup    | xs(to) \ ^ M)
1=1,2, •••,2" Oá»ál

i-í»

^   E P(A«4 > e- sup | *.(«) ¡ ^ M).
,=1 0Ssâ(i-l)/2»

Using the Markov property,

P(A„¿ > e, sup | x„(co) | ^ M)
0és¿(t-l)/2n

=   I P(An< > e | X(¡_i)/2"(w) = x)dxP(xli-i)/2n((o) = x)

^ sup   P(An< > e I x«_i)/2»(co) = x).
\x\¿M

Using C(u, b, e, o(h)), we have

P(Ani > (,        sup        | Xa(co) | < M) = o(l/2»).
0gjg(l-l)/2n

Hence
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P(     max      Ani > e,   sup    | xs(oi) | ^ M) = 2"o(l/2") = o(l) („,«,).
< = 1,2.2" Ogsgl

By an argument similar to that of Lemma II, since this equation holds for all
M, we can state:

Lemma III. C(w, o, e, o(h)) implies that for almost all bounded sample func-
tions, xt(co), there exist sequences, ¿,- \ t, 5< Î /, for each t, such that

lim | xti(u>) — xSi(co) | = 0.

Since C(u, u, e, o(h)) implies D(u, u, , u), Theorem VI, the corollary to
Theorem V, Lemma II, and Lemma III yield the theorem:

Theorem VII. (i) C(u, b, e, o(h)) and D(u, u, , b) imply that almost all
bounded sample functions are continuous.

(ii) C(u, u, €, o(h)) implies that almost all sample functions are continuous.
(iii) C(u, b, e, o(h)) and C(u, u, a, o(l)) imply that almost all sample func-

tions are continuous.
(iv) C(w, b, e, o(h)), C(u, u, w, o(i)), R(°°), and R(— oo) imply that almost

all sample functions are continuous.

(ii) is similar to a result of Doeblin [3], announcing conditions
under which Xi(w)/(1 + | x((w)| ) is continuous. He assumes, essentially,
C(u, b, e, o(h)), conditions resembling R(°°) and R(— «>), and the existence
of continuous first and second moments of the increments of xt(co). Since he
announces other results from his hypotheses, it is not certain which of them
were used to obtain this result.

Lemma III can be used in another way. Doob [l, Chapter VI, Theorem
3.2] has the theorem:

Theorem. If {xt(co), a^t^b} is a separable stochastic process with the
following properties:

(a) The process is measurable,
(b) £{|x,(w)| } <=o, a^t^b: /£E{|x((w)| }d/<oo,
(c) there is a Baire function, m(t, £), with m(t, £) <K(l+ Ç2)1'2 for some

constant K, such that, if a^ti<t2^b,

E{xtl(u>) — xt2((o) | xt(co), I % ii} = E<  I     m(s, xa(o>))ds\ xt(u), I < ti>

with probability one. Then Xt(co), defined by

Xt(cc) = xt(co) —  j    m(s, xa(u))ds, a ^ t ^ b,

is a separable martingale process and in fact, if h<h,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



298 J. R. KINNEY [March

E{Xh(o>)\ xt(cS),t <h] = Xh(to)

with probability one.

If we use the theorem of Doob cited in the introduction, since Xt(co)
is a separable martingale process, it has sample functions which are bounded
and have finite right- and left-hand limits for all t, with probability one.
Since Jam(s, xs(co))ds is a bounded continuous function, the function xt(co)
must have the same continuity properties as the function Xt(co), with prob-
ability one. Applying this result to our case, using also Lemma III and the
property S*, we have the theorem:

Theorem VIII. The sample functions of a Markov process with property
S* whose transition probability functions satisfy the conditions (a), (b), and (c)
of the introduction, condition C(u, b, e, o(h)) and the conditions of the above
theorem, are almost all continuous.

The conditions of the quoted theorem are similar to the conditions im-
posed on P(t, x; T, X) and the first moment of the increment used to insure
that P(t, x; T, X) satisfies the Fokker-Planck equations.

4. Examples. We first show that Theorem VI furnishes a proof that al-
most all sample functions of the Brownian motion process are continuous.
The function satisfying (a), (b), and (c) of the introduction is

/g-(l/-x)2/2(í'-í)

Then we have

/> g-\v—x>lih f
TTTTTTT- dy = 2

I „_*!>£   (¿irk)111 Je

g-(y-x)il2h /» =o      g-u'llh

du
(27TÄ)1I i

e Je

"  2ue~u l2h e~' l2h
du = ——- = o(A)(^o)

(2ttA)1/2 „,1/2

uniformly in x, for all «. Hence C(u, u, e, o(h)) is satisfied. Then, by Theorem
VII, (ii), almost all the sample functions of the Brownian motion process
are continuous.

We now construct a number of examples which show that discontinuities
can occur when various of our hypotheses are not satisfied. We suppose given
a Brownian motion process {xt(to), OgigP'}, x0(o>) =0, a = l. For each /, we
define x¡(co) as follows: .

(5) xt(co) = 1 — | x,(co) — 1 |.

We let V=(x\x<y)VJ(x\x>2—y). For each 7^1, (co\xt(co) <y) = (co\xt(co)
£V) = (co\xt(co) <y)VJ(co\xt(co)>2-y); for y^i, (to\ xt(co)^y)=Çl. There-
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fore xt(co) is a measurable function, for each /, so {xt(co), O^t^T'} is
a stochastic process. The transformation (5) preserves the continuity of
sample functions. The functions satisfying the conditions (a), (b), and (c)
for the xt(co) process given in the introduction are, for V described above,

/t    e-(ir-x)2/2(r-()               ^.oo    e-(ï-i)2/2(r-o
-dy+  |      -dy.

_M   (2t(T - t)Y<2   '      J 2-y (2r(T - I))1'2

By direct calculation we have

P(t, x; T, V) = P(t, 2 - x;T, V).

Hence, letting P(t, x; T, X) be the transition probability function of the
xt(co) process, 7=(x|x<7), we have P(t, x; T, I)=P(t, x; T, V). Then,
letting / = /0>ii> • • • >tn, and using the Markov property of the xt(co)
process, we have

P{xr(co) < 7 | *<<(«)> i = 0, 1, • ■ • , n\

= P{xr(<o) GF|| xti(o>) - if, t-0,1, .'■'• ,»j
= E[p{xT(co)EV\ xu(co),i = 0,1, ■••,»} || xti(co) - l|, i = 0, 1, • • • ,n\

= £[p{xr(co) G V\ xh(co)} | | x(,.(co) - l|,   i = 0, 1, • • • , n\.

But from the equation nine lines above, the last line is simply

P{xr(u)eF|x(0(a>)}.

So

p{xT(cc) ev\ xt0(co)} = p(xt(<o) e.v\ *,„(«))
= P{xr(co) <y\ xh(u)}.

Hence the xt(co) process is also a Markov process.
From the xt(co) process we form the yt(co) process as follows: for each co

we let

y,(co) = xt(co) for xt(u) < 0,
(o)

yt(w) = tan (irxt((o)/2) for 0 ^ xt(cc) g 1.

The y<(w) process is also a Markov process. For almost all co, at any value of
t for which x¡(co)?íl, yi(co) is continuous, since the transformation (6) is
continuous for x((o))^l. However for co, t0 such that lim^,, xt(co) = l,
lim¡<¡0 yt(co)=<x>. That the transition probability functions of \yt(co),
O^t^T'} satisfy C(u, b, e, o(h)) can be seen by a calculation very similar
to that used in showing that the transition probability functions of the
Brownian motion process satisfy C(u, u, e, o(h)). However, neither R(°°)
nor C(u, u, a, o(i)) is satisfied. To show this, we take 7 to be the interval
( — 1,0). Forji(co)—>°o, we have xt(co)—»1 in the original process. If P(t,y; T,I)
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is the transition probability function of the yt(co) process, we have

/0    e-(z-l)2/2(T-»                        r.%    g-(x-l)2 IHT-t)
-dx+  I    -dx.

-i(2w(T - t))1'2          Jî   (2ir(T - t))1'2

This expression is not zero, so R( <x> ) is not satisfied. Also
■ arctan (#+fl)    -—(x—arctan y)2/2(T—t)

P(t, y; T, I(y, a)) =   f
*J a

dx.
arctan  (»-a) (2ir(P  —  t))112

But since limz<0O arctan z = tr/2 in the range with which we are concerned,
for all T — t>0, lim^j« P(t, y; T, I(y, a))=0. Hence it is impossible that
limr-f|o P(t, y; T, I(y, a)) = 1 uniformly for all y, and so C(u, u, a, o(l)) is
not satisfied.

We now construct an example to illustrate what may happen in case
D(u, u, , u), R(oo), and R(— «>) are not satisfied, but D(u, u, , b) is
satisfied. We suppose {x,(co), O^t^T'} to be a Brownian motion process
with x0(w) = l/2, a = l. We define an x,(co) process as follows: for each w,

(7) xt(oi) = Xi(co) — i, for i ^ xt(to) < i + \.

We let F=U{:r. (x|i'^x<t'+7), 7==1. Then
t=0O

{a | x¡(co) < 7}   =   U   {co j i ^ xt(cc) < i + y].
t = —X

Since this is a denumerable sum of measurable sets, xt(co) is for each / a meas-
urable function, and so {xt(co), O^t^T'} is a stochastic process. From the
mapping (7) we see that the sample functions of the xt(co) process will be
almost all continuous except at values of / for which x,(«)=i, i= ■ ■ ■ ,
— 1, 0, 1, • • • . By direct calculation we find

P(t, x + j;T, V) = P(t,x;T, V).

Using the same conventions and proof as in the previous example, we may
show that the xt(co) process is a Markov process. We consider yt(co) defined
for each w as follows:

yt(u) = tan [r(x,(oi) - 1/2)].

As before the yt(co) process is a Markov process. Since the xt(co) process sample
functions are almost all continuous except at values of / where xt(co) =0, the
only discontinuities of the sample functions of the yt(co) process, for cor-
responding w, are at 00 and — 00. However, in a /-neighborhood of a value to
of / for which xto(co) =i, xt(co) crosses the value i an infinite number of times
with probability one [P. Levy, 1, p. 85]. Therefore y¡(co) has both — 00
and 00 as limits at to with probability one. This indicates that yt(co) does not
satisfy D(w, u,    , u). We take 7 = (0,  00) and let hi=Ti — t, i=i, 2, ■ ■ ■ .
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We let hi—»0. For D(u, u,    , u) to be satisfied it is necessary that T(t, y<; Tit 7)
—>1 for any sequence y„ i= 1, 2, • • • , such that for all i, y,->e>0. However

. 3+1/2   g-(x-arotan kí/t+1/2)2/2A¿

(2**,)»'*
P(t,yi;Ti,I)=   E    I -^TTTTTTT-     - ¿*.

y—» •/ y

For A,- sufficiently small, only the term with j = 0 will contribute appreciably
to the sum, as the argument in the first example shows, so

/> 1/2     g-(x-arotan i/,-/i+l/2)2/2Ai

.   -äiW-*
We choose the y< to be y; = tan ir(l/2 —A<), so for hi—>0, y—*oo. Then

/■ 1/2    g-(x+/i,)2/2A<                       /. (l/2+*j)Mi    g-"2/2
-áx =   I -d«.

o         (27rA()1'2             J,,.               (27T)1'2

As i—> oo, hi—rO, so

lim ?(<, y<; 7,, 7) =   f     -£-— dw = 1/2.
i-.» J0      (2ir)1/¿

Hence D(u, u, , u) is not satisfied. However D(u, u, , b) is satisfied, as an
argument similar to that in the first example will show. That C(u, b, e, o(h))
is satisfied may also be seen by a similar argument. We have here an illustra-
tion of the distinction made in Theorem VI between the parts (i) and the
remainder of the theorem.

We now construct a stochastic process for which almost all sample func-
tion have unique right- and left-hand limits, not necessarily finite. We take
\xt(co), O^t^T'} to be a Brownian motion process with Xo(w)=0, a = l.
For each co, we define xt(co) as follows:

x,(u>) = x,(«) - 4k,    if 4k - 1 á *,(«) á 4k + 1,
xt(cc) = 4k - 2 - x,(w),    if 4A + 1 ^ xt(cc) g 4k + 3,

£=•••- 1,0, 1, ••• .
We suppose — 1 ̂ 7 < 1. We take

fc=cc

V=   U   {x\4k- \ S x <4k + y)\J {x\4k + 3 - y < x^4k+ \).
t=—»

Then {w|x((co) <7J = {co|xí(w)£ P"}. Hence xt(co) is a measurable function so
{xt(co), O^t^T'} is a stochastic process. We note that, as before, it can be
shown by direct calculation that P(t, x+4m; T, V)=P(t, x; T, V) and
P(t, 4m + 2-x; T, V)=P(t, x; T, V). Hence, as before, P(t, x; T, 7)
= P(t, x; T, V). That the xt(co) process is a Markov process can be shown by
an argument like that used in the previous example. Furthermore, by con-
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struction, xt(co) is continuous for almost all co. We define yt(co), for every co,
t, as

yt(o>) = tan [irx,(co)/2].

In this case, for almost all co, yt(co) has unique limiting values from the right
and from the left (allowing co and -»as limiting values). Arguments similar
to those above will show C(u, u, a, o(\)), R(oo), and R(— °o) to be violated,
D(m, u, , u) to be satisfied. This process illustrated the distinction made in
Theorem VI between the cases (ii), (i), and (iv) or (v).
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